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ABSTRACT

Generalizations of the Arcsine Distribution

by

Rebecca Rasnick

The arcsine distribution looks at the fraction of time one player is winning in a fair

coin toss game and has been studied for over a hundred years. There has been little

further work on how the distribution changes when the coin tosses are not fair or

when a player has already won the initial coin tosses or, equivalently, starts with a

lead. This thesis will first cover a proof of the arcsine distribution. Then, we explore

how the distribution changes when the coin toss is unfair. Finally, we will explore the

distribution when one person has won the first few flips.
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1 INTRODUCTION

The arcsine distribution is a special case of the beta distribution, specifically

Beta(1
2
, 1
2
). The beta distribution is a continuous probability distribution that is de-

fined on the closed interval [0, 1]. The arcsine distribution is a symmetric distribution

with a minimum at 1
2

and vertical asymptotes at 0 and 1. The distribution is normally

described as arising from a coin flipping game between two-players typically named

Peter and Paul. In this game we assume that the coin is perfectly fair and the flips

are independent. Independence, in this case, means the result of the previous flips

have no affect on future flips. We will let Peter be player 1 and Paul be player 2. If

the coin lands on heads, Peter will get a dollar, and if it lands on tails, Paul will get a

dollar. In this paper we will refer to a positive lead as the time spent by the quantity

above the x-axis, which is the amount of time Peter is in the lead, in other words the

proportion of time there are more heads flipped than tails. The arcsine distribution

is also used in Bayesian Statistics. For a coin toss game, the arcsine distribution is

the Jeffreys prior. Jeffreys prior is a distribution one uses when there is no previous

assumed distribution.

The arcsine distribution is the proportion of time spent above or below the x-axis

on a random walk as n→∞. We consider a random walk to be a broken line segment

where a coin is flipped: if Peter wins the line segment will go up one unit and if Paul

wins it will go down one unit. The law of long leads states that if we let the coin

flipping game go on indefinitely, a lead will form, and since the coin is fair, the broken

line segment will spend most of its time on either the positive side or negative side

of the x-axis. This results in the bowl shaped distribution demonstrated in Figure 1.
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The arcsine distribution has a set of two assumptions that we are going to violate in

Figure 1: Probability Mass Function of the Arcsine Distribution

this paper. First, is the assumption that the coin is fair. By this we mean there is a

equal chance of winning and losing the coin toss. Takács found a generic distribution

for when the coin on unfair [13]. Second there is an assumption of there being no

initial lead. The distribution when this assumption is violated will be covered in this

thesis.

While the arcsine distribution is not a relatively new distribution there have been

very little papers trying to find formulas where one of the assumptions is not meet.

While we only cover two broken assumption distributions there does exist others. In

this thesis we will cover generalizations of the arcsine distribution. The proof of the

arcsine distribution is covered in Chapter 2. Chapter 3 will include graphs and R-

code that will be useful for visualizing the later information. In Chapter 4 a tractable

form of Takács’ work will be obtained. Then in Chapter 5 we will cover the work

done so far on the distribution for the initial lead. Chapter 6 will deal with potential
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applications. Finally, Chapter 7 will be the conclusions and possible future work for

this topic.
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2 PROOF OF THE ARCSINE DISTRIBUTION

To prove the arcsine distribution we will mimic the proof by Shlomo Sternberg

[12]. Let us assume that we have we have a fair game of coin tossing where the next

flip of the coin is independent of the previous flips and both heads and tails have

equal probabilities of happening. We will call player 1 Peter and player 2 Paul. We

will denote the successes and failure of Peter as S0 where S0 = 0, S1, S2, . . . . We

represent wins and losses with a time series plot. Each flip will move the particle

over one position in the positive x-direction. When Peter wins, the particle will move

in the positive y-direction 1 position. When Paul wins, the particle will move one

direction in the negative y-direction. This game will continue for 2n flips.

Let k ≤ n. We will denote the probability that the last visit to the origin (when

the game is tied) happens at 2k as α2k,2n. Let

u2ν =

(
2ν

ν

)
2−2ν

be the probability that out of the first 2ν flips exactly ν was where Peter won and

the remainder is where Paul won. Essentially 2ν will be the time until a return

to the origin. One can approximate u2ν using Stirling’s approximation. Stirling’s

approximation is

n! ∼
√

2πnn+
1
2 e−n

10



This approximation will get closer and closer as n gets larger. Solving we get

u2ν = 2−2ν
(2ν)!

(ν!)2

∼ 2−2ν
√

2π(2ν)2ν+
1
2 e−2ν

2πν2ν+1e−2ν

=
1√
πν
.

We first want to show that we have

α2k,2n = u2ku2n−2k (1)

and this formula can be approximated by

α2k,2n ∼
1

π
√
k(n− k)

. (2)

Lemma 2.1 (The Reflection Principle) Let A and B be two points in the first

Quadrant where A = (a, α) and B = (b, β). Let 0 ≤ a < b where both α and β are

positive whole numbers. The number of paths that touch the t-axis between the points

A and B is the also number of paths that go from A′ to B.

Proof: Let t be be a point on any path from A to B where t is the first point to touch

the t-axis. Let the path from A to T , where T = (t, 0) be reflected across the t-axis.

This reflected path will be the path A′ to T . This will also give the path from A′ to

B. This process will assign any path from A to B that has a point that touches the

t-axis a path from A′ to B. This process is also bijective because any path from A′ to

B has to cross the t-axis. If one reflects the path from A′ to T one gets a path that

touches the t-axis and goes from A to B. This is the reflection principle. �
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Let there be a path n days long that joins (0, 0) to (n, x) where there are p days

that have a slope of +1 (days Paul wins) and q days with a slope of -1 (days Peter

wins). This means that

n = p+ q, x = p− q.

The number of paths is the number of ways to choose the points where there are p

steps that join (0, 0) to (n, x) is

Nn,x =

(
p+ q

p

)
=

(
n
n+x
2

)
.

If there are no paths that join (0, 0) to (n, x) then Nn,x = 0.

Lemma 2.2 (The Ballot Theorem) Let n and x be positive numbers. There are

x

n
Nn,x

number of paths that that are strictly about the t-axis for t > 0 that join (0, 0) to

(n, x).

Proof: Since the paths are strictly above the t-axis this means that there are as many

paths which join (0, 0) to (n, x) as there are paths joining (1, 1) to (n, x) that do not

touch or cross the t-axis. This is the number of paths join (0, 0) to (n, x) minus the

number of paths that touch or cross the t-axis. The number of paths that touch or

cross the t-axis is the number of paths that join (1,−1) to (n, x) by the reflection

principle. Nn−1,x−1 is the number of paths that join (1, 1) to (n, x), and Nn−1,x+1 is

the number of paths that join (1,−1) to (n, x). The number of paths strictly above

12



the t-axis for t > 0 that join (0, 0) to (n, x) is

Nn−1,x−1 −Nn−1,x+1 =

(
n− 1

(n−1)+(x−1)
2

)
−
(

n− 1
(n−1)+(x+1)

2

)
=

(
n− 1
n+x+2

2

)
−
(
n− 1
n+x
2

)
=

(
p+ q − 1

p− 1

)
−
(
p+ q − 1

p

)
=

(p+ q − 1)!

(p− 1)!q!
− (p+ q − 1)!

p!(q − 1)!

=
p

p

(p+ q − 1)!

(p− 1)!q!
− q

q

(p+ q − 1)!

p!(q − 1)!

=
(p+ q − 1)!(p− q)

p!q!

=
(p+ q − 1)!(p− q)

p!q!

p+ q

p+ q

=
(p+ q)!(p− q)
p!q!(p− q)

=
p− q
p+ q

(p+ q)!

p!q!

=
x

n
Nn,x.

�

The previous lemma is called the Ballot Theorem because the Ballot Theorem

states that if candidate A gets p votes and candidate B gets q votes where the chance

of a vote being p is 1
2
, and candidate A wins (p > q), then the probability that there

are more votes for candidate A than B throughout the counting is

p− q
p+ q

=
x

n
.

Let

u2n =

(
2n

n

)
2−2n

13



where u2n is the probability that exactly n out of 2n steps were positive and the rest

negative. This means that u2n is the probability that on the last coin flipping day

there would have been as many heads as tails.

Lemma 2.3 The probability that from day one until the end (day 2n) Paul will be in

the lead is 1
2
u2n. Which can be written as

P{S1 > 0, ...S2n > 0} =
1

2
u2n

14



Proof: The possible values for S2n ranges from 2 to 2n. So

P{S1 > 0, ...S2n > 0} =
n∑
r=1

P{S1 > 0, ...S2n = 2r}

By the reflection principle in the Ballot Theorem

= 2−2n
n∑
r=1

(N2n−1,2r−1 −N2n−1,2r+1)

= 2−2n(N2n−1,1 −N2n−1,3 +N2n−1,3 −N2n−1,5 + ...)

Canceling values

= 2−2n(N2n−1,1 −N2n−1,2n+1)

One cannot get to 2n+1 in 2n-1 steps N2n−1,2n+1 = 0

= 2−2nN2n−1,1

=
2−(2n−1)

2
N2n−1,1

the chance of ending at (2n-1,1)starting at (0,0) is 2−(2n−1)N2n−1,1

=
1

2
p2n−1,1

one must be at ±1 at time 2n− 1 for 50% chance of getting to 0

=
1

2
u2n.

�

Lemma 2.4 The probability that a path never touches the t-axis is

P{S1 6= 0, ...S2n 6= 0} = u2n.

Proof: Because the path never touches or crosses the t-axis it can be either all positive

15



or all negative. So by the previous lemma

P{S1 6= 0, ...S2n 6= 0} = u2n.

�

Lemma 2.5 The probability that a path is either above or on the t-axis is u2n

P{S1 ≥ 0, ...S2n ≥ 0} = u2n.

Proof: Let there be a path that is strictly about the t-axis from day 1 on. This path

must cross through (1, 1) and stay above a new horizontal line s = 1. The chance of

going through (1, 1) first is 1
2

and staying above the new line is P{S1 ≥ 0, ...S2n−1 ≥

0}. Because 2n − 1 is odd this means that if S2n−1 ≥ 0 then S2n ≥ 0. So by lemma

2.3 we have

1

2
u2n = P{S1 > 0, ...S2n > 0}

=
1

2
P{S1 ≥ 0, ...S2n−1 ≥ 0}

=
1

2
P{S1 ≥ 0, ...S2n ≥ 0}.

�

Let

u2ν =

(
2ν

ν

)
2−2ν

be the probability that the game is tied at time 2ν. This also means that exactly ν

of the first 2ν flips were for Paul and the rest for Peter.

16



Lemma 2.6 Let the probability that from 2k+1 to 2n the last visit to the origin be

denoted by

α2k,2n,

where we have

α2k,2n = u2ku2n−2k

Proof: In order for the last visit to the origin to be at time 2k this means that

S2k = 0

also

Sj 6= 0, j = 2k + 1, ..., 2n.

u2ν =

(
2ν

ν

)
2−2ν

For S2k = 0 this means that there are 22ku2k ways to choose the first 2k positions.

If we let the point (2k, 0) to be the new origin by lemma 2.4 there are 22n−2ku2n−2k

ways to choose the last 2n − 2k steps in order for Sj 6= 0, j = 2k + 1, ..., 2n to be

met. If 22n is multiplied and divided this proves lemma 2.6. �

Theorem 2.7 α2k,2n is the probability that from 0 to 2n there are 2k units on the

positive side and 2n-2k on the negative side. If 0 < x < 1 the chance that the time

spent on the positive time is less than x goes to sin−1(
√
x) as n→∞.

Proof: Let there be a path of 2n time units where b2k,2n be the probability that 2k

units are above the t-axis. We need to prove that

b2k,2n = α2k,2n.

17



If k = n then α2k,2n = u0u2n = u2n and b2n,2n is the probability that the path is above

the t-axis, lemma 2.5 proves this. The probability that the entire path is below the

t-axis is b0,2n = α0,2n by symmetry.

Now we need to prove this for 1 ≤ k ≤ n − 1. In order for this situation to

occur this means that there has to be a return to the origin. Let us suppose that this

happens at time 2r. This means that there are two possibilities for the path from the

origin to (2r, 0) which is either entirely above or entirely below the t-axis. If it is the

case where it is above, then r ≤ k ≤ n− 1, and the path after that point has 2k− 2r

points above the t-axis. The total number of such paths are

1

2
22rf2r2

2n−2rb2k−2r,2n−2r

where f2r is the probability that the first return to the origin is at 2r

f2r = P{S1 6= 0, ..., S2r−1 6= 0, S2r = 0}.

If the path up to 2r is below the t-axis then the remaining path has 2k units above

the t-axis. So n− r ≥ k and the total number of such paths are

1

2
22rf2r2

2n−2rb2k,2n−2r.

So we get

b2k,2n =
1

2

k∑
r=1

f2rb2k−2r,2n−2r +
1

2

n−k∑
r=1

f2rb2k,2n−2r 1 ≤ k ≤ n− 1.

By induction on n we know that b2k,2n = u2ku2n−2k = 1
2

when n = 1. Assuming that

result up to n− 1, the formula above becomes

b2k,2n =
1

2
u2n−2k

k∑
r=1

f2ru2k−2r +
1

2
u2k

n−k∑
r=1

f2ru2n−2k−2r.

18



We claim that the probability of returning and the probability of the first return are

associated by

u2n = f2u2n−2 + f4u2n−4 + ...+ f2nu0.

If we return to the origin at time 2n then the first return has to happen at 2r where

2r ≤ 2n and return to the origin in 2n − 2r time units. The sum in the previous

equation is over the possible times of the first return. If we substitute the last equation

into the first sum the equation becomes u2k and substituting the previous equation

into the second term results in u2n−2k. Thus, the equation before the last becomes

b2k,2n = u2ku2n−2k

which is what we wanted to obtain. �
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3 SIMULATIONS

The simulations for the arcine distribution are below. N is the overall number of

trials aka, number of games “played” and n is how many flips are in each game. Geers

is the up and down lines of code. Geers [4] discovered the formula for if the reward

for Peter and Paul is different. He refered to this as a drift. Thus if the coin lands on

heads Peter will receive $1 + ε and if it lands on tails Paul will receive $1 − ε. The

graph shown the proportion of time that Peter has more money than Paul. One only

needs to change the up value. The varaible, headsPercentage, will create the unfair

coin, which the probability that Peter will win. Depending on the value one wants

for p heads and tails will need to be changes with the change in significant figures.

For Peter to have an initial lead one needs to change the value of w to be how far

ahead Peter is in front of Paul at the start of each game. The rest of the values can

be left alone or modified for other purposes.

N=10000 # number of trials

n=1000 # number of samples from each trial

up=1.0 # Geer’s Drift

down=2-up # Geer’s drift

headsPercentage=.5 # probability of heads

w=0 # lead

prob=rep(0,N) # to store the probabilities in

heads<-rep(1,headsPercentage*100) # number of heads

tails<-rep(0, 100-headsPercentage*100)

20



flipspercentage<-c(heads,tails)

for(j in 1:N){ # running these trials N times

k=sample(flipspercentage, n, replace = T)# obtaining our sample

x=rep(w,n+1) # repeating the initial value for x n+1 times.

y=rep(0,n+1) # repeating zeros n+1 times

q=0 # The proportion of person A being in the lead

for (i in 1:n){ # Making an array that if they won they get a point

if (k[i]==1){ # If person A won the coin is 1

x[i+1]=x[i]+up # upon winning Peter (x-array) gets a point at in

# position k+1

y[i+1]=y[i] # If person A wins Paul’s value will remain the same at

# position k+1 (y-arrary)

} else{ # Person B wins

y[i+1]=y[i]+down # upon winning Paul (y-array) gets a point at in

# position k+1

x[i+1]=x[i] # If Paul wins person A’s value will remain the same at

# position k+1

} # End of else statement

} # End of for array for counting the lead

for (i in 2:n+1){ # Starting from the second position

# We will begin comparing the scores

if (x[i]>y[i]){ # If person A is in the lead at flip i-1

21



q=q+1 # They get a point

} else if (x[i]==y[i]){ # If they are tied at flip i-1

q=q+.5 # Person A gets half a point

} else { # If person B is in the lead at time i-1

q=q # Person A get no points

} # End of else loop for finding Peter’s points

prob[j]=q/n # Finding the proportion person A is in the lead

#during trial j

} # End of for loop

} # End of Trials

hist(prob) # Histogram of the probabilities for the trials

For comparison in Figure 2 we have the simulation when all of the assumptions

of the arcsine distribution is met.

The graph for an initial lead of 2 is simulated in in Figure 3. We can see that we

no longer have the nice u-shaped distribution that we had when the assumptions of

the arcsine distribution were fulfilled. Notice, even when Peter has a lead it is still

more likely that Paul will most of the time than for the proportion of the lead to be

even for both. Thus, it appears that we have a j-shaped distribution.

A simulation of the unfair coin is in Figure 4. In this simulation we had that the

chance that Peter wins the coin toss is 51%. Notice, just like with the lead we have

22



Figure 2: Simulation of the Arcsine Distribution

Figure 3: Simulation of the Arcsine Distribution with a lead of 2

a j-shaped distribution.

The final simulated graph is for Geers is found in Figure 5. The drift is 1.01. In

other words, if it lands on heads then Peter gets $1.01 and if it lands on tails Paul

will receive $0.99.
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Figure 4: Simulation of Takács’ Distribution

Figure 5: Simulation of Geers’ Distribution
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4 UNFAIR PROBABILITY VIOLATION

The main focus of this paper is to simplify Takács’ equations for the arcsine

distribution. He proved that

P{∆n(k) = j} = P{∆j = j}[P{ρ(k + 1) > n− j} − P{ρ(k) > n− j}]. (3)

Where ∆n(k) is the number of times Peter has a lead of k or more.

We need to simplify this. Also in his paper he proved that

P{∆j = j} = pP{ρ(−1) ≥ j} = p− qP{ρ(1) < j}. (4)

He simplifies equation 3 to

P{∆j = j}[P{ρ(k + 1) > n− j} − P{ρ(k) > n− j}] = P{ζn−j = k}+

P{ζn−j = k + 1} −
(

1− q

p

)
P{ζn−j = k + 1}+

(
1− p

q

)
P{ζn−j < −k − 1}.

(5)

In his formula,the values for k are arbitary. Equation 5 is the proportion of time

that the random walk is above the value k. Since we are interested in the amount of

time Peter is in the lead, let k = 0.

Takács further simplified P{∆j = j} as

P{∆j = j} = p− q + q{P (ζj−1 = 0) + P (ζj−1 = −1) + (1− p

q
)P (ζj−1 < −1)}. (6)

25



Let n be the number of flips and j be time spent above the origin. Let j be odd

and n− j be even; the other cases will be similar. Several components will drop out

so the probability distribution becomes

P (∆n(0) = j) ={p− q + q ∗ [P (ζj−1 = 0)− (p/(q)− 1) + P (ζj−1 < −1)]}

{P (ζn−j = 0) + (1− p

q
)P (ζn−j < −1)}.

(7)

In equation 7, binom is the probability mass function of a binomial distributions

and Binom is the cumulative mass function. We will denote the probability mass

function as pmf and the cummulative mass function as cmf. The probability of success

is p and the probability of failure is q.

There exists many inequalities that can bound a binomial cmf however most of

these are not good enough for us, so we will use Littlewood’s Estimate which was

corrected by McKay [10] to solve for Tacáks equation.

For the further calculations notice that we can rewrite Takács distribution with

binomial distributions and obtain

P (∆n(0) = j) ={p− q + q ∗ (binom(
ji − 1

2
, ji − 1, p)− (p/(q)− 1)

Binom(
ji − 1

2
− 1, ji − 1, p))}(binom(

(n− ji)
2

, n− ji, p) + (1− p/(q))

∗Binom(
n− ji

2
− 1, n− ji, p)).

(8)

For easier reading we will denote

T1 = ((p−q)+(q)∗(binom(
ji − 1

2
, ji−1, p)−(p/(q)−1)∗Binom(

ji − 1

2
−1, ji−1, p)))

26



and

T2 = (binom(
(n− ji)

2
, n− ji, p) + (1− p/(q)) ∗Binom(

n− ji
2
− 1, n− ji, p)).

Let p = 1
2

+ c√
n

where c ∈ N. Note, if c = 0 then p = 1
2

and we have the arcsine

distribution. This choice for success and failure probabilities will become apparent

later.

We are going to use [10] to simplify Takács formula. Using McKay’s notation we

have that q = 1− p, σ =
√
npq, x = k−np

σ
, and 0 ≤ E(k;n, p) ≤ min{

√
π
8
, 1
x
}. Recall

the fomulas for the pmf for binomial is b(k) = b(k;n, p) =
(
n
k

)
pkqn−k and the binomial

cdf is denoted as B(k;n, p) =
∑n

j=k b(j;n, p). In McKay’s Theorem 2 he states

B(k, n, p) = σb(k − 1, n− 1, p)Y (x)exp{E(k;n, p)/σ}. (9)

We want to simplify equation 7 and get it into a limiting form.

Let us first simplify the pmfs. According to [13] and [10] P (ζj−1 = 0) = b( j−1
2
, j−

1, p) and similarly P (ζn−1 = 0) = b(n−j
2
, n− j, p).

Now let us simplify P (ζj−1 < −1).

P (ζj−1 < −1) = P (ζj−1 ≤ −2)

= Binom(
j − 1

2
− 1, j − 1, p) by [13]

= B(
j − 1

2
+ 1, j − 1, q) since [10] looks at right tailed probabilities

(10)
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P (ζn−j < −1) = P (ζn−j ≤ −2)

= Binom(
n− j

2
− 1, n− j, p) by [13]

= B(
n− j

2
+ 1, n− j, q) since [10] looks at right tailed probabilities

(11)

McKay donotes k = j−1
2

+ 1, n = j − 1, and p = q, or equivalently, successes and

failures are flipped.

Let us now evaluate some of the individual components. We want to first simplify

B( j−1
2
− 1, j − 2, p)

σ =
√
npq =

√
(j − 1)(

1

2
− c√

n
)(

1

2
+

c√
n

) ≈
√
j

2
. (12)

The above approximation is reasonable when we take a limit as we will be setting

y = j
n

thus 0 ≤ y ≤ 1.
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Now let us solve for b( j−1
2
− 1, j − 2, p)

b(
j − 1

2
− 1, j − 2, p) =

(
j − 2
j−1
2
− 1

)
p
j−1
2
−1q

j−1
2

≈
(
j
j
2

)(
1

2
− c√

n

) j−1
2
−1(

1

2
+

c√
n

) j−1
2

≈ 4

(
j
j
2

)(
1

2
(1− 2c√

n
)

) j
2
(

1

2
(1 +

2c√
n

)

) j
2

≈ 4

(
j
j
2

)(
1

2

)j (
1− 4c2

n

) j
2

≈ 4

√
2

πj
e
−2c2j
n

by Stirling’s approximation and the estimate (1− x) ≈ e−x

(13)

and b( j−1
2
, j − 1, p)

b(
j − 1

2
, j − 1, p) =

(
j − 1
j−1
2

)
p
j−1
2
−1q

j−1
2

≈
(
j
j
2

)(
1

2
− c√

n

) j−1
2
(

1

2
+

c√
n

) j−1
2

≈ 2

(
j
j
2

)(
1

2
(1− 2c√

n
)

) j
2
(

1

2
(1 +

2c√
n

)

) j
2

≈ 2

(
j
j
2

)(
1

2

)j (
1− 4c2

n

) j
2

≈ 2

√
2

πj
e
−2c2j
n

by Stirling’s approximation and the estimate (1− x) ≈ e−x

(14)
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We now need to solve for x.

x =
k − np
σ

=

j−1
2
− (j − 1)(1

2
− c√

n
)

√
j
2

=
2(j − 1)c√

nj

≈ 2c

√
j

n

= 2c
√
y.

(15)

Thus x varies from 0 to 2c. So Y (x) = Y (2c
√
y).

Now we need to solve for Y (x). According to [10]

Y (x) =

∫∞
x
φ(u)du

φ(x)
, (16)

where φ(x) = e
−x2
2√
2π

.

The figure of Y (x) can be seen below in figure 6

Now let us look at e
E(k,n,p)

σ . Note, e
0≤E(k;n,p)≤min{

√
π
8 ,

1
x }

σ so as c → ∞ we get that
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Figure 6: Graph of Y (x)

e
E(k,n,p)

σ is a bounded function. So now we can simplify T1

T1 = (p− q) + (q) ∗ (binom(
j − 1

2
, j − 1, p)− (p/(q)− 1) ∗Binom(

ji − 1

2
− 1, j − 1, p))

=
2c√
n

+

(
1

2
− c√

n

){
binom(

j − 1

2
, j − 1, p)−

(
4c√
n

)
∗Binom(

ji − 1

2
− 1, ji − 1, p)

}
=

2c√
n

+

(
1

2
− c√

n

)
{binom(

j − 1

2
, j − 1, p)−

(
4c√
n

)
× σbinom(

j − 1

2
− 1, j − 2, p)Y (2c

√
y)exp{E

σ
}}

=
2c√
n

+

(
1

2
− c√

n

){
2

√
2

πj
e
−2c2j
n −

(
4c√
n

) √
j

2
4

√
2

πj
e
−2c2j
n Y (2c

√
y)exp{2E√

j
}
}

=
2c√
n

+

(
1

2
− c√

n

)(
2

√
2

πj
e−2c

2y

)(
1− 4c√

n
Y (2c

√
y)e

2E√
j

)
.

(17)

Now let us simplify B(n−j
2

+ 1, n − j, q). We need to find σ, b(n−j
2
− 1, n − j, p),
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x, and Y (x).

Let us first solve for b(n−j
2
, n− j, p)

b

(
n− j

2
, n− j, p

)
=

(
n− j
n−j
2

)
p
n−j
2 q

n−j
2

=

(
n− j
n−j
2

)(
1

2
+

c√
n

)n−j
2
(

1

2
− c√

n

)n−j
2

=

(
n− j
n−j
2

)(
1

2

(
1− 2c√

n

))n−j
2
(

1

2

(
1 +

2c√
n

))n−j
2

=

(
n− j
n−j
2

)(
1

2

)n−j (
1− 2c√

n

)n−j
2
(

1 +
2c√
n

)n−j
2

=

(
n− j
n−j
2

)(
1

2

)n−j (
1− 4c2

n

)n−j
2

=
1√

2π(n− j)
2n−j

(
1

2

)n−j (
1− 4c2

n

)n−j
2

=
1√

2π(n− j)
exp

{
−2c2(n− j)

n

}
=

1√
2π(n− j)

exp
{
−2c2(1− y)

}
.

(18)
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Now we solve for b
(
n−j
2
− 1, n− j − 1, p

)
b

(
n− j

2
− 1, n− j − 1, p

)
=

(
n− j − 1
n−j
2
− 1

)
p
n−j
2 q

n−j
2
−1

≈
(
n− j
n−j
2

)(
1

2
+

c√
n

)n−j
2
(

1

2
− c√

n

)n−j
2
−1

≈ 2

(
n− j
n−j
2

)(
1

2

(
1− 2c√

n

))n−j
2
(

1

2

(
1 +

2c√
n

))n−j
2

= 2

(
n− j
n−j
2

)(
1

2

)n−j (
1− 2c√

n

)n−j
2
(

1 +
2c√
n

)n−j
2

= 2

(
n− j
n−j
2

)(
1

2

)n−j (
1− 4c2

n

)n−j
2

= 2
1√

2π(n− j)
2n−j

(
1

2

)n−j (
1− 4c2

n

)n−j
2

=
2√

2π(n− j)
exp

{
−2c2(n− j)

n

}
=

2√
2π(n− j)

exp
{
−2c2(1− y)

}
.

(19)

Now let us solve for σ for T2

σ =
√
npq =

√
(n− j)

(
1

2
− c√

n

)(
1

2
+

c√
n

)
≈
√
n− j
2

. (20)

Next, let us solve

x =
k − np
σ

=

n−j
2
− (n− j)

(
1
2
− c√

n

)
√
n−j
2

=

c√
n
(n− j) 1

2

√
n−j
2

=
2c
√
n− j√
n

= 2c
√

1− y.

(21)
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Now for we know for T2 our x also varies from 0 to 2c.

Thus T2 can be simplified to be

T2 = binom

(
n− j

2
, n− j, p

)
+ (1− p

q
)Binom

(
n− j

2
, n− j, p

)
= binom

(
n− j

2
, n− j, p

)
+

4c√
n
σbinom

(
n− j

2
− 1, n− j − 1, p

)
Y (x)e

E
σ

=
1√

2π(n− j)
e−2c

2(1−y) +
4c√
n

√
n− j
2

2√
2π(n− j)

e−2c
2(1−y)Y (2c

√
1− y)e

2E√
n−j

=
1√
2π
e−2c

2(1−y)
(

1√
n− j

+
4c√
n
Y (2c

√
1− y)e

2E√
n−j

)
.

(22)

For further simplification let us denote

T11 =
2c√
n

(23)

and

T12 =

(
1

2
− c√

n

)(
2

√
2

πj
e−2c

2y

)(
1− 4c√

n
Y (2c

√
y)e

2E√
j

)
(24)

Recall, we want to know the resulting equation when we multiple T1 and T2

together. So since T1 = T11 = T12 then T1 × T2 = T11T2 + T12T2. Let us solve for

T11T2 first.

T11T2 =
2c√
n

1√
2π
e−2c

2(1−y)
(

1√
n− j

+
4c√
n
Y (2c

√
1− y)e

2E√
n−j

)
.

=
2c

n

1√
2π
e−2c

2(1−y)
(

1√
1− y

+ 4cY (2c
√

1− y)e
2E√
n−j

)
.

(25)
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Now let us solve for T12T2

T12T2 =

(
1

2
− c√

n

)(
2

√
2

πj
e−2c

2y

)(
1− 4c√

n
Y (2c

√
y)e

2E√
j

)
× 1√

2π
e−2c

2(1−y)
(

1√
n− j

+
4c√
n
Y (2c

√
1− y)e

2E√
n−j

) (26)

T11T2 ≈
2c

n

1√
2π

e−2c
2(1−y)

√
1− y

(27)

where y = j
n
. Which is approximately

T11T2 ≈
√

2

π

ce−2c
2(1−y)

√
1− y

(28)

as n→∞. Also we have

T12T2 ≈
1

n

e−2c
2

π
√

j
n

(
n−j
n

) . (29)

So the second part of the density is approximately

T12T2 ≈
e−2c

2

π
√
y(1− y

(30)

as n → ∞, and this equals the arcsine distribution if you let c = 0. Thus T11T2 is

the skewing component and T12T2 is the arcsine component.

Theorem 4.1 If c = 0 and we let n→∞ we obtain

f(y) =
1

π
√
y(1− y)

Proof: Note, the 1
n

can be thought of like the width of the rectangles formed for

a Riemann and the arcsine part, 1

π
√
y(1−y)

is our height. Just like with Riemann

integration we want the width of our rectangles to go to 0, so we let n → ∞. Thus,

we obtain the arcsine distribution.
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Our main result is the distribution when we let c 6= 0 and n→∞.

Theorem 4.2 The proportion of time Peter spends in the lead if he has success

probability of p = c√
n

where c 6= 0 and n→∞ then

f(y) ≈
√

2

π
ce−2c

2(1−y) 1√
1− y

+

√
2

π
e−2c

2(1−y) 1√
y(1− y)

For discussion we will call 2c√
2π
e−2c

2(1−y) 1√
1−y T11T2 and

√
2
π
e−2c

2(1−y) 1√
y(1−y)

is

T12T2. Notice,T12T2 is the arcsine distribution with some constants. T11T2 is the

skewing component. Note, as c increases the T11T2 becomes the dominate term. The

skewing component is in figure 7, the arcsine component is in figure 8, and our final

distribution can be seen in figure 9.

Figure 7: Skewing Component
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Figure 8: Arcsine Component

Figure 9: Graph of f(y)
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5 INITIAL LEAD VIOLATION

In this chapter we will explore the distribution when Peter begins the game with

a few dollars initially. In other words, Peter will have a lead in the coin toss game.

So now we are interested in how the distribution changes with an initial lead.

Before we explore the distribution let us discuss a famous paradox called St.

Petersburg Paradox. According to [9] the St. Petersburg Paradox is a fair coin flipping

game where the player flips the coin until the coin lands on tails. If it takes n flips the

player will receive $2n. So if the first flip results in tails then they get $2. Note, the

probability of receiving $2 is 1
2
. Also the probability that the player receives $22 =$4

is 1
4
. This is true for all n so the chance that you get $2n is 1

2n
. Note, when one

multiplies the amount they would make by the probability that even happens is 1.

Recall, the expected value of a discrete probability function is

E(winnings) =
∞∑
i=1

P (xi)f(xi),

where P (xi) is the probability of event xi and f(xi) is the amount they make. Since

one has to flip then the lower bound has to be 1 and since we can theoretically never

obtain a tail in an infinite number of flip, because the coin flips are independent, our

upper bound is ∞. Plugging our variables into the equation we obtain

E(winnings) =
∞∑
i=1

1

2n
$2n = $1 + $1 + · · · = $∞.

Thus, the expected reward one would receive is $∞. Hence, if the owner of the event

wanted to make as much money as he lost then they would have to charge an infinite

amount of money for each customer to expect to break even. This is a paradox

because the actual winnings is finite with probability 1.

38



P (winnings are finite) =
1

2
+

1

4
+

1

8
+ · · · = 1.

We will have a similar situation in the initial lead case as will be apparent later.

Let m be the initial lead and let n be the number of steps needed for the first return

to the origin. Let m be odd, thus n is also odd. The probability that n steps will be

needed to reach the origin is [7]

P (First hit origin in n steps) =
m

n

(
n

m+n
2

)
1

2n
. (31)

To show that this results in a St. Petersburg Paradox situation let m = 1 since the
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time need for any lead will be larger than for m = 1.∑
m=1,3,5,...

1

n

(
n

1+n
2

)
1

2n
× n =

∑
m=1,3,5,...

(
n

1+n
2

)
1

2n

=
∑

m=1,3,5,...

(n
e

)n √2πn√
2π n+1

2(
2e

n+ 1

)n+1
2
(

2e

n− 1

)n−1
2 1√

2π n−1
2

1

2n

=
∑

m=1,3,5,...

nn
√

2πn√
π(n+ 1)

(
1

n+ 1

)n+1
2
(

1

n− 1

)n−1
2 1√

π(n− 1)

=
∑

m=1,3,5,...

√
2n√

(n+ 1)
√
π(n− 1)

nn

(n+ 1)
n+1
2 (n− 1)

n−1
2

=
∑

m=1,3,5,...

√
2n√

(n+ 1)
√
π(n− 1)

1(
n+1
n

)n+1
2
(
n−1
n

)n−1
2

=
∑

m=1,3,5,...

√
2n√

(n+ 1)
√
π(n− 1)

1(
1 + 1

n

)n+1
2
(
1− 1

n

)n−1
2

=
∑

m=1,3,5,...

√
2n√

(n+ 1)
√
π(n− 1)

1

e
1
2 e−

1
2

=
∑

m=1,3,5,...

√
2n√

(n+ 1)
√
π(n− 1)

=
∑

m=1,3,5,...

√
2

π

1√
n

=∞

(32)

Thus, if Peter has a lead he is expected to win. Which is similar to the St. Petersburg

Paradox

P (finite time needed to hit origin) = 1.

Then why does ∑ m

n

(
n

m+n
2

)
1

2n
= 1?
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The answer is that we have Catalan convolutions. Catalan convolutions are gen-

eralizations of Catalan numbers. A Catalan convolution is the number of paths where

one goes north and east from (k, 1) to (n, n) that do not cross the y = x line. [1]

denoted the Catalan convolution formula as

Cn,k =
k

2n− k

(
2n− k
n

)
.

For example, let k = 1

1

2n− 1

(
2n− 1

n

)
=

1

2n− 1

(2n− 1)!

n!(n− 1)!
(33)

=
(2n− 2)!

n!(n− 1)!
(34)

=
(2n− 2)!

n(n− 1)!(n− 1)!
(35)

=
1

n

(
2n− 2

n− 1

)
(36)

= Cn−1. (37)

What does the Catalan numbers have to do with leads? We want to show that

the Catalan numbers are related to the lead formula.

Lemma 5.1 Cn,k = m
n

(
n

m+n
2

)
.

We want to show that

k

2n− k

(
2n− k
n

)
=
m

n

(
n

m+n
2

)
.

Let 2n− k → n and k → m this implies that 2n→ n+m. Thus, n = n+m
2

. Plugging

in these values into the Catalan convolution formula produces our results. �
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For our formula we will define N , m, n, i, and j. N is the total number of flips,

m is the initial lead, n is the current number of flips, i is the number of every other

step taken after m, and j the number of steps until the origin is hit.

P (First hit origin in n steps) =
m

n

(
n

m+n
2

)
1

2n
= πi.

P (In N − j trials Peter is in the lead n− j) = un−juN−j

=

(
2(n− j)
n− j

)
2−2(n−j)

(
2(N − j)
N − j

)
2−2(N−j).

P (Peter wins n) =
n∑

j=m

πjP (In N − j trials Peter is in the lead n− j),

P(Peter wins n)=
∑n

j=m
m
n

(
n

m+n
2

)
1
2n

(
2(n−j)
n−j

)
2−2(n−j)

(
2(N−j)
N−j

)
2−2(N−j).
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6 POSSIBLE APPLICATIONS

In this thesis we will discuss four possible applications for Takács’ distribution as

well as the arcsine distribution. First, we will discuss a hypothesis test for a slightly

unfair coin, second, a dynamic brain connectivity model, third, a test for a simple

random sample, and finally, applications for infectious disease modeling.

A new hypothesis test for a slightly unfair coin needs to be created. Currently if

one uses a t-test the power of the test is close to 0 when the unfairness is small. This

prevents traditional hypothesis testing from being practical.

Second, an application for a connectivity model was suggested by Dr. Heather

Shappell in an email on December 5, 2017. In that email she stated:

My one thought was maybe something with dynamic brain (perhaps func-

tional) connectivity. I am currently doing work where we have data for a

subject for the length of the time they are in an fMRI machine. At every

2 seconds or so, we have brain signals measured at each region of their

brain. In the past, researchers would try and construct one brain network

(i.e. based on the entire length of the scan) for the subject. This can be

done in a variety of ways, but the simplest is to calculate the correlation

between each brain region using the time series data. Pairs of regions with

a correlation above a certain threshold are assigned an edge.

Nowadays, it’s becoming popular to *not* construct just one network

using the entire time series. Instead, researchers want to allow the network

to vary throughout the scan. The question then becomes, at what time
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points does the subject switch to a new network state? And what are the

states/unique networks that the subject entered? We think we have an

accurate way of estimating that.

So, I was thinking somewhat along those lines. Maybe the arcine distri-

bution could be applied to the simplest case of just assuming two network

states. One thing we are interested in is how much time people are spend-

ing in each state and whether this predicts disease status or other behav-

ioral traits. So, perhaps we can ask the question, “What is the proportion

of time during the scan that the subject had been in state A more times

than they have been in state B?” Perhaps this could be compared to the

arcsine distribution. It may be the case that the person is most likely

to switch which brain state is ”in the lead” at the beginning of the scan

or at the end of the scan... which I think seems to be what the arcsine

distribution says?

Finally, there was two suggestions by Dr. Adam Sima. The first was discussed in

an in-person interview on February 15, 2019, and was about making a test to see if

data for a survey was truly drawn from a simple random sample or if it could have

been another sampling technique. In an email on March 18, 2019, he also suggested we

could possibly use the arcsine distribution to identify changes in antibiotic resistance

in infectious disease modeling.
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7 CONCLUSIONS AND FUTURE WORK

This thesis covered several aspects of the arcsine distribution. We used Simula-

tions, proved the distribution, simplified previous work, and set up a new distribution.

There is still much work to be done for the Arcsine distribution.

Some further works include simplifying Geers’ formula, explore when indepen-

dence cannot be assumed, figure out if any of the possible applications are viable,

and to simplify the formula for an initial lead.
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