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ABSTRACT

Bipartitions Based on Degree Constraints

by

Pamela Delgado

For a graph G = (V,E), we consider a bipartition {V1, V2} of the vertex set V by

placing constraints on the vertices as follows. For every vertex v ∈ Vi, we place a

constraint on the number of neighbors v has in Vi and a constraint on the number

of neighbors it has in V3−i. Using three values, namely 0 (no neighbors are allowed),

≥ 1 (at least one neighbor is required), and X (any number of neighbors are allowed)

for each of the four constraints, results in 27 distinct types of bipartitions. The goal

is to characterize graphs having each of these 27 types. We give characterizations

for 21 out of the 27. Three other characterizations appear in the literature. The

remaining three prove to be quite difficult. For these, we develop properties and give

characterization of special families.

2



Copyright by Pamela Delgado 2014

All Rights Reserved

3



DEDICATION

This thesis is dedicated to my mom Claribell Obregon and to my dad Isidro

Delgado.

4



ACKNOWLEDGMENTS

First I want to thank God for the countless blessings he has given me.

I would like to thank my advisor, Dr. Teresa Haynes, for her guidance and support

throughout my master’s program. Her kindness made this experience memorable and

her love for Graph Theory kept inspiring me every single day. I also thank Dr. Wyatt

Desormeaux for his contributions to this research, collaborating with him has been

an honor.

I thank Dr. Hedetniemi for proposing a very interesting problem, which later

became the subject of this research, and for his insights on this work. Finally, I would

like to thank the members of my committee, Dr. Robert Gardner and Dr. Debra

Knisley, for their time to review and comment on my original draft, but mostly I

thank them for their excellent work as professors and mentors.

5



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Introduction to Graph Theory . . . . . . . . . . . . . . . . . . 10

1.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . 11

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 The Work of Heggernes and Telle . . . . . . . . . . . . . . . . 15

2.2 Two Important Results on the Topic of Bipartitions . . . . . . 15

3 TWENTY-FOUR CHARACTERIZATIONS . . . . . . . . . . . . . . 17

4 THE REMAINING THREE PROBLEMS . . . . . . . . . . . . . . . 28

4.1 IDTD-Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Sufficient Conditions . . . . . . . . . . . . . . . . . . 29

4.1.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 TDTD-Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Preliminary Results . . . . . . . . . . . . . . . . . . 38

4.2.2 Sufficient Conditions . . . . . . . . . . . . . . . . . . 41

4.2.3 Self-Complementary Graphs . . . . . . . . . . . . . . 45

5 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . 53

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6



VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7



LIST OF TABLES

1 Types of Bipartitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Necessary and Sufficient Conditions . . . . . . . . . . . . . . . . . . . 27

8



LIST OF FIGURES

1 The Three Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 The Bowtie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9



1 INTRODUCTION

1.1 Introduction to Graph Theory

Let G be a graph with vertex set V = V (G), edge set E = E(G), and order

n = |V |. Let G denote the complement of G. The open neighborhood of a vertex

v ∈ V is the set NG(v) = {u ∈ V |uv ∈ E} of vertices adjacent to v, and its

closed neighborhood is NG[v] = NG(v) ∪ {v}. The open neighborhood of a set S ⊆ V

is NG(S) =
⋃
v∈S NG(v), while the closed neighborhood of a set S ⊆ V is the set

NG[S] =
⋃
v∈S NG[v]. The degree of a vertex v is degG(v) = |NG(v)|. An S-external

private neighbor of a vertex v ∈ S is a vertex u ∈ V \ S that is adjacent to v but to

no other vertex of S. The set of all S-external private neighbors of v ∈ S is called

the S-external private neighbor set of v and is denoted epn(v, S). If G is clear from

the context, then we will use N(v), N [v], N [S], N(S), and deg(v) in place of NG(v),

NG[v], NG[S], NG(S), and degG(v), respectively.

The minimum and maximum degrees of a vertex in a graph G are denoted δ(G)

and ∆(G), respectively. A vertex of degree one is called a leaf. In a connected graph

G, the distance dG(u, v) between vertices u and v is the length of a shortest u-v path in

G. For a vertex v, its eccentricity e(v) is the distance between v and a vertex farthest

from v in G. The maximum eccentricity among the vertices of G is its diameter,

denoted by diam(G). If e(v) = diam(G), then v is called a diametrical vertex. The

subgraph of G induced by a set of vertices S is denoted by G[S]. If A and B are two

subsets of V , we define [A,B] to be the set of edges with one vertex in A and the

other in B. For terminology not defined here, the reader is referred to the book [3].
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A set S ⊆ V is a dominating set of a graph G if N [S] = V , that is, every vertex in

V \S is adjacent to at least one vertex in S. The minimum cardinality of a dominating

set in a graph G is called the domination number and is denoted γ(G). A dominating

set of G with minimum cardinality is called a γ(G)-set. A set S is independent if

no two vertices in S are adjacent. A set that is both independent and dominating

is called an independent dominating set, abbreviated ID-set. A set S ⊆ V is a total

dominating set of a graph G, abbreviated TD-set, if N(S) = V , that is, every v ∈ V

is adjacent to at least one vertex in S. The total domination number γt(G) is the

minimum cardinality of a TD-set of G, and a TD-set of G with minimum cardinality

is called a γt(G)-set. Further, if S is a dominating set and the induced subgraph

G [V \ S] has no isolated vertices, then S is called a restrained dominating set of G.

A set S ⊆ V is a total restrained dominating set of G if S is both a total dominating

set and a restrained dominating set of G. For more details on domination parameters,

the reader is referred to the books [7, 8, 11].

A tree T is called a rooted tree if it has a vertex r labeled as the root, where for

each vertex v 6= r of T , the parent of v is the neighbor of v on the unique r-v path,

while a child of v is any other neighbor of v. We let C(v) denote the set of children

of v.

1.2 Statement of the Problem

Motivated by [9], we study graphs whose vertex set can be partitioned into two

sets by placing degree constraints on the vertices. To allow for different constraints

on each set, we denote a bipartition as an ordered pair. We define a (d1, d2, d3, d4)-

11



bipartition of the vertex set V into two sets S and V \ S to be an ordered pair

π = (S, V \ S) that satisfies the following conditions:

1. u ∈ S has d1 neighbors in S and d2 neighbors in V \ S and

2. v ∈ V \ S has d3 neighbors in S and d4 neighbors in V \ S.

We consider three possible values for the number of prescribed neighbors di, namely,

0 (no neighbors are allowed), ≥ 1 (at least one neighbor is required), and X (any

number of neighbors are allowed). Allowing for symmetry, this results in 27 distinct

types of bipartitions, which are described in Table 1. For the 4-tuple (d1, d2, d3, d4)

and associated bipartition (S, V \S), we note that if d1 = 0 (respectively d4 = 0), then

S (respectively V \ S) must be an independent set. If d1 ≥ 1 (respectively d4 ≥ 1),

then G [S] (respectively G [V \ S]) is isolate-free. Also, note that d2 = 0 if and only

if d3 = 0; that is, [S, V \ S] = ∅. Further, if d2 ≥ 1 (respectively, if d3 ≥ 1), then

V \S (respectively, S) is a dominating set. We note that several of these bipartitions

result in one or both sets being a type of dominating set as can be seen in Table 1.

Our goal is to characterize the graphs having a (d1, d2, d3, d4)-bipartition for each

of the 27 types.

In Section 2, we discuss the work of Heggernes and Telle [9], which motivated

our problem. They were the first to use degree constraints to form partitions of

the vertex set of a graph. Based on [9], Dr. Hedetniemi proposed the topic of

study addressed in the present thesis during his talk entitled “Towards a Theory of

Graph Bipartitions or Graph Bipartition Theory”, given on May 25, 2013 at The

26th Cumberland Conference on Combinatorics, Graph Theory and Computing. In
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this Section, we also recall two important results on the topic of bipartitions.

For three of the 27 bipartitions, characterizations are known. In Section 3, we list

these results and give characterizations for 21 additional types.

The problem of the remaining three characterizations proves to be quite diffi-

cult. For these three bipartitions, we develop properties and give characterization for

special families in Section 4.

In Section 5 we conclude with possible avenues for future study on the subject of

bipartitions.
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Table 1: Types of Bipartitions

(d1, d2, d3, d4) Description of the bipartition

1. (0,0,0,0) S and V \ S are independent sets,
[S, V \ S] = ∅

2. (0,0,0,≥ 1) S is an independent set, G [V \ S] is isolate-free,
[S, V \ S] = ∅

3. (0,0,0,X) S is an independent set, [S, V \ S] = ∅
4. (0,≥ 1,≥ 1,0) S and V \ S are independent dominating sets
5. (0,≥ 1,≥ 1,≥ 1) S is an independent (restrained) dominating set,

V \ S is a total dominating set
6. (0,≥ 1,≥ 1,X) S is an independent dominating set,

V \ S is a dominating set
7. (0,≥ 1,X,0) S is an independent set,

V \ S is an independent dominating set
8. (0,≥ 1,X,≥ 1) S is an independent set,

V \ S is a total dominating set
9. (0,≥ 1,X,X) S is an independent set,

V \ S is a dominating set
10. (0,X,≥ 1,≥ 1) S is a independent restrained dominating set
11. (0,X,≥ 1,X) S is an independent dominating set
12. (0,X,X,0) S and V \ S are independent sets
13. (0,X,X,≥ 1) S is an independent set, G [V \ S] is isolate-free
14. (0,X,X,X) S is an independent set
15. (≥ 1,0,0,≥ 1) G [S] and G [V \ S] are isolate-free,

[S, V \ S] = ∅
16. (≥ 1,0,0,X) G [S] is isolate-free, [S, V \ S] = ∅
17. (≥ 1,≥ 1,≥ 1,≥ 1) S and V \ S are total (restrained) dominating sets
18. (≥ 1,≥ 1,≥ 1,X) S is a total dominating set,

V \ S is a (restrained) dominating set
19. (≥ 1,≥ 1,X,≥ 1) V \ S is a total restrained dominating set
20. (≥ 1,≥ 1,X,X) V \ S is a restrained dominating set
21. (≥ 1,X,≥ 1,X) S is a total dominating set
22. (≥ 1,X,X,≥ 1) G [S] and G [V \ S] are isolate-free
23. (≥ 1,X,X,X) G [S] is isolate-free
24. (X,0,0,X) [S, V \ S] = ∅
25. (X,≥ 1,≥ 1,X) S and V \ S are dominating sets
26. (X,≥ 1,X,X) V \ S is a dominating set
27. (X,X,X,X) Any bipartition

14



2 BACKGROUND

2.1 The Work of Heggernes and Telle

In 1998 Heggernes and Telle [9] were the first to use degree constraints to form

partitions of the vertex set of a graph into generalized dominating sets. For a graph

G = (V,E), they defined a non-empty set S ⊂ V to be a (σ, ρ)-set, where σ, ρ are

sets of non-negative integers, if:

i) for every u ∈ S, | N(u)
⋂
S |∈ σ, and

ii) for v ∈ V \ S, | N(v)
⋂
S |∈ ρ.

The authors limited σ and ρ to be one of :{0}, {0, 1}, {1},N,N∗, they listed 13

types of (σ, ρ)-sets. A (k, σ, ρ)-partition problem asks to determine if there exist a

partition of the set of vertices of a graph into k subsets such that each of these subsets

is a (σ, ρ)-set. They gave a framework within which the computational complexity

of many graph partition problems could be determined as the parameters σ, ρ and k

vary.

2.2 Two Important Results on the Topic of Bipartitions

The following classic 1962 result by Ore shows that for any graph without isolated

vertices, its vertex set can be partitioned into two dominating sets.

Theorem 2.1 (Ore [13]) In any graph G = (V,E) having no isolated vertices, the

complement V \ S of any minimal dominating set S is a dominating set.

Let Cn denote the cycle on n vertices. Henning and Southey [10] established

the following useful result for graphs whose vertex set could be partitioned into a

15



dominating set and a total dominating set.

Theorem 2.2 (Henning and Southey [10]) If G is a graph with δ(G) ≥ 2 and G

has no C5 component, then the vertices of G can be partitioned into a dominating set

and a total dominating set.
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3 TWENTY-FOUR CHARACTERIZATIONS

In this section we present 24 characterizations. We omit proofs for the three

known results, as well as several whose characterizations are straightforward.

We let Kn denote the complete graph on n vertices. In all of the following results

we assume that a graph G has order n ≥ 2. Our first result is obvious.

Proposition 3.1 A graph G of order n has a Type 1 (0, 0, 0, 0)-bipartition if and

only if G = Kn.

Proposition 3.2 A graph G has a Type 2 (0, 0, 0,≥ 1)-bipartition if and only if G

has at least one isolated vertex and at least one edge.

Proof. Assume that G has at least one isolated vertex and at least one edge. Let

S be the set of all isolated vertices of G. Then clearly, S is an independent set,

N(v) ⊆ V \ S, and |N(v)| ≥ 1 for all v ∈ V \ S. Hence, (S, V \ S) is a (0, 0, 0,≥ 1)-

partition.

Assume G has a Type 2 (0, 0, 0,≥ 1)-bipartition, say (S, V \S). Then each vertex

in S is an isolated vertex in G, and since V \ S 6= ∅ and d4 ≥ 1, G has at least one

edge. �

Proposition 3.3 A graph G has a Type 3 (0, 0, 0, X)-bipartition if and only if G is

a non-trivial graph with at least one isolated vertex.

Proof. Assume that G has at least one isolated vertex and order n ≥ 2. Let S be a

subset of V containing at least one but fewer than n isolated vertices. Then (S, V \S)

is a (0, 0, 0, X)-bipartition.

17



Conversely, assume that G has a (0, 0, 0, X)-bipartition, say (S, V \ S). Clearly,

n ≥ 2, and every vertex in S is an isolated vertex in G. �

A graph G has a Type 4 (0,≥ 1,≥ 1, 0)-bipartition if and only if the set of vertices

of G can be partitioned into two independent dominating sets.

Proposition 3.4 A graph G has a Type 4 (0,≥ 1,≥ 1, 0)-bipartition if and only if

G is a non-trivial bipartite graph with no isolated vertices.

The next type of bipartition in this sequence is Type 5 (0,≥ 1,≥ 1,≥ 1). No

characterization of this type of bipartition, into an independent dominating set and

a total dominating set, is known. We will discuss this bipartition in Section 4.

Problem 3.5 Characterize the graphs having a Type 5 (0,≥ 1,≥ 1,≥ 1)-bipartition.

Observe that a graph G has a Type 6 (0,≥ 1,≥ 1, X)-bipartition (S, V \ S) if

and only if S is an independent dominating set and V \ S is a dominating set. Since

every maximal independent set is a minimal dominating set, our next result is an

immediate consequence of the theorem of Ore [13].

Proposition 3.6 A graph G has a Type 6 (0,≥ 1,≥ 1, X)-bipartition if and only if

G is a non-trivial graph with no isolated vertices.

Recall that a graph G has a Type 7 (0,≥ 1, X, 0)-bipartition if and only if G can

be partitioned into an independent set and an independent dominating set.

Proposition 3.7 A graph G has a Type 7 (0,≥ 1, X, 0)-bipartition if and only if G

is a bipartite graph with at least one edge.

18



Proof. Assume that G is a bipartite graph with at least one edge, and let I be the

set of isolated vertices of G. Since G is bipartite, let S and S
′

be partite sets of V \ I.

Clearly, S 6= ∅, S ′ 6= ∅, and (S, S
′ ∪ I) is a (0,≥ 1, X, 0)-bipartition of G.

Now, assume G has a (0,≥ 1, X, 0)-bipartition, say (S, V \ S). Then both S and

V \ S are independent sets, so G is bipartite. Since d2 ≥ 1, there is at least one edge

in G. �

Note that a Type 8 (0,≥ 1, X,≥ 1)-bipartition of a graph G is equivalent to

partitioning the vertex set of G into an independent set and a total dominating set.

Proposition 3.8 A graph G has a Type 8 (0,≥ 1, X,≥ 1)-bipartition if and only if

δ(G) ≥ 1 and ∆(G) ≥ 2.

Proof. Assume that G is a graph with δ(G) ≥ 1 and ∆(G) ≥ 2. Let D be a total

dominating set of G. Note that since ∆(G) ≥ 2, G 6= mK2. Thus,we can choose D

such that |D| < n. Let S be a maximum independent set of G [V \D]. Consider

(S, V \ S). Note that no vertex in S has a neighbor in S, and since δ(G) ≥ 1, every

vertex in S has at least one neighbor in V \ S. Since D is a total dominating set of

G and D ⊆ V \ S, the induced subgraph G[V \ S] has no isolated vertices. Thus,

(S, V \ S) is a (0,≥ 1, X,≥ 1)-bipartition.

Assume G has a (0,≥ 1, X,≥ 1)-bipartition, say (S, V \ S). Since V \ S is total

dominating set, every vertex in G has a neighbor in V \S, so δ(G) ≥ 1. Since S 6= ∅,

there exists a vertex u ∈ V \ S, such that |N(u) ∩ S| > 1 and |N(u) ∩ (V \ S)| > 1,

implying that ∆(G) ≥ 2. �

The graphs which have a Type 9 (0,≥ 1, X,X)-bipartition are precisely the graphs

whose vertex set can be partitioned into an independent set and a dominating set.
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Proposition 3.9 A graph G has a Type 9 (0,≥ 1, X,X)-bipartition if and only if G

has at least one edge.

Proof. Assume that G has at least one edge uv. Let S = {u}. Then clearly S is an

independent set, and since u has a neighbor in V \ S, it follows that (S, V \ S) is a

(0,≥ 1, X,X)-bipartition.

Now, assume G has a (0,≥ 1, X,X)-bipartition, d2 ≥ 1 implies G has an edge. �

The next type of bipartition in this sequence is Type 10 (0, X,≥ 1,≥ 1). No

characterization of this type of bipartition (S, V \ S), where S is an independent

restrained dominating set, is known. We will discuss this bipartition in Section 4.

Problem 3.10 Characterize the graphs having a Type 10 (0, X,≥ 1,≥ 1)-bipartition.

A Type 11 (0, X,≥ 1, X) bipartition is simply a bipartition (S, V \ S) in which S

is an independent dominating set.

Proposition 3.11 A graph G of order n has a Type 11 (0, X,≥ 1, X)-bipartition if

and only if G has an independent dominating set with fewer than n vertices, that is,

G 6= Kn.

A Type 12 (0, X,X, 0)-bipartition is simply the definition of a non-trivial bipartite

graph.

Proposition 3.12 A graph G has a Type 12 (0, X,X, 0)-bipartition if and only if G

is a non-trivial bipartite graph.

A graph G has a Type 13 (0, X,X,≥ 1)-bipartition if and only if G can be par-

titioned into an independent set and a set whose induced subgraph has no isolated

vertices.
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Proposition 3.13 A graph G of order n has a Type 13 (0, X,X,≥ 1)-bipartition if

and only if G 6∈ {mK2, Kn}.

Proof. Assume that G /∈ {mK2, Kn} is a graph of order n. If G has isolated vertices,

then let S be the set of isolated vertices of G. Since G 6= Kn, V \ S 6= ∅ and every

vertex in V \ S has a neighbor in V \ S. If G has no isolated vertices, let S = {u},

where u is a vertex with no leaf neighbors. We know there is such a vertex since

G 6= mK2. Since u has no leaf neighbors, every vertex in V \ S has a neighbor in

V \ S. In both cases, (S, V \ S) is a (0, X,X,≥ 1)-bipartition.

Now, assume that G has a (0, X,X,≥ 1)-bipartition, say (S, V \S). Since V \S 6= ∅

and G [V \ S] has no isolated vertices, G 6= Kn. If G has isolated vertices, then

G 6= mK2. Thus assume G is isolate-free, and let u be a vertex in S. Since d1 = 0,

then N(u) ⊆ V \ S. Let v ∈ V \ S be a neighbor of u. Since d4 ≥ 1, v has at least

one neighbor in V \ S. It follows that G 6= mK2. �

Since the only requirement for a graphG to have a Type 14 (0, X,X,X)-bipartition

is that G has a proper subset of independent vertices, we have the following trivial

characterization.

Proposition 3.14 A graph G has a Type 14 (0, X,X,X)-bipartition if and only if

G is a non-trivial graph.

A graph G has a Type 15 (≥ 1, 0, 0,≥ 1)-bipartition if and only if its vertex set can

be partitioned into two sets, S and V \ S, such that every vertex in S (respectively,

V \ S) has a neighbor in S (respectively, V \ S) and [S, V \ S] = ∅. Our next result

follows directly.
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Proposition 3.15 A graph G has a Type 15 (≥ 1, 0, 0,≥ 1)-bipartition if and only

if G has no isolated vertices and at least two components.

We can loosen the requirements of Proposition 15 slightly for a Type 16 (≥

1, 0, 0, X)-bipartition.

Proposition 3.16 A graph G has a Type 16 (≥ 1, 0, 0, X)-bipartition if and only if

G has at least two components, at least one of which is non-trivial.

Proof. Assume that G has at least two components, one of which is non-trivial. Let

S be the set of vertices in a non-trivial component. Then (S, V \S) is a (≥ 1, 0, 0, X)-

bipartition.

Assume that G has a (≥ 1, 0, 0, X)-bipartition, say (S, V \ S). Since d2 = 0 and

d3 = 0, G is disconnected. Since d1 ≥ 1, G [S] has no isolates. Thus, G has at least

one non-trivial component. �

The next type in this sequence is the Type 17 (≥ 1,≥ 1,≥ 1,≥ 1)-bipartition.

No characterization of this type of bipartition, into two total dominating sets, or

equivalently, into two restrained dominating sets, is known. We will discuss this

bipartition in Section 4.

Problem 3.17 Characterize the graphs having a Type 17 (≥ 1,≥ 1,≥ 1, ≥ 1)-

bipartition.

Graphs having a Type 18 (≥ 1,≥ 1,≥ 1, X)-bipartition (S, V \ S) are precisely

the graphs whose set of vertices can be partitioned into a dominating set (V \S) and

a total dominating set S. These graphs were characterized by Henning and Southey

in [12] through the construction of a family of graphs denoted G.
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Theorem 3.18 (Henning and Southey [12]) A graph G has a Type 18 (≥ 1,≥ 1, X,≥

1)-bipartition if and only if G ∈ G.

A graph G has a Type 19 (≥ 1,≥ 1, X,≥ 1)-bipartition if and only if the vertices of

G can be partitioned into two sets S and V \ S, where G [S] has no isolated vertices

and V \ S is a total dominating set, that is, V \ S is a total restrained dominating

set.

Proposition 3.19 A graph G has a Type 19 (≥ 1,≥ 1, X,≥ 1)-bipartition if and

only if there exist adjacent vertices u and v such that deg(u) ≥ 2, deg(v) ≥ 2, and

G \ {u, v} has no isolated vertices.

Proof. Assume that such pair of adjacent vertices, say u, v, exists. Let S = {u, v}.

Since deg(u) ≥ 2 and deg(v) ≥ 2, each of u and v has at least one neighbor in V \ S.

Further, since G\{u, v} has no isolated vertices, every vertex in V \S has a neighbor

in V \ S. Hence, (S, V \ S) is a (≥ 1,≥ 1, X,≥ 1)-bipartition.

Assume that G has a (≥ 1,≥ 1, X,≥ 1)-bipartition, say (S, V \ S). Since d1 ≥ 1,

G [S] has no isolated vertices, and since d2 ≥ 1, every vertex in S has a neighbor in

V \ S. Thus, each vertex in S has degree at least two. Choose u and v to be any

adjacent vertices in S. In particular, deg(u) ≥ 2 and deg(v) ≥ 2. Moreover, since

d2 ≥ 1 and d4 ≥ 1, every vertex in V has a neighbor in V \ S, so G \ {u, v} has no

isolated vertices. �

A graph G has a Type 20 (≥ 1,≥ 1, X,X)-bipartition if and only if G has a

restrained dominating set. The following characterization of these graphs is given by

Domke et al. in [4]:
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Proposition 3.20 (Domke [4]) A graph G has a Type 20 (≥ 1,≥ 1, X,X)-bipartition

if and only if G is not a disjoint union of stars and isolated vertices, or equivalently,

G has two adjacent vertices u and v such that deg(u) ≥ 2 and deg(v) ≥ 2.

A graph G having a Type 21 (≥ 1, X,≥ 1, X)-bipartition is equivalent to G having

a proper total dominating set. Hence, the characterization follows directly from the

definition of total domination and the fact that G = mK2 is the only graph requiring

all of its vertices in a TD-set.

Proposition 3.21 A graph G has a Type 21 (≥ 1, X,≥ 1, X)-bipartition if and only

if G 6= mK2 has no isolated vertices.

A graph G has a Type 22 (≥ 1, X,X,≥ 1)-bipartition if and only if the vertices

of G can be partitioned into two sets S and V \S such that G [V \ S] and G [S] have

no isolated vertices.

Proposition 3.22 A graph G has a Type 22 (≥ 1, X,X,≥ 1)-bipartition if and only

if G has no isolated vertices and at least two independent edges.

Proof. Assume that G has no isolated vertices and at least two independent edges,

say uv and xy. Let S be the set consisting of u and v, and any vertex whose open

neighborhood is contained in {u, v}. Clearly, every vertex in S has a neighbor in S.

Since uv and xy are not adjacent edges, N(x) (respectively, N(y)) is not contained

in {u, v}. It follows that neither x nor y is in S. In particular, V \ S 6= ∅. Since G

has no isolated vertices, by our choice of S, every vertex in V \ S has a neighbor in

V \ S. Thus, (S, V \ S) is a (≥ 1, X,X,≥ 1)-bipartition.
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Assume that G has a (≥ 1, X,X,≥ 1)-bipartition. Since d1 ≥ 1 and d4 ≥ 1, every

vertex in S has a neighbor in S and every vertex in V \ S has a neighbor in V \ S.

Since S 6= ∅ and V \S 6= ∅, G has no isolated vertices and two independent edges. �

We omit the proofs of the next two straightforward results.

Proposition 3.23 A graph G of order n has a Type 23 (≥ 1, X,X,X)-bipartition if

and only if G has at least one edge and n ≥ 3.

Proposition 3.24 A graph G has a Type 24 (X, 0, 0, X)-bipartition if and only if G

has at least two components.

As previously mentioned, Ore’s Theorem [13] states that in a graph having no iso-

lated vertices, the complement V \S of any minimal dominating set S is a dominating

set. In other words, Ore’s Theorem implies that the vertex set of any graph with no

isolated vertices can be partitioned into two dominating sets. Hence, our next result

follows directly.

Proposition 3.25 A graph G has a Type 25 (X,≥ 1,≥ 1, X)-bipartition if and only

if G has no isolated vertices.

Our final two characterizations are trivial.

Proposition 3.26 A graph G has a Type 26 (X,≥ 1, X,X)-bipartition if and only

if G has at least one edge.

Proposition 3.27 A graph G has a Type 27 (X,X,X,X)-bipartition if and only if

G is a non-trivial graph.
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The following table summarizes the necessary and sufficient conditions for a graph

to have a bipartition of each of the 27 types.
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Table 2: Necessary and Sufficient Conditions

Type i (d1, d2, d3, d4) G has a Type i-bipartition if and only if

1. (0,0,0,0) G = Kn

2. (0,0,0,≥ 1) G has at least one isolated vertex and at least one
edge.

3. (0,0,0,X) G has at least one isolated vertex.
4. (0,≥ 1,≥ 1,0) G is a non-trivial bipartite graph with no isolated

vertices.
5. (0,≥ 1,≥ 1,≥ 1) Unknown
6. (0,≥ 1,≥ 1,X) G is a non-trivial graph with no isolated vertices.
7. (0,≥ 1,X,0) G is a bipartite graph with at least one edge.
8. (0,≥ 1,X,≥ 1) δ(G) ≥ 1 and ∆(G) ≥ 2.
9. (0,≥ 1,X,X) G has at least one edge.
10. (0,X,≥ 1,≥ 1) Unknown
11. (0,X,≥ 1,X) G has an independent dominating set with fewer

than n vertices, that is, G 6= Kn

12. (0,X,X,0) G is a non-trivial bipartite graph.

13. (0,X,X,≥ 1) G 6∈ {mK2, Kn}.
14. (0,X,X,X) G is a non-trivial graph.
15. (≥ 1,0,0,≥ 1) G has no isolated vertices and at least two

components.
16. (≥ 1,0,0,X) G has at least two components, at least

one of which is non-trivial.
17. (≥ 1,≥ 1,≥ 1,≥ 1) Unknown
18. (≥ 1,≥ 1,≥ 1,X) G ∈ G
19. (≥ 1,≥ 1,X,≥ 1) G has two adjacent vertices u and v such that deg(u) ≥ 2,

deg(v) ≥ 2, and G \ {u, v} has no isolated vertices.
20. (≥ 1,≥ 1,X,X) G is not a disjoint union of stars and isolated vertices.
21. (≥ 1,X,≥ 1,X) G has no isolated vertices and G 6= mK2.
22. (≥ 1,X,X,≥ 1) G has no isolated vertices and at least two

independent edges.
23. (≥ 1,X,X,X) G has at least one edge and n ≥ 3.
24. (X,0,0,X) G has at least two components.
25. (X,≥ 1,≥ 1,X) G has no isolated vertices.
26. (X,≥ 1,X,X) G has at least one edge.
27. (X,X,X,X) G is a non-trivial graph.
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4 THE REMAINING THREE PROBLEMS

In this section, we address the open problems of characterizing the graphs having

the remaining three types of bipartitions:

1. Type 5 (0,≥ 1,≥ 1,≥ 1)-bipartition.

This bipartition is equivalent to partitioning the vertices of G into an indepen-

dent dominating set and a total dominating set.

2. Type 10 (0, X,≥ 1,≥ 1)-bipartition.

This bipartition is equivalent to partitioning the vertices of G into an indepen-

dent dominating set and a set whose induced subgraph has no isolated vertices.

3. Type 17 (≥ 1,≥ 1,≥ 1,≥ 1)-bipartition.

This bipartition is equivalent to partitioning the vertices of G into two total

dominating sets.

We first note that characterizing graphs having Type 5 bipartition and character-

izing graphs having Type 10 bipartition are equivalent problems if the graphs have

no isolated vertices. In other words, a (0,≥ 1,≥ 1,≥ 1)-bipartition is only possible

for a graph with no isolated vertices; and if a graph has no isolated vertices, then a

(0, X,≥ 1,≥ 1)-bipartition is precisely a (0,≥ 1,≥ 1,≥ 1)-bipartition. Furthermore,

for a graph G with a set I of isolated vertices and at least one edge, if (S, V \ S) is a

(0,≥ 1,≥ 1,≥ 1)-bipartition of G− I, then (S ∪ I, V \ (S ∪ I)) is a (0, X,≥ 1,≥ 1)-

bipartition of G. Hence, for all practical purposes, we have only two distinct open

problems remaining, namely, to characterize the graphs whose vertex set can be par-
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titioned into: (1) an independent dominating set and a total dominating set, and (2)

into two total dominating sets.

4.1 IDTD-Graphs

In this subsection, we study graphs whose vertex set can be partitioned into an

independent dominating set and a total dominating set, that is, graphs having a

Type 5 (0,≥ 1,≥ 1,≥ 1)-bipartition. We refer to the partition of a graph into an

independent dominating set and a total dominating set as a IDTD-partition, and we

refer to the associated decision problem as the IDTD-problem. If G has a IDTD-

partition, we say that G is a IDTD-graph. As far as we know, the IDTD-graphs have

not appeared in the literature.

Given the difficulty of solving the IDTD-problem in general, in the present work

we give several sufficient conditions to guarantee that a graph is a IDTD-graph. We

also characterize the trees that are IDTD-graphs, following closely the work done by

Henning and Southey [12].

4.1.1 Sufficient Conditions

We start with the following observation:

Observation 4.1 Every IDTD-graph has order at least 3. Trivially, the only IDTD-

graph of order 3 is the complete graph K3.

Theorem 4.2 If γ(G) ≥ 3, then G is a IDTD-graph.
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Proof. Let I be a maximal independent set of G, clearly |I| < n or else γ(G) = 1.

Then I is an independent dominating set of G. Assume V \I is not a total dominating

set, that is, there is a vertex x ∈ V such that x does not have a neighbor in V \ I.

We have the following two possible cases:

Case 1. x ∈ I. Thus, x is an isolated vertex in G, and so, {x} dominates G. Implying

that γ(G) = 1. But this is a contradiction since γ(G) ≥ 3.

Case 2. x ∈ V \ I. Thus x is an isolated vertex in V \ I, and so, {x} dominates

V \ I in G. Since any vertex u ∈ I dominates I in G, we have that {x, u} dominates

G, contradicting that γ(G) ≥ 3. �

Theorem 4.3 If G is a claw-free graph with δ(G) ≥ 3, then G is a IDTD-graph.

Proof. Let G be a claw-free graph with δ(G) ≥ 3. Let I be a maximal independent

set of G. Then I is an independent dominating set of G. Since δ(G) ≥ 3, every vertex

in I has a neighbor in V \ I, so V \ I is a dominating set of G. To see that V \ I is

a total dominating set of G, note that if any vertex of V \ I has three neighbors in

I, a claw is formed, a contradiction. Hence, every vertex in V \ I has at most two

neighbors in I, implying that every vertex in V \ I has at least one neighbor in V \ I.

In other words, V \ I is a TD-set of G. Thus, G is a IDTD-graph. �

Observation 4.4 If the set of vertices of a graph can be partitioned into an indepen-

dent dominating set and a non-trivial connected dominating set, then the graph is a

IDTD-graph.

Theorem 4.5 If γ(G) ≥ 4, then the set of vertices of G can be partitioned in a

independent dominating set and a non-trivial connected dominating set.
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Proof. Suppose γ(G) ≥ 4. Let I be a maximal independent set of G. Then I is

an independent dominating set of G. Clearly, I 6= V , or else γ(G) = 1. Also, notice

|V \ I| > 1. Suppose V \ I is not connected. Let A be the vertex set of a component

of V \ I, then V \ (I ∪ A) 6= ∅. Let a ∈ A, then a dominates V \ (I ∪ A) in G. Let

u ∈ I, then u dominates I in G. Let x ∈ V \ (I ∪A), then x dominates A in G. Thus,

{a, u, x} dominates G, contradicting that γ(G) ≥ 4.

Suppose V \I is not a dominating set, that is, there is a vertex x ∈ I such that x does

not have a neighbor in V \ I. Then x is an isolated vertex in G, and so dominates G,

again a contradiction since γ(G) ≥ 4. �

4.1.2 Trees

Now we proceed to characterize the trees which are IDTD-graphs. We do this in

a constructive way, following closely the construction done by Henning and Southey

[12] to characterize those trees that can be partition into a total dominating set and

a dominating set.

Definition 4.6 Define a labeling of a graph G = (V,E) as a partition L = (A,B) of

V . A vertex v is said to be labeled A (labeled B) if v ∈ A (v ∈ B).

Definition 4.7 By labeled-P4, we mean a path P4 with the two central vertices labeled

A and the two leaves labeled B.
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Figure 1: The Three Operations

Definition 4.8 The Graph Family T

Let T be the minimum family of labeled trees that:

(i) contains a labeled-P4 and

(ii) is closed under the three operations O1, O2, and O3 listed below:

• Operation O1: Assume the vertex v is labeled A. Add a vertex u labeled B and the

edge vu.

• Operation O2: Assume the vertex v is labeled A. Add a path uw, where u is labeled

A and w is labeled B and the edge vu.

• Operation O3: Assume the vertex v is labeled B. Add a path uwx, where u is labeled

A, w is labeled A and x is labeled B, and the edge vu.

We illustrate these operations in Figure 1.

Observation 4.9 Let (T, L) ∈ T for some labeling L = (A,B). Then the following

properties hold:

(a) Every vertex labeled A is adjacent to a vertex labeled A and to a vertex labeled B.

(b) Every vertex labeled B is adjacent to a vertex labeled A.
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(c) Every neighbor of a vertex labeled B is a vertex labeled A.

(d) The set A is a TD-set of T and the set B is an ID-set of T .

(e) Every leaf of T is labeled B and every support vertex is labeled A.

Observation 4.10 Let T be a rooted IDTD-tree, and let (D, I) be a partition of its

vertex set V into a TD-set D, and an ID-set I. Then, the following properties hold:

(a) Every leaf belongs to I, while every support vertex belongs to D.

(b) If every child of a vertex is a leaf, then its parent belongs to D.

(c) Any neighbor of a vertex in I must be in D.

A vertex is called a strong support vertex if it is adjacent to at least two leaves.

Theorem 4.11 The IDTD-trees are precisely those trees T such that (T, L) ∈ T , for

some labeling L.

Proof. Suppose first that (T, L) ∈ T for some labeling L = (A,B). By Observa-

tion 4.9(d), (A,B) is a partition of V into a TD-set A and an ID-set B.

Now, to prove the necessity we proceed by induction on the order n > 4 of an

IDTD-tree T . Since no star K1,n−1 is a IDTD-tree, we have that and diam(T ) ≥ 3.

For the base case, if n = 4, then T = P4, and (T, L) ∈ T where L is the labeling

of labeled-P4.

For the inductive hypothesis, let n ≥ 5 and assume that for every IDTD-tree T

of order less than n there exist a labeling L such that (T, L) ∈ T .

For the inductive step, let T be an IDTD-tree of order n. Let (D, I) be the

partition of V into a TD-set D and an ID-set I. We want to find a labeling such that
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(T, L) ∈ T .

We root the tree T at a diametrical vertex r. Necessarily, r is a leaf. Let u be a

vertex at maximum distance from r. Necessarily, u is a leaf. Let v be the parent of

u, let w be the parent of v and let x be the parent of w (possibly, x = r). Since u is

at maximum distance from r, every child of v is be a leaf. Then by Observation 4.10

(a), C(v) ⊆ I (in particular, u ∈ I) and v ∈ D. Also, by Observation 4.10 (b) w ∈ D.

We study the following two possible cases: 1. T has at least one strong support

vertex or 2. T does not have any strong support vertices.

Case 1. Let z be a strong support vertex of T . Let z1 and z2 be two leaf-neighbors

of z. Then by Observation 4.10 (a), z1, z2 ∈ I and z ∈ D.

Consider the tree T \{z1}. Notice that (D, I \{z1}) is a partition of the set of vertices

of T \ {z1} into a TD-set and ID-set. Applying the inductive hypothesis to T \ {z1},

there exist a labeling L = (A,B) such that (T \ {z1},L) ∈ T . By Observation 4.9

(d), we also know A is a TD-set and B is an ID-set of T \ {z1}.

By Observation 4.10 (a), z ∈ A. Thus, we can restore the tree T by applying Opera-

tion O1 to T \ {z1} (at vertex z). Thus, (T, S) ∈ T for some labeling S, namely, S is

the labeling L for T \ {z1} and z1 is labeled B.

Case 2. Assume that T has no strong support vertices. In particular, deg(v) = 2.

We study the following two possible cases: (a) deg(w) ≥ 3 or (b) deg(w) = 2.

Case 2(a). Suppose deg(w) ≥ 3. Let v′ ∈ C(w) \ {v}.

Two possible cases:

• Case 2(a.1). There is at least one child of w besides v with degree greater than

one. Suppose v′ is such vertex.
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By our choice of the vertex u, every child of v′ is a leaf. Since T has no strong vertex,

deg(v′) = 2. Let u′ be the child of v′. By Observation 4.10 (a), {u, u′} ∈ I and

{v, v′} ∈ D. Also, by Observation 4.10 (b), w ∈ D.

Consider the tree T \ {u′, v′}. Then (D \ {v′}, I \ {u′}) is a partition of the set of

vertices of T \{u′, v′} into a TD-set and an ID-set. Applying the inductive hypothesis

to T \ {u′, v′}, there exist a labeling L = (A,B) such that (T \ {u′, v′},L) ∈ T . By

Observation 4.9 (d), we know that A is a TD-set and B is an ID-set of T \ {u′, v′}.

By Observation 4.10 (a) and (b), {u} ∈ B and {v, w} ⊆ A. Thus, we can restore T

by applying Operation O2 to T \ {u′, v′} (at vertex w). Thus, (T, S) ∈ T for some

labeling S, namely, S is the labeling L for T \ {u′
, v

′} along with v
′

labeled A and u
′

labeled B.

• Case 2(a.2). Every child of w, different from v, is a leaf.

Thus since T does not have any strong support vertices, deg(w) = 3 and C(w) =

{v, v′}, where v′ is a leaf. By Observation 4.10 (a) and (b), {u, v′} ⊆ I and {v, w} ⊆

D.

There are two possibilities, either x ∈ D or x ∈ I:

If x ∈ D, then we know that w is adjacent to a vertex in D besides v. Therefore,

when considering the tree T \ {u, v}, we have that (D \ {v}, I \ {u}) is a partition of

the set of vertices of T \ {u, v} into a TD-set and an ID-set. Applying the inductive

hypothesis to T \{u, v}, there exist a labeling L = (A,B) such that (T \{u, v},L) ∈ T .

By Observation 4.9 (d), we know that A is a TD-set and B is an ID-set of T \ {u, v}.

By Observation 4.10 (a), v′ ∈ B and w ∈ A. Thus, we can restore T by applying

Operation O2 to T \ {u, v} (at vertex w). Thus, (T, S) ∈ T for some labeling S,
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namely, S is the labeling L for T \ {u, v} along with u labeled B and v labeled A.

If x ∈ I, then (D, I \ {v′}) is a partition of the set of vertices of T \ {v′} into

TD-set and ID-set, respectively. Applying the inductive hypothesis to T \ {v′}, there

exist a labeling L = (A,B) such that (T \ {v′},L) ∈ T . By Observation 4.9 (d), we

know that A is a TD-set and B is an ID-set of T \ {v′}.

By Observation 4.10 (a) and (b), u ∈ B and {v, w} ⊆ A. Thus, we can restore T by

applying Operation O1 to T \{v′} (at vertex w). Hence, (T, S) ∈ T for some labeling

S, namely, S is the labeling L for T \ {v′} and v
′

labeled B.

Case 2(b). Suppose deg(w) = 2. Since n ≥ 5, the vertex x is not the root r of

T (we have that deg(u) = 1, deg(v) = deg(w) = 2, thus a fifth vertex would have to

be a neighbor of x).

Let y be the parent of x. By Observation 4.10 (a) and (b), u ∈ I and v, w ∈ D.

We must have that x ∈ I (since N(w) = {v, x} and w must have a neighbor in I ).

Hence, by Observation 4.10 (a), x is not a support vertex, that is, no child of x is a

leaf.

We consider the following two possible cases:

• Case 2(b.1). deg(x) ≥ 3.

Let w′ ∈ C(x) \ {w}. Since no child of x is a leaf, deg(w′) ≥ 2.

By our choice of vertex u, each child of the vertex w′ is either a support vertex or is

a leaf.

If w′ is not the parent of any support vertex, all of its children must be leaves. By

Observation 4.10 (a) and (b), this implies that w′, x ∈ D, contradicting the fact that
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x ∈ I. Hence, w′ must be parent of a support vertex v′. Let u′ be a child of v′.

An identical argument as shown with the vertex w, shows that we may assume

deg(w′) = deg(v′) = 2. Hence, by Observation 4.10 (a) and (b), u′ ∈ I and v′, w′ ∈ D

Thus, x is adjacent to a vertex in D different from w.

Consider T \ {u, v, w}. Then (D \ {v, w}, I \ {u}) is a partition into TD-set and an

ID-set, respectively. Applying the inductive hypothesis to T \ {u, v, w}, there exist

a labeling L = (A,B) such that (T \ {u, v, w},L) ∈ T . By Observation 4.9 (d), we

know that A is a TD-set and B is an ID-set of T \ {u, v, w}.

By Observation 4.10 (a) and (b), {u′, x} ⊆ B and {v′, w′} ⊆ A. Thus, we can restore

T by applying Operation O3 to T \ {u, v, w} (at vertex x). Hence, (T, S) ∈ T for

some labeling S, namely, S is the labeling L for T \ {u, v, w} along with u labeled B

and {v, w} ⊆ A.

• Case 2(b.2). deg(x) = 2. Recall u, x ∈ I and v, w ∈ D. By Observation 4.10 (c),

y ∈ D.

Consider T \ {u, v, w}. Then (D \ {v, w}, I \ {u}) is a partition into a TD-set and an

ID-set, respectively. Applying the inductive hypothesis to T \ {u, v, w}, there exists

a labeling L = (A,B) such that (T \ {u, v, w},L) ∈ T .

By Observation 4.9, x ∈ B (since x is a leaf of T \ {u, v, w}). Thus, we can restore T

by applying Operation O3 to T \ {u, v, w} (at vertex x). Hence, (T, S) ∈ T for some

labeling S, namely, S is the labeling L for T \ {u, v, w} along with u labeled B and

{v, w} ⊆ A. �
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4.2 TDTD-Graphs

In this subsection, we study graphs whose vertex set can be partitioned into two

total dominating sets, i.e., graphs having a Type 17 (≥ 1,≥ 1,≥ 1,≥ 1)-bipartition.

We refer to the partition of a graph into two disjoint total dominating sets as a TDTD-

partition, and we refer to the associated decision problem as the TDTD-problem. If

G has a TDTD-partition, we say that G is a TDTD-graph. In [9], Heggernes and

Telle showed that the TDTD-problem is NP-complete even if G is bipartite. Zelinka

[14, 15] showed that the minimum degree of a graph is not sufficient to guarantee

that a graph has a TDTD-partition. This result was later improved by Calkin and

Dankelmann [2] and Feige et al. [6], who showed that if the maximum degree of a

graph is not too large relative to the minimum degree, then sufficiently large minimum

degree is sufficient to guarantee a TDTD-partition. Broere et al. [1] and Dorfling et

al. [5] studied the problem of determining the minimum number of edges necessary

to add to a graph in order to ensure that it has a TDTD-partition.

Given the difficulty of solving the TDTD-problem in general, in the present work

we give several sufficient conditions to guarantee that a graph is a TDTD-graph.

We also show that the Cartesian product of any two isolate-free graphs is a TDTD-

graph. Our main result shows that with the exception of the cycle C5, every self-

complementary graph with minimum degree at least two is a TDTD-graph.

4.2.1 Preliminary Results

Throughout the subsection, we make use of the following known properties. Let

diam(G) denote the diameter of G.
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Observation 4.12 Let G be a graph with diam(G) = 2, and let v be a vertex of G.

Then

1. N(v) is a dominating set of G, implying that γ(G) ≤ δ(G);

2. N [v] is a total dominating set of G, implying that γt(G) ≤ δ(G) + 1.

Since any two vertices at distance at least three apart in G dominate G, we have

the following useful observation.

Observation 4.13 If G is a graph with diam(G) ≥ 3, then γt(G) = 2.

Note that total domination is defined only for graphs without isolated vertices

and that γt(G) ≥ 2 when defined. Hence, the following conditions are necessary for

a graph to be a TDTD-graph:

Observation 4.14 If G is a TDTD-graph of order n, then n ≥ 4 and δ(G) ≥ 2.

It follows from Observation 4.14 that no tree is a TDTD-graph. Also, note that

not all graphs with minimum degree 2 are TDTD-graphs. For example, the cycles C5

and C6 are not TDTD-graphs. The following result from Broere et al. characterizes

the cycles that are TDTD-graphs.

Proposition 4.15 [1] A cycle Ck is a TDTD-graph if and only if k ≡ 0(mod 4).

This leads to the following corollary.

Corollary 4.16 If G is a Hamiltonian graph with order n ≡ 0(mod 4), then G is a

TDTD-graph.
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Next we consider Cartesian products. For graphs G and H, the Cartesian product

G�H is the graph with vertex set V (G)×V (H) where two vertices (u, v) and (x, y)

are adjacent if and only if either u = x and vy ∈ E(H) or v = y and ux ∈ E(G). For

each vertex x ∈ H, we denote the copy of G in G�H corresponding to x as Gx.

Proposition 4.17 If G and H are graphs without isolated vertices, then G�H is a

TDTD-graph.

Proof. Since δ(G) ≥ 1, by Theorem 2.1, G has a partition PG = {A,B}, where each

of A and B is a dominating set. For each vertex x ∈ H, we denote the PG partition

of Gx as {Ax, Bx}. We claim that {P =
⋃
x∈H Ax,

⋃
x∈H Bx} is a TDTD-partition of

G�H. To see this, first notice that since PG is a partition of the vertices of G into

two dominating sets, P is a partition of the vertices of G�H into two dominating

sets. Also, since there are no isolated vertices in H, it follows that every vertex in⋃
x∈H Ax (respectively,

⋃
x∈H Bx) has a neighbor in

⋃
x∈H Ax (respectively,

⋃
x∈H Bx).

Thus, G�H is a TDTD-graph. �

Proposition 4.18 Let G and H be graphs such that δ(H) = 0. Then G�H is a

TDTD-graph if and only if G is a TDTD-graph.

Proof. Suppose G is a TDTD-graph, let PG = {A,B} be a partition of the vertices

of G into two TD-sets. For each x ∈ H, we partition the vertices of Gx using PG. The

result is partition of the vertices of G�H into two TD-sets, so G�H is a TDTD-graph.

Assume that G�H is a TDTD-graph, and let P be a partition of the vertices of

G�H into two TD-sets. Since H has an isolated vertex, say x, Gx is a component

of G�H that is isomorphic to G. Thus, the restriction of P onto Gx is a partition
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of the vertices of Gx into two TD-sets, implying that Gx = G is a TDTD-graph, as

desired. �

The next result highlights the difficulty of finding a characterization of TDTD-

graphs.

Theorem 4.19 There exists no forbidden subgraph characterization of TDTD-graphs.

Proof. Let H be an arbitrary graph, and let I be the set of isolated vertices in H.

Since H − I has no isolated vertices, Theorem 2.1 implies that the vertices of H − I

can be partitioned into two dominating sets, say A and B. Let IA and IB denote

the set of isolated vertices in H[A] and H[B], respectively. Construct a graph G as

follows. For each vertex v ∈ I ∪ IA ∪ IB, add a new path P3 = v1v2v3 and edges vv1

and vv3. Clearly, H is an induced subgraph of G.

For each S ∈ {I, IA, IB}, let XS =
⋃
v∈S{v1} and YS =

⋃
v∈S{v2, v3}. We now

show that G is a TDTD-graph by giving a partition of the vertices of G into two total

dominating sets, A′ and B′. Let A′ = A∪I∪XA∪XI∪YB and B′ = B∪XB∪YA∪YI .

Note that P = {A′, B′} is a partition of the vertices of G. Further, every vertex in

G has a neighbor in A′ and a neighbor in B′. Hence, each of A′ and B′ is a TD-set

of G, and so P is a partition of the vertices of G into two TD-sets. Thus, G is a

TDTD-graph. �

4.2.2 Sufficient Conditions

Now we present several sufficient conditions for a graph to be a TDTD-graph.

Proposition 4.20 If G is a graph with δ(G) ≥ dn
2
e+ 1, then G is a TDTD-graph.
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Proof. We partition the vertices of G into sets S and V \ S, where S is any subset

of V such that |S| = dn
2
e. Then, |V \S| = bn

2
c. Since δ(G) ≥ dn

2
e+ 1, every vertex in

V has at least one neighbor in S and at least one neighbor in V \S. Thus, {S, V \S}

is a partition of the vertices of G into two TD-sets, and so, G is a TDTD-graph. �

Proposition 4.21 If G is a graph with γt(G) ≤ δ(G)− 1, then G is a TDTD-graph.

Proof. Let G be a graph for which γt(G) ≤ δ(G)−1, and let S be a γt(G)-set. Since

|S| ≤ δ(G)− 1, we have N(v) 6⊆ S for all v ∈ V . In particular, every vertex in V has

a neighbor in V \S. Thus, both S and V \S are TD-sets, and so G is a TDTD-graph.

�

Proposition 4.22 If G is a graph with δ(G) ≥ 2, ∆(G) = n − 1 and there exist a

vertex v for which all of its neighbors have degree at least 3, then G is a TDTD-graph.

Proof. Let u ∈ V be a vertex with deg(u) = n − 1 and let v be a vertex such that

every one of its neighbors has degree greater or equal than 3. We partition V into

S = {u, v} and V \S. Since every vertex different that u is adjacent to u, we conclude

S is a total dominating set. Since δ(G) ≥ 2, we know that both u and v have at

least one neighbor in V \ S, that is V \ S is a dominating set. Let x ∈ V \ S. If

x ∈ N(v), then deg(x) ≥ 3, thus, x has at least one neighbor different from u and v,

which is going to be an element of V \ S. If x /∈ N(v), we know x has at least one

more neighbor besides u, since δ(G) ≥ 2. But this neighbor can not be v. Thus x

has at least one neighbor in V \S. Therefore, V \S is also a total dominating set. �

For the remainder of this subsection 4.2.2, we consider the domination number of

the complement of G.
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Proposition 4.23 If G is a graph with δ(G) ≥ 2 and γ(G) ≥ 4, then G is a TDTD-

graph.

Proof. Let G be a graph with δ(G) ≥ 2 such that γ(G) ≥ 4. Clearly, G has order

n ≥ 4. If G is a complete graph, then we partition the vertices of G into two total

dominating sets S and V \ S, where S is any set of cardinality two. Hence, we may

assume that G is not a complete graph, and so diam(G) 6= 1. Since γ(G) ≥ 4,

Observation 4.13 implies that diam(G) = 2.

Let v be any minimum degree vertex of G. Since G is not complete, V \N [v] 6= ∅.

Since diam(G) = 2, every vertex of V \N [v] is adjacent to at least one vertex of N(v)

in G. We claim that every vertex in V \ N [v] is adjacent to at least two vertices of

N(v). Suppose, to the contrary, that there exists a vertex x ∈ V \ N [v] such that

N(v) ∩ N(x) = {y}. But then {v, x, y} is a dominating set of G and γ(G) ≤ 3, a

contradiction. Hence, every vertex in V \N [v] has at least two neighbors in N(v).

Let I denote the set of vertices that are isolates in G[V \ N [v]]. Since |N(v)| =

δ(G), it follows that every vertex in I is adjacent to every vertex of N(v). Also,

note that if any vertex, say x, in N(v) has no neighbors in V \ N [v], then since

deg(v) = δ(G), it follows that N [x] = N [v]. Let u be a vertex in N(v) such that u

has a neighbor in V \N [v].

First assume that I = ∅. Let A = N [v] \ {u} and B = V \ A. We note δ(G) ≥ 2

implies that G[A] contains no isolated vertices, and since every vertex of V \N [v] has

at least two neighbors in N(v), N(v) \ {u} dominates V \N [v]. Thus, A is a TD-set

of G. Since I = ∅ and N(u) ∩ V \ N [v] 6= ∅, it follows that G[B] has no isolated

vertices. The vertex v is dominated by u ∈ B, and every vertex in N(v) that has a
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neighbor in V \N [v] is dominated by B. If a vertex x ∈ N(v) \ {u} has no neighbors

in V \ N [v], then as previously noted, N [x] = N [v], that is, x is adjacent to u ∈ B.

Thus, B is TD-set of G, and so, G is a TDTD-graph.

Secondly, assume that I 6= ∅. Let A = (N(v) \ {u})∪I, and let B = V \A. Note

that v ∈ B. Since every vertex of I is adjacent to every vertex of N(v), it follows

that G[A] contains no isolated vertices. To see that A is a dominating set of G, notice

that u has a neighbor in I, every vertex of V \ N [v] has a neighbor in N(v) \ {u},

and δ(G) ≥ 2 implies that v has a neighbor in N(v) \ {u}. Thus, A is a TD-set of G.

Next, consider the set B. Since u dominates I and every vertex in N(v) \ {u} is

adjacent to v, we have that B is a dominating set of G. Since u and v are adjacent

and every vertex (V \N [v]) \ I has a neighbor in B, B is a TD-set of G, and so G is

a TDTD-graph. �

In the case when γ(G) = 3, we have the following sufficient condition for G to be

a TDTD-graph.

Proposition 4.24 If G is a graph with γ(G) = 3 and γt(G) 6= δ(G), then G is a

TDTD-graph.

Proof. Let G be a graph for which γ(G) = 3 and γt(G) 6= δ(G). Since γt(G) 6=

δ(G), G 6= K3. Since G 6= K3 and γ(G) = 3, it follows that n ≥ 4 and G 6= Kn.

Thus, diam(G) ≥ 2. Since γ(G) = 3 ≤ γt(G), by Observation 4.13, we have that

diam(G) = 2. By Observation 4.12, γt(G) ≤ δ(G) + 1. If γt(G) ≤ δ(G)− 1, then, by

Proposition 4.21, G is a TDTD-graph. Suppose that γt(G) = δ(G) + 1. In this case,

N [v] is a γt(G)-set for any minimum degree vertex v. Since N(v) dominates G, but

cannot be a TD-set of G, it follows that G[N(v)] has an isolated vertex, say w. But
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Figure 2: The Bowtie

then {w, v} is a dominating set of G implying that γ(G) ≤ 2, a contradiction. Hence,

we conclude that G is a TDTD-graph. �

We note that there exist graphs G for which γ(G) = 3 and γt(G) = δ(G) that are

not TDTD-graphs. Two small examples are the complete graph K3 and the bowtie

(illustrated in Figure 2). In both cases, γ(G) = 3 and γt(G) = 2 = δ(G), but G is

not a TDTD-graph.

4.2.3 Self-Complementary Graphs

In this subsection 4.2.3, we prove our main result, namely, that with the exception

of the cycle C5, every self-complementary graph with minimum degree at least 2 is a

TDTD-graph. We first prove a lemma which provides an upper bound on the total

domination number of self-complementary graphs.

Lemma 4.25 If G is a self-complementary graph with δ(G) ≥ 3, then γt(G) ≤ 1 +⌈
δ(G)
2

⌉
.

Proof. Let G be a self-complementary graph, and let v be a vertex of maximum

degree. Since G is self-complementary, ∆(G) = n − 1 − δ(G). Let A = NG[v] and
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B = V (G)\A. Clearly, |B| = δ(G). Let B = {b1, . . . , bδ(G)}. For 1 ≤ i < j ≤ δ(G), if

there exist vertices bi and bj that have no common neighbor in N(v), then {v, bi, bj}

is a TD-set of G, and so γt(G) ≤ 3 ≤ 1 +
⌈
δ(G)
2

⌉
. Hence, we may assume that every

two vertices in B have a common neighbor in A.

Let k =
⌊
δ(G)
2

⌋
, and let ai ∈ A be a common neighbor of b2i and b2i−1 for 1 ≤ i ≤ k.

If δ(G) is even, let ak+1 = ak. If δ(G) is odd, let ak+1 ∈ A be a common neighbor

of bδ(G) and b1. The set {v} ∪
⋃k+1
i=1 {ai} is a TD-set of G with cardinality at most

1 +
⌈
δ(G)
2

⌉
. Hence, γt(G) ≤ 1 +

⌈
δ(G)
2

⌉
. �

Proposition 4.21 and Lemma 4.25 give the following corollary.

Corollary 4.26 If G is a self-complementary graph with δ(G) ≥ 4, then G is a

TDTD-graph.

Proof. By Lemma 4.25, γt(G) ≤ 1 +
⌈
δ(G)
2

⌉
. Since δ(G) ≥ 4, it follows that

1 +
⌈
δ(G)
2

⌉
< δ(G). Hence, by Proposition 4.21, G is a TDTD-graph. �

We will make use of the following well-known properties of self-complementary

graphs. The interested reader is referred to [3] for further information.

Observation 4.27 If G is a non-trivial self-complementary graph of order n, then

diam(G) ∈ {2, 3} and n is congruent to 0 or 1 modulo 4.

For vertices u and v, we let dG(u, v) denote the distance between u and v. We

now give our main result.

Theorem 4.28 If G 6= C5 is a self-complementary graph with δ(G) ≥ 2, then G is a

TDTD-graph.
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Proof. Let G 6= C5 be a self-complementary graph of order n with δ(G) ≥ 2. If

δ(G) ≥ 4, then by Corollary 4.26, the result holds. Hence, we may assume that

2 ≤ δ(G) ≤ 3.

By Observation 4.27, n is congruent to 0 or 1 modulo 4 and 2 ≤ diam(G) ≤ 3.

Noting that C5 is the only self-complementary graph with δ(G) ≥ 2 and n ≤ 5, we

may assume that n ≥ 8.

First assume that diam(G) = 3. By Observation 4.13, we have that γt(G) = 2,

and since G is self-complementary, γt(G) = 2. If δ(G) = 3, then by Proposition 4.21,

G is a TDTD-graph. Therefore, assume that δ(G) = 2, and let S = {a, b} be a γt(G)-

set. Since δ(G) = 2, V \ S dominates G. If there does not exist a vertex v ∈ V \ S

such that N(v) = S, then {S, V \ S} is a partition of V into two TD-sets of G, and

so, G is a TDTD-graph. Hence, we may assume that there exists a vertex v ∈ V \ S

such that N(v) = {a, b}. Since diam(G) = 3 and no vertex is distance three from any

of a, b, and v in G, there exist two vertices x, y ∈ V \NG[v] such that dG(x, y) = 3. In

particular, x and y have no common neighbor in S in G, and so {x, y} is a γt(G)-set,

and V \ {x, y} dominates G. To see that V \ {x, y} is a TD-set of G, note that

v ∈ V \ {x, y} and v is adjacent to every vertex in V \ {a, b} in G. Since n ≥ 8, v

has a neighbor in V \ {x, y, a, b} in G. Further, in G, each of a and b has exactly one

neighbor in {x, y}, and since δ(G) = 2, each of a and b has a neighbor in V \ {x, y}

in G. Thus, {{x, y}, V \ {x, y}} is a partition of V into two TD-sets of G. Since G is

self-complementary, we conclude that G is a TDTD-graph, if diam(G) = 3.

Henceforth, we may assume that diam(G) = 2. By Observation 4.13, this implies

that γt(G) ≥ 3. By Observation 4.12, it follows that γt(G) ≤ δ(G) + 1. Moreover,
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since δ(G) ∈ {2, 3} and γt(G) ≥ 3, we have that γt(G) ∈ {3, 4}.

We consider two cases:

Case 1. δ(G) = 2. Since 3 ≤ γt(G) ≤ δ(G) + 1, we have that γt(G) = 3. We first

show that there exist two non-adjacent vertices, one having degree two and the other

one having degree n− 3. Let v ∈ V such that degG(v) = 2. Then in G, the vertex v

has degree n− 3, and since G is a self-complementary graph, there exists a vertex x

of degree n− 3 ≥ 5 in G. If x is not adjacent to v, we have the desired two vertices.

Thus, assume x ∈ NG(v). But then in G, degG(x) = 2 and degG(v) = n − 3 and x

is not adjacent to v. Since G is self-complementary, we may assume that two such

vertices exist in G.

Let v and x be non-adjacent vertices such that degG(v) = 2 and degG(x) = n− 3.

Let NG(v) = {a, b}. Since diam(G) = 2, {a, b} is a dominating set of G. But since

γt(G) = 3, {a, b} is not a TD-set of G, implying that a is not adjacent to b. We

consider two possibilities, namely, x has two neighbors in {a, b} or x has exactly one

neighbor in {a, b}.

If x is adjacent to both a and b, then x dominates V except for v and some vertex,

say c ∈ V \ N [v]. Since c is dominated by {a, b}, without loss of generality, assume

that c is adjacent to a. In this case, {x, a} is a TD-set of G, contradicting that

γt(G) = 3.

Thus, x has exactly one neighbor in {a, b}, say a, without loss of generality. Since

degG(x) = n− 3, NG(x) = V \ {b, v}. If degG(a) > 2, consider the sets S = {x, a, v}

and V \ S. Note that G[S] has no isolates. Since x dominates V \ {b, v} and b is

adjacent to v, S is a TD-set for G. Now, consider V \ S. Since n ≥ 8, |V \ S| ≥ 5.
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The vertex v is adjacent to b and both x and a have a neighbor in V \ (S ∪ {b}), so

V \ S is a dominating set of G. We show that V \ S is a TD-set, that is, G[V \ S]

has no isolates. Since N(v)∩ (V \S) = {b} and b is not adjacent to a or x, no vertex

of degree 3 in V \ S is adjacent to all the vertices of S. The only other possibility

for G[V \ S] to have an isolate is that a vertex z ∈ V \ S such that N(z) = {x, a}.

However, in G, z is adjacent to every vertex except x and a. Since x and a are not

adjacent in G and diam(G) = 2, there exists a vertex y that is adjacent to both x

and a. But then {z, y} is a TD-set of G, contradicting that γt(G) = γt(G) = 3. Thus,

V \ S is a TD-set of G, implying that G is a TDTD-graph.

Next, assume that degG(a) = 2, that is, NG(a) = {v, x}. Since {a, b} dominates

G, NG(b) = V \ {a, x}. Thus, degG(b) = n − 3 ≥ 5. Let b′ ∈ NG(b) \ {v}. It follows

that S ′ = {a, x, b′} is a γt(G)-set. Consider V \S ′. Note that x and b have a common

neighbor, say y, in V \ {a, b, v, x, b′}. Now a is adjacent to v, b′ is adjacent to b,

and x is adjacent to y in V \ S ′, and so, V \ S ′ is a dominating set of G. Further,

V \ S ′ ⊆ NG[b], so there are no isolates in G[V \ S ′]. Hence, V \ S ′ is a TD-set of G,

and so G is a TDTD-graph.

Case 2. δ(G) = 3. Recall that γt(G) ∈ {3, 4}. Since no single vertex dominates G

and diam(G) = 2, by Observation 4.12, we have that 2 ≤ γ(G) ≤ 3. If γ(G) = 3

and γt(G) = 4, then since G is self-complementary, Proposition 4.24 implies that

G is a TDTD-graph. Note that if γ(G) = 2, then since γt(G) ≥ 3, the vertices in

any γ(G)-set are not adjacent. Since diam(G) = 2, they have a common neighbor,

implying that γt(G) ≤ 3. Hence, the possibilities are γ(G) ∈ {2, 3} and γt(G) = 3.
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Case 2(a). γ(G) = 2. Let {a, b} be any γ(G)-set. Since diam(G) = 2, there

exists a vertex c such that c is adjacent to a and b. Let S = {a, b, c}. Clearly, S is a

γt(G)-set. Since δ(G) = 3, V \S is a dominating set of G. If G[V \S] has no isolated

vertices, that is, if no minimum degree 3 vertex of V \S is adjacent to all three vertices

of S, then S and V \ S are TD-sets of G and G is a TDTD-graph. Hence, we may

assume there exists a vertex v ∈ V \ S such that N(v) = S. Note that since {a, b}

is a γ(G)-set, {a, v, b} is a γt(G)-set. If degG(c) ≥ 4, then since δ(G) = 3, it follows

{a, v, b} and V \ {a, v, b} partition V into two TD-sets, and G is a TDTD-graph as

desired.

Thus, we may assume that degG(v) = degG(c) = 3. In G, v and c are not adjacent,

and v (respectively, c) dominates V \ {c, a, b} (respectively, V \ {v, a, b}). Note that

a and b are adjacent in G and since diam(G) = diam(G) = 2, a has a neighbor,

say x, in NG(v) ∩ NG(c). Note that x 6∈ {a, b, c, v}. Then D = {a, x, c} is a γt(G)-

set. Note that a is adjacent to b, x is adjacent to v and since n ≥ 8, c has at least

one neighbor in V \ D. Hence, V \ D is a dominating set of G. If there does not

exist some vertex w ∈ V \ D such that NG(w) = D, then V \ D is a TD-set of G,

implying that G, and hence G, is a TDTD-graph. Thus, assume that such a vertex

w exists. Clearly, w 6= b since w is adjacent to c and a. Hence, w 6∈ {a, b, c}. Then

degG(w) = n − 4 ≥ 4 and NG(w) = V \ {a, x, c}. In particular, w ∈ NG(v), a

contradiction since NG(v) = {a, b, c} and w 6∈ {a, b, c}. We conclude that in this case

G is a TDTD-graph.

Case 2(b). γ(G) = 3. Let S = {a, b, c} be a γt(G)-set such that, without loss of

generality, ab, cb ∈ E. Further, let Sx = epn(x, S) for each x ∈ S. By the minimality
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of S, Sa 6= ∅ and Sc 6= ∅. If Sb = ∅, then {a, c} is a dominating set of G, contradicting

that γ(G) = 3. Hence, Sb 6= ∅. Let a′ ∈ Sa, b′ ∈ Sb, and c′ ∈ Sc. Thus, V \ S is a

dominating set of G. If G[V \ S] has no isolated vertices, then V \ S is a TD-set of

G and G is a TDTD-graph as desired. Hence, we may assume that u ∈ V \ S is an

isolate in G[V \ S]. Since δ(G) = 3, it follows that NG(u) = S.

We have just shown:

Fact 1. If G is not a TDTD-graph, every γt(G)-set is contained in the open

neighborhood of a vertex with degree 3.

Next we show that:

Fact 2. For every vertex v of minimum degree 3, N(v) is a γt(G)-set.

Let v be a vertex of minimum degree 3. Since diam(G) = 2, N(v) is a dominating

set. If G[N(v)] has an isolated vertex, say w, then {v, w} is a dominating set of G,

contradicting that γ(G) = γ(G) = 3. Hence, N(v) is a γt(G)-set. Thus, Fact 2 holds.

Returning to our γt(G)-set S, we next show that each vertex in S has degree at

least 4, implying that no vertex of minimum degree 3 is in any γt(G)-set. Clearly,

degG(b) ≥ 4. If degG(a) = 3, then by Fact 2, N(a) = {u, b, a′} is a γt(G)-set. But

a′ has no neighbor in N(a), a contradiction. Hence, degG(a) ≥ 4, and similarly,

degG(c) ≥ 4.

Next we show that u is the only vertex in G with degree 3. Suppose to the contrary

that degG(v) = 3 for some vertex v 6= u. Since every vertex in S has degree at least

4, it follows that v ∈ V \N [u]. Then v has a least one neighbor in S.

First assume that N(v) = S = {a, b, c}. Then X = {u, a′, b′} is a γt(G)-set. Since

G is self-complementary, by Fact 1, every γt(G)-set, in particular, X, is contained in
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the open neighborhood of a vertex of degree 3 in G. Let x ∈ V such that NG(x) = X.

Note that x 6= v since degG(v) = n− 4 ≥ 4, and x 6∈ {a, b, c} since none of a, b, and

c is adjacent to u in G. Also, note that NG(x) = V \ {u, a′, b′}, implying that x is

adjacent to v in G, a contradiction. Thus, v is adjacent to at most two of a, b, and c

in G.

Again consider G, and recall that each of {u, a′, b′}, {u, a′, c′}, and {u, b′, c′} is a

γt(G)-set. Thus, there exist vertices x1, x2, and x3, such that NG(x1) = {u, a′, b′},

NG(x2) = {u, a′, c′}, and NG(x3) = {u, b′, c′}. Note that xi 6∈ {a, b, c} for 1 ≤ i ≤ 3,

since NG(u) ∩ {a, b, c} = ∅. If v 6∈ {a′, b′, c′}, then in G, v is not adjacent to xi, for

1 ≤ i ≤ 3, and v is not adjacent to at least one of a, b, and c in G. But this implies

that degG(v) ≥ 4, contradicting that degG(v) = 3.

Hence, we may assume that v ∈ {a′, b′, c′}. Note that this means that besides u,

the only vertices that can possibly have degree 3 in G are a′, b′, or c′. Clearly, X =

{x2, a, c} is a TD-set of G. By Fact 1, there exists a vertex x such that NG(x) = X.

Since x2 6∈ {a, b, c}, it follows that x 6= u, implying that x ∈ {a′, b′, c′}. But no vertex

of {a′, b′, c′} is adjacent to both a and c, a contradiction.

Thus, u is the only vertex of degree 3 in G, and Fact 1 implies that S is the

unique γt(G)-set. But again, each of {u, a′, b′}, {u, a′, c′}, and {u, b′, c′} is a γt(G)-set,

contradicting that G and G are self-complementary.

Hence, G is a TDTD-graph. �
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5 CONCLUDING REMARKS

We have listed characterizations for 24 out of the 27 types of bipartitions, for

which 21 are new additions to the literature. It was also shown that two out of the

remaining three bipartitions are equivalent problems when considering graphs with no

isolated vertices, which leaves only two types of bipartitions with no characterization

for general graphs. For these two types, we provided characterizations of special

families. Characterizations of graphs having Type 5 and Type 17 bipartitions for

general graphs remain open problems.

In this thesis we extended the study of bipartitions of graphs, initiated by Heg-

gernes and Telle, whereby the three degree conditions were 0 neighbors, ≥ 1 neighbor,

and X (no number of neighbors specified). It would be equally interesting to study

bipartitions in which the number of neighbors is required either to be = 1, which

results in either efficient or perfect dominating sets, or ≤ 1, which results in what are

called nearly perfect sets.
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