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ABSTRACT

Zeta Function Regularization and its Relationship to Number Theory

by

Stephen Wang

While the “path integral” formulation of quantum mechanics is both highly intuitive

and far reaching, the path integrals themselves often fail to converge in the usual

sense. Richard Feynman developed regularization as a solution, such that regularized

path integrals could be calculated and analyzed within a strictly physics context.

Over the past 50 years, mathematicians and physicists have retroactively introduced

schemes for achieving mathematical rigor in the study and application of regularized

path integrals. One such scheme was introduced in 2007 by the mathematicians Klaus

Kirsten and Paul Loya. In this thesis, we reproduce the Kirsten and Loya approach to

zeta function regularization and explore more fully the relationship between operators

in physics and classical zeta functions of mathematics. In so doing, we highlight

intriguing connections to number theory that arise.
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1 PROBABILITY THEORY IN QUANTUM MECHANICS

While the “path integral” formulation of quantum mechanics is both highly intu-

itive and far reaching, the path integrals themselves often fail to converge in the usual

sense. In this section, we discuss how regularization developed from an extension of

the idea of determinant of a finite matrix to the idea of a functional determinant in

the infinite-dimensional spaces of operators. We also discuss how Norbert Wiener first

established this idea in the context of probability theory and then Richard Feynman

strengthened the idea in the context of “the sum over histories” used in quantum

mechanics.

1.1 Finite Dimensional Operators

Let En be Rn with the standard inner product

〈x, y〉 = xTy

(i.e., En is the matrix model of Euclidean space). The adjoint A∗ of an n×n complex

matrix A is the Hermitian

AH = AT

where the bar denotes complex conjugation of each coefficient. If A is self-adjoint

(symmetric in the real case), then∫∫
. . .

∫
En

eπ〈Ax,x〉dx1dx2 . . . dxn =
1√

det (A)
.

Such multiple integrals occur often in applications, and when they do, they can be

evaluated if we can calculate the determinant of A. Moreover, such integrals are often

9



extended into an infinite dimensional context, in which caseA is a self-adjoint operator

on an infinite dimensional Hilbert space, where the concept of a determinant may not

make sense. In such cases, it is often possible to use zeta function regularization to

assign a meaningful value to det (A) via analytic continuation.

1.2 Quantum Calculations Related to Probability Theory

Quantum mechanics is a stochastic theory (it uses probability densities), so we

must take a stochastic approach. In particular, we begin by developing a model of

Brownian motion of a random walk as a limit as step size approaches zero. For fixed

ε > 0, suppose that at discrete times steps t = ti, ti+ε, ti+2ε, ti+3ε, ... the probability

distribution Pk (x) for the position of a random walker at time ti + kε satisfies the

Markov chain property

Pk (x) =

∫ ∞
−∞

Pk−1 (u) p (x, u) du,

where p (x, u) is the probability of transition from u ∈ R to x ∈ R. Einstein showed

that for Brownian motion, this transition probability is [9]

p (x, u) = R (x− u) where R (x) =
1√
2πξ

e−x
2/(2ξ),

where ξ is the “mass” variable. According to Norbert Wiener, if we let P0 (x) be a

delta function centered about the initial position x0, then [9]

P1 (x) =

∫ ∞
−∞

R (x− u) δ (u− x0) du = R (x− x0) .

10



Extending this to more discrete time steps, we get

P2 (x) =

∫ ∞
−∞

R (x− x1)R (x1 − x0) dx1

P3 (x) =

∫ ∞
−∞

∫ ∞
−∞

R (x− x2)R (x2 − x1)R (x1 − x0) dx2dx1

...
...

Pn (x) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

R (x− xn−1)R (xn−1 − xn−2) · · ·R (x1 − x0) dxn−1 · · · dx1.

If we let x be denoted xn at the nth iteration, then we can rewrite this as

Pn (xn) =

∫ ∞
−∞

. . .

∫ ∞
−∞

n∏
k=1

R (xk − xk−1) dxk−1.

However, notice that

n∏
k=1

R (xk − xk−1) =

(
1√
2πξ

)n−1 n∏
k=1

e−(xk−xk−1)
2/(2ξ)

=

(
1√
2πξ

)n−1
exp

(
−1

ξ

1

2

n∑
k=1

(xk − xk−1)2
)
.

We subsequently define

Sε (x0, x1, . . . , xn) =
1

2

n∑
k=1

(xk − xk−1)2 ,

so that we have

Pn (x) =
1

(2πξ)(n−1)/2

∫ ∞
−∞

∫ ∞
−∞

. . .

∫ ∞
−∞

e−Sε(x0,x1,...,xn)/ξ

n−1∏
k=1

dxk.

Next, Wiener introduced a profound new idea in in Applied Mathematics in the

1920s. Partition [ti, tf ] : For tk = ti + kε, define a piecewise linear function qε (t) such

that

qε (t) =
√
ε

(
xk − xk−1
tk − tk−1

(t− tk−1) + xk−1

)
for tk−1 ≤ t ≤ tk

11



and choose ε such that tn = tf . Also, require that qε (t0) = xi and qε (tn) = xf

(Endpoints are free in the piecewise linear definition, so there are no issues here.). It

follows that we can rewrite Sε (x0, . . . , xn) as

Sε (x0, . . . , xn) =
1

2

∫ tf

ti

(
dq

dt

)2

dt.

Wiener showed using probability theory that as the number of time steps in the

partition increased toward infinity, the probability distribution becomes [7, 9]

lim
n→∞

1√
ε
Pn (x) =

∫ ∞
−∞

. . .

∫ ∞
−∞

exp

(
−1

ξ

1

2

∫ tf

ti

q̇2dt

) ∞∏
k=1

dxk. (1)

He called this new concept a path integral. In some sense, it measures the probability

that a random walker starts at xi at time ti and ends at xf at time tf by integrating

over every possible path from xi to xf .

1.3 Path Integrals in Brownian Motion

Note that the Pn (x) distributions are defined by convolutions, so convergence is

transformed via the Convolution Theorem for the Fourier Transform into proving

that an infinite product of Fourier transforms converges [2]:∫ ∞
−∞

. . .

∫ ∞
−∞

exp

(
−1

ξ

1

2

∫ tf

ti

q̇2dt

) ∞∏
k=1

dxk = F−1
(
∞∏
n=1

f̂k (ω)

)
.

The infinite product is indeed in terms of a determinant of an operator. This is how

Wiener proved that equation (1) converges to

1√
2πξ (tf − ti)

exp

(
− (xf − xi)2

2ξ (tf − ti)

)
.
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If we let ti = 0 and write tf as just t, (thus, xf as simply x), then we can write this

as

u (x, t) =
1√

2πξt
exp

(
− (x− xi)2

2ξt

)
,

and it can be shown that u (x, t) is a solution to a heat equation

∂u

∂t
=
ξ

2

∂2u

∂x2

with condition
∫∞
−∞ u (x, t) dx = 1 for all t > 0 [12]. Moreover, notice that Sε (x0, x1, . . . , xn)

is an inner product of the form 〈Anx, x〉 for self-adjoint An, so that

Pn (x) =
1

(2πξ)(n−1)/2

∫ ∞
−∞

∫ ∞
−∞

. . .

∫ ∞
−∞

e−〈Anx,x〉
n−1∏
k=1

dxk =
1√

det (An)
.

In probability theory, path integrals converge and determinants of the associated

operators are well-defined because expected values of probability measures are as-

sumed to be absolutely convergent [4]. Convergence implies det (An) also converges

to det (A), where A is a self-adjoint linear operator on L2 (R):∫ ∞
−∞

. . .

∫ ∞
−∞

exp

(
−1

ξ

1

2

∫ tf

ti

q̇2dt

) ∞∏
k=1

dxk =
1√

det (A)
.

Thus, with complete mathematical rigor we can write∫ ∞
−∞

. . .

∫ ∞
−∞

exp

(
−1

ξ

1

2

∫ tf

ti

q̇2dt

) ∞∏
k=1

dxk =
1√

2πξ (tf − ti)
exp

(
− (xf − xi)2

2ξ (tf − ti)

)
,

which is known as a Wiener path integral (or, equivalently, a Wiener process [9]).

1.4 Feynman Path Integrals

In classical physics, the quantity
∫ tf
ti

1
ξ
q̇2dt is the action of a free particle with mass

ξ. The “dimensionless” Schrödinger of a free particle [9]

i
∂ψ

∂t
=
∂2ψ

∂x2

13



can be written in the form

∂ψ

∂ (it)
=
∂2ψ

∂x2
,

which is a heat equation in “imaginary time” (called a Wick rotation). If we let t = iτ

in the Wiener path integral, then the result is the Feynman path integral for a free

particle ∫ ∞
−∞

. . .

∫ ∞
−∞

exp

(
i

1

2ξ

∫ tf

ti

q̇2dτ

) ∞∏
k=1

dxk.

Feynman thus generalized Wiener’s path integrals in probability theory to Feynman

path integrals ∫ ∞
−∞

. . .

∫ ∞
−∞

eiS(x)/~
∞∏
k=1

dxk,

where S (x) =
∫ tf
ti
L (x, ẋ) dτ is the classical Lagrangian action from classical physics.

Feynman certainly was inspired by Wiener, who himself is one of the greatest mathe-

maticians and scientists of the 20th century (he established the field of cybernetics, for

example; Wiener also defined and established the deep and rich connection between

probability theory and analytic function theory [14]).

However, Feynman went far beyond the probabilistic path integrals of Wiener.

For example, if S is very large, then [9]∫ ∞
−∞

. . .

∫ ∞
−∞

eiS(x)/~
∞∏
k=1

dxk ≈
∫ tf

ti

L (x, ẋ) dt.

Thus, large S implies classical Lagrangian mechanics. Feynman uses this idea to

extend the Lagrangian mechanics approach to quantum field theory.

14



1.5 The Role of Zeta Regularization

But Feynman path integrals do not converge. In probability theory, the integrand

is e−S(x), whereas in Feyman’s path integral formulation the integrand is eiS(s)/~.

Similarly, the self-adjoint operators related to Schrödinger equations do not tend to

have well-defined determinants. However, as Feynman himself realized, it may still

be possible to obtain a value for a determinant via analytic continuation, in which

case ∫ ∞
−∞

. . .

∫ ∞
−∞

eiS(x)/~
∞∏
k=1

dxk =
1√

det (S)
,

where det (S) is a functional determinant – that is, a number assigned to an operator

via analytic continuation of a zeta function regularization [11].

Zeta function regularization is one method that can be used to find the functional

determinant of an infinite-dimensional operator. Kirsten and Loya [5] use both zeta

function regularization and comparison of similar determinants for regularization. Os-

good, Phillips, and Sarnak showed that both methods of regularization are equivalent

[8]. Defining the mathematically rigorous zeta function regularization below, we have

that the zeta function of an operator S is defined by

ζS(z) = tr S−z ,

For a self-adjoint operator with positive eigenvalues {σk}∞k=1, the equation above is

equivalent to

ζS(z) =
∞∑
k=1

1

σzk
, (2)

which will be useful in Chapters 3 and 4. The functional determinant is defined by

15



[11]

detS = e−ζ
′
S(0).
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2 THE RIEMANN ZETA FUNCTION AND ITS PROPERTIES

In order to understand the zeta functions used to regularize these infinite dimen-

sional operators, we must establish an understanding of the classical Riemann zeta

function. In this chapter, we present background and some results about the classical

Riemann zeta function.

2.1 Complex Analysis Background

In this section, we state definitions from complex analysis that will be used

throughout the rest of the thesis. John Conway’s Functions of One Complex Variable

offers a comprehensive resource for complex analysis background.

Definition 2.1. A holomorphic function is a complex-valued function of a complex

variable that is, at every point of its domain, complex differentiable in a neighborhood

of the point.

A major theorem of complex analysis states that all holomorphic functions are

analytic, and vice versa. Hence, the term analytic will be used to describe these

functions.

Definition 2.2. A meromorphic function on an open subset D of the complex plane

is a function that is analytic on all of D except for a set of isolated points, which are

poles of the function.

The following theorem is known colloquially as Cauchy’s Residue Theorem.

Theorem 2.3. Let f be a function defined and meromorphic on a simply connected

open subset of the complex plane D. If C is a positively oriented simple closed curve

17



around D containing poles (σk) of f(z) and not intersecting any other poles of f(z),

then ∮
C

f(z) = 2πi
∑

Res(f, σk)

where Res(f, σk) are the corresponding residues at the poles.

Analytic continuation is a technique by which the analyticity of a function is

conserved while extending the domain of the original function. The technique of

analytic continuation, though it can have many forms, provides a unique continuation

due to the analytic property of the original function.

2.2 The Riemann Zeta Function ζ(z)

The Riemann zeta function is most commonly associated with the Dirichlet series

∞∑
n=1

1

nz
.

The series converges for Re(z) > 1, and in this domain we write

ζ(z) =
∞∑
n=1

1

nz
.

However, the Riemann zeta function is not restricted to the domain of convergence

of the Dirichlet series. Hence, we have the following definition.

Definition 2.4. [3] The Riemann zeta function ζ(z) is the analytic continuation of

the Dirichlet series
∞∑
n=1

1

nz

to the meromorphic function defined on the whole complex plane, which has a pole at

z = 1.

18



2.3 The Gamma Function Γ(z)

In order to further study the Riemann zeta function, we must also consider the

closely related gamma function.

Definition 2.5. [3] The gamma function Γ(z) is defined by

Γ(z) =

∫ ∞
0

tz−1e−tdt.

Using integration by parts, we can see that

Γ(z + 1) =

∫ ∞
0

tze−tdt = −tze−t
∣∣∞
0

+ z

∫ ∞
0

tz−1e−tdt = zΓ(z). (3)

That is, Γ(z+ 1) = zΓ(z) for any z such that Re(z) > 0. Straightforward integration

shows that Γ(1) = 1. So if n is a positive integer, then the two properties combined

imply that Γ(n) = (n − 1)!. Furthermore, the Γ function also extends to a mero-

morphic function defined on the complex plane. The function has simple poles at

each of the integers less than or equal to 0. All other values of the extension can be

found by calculating values of the Γ function in the right half-plane directly from the

integral and using the equation Γ(z + 1) = zΓ(z) to extend the function to values in

the left-half plane.

2.4 The Digamma Function

The digamma function is the quotient of the derivative of the gamma function

and the gamma function. We explore this function further in Chapters 3 and 5.

Definition 2.6. [10] The digamma function ψ(z) is defined by

ψ(z) =
Γ′(z)

Γ(z)
.
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Theorem 2.7. The residues of the poles of the digamma function ψ(z) are given by

Res(ψ,−n) = −1

for n ∈ Z≤0.

Proof. The gamma function obeys equation (3):

Γ(z + 1) = zΓ(z).

So, taking the derivative with respect to z gives

Γ′(z + 1) = zΓ′(z) + Γ(z).

Dividing by Γ(z + 1) or the equivalent zΓ(z) gives

Γ′(z + 1)

Γ(z + 1)
=

Γ′(z)

Γ(z)
+

1

z
,

or

ψ(z + 1) = ψ(z) +
1

z
. (4)

Note that the digamma function has poles at the same locations as the gamma func-

tion. So, allowing z → 0 in equation (4), we see that ψ(1) is a constant, while
1

z
goes

to infinity. Therefore, ψ(z) must contain a pole of the form −1

z
to cancel out the pole

of
1

z
. That is,

Res(ψ, 0) = −1.

Referring again to equation (4), we see that because ψ(z) has a pole at z = 0, it must

also have a pole at every negative integer. Likewise,

Res(ψ,−n) = −1

for n ∈ N.
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2.5 The Functional Equation

We now describe and prove the functional equation of the Riemann zeta function.

Theorem 2.8. [3] ζ(z) satisfies the following equation:

π−
z
2 Γ
(z

2

)
ζ(z) = π−

1−z
2 Γ

(
1− z

2

)
ζ(1− z).

The functional equation for the Riemann zeta function can be proved via Poisson

summation and theta functions.

Proof. Let H = {x+ iy : x, y ∈ R, y > 0} denote the complex upper half plane. We

define the theta function Θ : H → C by

Θ(τ) =
∑
n∈Z

eπin
2τ .

Restricting to τ = it with t ∈ R, t > 0, we define

θ(t) = Θ(it) =
∑
n∈Z

e−πn
2t = 1 + 2

∞∑
n=1

e−πn
2t.

According to Poisson summation, θ(1/t) = t1/2θ(t). For a function f : R+ → C, the

Mellin transform of f is the integral

g(z) =

∫ ∞
t=0

f(t)tz
dt

t
.

We consider the Mellin transform at z/2 of

f(t) =
1

2
(θ(t)− 1) =

∞∑
n=1

e−πn
2t, t > 0.

That is,

g(z/2) =

∫ ∞
0

f(t)tz/2
dt

t

=

∫ ∞
0

∞∑
n=1

e−πn
2ttz/2

dt

t
.
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Since the sum converges for t > 0 and the integral converges absolutely for all values

of z, we may switch the sums and the integral in the domain of convergence:

g(z/2) =
∞∑
n=1

∫ ∞
0

e−πn
2ttz/2

dt

t
.

We rewrite the integrals by making the substitution u = πn2t,

g(z/2) =
∞∑
n=1

(πn2)−z/2
∫ ∞
0

e−uuz/2
du

u
.

This yields the final form of g(z/2),

g(z/2) = π−z/2Γ(z/2)ζ(z),Re(z) > 1,

which includes both the gamma function and the Riemann zeta function. We write

this equation in another form. Splitting the integral at t = 1, we get

π−z/2Γ(z/2)ζ(z) =

∫ ∞
0

1

2
(θ(t)− 1) tz/2

dt

t

=
1

2

∫ 1

0

(θ(t)− 1) tz/2
dt

t
+

1

2

∫ ∞
1

(θ(t)− 1) tz/2
dt

t
.

Multiplying the terms in the left integral together, we can write it as a sum of two

integrals

π−z/2Γ(z/2)ζ(z) =
1

2

∫ 1

0

θ(t)tz/2
dt

t
− 1

2

∫ 1

0

tz/2−1dt+
1

2

∫ ∞
1

(θ(t)− 1) tz/2
dt

t
.

The integral of the monomial can be computed directly:

π−z/2Γ(z/2)ζ(z) =
1

2

∫ 1

0

θ(t)tz/2
dt

t
− 1

z
+

1

2

∫ ∞
1

(θ(t)− 1) tz/2
dt

t
.

The first integral can be rewritten by substituting 1/t as the variable:

π−z/2Γ(z/2)ζ(z) =
1

2

∫ ∞
1

θ(1/t)t−z/2
dt

t
− 1

z
+

1

2

∫ ∞
1

(θ(t)− 1) tz/2
dt

t
.
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Applying the Poisson summation result, we get

π−z/2Γ(z/2)ζ(z) =
1

2

∫ ∞
1

θ(t)t
1−z
2
dt

t
− 1

z
+

1

2

∫ ∞
1

(θ(t)− 1) tz/2
dt

t
.

We add and subtract a copy of the same integral and rearrange to get

π−z/2Γ(z/2)ζ(z) =
1

2

∫ ∞
1

θ(t)t
1−z
2
dt

t
− 1

2

∫ ∞
1

t
1−z
2
dt

t
− 1

z
+

1

2

∫ ∞
1

t
1−z
2
dt

t

+
1

2

∫ ∞
1

(θ(t)− 1) tz/2
dt

t

=
1

2

∫ ∞
1

(θ(t)− 1) t
1−z
2
dt

t
− 1

z
+

1

2

∫ ∞
1

t
1−z
2
dt

t

+
1

2

∫ ∞
1

(θ(t)− 1) tz/2
dt

t
.

Computing the integral of the monomial and combining the other two integrals, for

Re(z) > 1 we get

π−z/2Γ(z/2)ζ(z) =
1

2

∫ ∞
1

(θ(t)− 1) t
1−z
2
dt

t
− 1

z
− 1

1− z
+

1

2

∫ ∞
1

(θ(t)− 1) tz/2
dt

t

=
1

2

∫ ∞
1

(θ(t)− 1)
(
t
1−z
2 + tz/2

) dt
t
− 1

z
− 1

1− z
.

Note that this expression is meromorphic over the whole complex plane with simple

poles at z = 0 and z = 1. The expression is also invariant under the transformation

z 7→ 1− z, and so we have proved the functional equation.

2.6 Specific Values of the Riemann Zeta Function

An equivalent alternate form of the functional equation is

ζ(z) = 2zπz−1 sin
(πz

2

)
Γ (1− z) ζ(1− z).

From this equation, we can notice that sin
(πz

2

)
has zeros at all the even integers.

While all the zeros of sin
(πz

2

)
greater than or equal to 0 are canceled out by poles of
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Γ (1− z) or the pole at ζ(1), the zeros of sin
(πz

2

)
less than 0 are not canceled out by

any poles. Hence, the negative even integers are called the trivial zeros of ζ(z). The

famed Riemann Hypothesis states that all other zeros of the Riemann zeta function

like within the critical strip, 0 < Re(z) < 1, on the line Re(z) = 1
2

[3]. The previously

mentioned values and other values of the Riemann zeta function, including some that

can be found in the domain of convergence of the Dirichlet series, are in Table 1 [13].

Table 1: Specific Values of the Riemann Zeta Function

z ζ(z)

. . . . . .
−6 0
−4 0
−2 0

−1 − 1

12

2
π2

6
= 1.6449340 . . .

3 1.2020569 . . .

4
π4

90
= 1.0823232 . . .

∞ 1
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3 MATHEMATICAL AND ANALYTIC TOOLS

We list theorems that will prove useful in Chapters 4 and 5.

3.1 A Classical Theorem

The following theorem is known colloquially as the Fundamental Theorem of Al-

gebra.

Theorem 3.1. Every non-zero, single-variable, degree n polynomial with complex

coefficients has, counted with multiplicity, exactly n complex roots.

3.2 Theorems Inspired by Kirsten and Loya

Kirsten and Loya [5] describe a process of calculating zeta functions from a func-

tion whose zeros are the same as the eigenvalues of some operator in physics. The

authors developed the following theorem in order to further explore Kirsten and Loya

contour integration:

Theorem 3.2. Suppose that f(t) is of the form

f(t) = c

∞∏
k=1

(
1− t

σk

)ak
where ak ∈ R+. If f(t) is analytic on a domain containing σk, then

Res

(
t−z

f ′(t)

f(t)
, σk

)
= akσ

−z
k .

Proof. Without loss of generality, let us consider f ′(t) at t = σ1. So,

f(t) = c

(
1− t

σ1

)a1 ∞∏
k=2

(
1− t

σk

)ak
.
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Taking the derivative, we get

f ′(t) = c

(
1− t

σ1

)a1 d
dt

(
∞∏
k=2

(
1− t

σk

)ak)
+ c

a1
σ1

(
1− t

σ1

)a1−1 ∞∏
k=2

(
1− t

σk

)ak
.

Therefore,

f ′(t)

f(t)
=

d

dt

(∏∞
k=2

(
1− t

σk

)ak)
∏∞

k=2

(
1− t

σk

)ak +

a1
σ1

(
1− t

σ1

)a1−1
(

1− t

σ1

)a1 .

The second term simplifies to
a1

σ1 − t
=
−a1
t− σ1

, while the first term has no

(
1− t

σ1

)
terms in it. So,

Res

(
f ′(t)

f(t)
, σ1

)
= −a1.

Since t−z is analytic at t = σ1,

Res

(
t−z

f ′(t)

f(t)
, σ1

)
= −a1σ−z1 .

Therefore,

Res

(
t−z

f ′(t)

f(t)
, σk

)
= −akσ−zk

for all k ∈ N.

The following theorem is central to the work of Kirsten and Loya:

Theorem 3.3. [5] The zeta function ζf (z) =
∑∞

k=1 akσ
−z
k associated with a function

f with positive zeros at {σk}∞k=1 can be found via the integral

ζf (z) =
1

2πi

∮
C

t−z
f ′(t)

f(t)
dt

for any closed curve C containing the zeros but not intersecting the negative real axis.
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Figure 1: Contours used for the Kirsten and Loya process of zeta function

regularization. Since both contours contain the same poles of
f ′(z)

f(z)
, the contour

integrals are equal by Theorem 2.3.

Figure 2: Contours used for the Kirsten and Loya process of zeta function

regularization. C− is the contour such that α→ π−, while C+ is the same contour

such that α→ 0+.
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Proof. Let us show the method by which Kirsten and Loya establish a zeta function

for a known or unknown operator via a contour integral.

We consider the contour as in Figure 1 where α→ 0+. Note, C2∪C3∪C4 = C+ as

in Figure 2. If f(z) has infinitely many zeros {σk}∞k=1 extending along the positive real

axis, let us define C as the limiting case of a succession of closed contours containing

more zeros of f(z) along the positive real axis. This corresponds nicely with the

definition of an infinite series as a limit of the partial sums. Therefore, by Theorems

2.3 and 3.2, we have

1

2πi

∮
C

t−z
f ′(t)

f(t)
dt = lim

n→∞

n∑
k=1

akσ
−z
k

=
∞∑
k=1

akσ
−z
k .

It immediately follows that

ζf (z) =
∞∑
k=1

akσ
−z
k .

A second theorem also due to Kirsten and Loya is as follows:

Theorem 3.4. [5] The zeta function ζf (z) =
∑∞

k=1 akσ
−z
k associated with a function

f with positive zeros at {σk}∞k=1 can be found via the integral

ζf (z) =
sin(−πz)

π

∫ ∞
0

r−z
f ′(−r)
f(−r)

dr

for all z for which the integral exists.

Remark. We reproduce the proof of the theorem for polynomials, but the proof

can be extended to a larger class of functions. For polynomials, the integral converges

for all 0 < Re(z) < 1.
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Proof. We consider the contour as in Figure 1 where α→ π−. By Theorem 2.3, since

C contains the same poles of
f ′(t)

f(t)
for constant R and 0 < α < π, therefore the

contour integrals are equal for constant R and 0 < α < π. So, the result of Theorem

3.3 still holds:

ζf (z) =
1

2πi

∮
C

t−z
f ′(t)

f(t)
dt.

We define the contour in a positive orientation as C = C1 ∪ C2 ∪ C3 ∪ C4. Note,

C2 ∪ C3 ∪ C4 = C− as in Figure 2. As α → π−, C2 and C4 approach the negative

real axis, where C2 is oriented toward x = 0 and C4 is oriented toward x = −R. C3

becomes an almost-complete circle of radius r = ε, oriented clockwise, whereas C1

becomes an almost-complete circle of radius r = R, oriented counterclockwise. If we

compute the contour integral for C2 first, then t = reiπ from r = R to r = ε and

dt = eiπdr. That is, ∫
C2

t−z
f ′(t)

f(t)
dt =

∫ ε

R

(reiπ)−z
f ′(reiπ)

f(reiπ)
eiπdr.

Note that we can cancel out the eiπ = −1 by flipping the limits on the integral:∫
C2

t−z
f ′(t)

f(t)
dt =

∫ R

ε

(reiπ)−z
f ′(reiπ)

f(reiπ)
dr.

If we then compute the contour integral for C4, we get t = re−iπ from r = ε to r = R

and dt = e−iπdr. That is,∫
C4

t−z
f ′(t)

f(t)
dt =

∫ R

ε

(re−iπ)−z
f ′(re−iπ)

f(re−iπ)
e−iπdr.

So, adding the two contour integrals together, we get∫
C2

t−z
f ′(t)

f(t)
dt+

∫
C4

t−z
f ′(t)

f(t)
dt =

∫ R

ε

(reiπ)−z
f ′(reiπ)

f(reiπ)
dr

+

∫ R

ε

(re−iπ)−z
f ′(re−iπ)

f(re−iπ)
e−iπdr.
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We factor out a e−iπz from the first integral and a eiπz from the second integral. Also,

note that in the limiting sense, reiπ = re−iπ = −r. We also factor out an e−iπ = −1

from the second integral. So,∫
C2

t−z
f ′(t)

f(t)
dt+

∫
C4

t−z
f ′(t)

f(t)
dt = e−iπz

∫ R

ε

r−z
f ′(−r)
f(−r)

dr

−eiπz
∫ R

ε

r−z
f ′(−r)
f(−r)

dr.

Let us compute the contour integrals for C1 and C3. For C1, t = Reiθ from θ = −π

to θ = π and dt = iReiθdθ. So,∫
C1

t−z
f ′(t)

f(t)
dt =

∫ π

−π
(Reiθ)−z

f ′(Reiθ)

f(Reiθ)
iReiθdθ.

Factoring out a R−z and rearranging, we get∫
C1

t−z
f ′(t)

f(t)
dt = R−z

∫ π

−π
e−iθz

Rf ′(Reiθ)

f(Reiθ)
ieiθdθ.

Let us look at whether the integral absolutely converges. That is,∣∣∣∣∫
C1

t−z
f ′(t)

f(t)
dt

∣∣∣∣ =

∣∣∣∣R−z ∫ π

−π
e−iθz

Rf ′(Reiθ)

f(Reiθ)
ieiθdθ

∣∣∣∣
=

∣∣R−z∣∣ ∣∣∣∣∫ π

−π
e−iθz

Rf ′(Reiθ)

f(Reiθ)
ieiθdθ

∣∣∣∣ .
We can see that for fixed z,

∣∣e−iθz∣∣ has a finite supremum for θ ∈ [−π, π]. That is,

|e−iθz| is bounded. If we here restrict our function f to the class of polynomials, then

we see that

∣∣∣∣Rf ′(Reiθ)f(Reiθ)

∣∣∣∣ is also bounded on [−π, π]. Finally,
∣∣ieiθ∣∣ = 1. Therefore,

∣∣∣∣∫
C1

t−z
f ′(t)

f(t)
dt

∣∣∣∣ ≤ ∣∣R−z∣∣ ∫ π

−π

∣∣∣∣e−iθzRf ′(Reiθ)f(Reiθ)
ieiθ
∣∣∣∣ dθ

≤
∣∣R−z∣∣ ∫ π

−π

∣∣e−iθz∣∣ ∣∣∣∣Rf ′(Reiθ)f(Reiθ)

∣∣∣∣ ∣∣ieiθ∣∣ dθ
≤ 2πM1

∣∣R−z∣∣ ,
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for some positive constant M1. Therefore, for Re(z) > 0, as R→∞,∫
C1

t−z
f ′(t)

f(t)
dt→ 0.

Note that for f in other classes of function,

∣∣∣∣Rf ′(Reiθ)f(Reiθ)

∣∣∣∣may be bounded for a different

region of z. That is, the above integral may converge to 0 for a different region of z.

Computing the contour integral for C3, we use t = εeiθ from θ = −π to θ = π and

dt = iεeiθdθ. That is,∫
C3

t−z
f ′(t)

f(t)
dt =

∫ π

−π
(εeiθ)−z

f ′(εeiθ)

f(εeiθ)
iεeiθdθ.

Factoring out a ε1−z and rearranging, we get∫
C3

t−z
f ′(t)

f(t)
dt = ε1−z

∫ π

−π
ieiθ(1−z)

f ′(εeiθ)

f(εeiθ)
dθ.

It follows that ∣∣∣∣∫
C3

t−z
f ′(t)

f(t)
dt

∣∣∣∣ =

∣∣∣∣ε1−z ∫ π

−π
ieiθ(1−z)

f ′(εeiθ)

f(εeiθ)
dθ

∣∣∣∣
=

∣∣ε1−z∣∣ ∣∣∣∣∫ π

−π
ieiθ(1−z)

f ′(εeiθ)

f(εeiθ)
dθ

∣∣∣∣ .
Note that as we let ε→ 0+, f(0) is a nonzero constant, and f ′(0) is also constant. So,

f ′(εeiθ)

f(εeiθ)
will approach a constant. As before, we can see that for fixed 1− z,

∣∣eiθ(1−z)∣∣
has a supremum for x ∈ [−π, π] and is bounded. Therefore,∣∣∣∣∫

C3

t−z
f ′(t)

f(t)
dt

∣∣∣∣ ≤ ∣∣ε1−z∣∣ ∫ π

−π

∣∣∣∣ieiθ(1−z)f ′(εeiθ)f(εeiθ)

∣∣∣∣ dθ
≤

∣∣ε1−z∣∣ ∫ π

−π
|i|
∣∣eiθ(1−z)∣∣ ∣∣∣∣f ′(εeiθ)f(εeiθ)

∣∣∣∣ dθ
≤ 2πM3

∣∣ε1−z∣∣ ,
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for some positive constant M3. Therefore, for Re(z) < 1, as ε→ 0,∫
C3

t−z
f ′(t)

f(t)
dt→ 0.

Thus, letting ε → 0+ and R → ∞, we have that for C = C1 ∪ C2 ∪ C3 ∪ C4 and

0 < Re(z) < 1: ∫
C

t−z
f ′(t)

f(t)
dt =

∫
C2

t−z
f ′(t)

f(t)
dt+

∫
C4

t−z
f ′(t)

f(t)
dt

= e−iπz
∫ ∞
0

r−z
f ′(−r)
f(−r)

dr

−eiπz
∫ ∞
0

r−z
f ′(−r)
f(−r)

dr.

That is, ∫
C

t−z
f ′(t)

f(t)
dt =

(
e−iπz − eiπz

)(∫ ∞
0

r−z
f ′(−r)
f(−r)

dr

)
.

Note that e−iπz − eiπz can be written as 2i sin(−πz). So,

ζf (z) =
1

2πi

∫
C

t−z
f ′(t)

f(t)
dt

=
sin(−πz)

π

∫ ∞
0

r−z
f ′(−r)
f(−r)

dr.

Note that coincidentally enough, the region of convergence of 0 < Re(z) < 1 matches

the critical strip of the Riemann zeta function.

3.3 Theorems Applied to the Digamma Function

We apply the theorems of Section 3.2 to the digamma function. These results are

original and are related to Ramanujan’s master theorem in Chapter 5.

Theorem 3.5. Let ζ(z) be the Riemann zeta function. Then,

ζ(z) = − 1

2πi

∮
C

t−z
Γ′(1− t)
Γ(1− t)

dt
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and

ζ(z) =
sin(πz)

π

∫ ∞
0

r−z
Γ′(1 + r)

Γ(1 + r)
dr.

Proof. Note that ψ(1− z) is a reflected and translated version of ψ(z) such that the

poles of ψ(1− z) are the positive integers instead of the integers less than or equal to

zero. Let us now use

f ′(z)

f(z)
=

Γ′(1− z)

Γ(1− z)
= ψ(1− z)

in the Kirsten and Loya contour integral. By Theorems 2.3 and 2.7, we have that

− 1

2πi

∮
C

t−z
Γ′(1− t)
Γ(1− t)

dt = − 1

2πi

∮
C

t−z
∞∑
n=1

−1

t− n
dt.

So, by Theorem 3.2,

− 1

2πi

∮
C

t−z
Γ′(1− t)
Γ(1− t)

dt =
∞∑
n=1

n−z.

Therefore, by definition of the Riemann zeta function,

ζ(z) = − 1

2πi

∮
C

t−z
Γ′(1− t)
Γ(1− t)

dt.

Also, by the proof of Theorem 3.4,

ζ(z) = −sin(−πz)

π

∫ ∞
0

r−z
Γ′(1 + r)

Γ(1 + r)
dr

=
sin(πz)

π

∫ ∞
0

r−z
Γ′(1 + r)

Γ(1 + r)
dr.
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4 KIRSTEN LOYA ZETA REGULARIZATION

The approach in the physics community, and thus also the approach by Kirsten

and Loya, is to apply the contour integral method to specific operators that occur

in particular quantum field theory models. Our research seeks to identify classes of

functions for which the contour integral form of zeta regularization converges and thus

for which Theorem 3.3 also holds, beginning with the polynomials. Thus, we explore

Kirsten and Loya’s process of calculating a zeta function for many examples and

show certain classes of functions for which this process involves convergent contour

integrals.

4.1 Class 1: Polynomials

Any polynomial f with positive zeros (σk) can be factored according to Theorem

3.1 as

f(t) = c
n∏
k=1

(
1− t

σk

)ak
for ak ∈ N. We can relate this function to its zeta function via the Kirsten and Loya

contour integral. That is, by Theorems 3.2 and 3.3,

ζf (z) =
n∑
k=1

akσ
−z
k =

1

2πi

∮
C

t−z
f ′(t)

f(t)
dt

for any closed curve C that contains all the zeros of f (and, hence, all the poles of

f ′

f
) and does not intersect t = 0 and the negative real axis. In the following sections,

we look toward classes of functions f with infinitely many zeros, where we must deal

with convergence issues for the contour integral.
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4.2 Class 2: Powers with a Sum that Absolutely Converges for Infinitely Many

Zeros

Suppose that f is of the form

f(t) = c
∞∏
k=1

(
1− t

σk

)ak
where ak ∈ R+ such that

∑∞
k=1 ak converges. By Theorems 3.2 and 3.3,

ζf (z) =
∞∑
k=1

akσ
−z
k .

Since σk ∈ R+ and
∑∞

k=1 ak converges, therefore the series for ζf (z) converges for

Re(z) > 0. Note that if {σk}∞k=1 = {k}∞k=1, then ζf (z) is an L-function, relevant in

number theory.

4.2.1 Class 2a: Geometric Powers for Infinitely Many Zeros

Suppose that {ak}∞k=1 is a geometric sequence defined by

ak = ak

with 0 < a < 1. In this case, we have

ζf (z) =
∞∑
k=1

akσ−zk .

Note that this is a special case of ak ∈ R+ such that
∑∞

k=1 ak converges.
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4.3 Class 3: Powers with Partial Sums that Satisfy the Wiener-Ikehara Theorem

for Infinitely Many Zeros

Note that if {σk}∞k=1 = {k}∞k=1, then

ζf (z) =
∞∑
k=1

akk
−z

is an L-function. Suppose that f is of the form

f(t) = c
∞∏
k=1

(
1− t

σk

)ak
where ak ∈ R+ such that ∑

k≤X

ak =
c

b
Xb.

We no longer specify as in Class 2 that
∑∞

k=1 ak converges, and we apply the Wiener-

Ikehara Theorem [6]. By Theorems 3.2 and 3.3,

ζf (z) =
1

2πi

∮
C

t−z
f ′(t)

f(t)
dt =

∞∑
k=1

akk
−z.

Therefore, the Wiener-Ikehara Theorem implies that
∑∞

k=1 akk
−z converges to an

analytic function in Re(z) ≥ b with a simple pole of residue c at z = b. So, defining

ζf (z) as the analytic continuation of the Dirichlet series, ζf (z) has a pole that is both

shifted and of a different residue than the Riemann zeta function.

4.4 Class 4: Infinitely Many Regularly Spaced Zeros of Order 1

For an operator with infinitely many eigenvalues {σk}∞k=1 modeled by a function

f with infinitely many zeros of order 1 (also {σk}∞k=1), we can relate the zeta function

produced by the Kirsten-Loya method to the Riemann zeta function as follows:
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Theorem 4.1. For an entire function

f(t) = c
∞∏
k=1

(
1− t

σk

)
with zeros that are defined by σk = bka, where b, a ∈ R+ with a > 1, we have

ζf (z) = b−zζ(az).

We can therefore relate the computed zeta function directly to the classical Rie-

mann zeta function. We prove the result below.

Proof. Let the zeros of f be defined by σk = bka, where b, a ∈ R+ so that

f(t) = c
∞∏
k=1

(
1− t

bka

)
.

So, by Theorems 3.2 and 3.3,

ζf (z) =
1

2πi

∮
C

t−z
f ′(t)

f(t)
dt

=
∞∑
k=1

1

(bka)z

=
∞∑
k=1

1

bzkaz
.

Factoring out the b−z, we have

ζf (z) = b−z
∞∑
k=1

1

kaz
.

Therefore, we have

ζf (z) = b−zζ(az).
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Note that b−z is entire, and the Dirichlet series for ζ(az) converges for Re(az) > 1.

So, the integral and series for ζf (z) converge for Re(z) > 1
a
. However, since the

Riemann zeta function is analytically continued to the whole complex plane, ζf (z)

also can be computed for all z ∈ C, with poles at z = 0 and z = 1
a
.

4.4.1 Examples

We now apply Theorem 4.1 to the example that Kirsten and Loya showed in [5]

(f1(t) = sin(
√
tL)/
√
t) and a couple similar examples:

Table 2: Zeta Functions for Functions with Zeros that Follow Monomials of

Positive Exponent

fn Expression Product ζfn(z)

f1
sin(
√
tL)√
t

∏∞
k=1

1− t(π
L

)2
k2

 (π
L

)−2z
ζ(2z)

f2
1− cos

√
t

t

1

2

∏∞
k=1

(
1− t

(2π)2k2

)
(2π)−2zζ(2z)

f3
sin( 4
√
t) sinh( 4

√
t)√

t

∏∞
k=1

(
1− t

π4k4

)
π−4zζ(4z)
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5 CONNECTIONS TO NUMBER THEORY

5.1 Ramanujan’s Master Theorem for the Digamma Function

Used often in number theory, Ramanujan’s Master Theorem provides a formula

for the Mellin transform of complex-valued functions.

Theorem 5.1. [1] If a complex-valued function f(x) has an expansion of the form

f(x) =
∞∑
k=0

λ(k)(−x)k

then the Mellin transform of f(x) is given by∫ ∞
0

xz−1
(
λ(0)− xλ(1) + x2 λ(2)− · · ·

)
dx =

π

sin(πz)
λ(−z).

Ramanujan’s Master Theorem is a powerful and beautiful theorem but also a

theorem that is hard to prove for many classes of functions. Let us prove this theorem

for the digamma function ψ, which we were working with in Chapter 3. According

to [10], ψ(x+ 1) has a Taylor series expansion of

ψ(x+ 1) = −γ −
∞∑
k=1

ζ(k + 1)(−x)k.

The corresponding classical result from Ramanujan’s Master Theorem is as follows:

Corollary 5.2. ∫ ∞
0

xz−1ψ(x+ 1)dx = − π

sin(πz)
ζ(1− z)

Remark. The proof, obtained by the Kirsten Loya contour integral method, does

not rely on Ramanujan’s Master Theorem.
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Proof. By Theorem 3.5, we have

ζ(z) =
sin(πz)

π

∫ ∞
0

x−z
Γ′(1 + x)

Γ(1 + x)
dx.

If we substitute 1− z for z in the above equation, we get

ζ(1− z) =
sin(π(1− z))

π

∫ ∞
0

x−(1−z)
Γ′(1 + x)

Γ(1 + x)
dx

=
sin(π(1− z))

π

∫ ∞
0

xz−1
Γ′(1 + x)

Γ(1 + x)
dx.

Note that

sin(π(1− z))

π
=

sin(πz)

π
.

So,

ζ(1− z) =
sin(πz)

π

∫ ∞
0

x−(1−z)
Γ′(1 + x)

Γ(1 + x)
dx

π

sin(πz)
ζ(1− z) =

∫ ∞
0

xz−1
Γ′(1 + x)

Γ(1 + x)
dx.

That is, ∫ ∞
0

xz−1ψ(1 + x)dx =
π

sin(πz)
ζ(1− z).

Correspondingly, similar results for the classes of functions in Chapter 4 can be

obtained from Ramanujan’s Master Theorem, which is one of our “future directions”

for this project.

5.2 Discussion

In Chapter 4, the zeta functions generated from functions of infinitely many zeros

are L-functions, which are studied in number theory. In fact, the result of the Wiener-

Ikehara Theorem described in Section 4.4 is used to prove the Prime Number Theorem
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based on the Riemann zeta function [6]. Furthermore, Theorem 4.1 in Section 4.5

relates the generated zeta functions directly to the Riemann zeta function. Given

the nature of the analytic tools used in zeta function regularization and the large

overlap with the field of analytic number theory shown below, there is more to be

discovered than the connection to Ramanujan’s Master Theorem and the already

discovered results of the Riemann zeta function. Physicists looking to make the

process of zeta function regularization simpler and more mathematical can follow the

Kirsten Loya process and obtain results by relating their generated zeta functions to

the classical Riemann zeta function. The authors recognize analytic number theory

and complex analysis as further research areas that connect to the rich mathematical

topics explored above.
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