On Properties of r_{w}-Regular Graphs

Franklina Samani
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd
Part of the Mathematics Commons

Recommended Citation

Samani, Franklina, "On Properties of r_{w}-Regular Graphs" (2015). Electronic Theses and Dissertations. Paper 2601. https://dc.etsu.edu/ etd/2601
A thesis presented to the faculty of the Department of Mathematics

East Tennessee State University

In partial fulfillment of the requirements for the degree

Master of Science in Mathematical Sciences

by

Franklina Samani
December 2015
Debra Knisley, Ph.D., Chair
Teresa Haynes, Ph.D.
Robert Gardner, Ph.D.

Keywords: graph theory, weighted graph, $a_{w}-$ regular graph.

ABSTRACT
On Properties of r_{w}-Regular Graphs
by
Franklina Samani

If every vertex in a graph G has the same degree, then the graph is called a regular graph. That is, if $\operatorname{deg}(v)=r$ for all vertices in the graph, then it is denoted as an r-regular graph. A graph G is said to be vertex-weighted if all of the vertices are assigned weights. A generalized definition for degree regularity for vertex-weighted graphs can be stated as follows: A vertex-weighted graph is said to be r_{w}-regular if the sum of the weights in the neighborhood of every vertex is r_{w}. If all vertices are assigned the unit weight of 1 , then this is equivalent to the definition for r-regular graphs. In this thesis, we determine if a graph has a weighting scheme that makes it a weighted regular graph or prove no such scheme exists for a number of special classes of graphs such as paths, stars, caterpillars, spiders and wheels.

Copyright by Franklina Samani 2015

DEDICATION

With love I dedicate this dissertation to the three most important people in my life.

Mr. Donald Samani

Miss Lucy Dabuo

Mr. Seth Bomangsaan Eledi.

ACKNOWLEDGMENTS

First and foremost I would like to praise and thank God, the Almighty, whose many blessings and favor have brought me this far and made me who I am today. His gift of wisdom, knowledge, understanding and good health enabled me to begin and complete this piece of work. I am eternally grateful for His guidance and protection, enabling me to overcome all the trials with determination and perseverance to make this study possible.

I would like to express my sincere gratitude to my thesis advisor Dr. Debra Knisley for her guidance and encouragement through the learning process of this masters thesis. Her support and inspiring suggestions have been precious to the development of this work. Furthermore, I am grateful to Dr. Teresa Haynes for introducing me to graph theory proofs and teaching me how to do research. Working with her equipped me with the necessary tools needed for this research. I am also forever grateful and deeply indebted to Dr. Robert Gardner for giving me the opportunity to start this program and making my graduate school dream at ETSU a reality. Without him this would not have been possible. Special thanks goes to Dr. Robert Beeler for introducing me to graph theory. He has contributed immensely to my interest in graph theory.

My greatest gratitude goes to my parents Mr. \& Mrs. Samani, for their love, prayers and sacrifices towards my education. I am extremely grateful to my siblings Destina, Dedican, Hartin and Freeman for their prayers, invaluable support and encouragement to pursue this study. To my sweetheart Seth B. Eledi, who has always been there for me and showed unconditional love, support and encouragement during
my program, I would like to say thank you for all you do for me. I owe a debt of gratitude to the Eledi family, Benedict E. Adjogah, Kwadwo Antwi-Fordjour and Mr. Patrick Ofosuhene for their support, advice and encouragement. Your contribution and support for the success of this work is greatly appreciated.

Last but not least, my profound gratitude goes to all those within the university and beyond who have contributed in diverse ways towards the completion of this work and whose names I have not mentioned.

GOD BLESS YOU ALL.

CONTENTS

ABSTRACT 2
DEDICATION 4
ACKNOWLEDGMENTS 6
LIST OF FIGURES 9
1 INTRODUCTION 10
1.1 Background 15
2 RESULTS ON TREES 16
3 OTHER FAMILIES OF GRAPHS 31
4 CONCLUSION 44
BIBLIOGRAPHY 45
VITA 49

LIST OF FIGURES

1 House graph 10
2 An 8_{w}-regular House graph 11
3 A graph which is not weighted-regular 12
4 An example of an a_{w} - regular graph 13
5 Path of length $4\left(P_{4}\right)$ 14
6 A Tree with $d(u, v)=4$ 16
7 Example of a Caterpillar with $k=4$ 17
8 Example of a Lobster graph 18
$9 \quad$ A 5_{w}-regular P_{6} 20
10 A 3_{w}-regular P_{7} 21
11 A 6_{w}-regular P_{8} 22
12 A 21_{w}-regular star graph $\left(S_{9}\right)$ 23
13 Example of Weighted Regular Double Star of order 12 23
$14 \mathrm{~A} 4_{w}$-regular G_{2} graph 25
$15 \mathrm{~A} 3_{w}$ - regular G_{2} graph 26
16 A 5_{w} - regular G_{2} graph 28
$17 \mathrm{~A} 4_{w}$ - regular G_{2} graph 29
$18 \mathrm{~A} 3_{w}$ - regular G_{2} graph 30
19 A Fan graph on 4 vertices $\left(F_{4}\right)$ 33
20 A 14_{w}-regular Fan Graph 34
21 A Fan graph on 5 vertices $\left(F_{5}\right)$ 35
22 A 6_{w}-regular Fan Graph 36
23 A Fan graph on 6 vertices $\left(F_{6}\right)$ 37
24 A Fan graph on 7 vertices $\left(F_{7}\right)$ 38
25 A $8{ }_{w}$-regular Fan Graph 40
26 A 12_{w}-regular Wheel Graph $\left(W_{4+1}\right)$ 42
27 A 17_{w}-regular Bipartite Graph 43

1 INTRODUCTION

In this thesis we study a mathematical construction known as a graph. A graph G consists of a finite set of vertices $V(G)$ called the vertex set, an edge set $E(G)$, and a relation that associates one edge with two vertices called the endpoints of the edge. Figure 1 is an example of a graph with 5 vertices and 6 edges.

Figure 1: House graph

For the purposes of this thesis, we will assume that all graphs presented are simple, i.e. no loops (edges whose endpoints are equal), no multiple edges (more than one edge that has the same endpoints) [27]. An edge $u v$ in G implies u is adjacent to v and the edge $u v$ is said to be incident to the vertices u and $v(u$ and v are the endpoints of the edge $u v)$. The set of all vertices adjacent to u is called the neighborhood of u. If every vertex in the graph has the same degree, then the graph is called a regular graph. That is, if $\operatorname{deg}(v)=r$ for all vertices in the graph, then the graph is denoted as an r-regular graph. A large volume of work has been done in relation to regular graphs, some of which include $[1,7,12,15,16,25]$.

A graph G is said to be weighted if all of the vertices are assigned non negative integers called weights. In this thesis, we define what we call a weighted-regular graph. First, we generalize the definition of the degree of a vertex in a vertex-weighted graph as follows: the weighted degree of a vertex v is the sum of the weights of its neighbors and is denoted by $\operatorname{deg}_{w}(v)=\sum_{u \in N(v)} w(u)$ where $w(u)$ is the assigned weight of u in G. If every vertex in the graph has the same weighted degree, then the graph is called a weighted-regular graph. That is, if $\operatorname{deg}_{w}(v)=a$ for all vertices in the graph, then it is denoted as an a_{w}-regular graph. Necessarily, all regular graphs can be considered weighted-regular graphs if each vertex has an understood weight of 1 . In this thesis, we determine if a graph has a weighting scheme that makes it a weighted regular graph or prove no such scheme exists for a number of special classes of graphs.

For example, consider the graph in Figure 1. The graph in Figure 1 is not a regular graph since some of the vertices have degree 2 and some have degree 3. However, the vertex weighted graph in Figure 2 is a 8_{w}-regular graph.

Figure 2: An 8_{w}-regular House graph

Not all graphs allow a weighting scheme that produces an a_{w}-regular graph. For
instance, the graph in Figure 3 does not allow a weighting scheme that produces an a_{w}-regular graph.

Figure 3: A graph which is not weighted-regular

Observe that the two support vertices u and v are assigned weights a each, for otherwise $\operatorname{deg}_{w}\left(l_{1}\right) \neq a$ and $d e g_{w}\left(l_{2}\right) \neq a$. However since $d e g_{w}(x)=w(u)+w(v)$, it implies $d e g_{w}(x)=a+a=2 a$ and since $a=d e g_{w}\left(l_{1}\right)=d e g_{w}\left(l_{2}\right) \neq d e g_{w}(x)=2 a$, the graph does not allow a weighting scheme which makes it weighted-regular.

To determine if an arbitrary graph allows a weighting scheme is beyond the scope of this thesis. In this thesis, we determine if a vertex weighting scheme that results in a weighted regular graph exists for selected families of graphs. For example, the graph in Figure 4 is a tree that is weighted regular.

Figure 4: An example of an a_{w} - regular graph

Observe that the support vertices are assigned a weight of a, thus resulting in $d e g_{w}(v)=a$ for all $v \in V$. This implies that there exist a non trivial weighting scheme which makes the graph weighted regular.

In order to continue our discussion, we now define the necessary terms that we use to prove our results on selected families of graphs.

A leaf vertex is a vertex which has a degree of one and a support vertex is defined as a vertex with a leaf in its neighborhood.A path in G is a walk in which no vertex is repeated. A graph G is said to be connected if for all $u, v \in V(G)$, there is a $u v$ path. Particularly, a path on n vertices is denoted as P_{n}. A path P_{n} is therefore a graph of order n and size $n-1$ with vertices denoted as $v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{n}$ and edges $v_{i} v_{i+1}$ for $i=1,2,3, \ldots . n-1$.

The length of a path with endpoints u and v is the number of edges between u and v on a particular path from u to v. Figure 5 is an example of a graph of length 4. Thus, a path P_{n} has length $n-1$.

Figure 5: Path of length $4\left(P_{4}\right)$

A cycle is a $u-v$ path with $u=v$. A cycle on n vertices is denoted as C_{n}.A tree denoted as T is an acyclic connected graph, i.e. it has no cycles [10] . A caterpillar tree as defined by Gordon and Breach [21] is a tree with the property that the removal of its leaves(vertices of degree one) results in a path. The caterpillar is made up of two types of vertices, namely the leaves (vertices of degree one) and vertices which are in the neighborhood of the leaves which we will refer to as support vertices.

A star graph, S_{i} (with i being the order of the graph) is an acyclic graph in which one vertex has degree $i-1$ and the rest have degree 1. A double star graph as defined in [11] is a graph consisting of the union of two stars $S_{1, m}$ and $S_{1, m}$ together with an edge joining their centers. A spider graph is a tree with at most one vertex of degree greater than one called the center. A lobster is a tree with the property that the removal of its leaves produces a caterpillar [5]. A wheel graph W_{n} is a graph of order n formed by connecting a vertex (sometimes called the central vertex) of degree $n-1$ to every vertex on a cycle of length $n-1$. A fan graph is a graph formed by connecting a vertex v to all vertices on a path P_{n}. A complete bipartite graph $K_{m, n}$ is a bipartite graph with every vertex in one partite set connected to every vertex in the other partite set, and no two vertices in the same partite set are connected.

1.1 Background

Graph theory is the study of properties of graphs in several fields such as mathematics and computer science. Several problems of interest in the world today can be represented by graphs. In the year 1736, a Swiss mathematician Leonhard Euler (1707-1783) solved the famous Königsberg bridge and that was the birth of graph theory.

A lot of research has been done on edge weighted graphs, however very little research has been done on vertex weighted graphs and hence this has become a growing area of research in graph theory. There are examples such as [19] where vertex weights are studied. However, a thorough literature search did not reveal any work resembling weighted-regular graphs.

Graceful labeling is one of the areas of graph theory where vertices are assigned a numerical values known as vertex weight. Many researchers such as Brankovic [8] and Edwards [9] have done a lot of work on graceful graphs. Several other researchers such as $[2,3,4,6,13,14,17,18,20,22,23,24,26,28]$ have also done some work where numerical values are assigned to vertices.

In this thesis, we determine if a vertex weighting scheme that results in a weighted regular graph exists for selected families of graphs. In particular, we determine if selected trees such as paths, caterpillars and spiders have a weighting scheme which make them weighted-regular. We also answer this question with respect to cycles, complete bipartite graphs, wheels and fans.

2 RESULTS ON TREES

We will start by proving a very useful proposition that we use in determining whether or not a tree is weighted-regular.

Proposition 2.1 If a graph G contains two vertices of degree $1, u$ and v, such that the distance $d(u, v)=4$, then the graph does not have a nontrivial weighting scheme which makes it weighted regular.

Proof Assume the graph G is an a_{w}-regular graph. We need to show that there exists a vertex x in the graph where $\operatorname{deg}_{w}(x) \neq a$. Let u and v be vertices that are leaves such that $d(u, v)=4$. Let s, y, z be the vertices between u and v as shown in Figure 6.

Figure 6: A Tree with $d(u, v)=4$

Then since u and v are leaves, they have just one neighbor each. Let a be the weight assigned to all the support vertices, then since s and z are support vertices; they will each be assigned a weight of a. Now as shown in Figure 6: vertex y has at
least two neighbors, s and z, that are support vertices. So the degree weight of y will be the sum of the assigned weights of its neighbors which include the assigned weights of s and z. This implies the degree weight of y is at least twice the weight of a support vertex. Thus, $\operatorname{deg}_{w}(y) \geq w(s)+w(z)$ and since since $a \neq 0$, then $\operatorname{deg}_{w}(y) \geq a+a$. So, $\operatorname{deg}_{w}(y) \geq 2 a>a$.

This is a contradiction since $a=\operatorname{de} g_{w}(u)=\operatorname{deg}_{w}(v) \neq \operatorname{de} g_{w}(y)=2 a$.

Proposition 2.1 is very useful in the determination of the weighted regularity of several other graphs such as a caterpillar and a lobster. Below are examples where Proposition 2.1 are used.

Example 2.2 Let G_{9} be a caterpillar with 9 vertices (Refer to Figure 7). Let the support vertices $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ have weights 3 each. Thus, $w\left(v_{i}\right)=3$ for $i=1,2,3,4$. This implies that $\operatorname{deg}_{w}\left(v_{i}\right)=3$ for $i=5,6,7,8,9$ (the leaves). So for the graph to be weighted regular, the degree weight of each vertex must be the same. Thus $\operatorname{deg}_{w}(v)$ has to be equal to 3 for all $v \in V$.

Figure 7: Example of a Caterpillar with $k=4$

Observe that there are two leaves, say v_{5} and v_{7}, such that $d\left(v_{5}, v_{7}\right)=4$. Then clearly by Proposition 2.1 this graph does not have a weighting scheme which makes it weighted regular. This is because $\operatorname{deg}_{w}\left(v_{2}\right) \geq w\left(v_{1}\right)+w\left(v_{3}\right)=3+3=6 \neq \operatorname{deg}_{w}\left(v_{5}\right)=$ 3.

Example 2.3 Let L be a lobster with two legs of length two, each connected to a vertex v_{2} on the central path $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ (Refer to Figure 8). Let the support vertices $\left(v_{5}, v_{6}, v_{3}, v_{7}, v_{8}\right)$ have weights 5 each. Thus, $w\left(v_{i}\right)=5$ for $i=3,5,6,7,8$. This implies that $\operatorname{deg}_{w}\left(v_{i}\right)=5$ for $i=9,10,11,12,13$ (the leaves). So for the graph to be weighted regular, the degree weight of each vertex must be the same. Thus $\operatorname{deg}_{w}(v)$ has to be equal to 5 for all $v \in V$.

Figure 8: Example of a Lobster graph

Observe that there are two leaves, say v_{6} and $v_{8}, \operatorname{such} d\left(v_{6}, v_{8}\right)=4$. Then clearly by Proposition 2.1 this graph does not have a weighting scheme which makes it weighted regular. This is because $\operatorname{deg}_{w}\left(v_{2}\right) \geq w\left(v_{6}\right)+w\left(v_{3}\right)+w\left(v_{8}\right)=5+5+5=15 \neq$ $d e g_{w}\left(v_{9}\right)=5$.

Several other graphs with $d(x, y)=4$ are also known not to have a nontrivial weighting scheme which makes it weighted regular as a result of Proposition 2.1.

Theorem 2.4 For a path of order n greater than 1, there exists a weighting scheme that makes the path a_{w}-regular except for paths of order $n \equiv 1$ ($\left.\bmod 4\right)$.

Proof Let P_{n} be a path on n vertices. Let $v_{1}, v_{2}, v_{3}, \ldots \ldots ., v_{n}$ be the vertices on the path. Then $w\left(v_{2}\right)=w\left(v_{n-1}\right)=a$ since v_{2} and v_{n-1} are support vertices. This implies that $\operatorname{deg}_{w}\left(v_{1}\right)=\operatorname{deg} g_{w}\left(v_{n}\right)=a$. So since $w\left(v_{2}\right)=a$, it implies that $w\left(v_{4}\right)=0$, for otherwise $\operatorname{deg}\left(v_{3}\right) \neq a$. This implies that $w\left(v_{6}\right)=a$, for otherwise $\operatorname{deg}_{w}\left(v_{5}\right) \neq a$. \vdots So we have that;

$$
w\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 2(\bmod 4) \\ 0 & \text { if } i \equiv 0(\bmod 4)\end{cases}
$$

Case 1: Paths of order $n \equiv 1(\bmod 4)$.

Since $n \equiv 1(\bmod 4)$, it implies that $n-1 \equiv 0(\bmod 4)$. Therefore $w\left(v_{n-1}\right)=0$ and this contradicts the hypothesis that $w\left(v_{n-1}\right)=a$. Also $w\left(v_{n-1}\right)$ can not be 0 since that implies that $\operatorname{deg}_{w}\left(v_{n}\right)=0 \neq \operatorname{deg}_{w}\left(v_{1}\right)=a$.

Case 2: Paths of order $n \equiv 2(\bmod 4)$.

Since $n \equiv 2(\bmod 4)$, it implies that $w(n)=a$. Also since $w\left(v_{n-1}\right)=a$, it implies that $w\left(v_{n-3}\right)=0$, for otherwise $\operatorname{deg}_{w}\left(v_{n-2}\right) \neq a$. So since $n \equiv 2(\bmod 4) \Longrightarrow n-1 \equiv 1$ $(\bmod 4) \Longrightarrow n-2 \equiv 0(\bmod 4) \Longrightarrow n-3 \equiv 3(\bmod 4)$. So we have:

$$
w\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 4) \\ 0 & \text { if } i \equiv 3(\bmod 4)\end{cases}
$$

Therefore $\operatorname{deg}_{w}(v)=a$ for all $v \in V$.

Example 2.5 Consider a path on 6 vertices $\left(P_{6}\right)$.
Let $w\left(v_{i}\right)= \begin{cases}5 & \text { if } i \equiv 2(\bmod 4) \\ 0 & \text { if } i \equiv 0(\bmod 4) \\ 5 & \text { if } i \equiv 1(\bmod 4) \\ 0 & \text { if } i \equiv 3(\bmod 4)\end{cases}$
Then we have $w\left(v_{2}\right)=w\left(v_{6}\right)=5=w\left(v_{1}\right)=w\left(v_{5}\right)$ and $w\left(v_{3}\right)=w\left(v_{4}\right)=0$.

Figure 9: A 5_{w}-regular P_{6}

Therefore $\operatorname{deg}_{w}(v)=5$ for all $v \in V$. Hence the path is 5_{w}-regular.

Case 3: Paths of order $n \equiv 3(\bmod 4)$.

Since $n \equiv 3(\bmod 4)$, it implies that $n-1 \equiv 2(\bmod 4)$. Therefore $w\left(v_{n-1}\right)=a$. Now, $w\left(v_{1}\right)$ can either be 0 or a. Without loss of generality let $w\left(v_{1}\right)=a$. This implies that $w\left(v_{3}\right)=0$, for otherwise $\operatorname{deg}_{w}\left(v_{2}\right) \neq a$. So we have

$$
w\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 4) \\ 0 & \text { if } i \equiv 3(\bmod 4)\end{cases}
$$

Therefore $\operatorname{deg}_{w}(v)=a$ for all $v \in V$.

Example 2.6 Consider a path on 7 vertices $\left(P_{7}\right)$.

$$
\text { Let } w\left(v_{i}\right)= \begin{cases}3 & \text { if } i \equiv 2(\bmod 4) \\ 0 & \text { if } i \equiv 0(\bmod 4) \\ 3 & \text { if } i \equiv 1(\bmod 4) \\ 0 & \text { if } i \equiv 3(\bmod 4)\end{cases}
$$

Then, $w\left(v_{2}\right)=w\left(v_{6}\right)=3=w\left(v_{1}\right)=w\left(v_{5}\right)$ and $w\left(v_{4}\right)=0=w\left(v_{3}\right)=w\left(v_{7}\right)$.

Figure 10: $\mathrm{A} 3_{w}$-regular P_{7}

Therefore $\operatorname{deg}_{w}(v)=3$ for all $v \in V$. Hence the path is 3_{w}-regular.

Case 4: Paths of order $n \equiv 0(\bmod 4)$.

Since $n \equiv 0(\bmod 4)$, it implies that $w(n)=0$. Also since $w\left(v_{n-1}\right)=a$, it implies that $w\left(v_{n-3}\right)=0$, for otherwise $\operatorname{deg}_{w}\left(v_{n-2}\right) \neq a$. So since $n \equiv 0(\bmod 4) \Longrightarrow n-1 \equiv 3$ $(\bmod 4) \Longrightarrow n-2 \equiv 2(\bmod 4) \Longrightarrow n-3 \equiv 1(\bmod 4)$.

So we have $w\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 3(\bmod 4) \\ 0 & \text { if } i \equiv 1(\bmod 4)\end{cases}$
Therefore $\operatorname{deg}_{w}(v)=a$ for all $v \in V$.

Example 2.7 Consider a path on 8 vertices $\left(P_{8}\right)$.

$$
\text { Let } w\left(v_{i}\right)= \begin{cases}6 & \text { if } i \equiv 2(\bmod 4) \\ 0 & \text { if } i \equiv 0(\bmod 4) \\ 6 & \text { if } i \equiv 3(\bmod 4) \\ 0 & \text { if } i \equiv 1(\bmod 4)\end{cases}
$$

Then $w\left(v_{2}\right)=w\left(v_{6}\right)=6=w\left(v_{3}\right)=w\left(v_{7}\right)$ and $w\left(v_{4}\right)=w\left(v_{8}\right)=0=w\left(v_{1}\right)=w\left(v_{5}\right)$.

Figure 11: A $6{ }_{w}$-regular P_{8}

Therefore $\operatorname{deg}_{w}(v)=6$ for all $v \in V$. Hence the path is 6_{w}-regular.

Proposition 2.8 Every star has a non trivial weighting scheme which makes it weighted regular and this is unique.

Proof Let S_{n+1} be a star graph of order $n+1$. Let v_{n+1} be the central vertex and v_{i} for $i=1,2, . ., n$ be the vertices of degree 1 . So since v_{n+1} is adjacent to all the other vertices, its degree weight will be the sum of the weights of all the other vertices. Let $\operatorname{deg}_{w}\left(v_{n+1}\right)=\sum_{i=1}^{n} w\left(v_{i}\right)=a$. This implies that $\sum_{i=1}^{n} w\left(v_{i}\right)=w\left(v_{n+1}\right)$, for otherwise $d e g_{w}\left(v_{i}\right) \neq a$ for $i=1,2, \ldots, n$. Therefore $\operatorname{deg}_{w}\left(v_{i}\right)=a$ for all $v \in V$. Hence S_{n+1} is a_{w}-regular.

Example 2.9 Let S_{9} be a star graph of order 9. Then $v_{n+1}=v_{9}$ for $n=8$. Let $w\left(v_{1}\right)=2, w\left(v_{2}\right)=3, w\left(v_{3}\right)=0, w\left(v_{4}\right)=2, w\left(v_{5}\right)=8, w\left(v_{6}\right)=1, w\left(v_{7}\right)=4, w\left(v_{8}\right)=$ 1. Therefore $\operatorname{deg}_{w}\left(v_{9}\right)=\sum_{i=1}^{8} w\left(v_{i}\right)=21$. This implies that $w\left(v_{9}\right)=21$. Therefore $\operatorname{deg}_{w}\left(v_{i}\right)=21$ for all $v \in V$. Hence the star graph S_{9} is 21_{w}-regular (Refer to Figure 12).

Figure 12: A 21_{w}-regular star graph $\left(S_{9}\right)$

Theorem 2.10 Every double star has a non trivial weighting scheme which makes it weighted regular and this weighting scheme is unique.

Figure 13: Example of Weighted Regular Double Star of order 12

Proof Let T be a double star of order n. Let u and v be the central vertices of the two stars that are connected by an edge. Notice that u and v are support vertices and
the only two vertices with degree greater than 1 , thus the remaining $n-2$ vertices are leaves since they have degrees 1. Assign a weight of a to each of vertices u and v since they are support vertices. Also a weight of 0 is assigned to the remaining vertices (Refer to Figure 13). Observe that this nontrivial weighting scheme makes the double star weighted regular and hence we can conclude that there exist a weighting scheme which makes the double star weighted-regular.

We will now consider a particular type of spider with a fixed leg of length 2.
Let G_{2} be a spider with a fixed leg of length 2 and the number of remaining legs equal to k. We will call the central vertex x and the paths from x, the legs of the spider. Also, let l be a path of length 2 with u_{1} and u_{2} the leaf and support vertices respectively on paths l.
$p=$ number of paths of length $\equiv 1(\bmod 4)$
$q=$ number of paths of length $\equiv 2(\bmod 4)$
$s=$ number of paths of length $\equiv 3(\bmod 4)$
$t=$ number of paths of length $\equiv 0(\bmod 4)$
This implies that $p+q+s+t=k$.
Proposition $2.11 G_{2}$ has a nontrivial weighting scheme which makes it weightedregular if $k=t$, thus $p=q=s=0$.

Proof Let $w\left(u_{2}\right)=a$ where $a \neq 0$. This implies that $\operatorname{deg}_{w}\left(u_{1}\right)=a$. Thus graph G_{2} must be a_{w}-regular. Let $P=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a path of length h where $h \equiv 0$ $(\bmod 4)$. This implies that $w\left(v_{h-1}\right)=a$ for all k legs. Note that this implies that $w\left(v_{h-3}\right)=0$, for otherwise $\operatorname{deg}_{w}\left(v_{h-2}\right) \neq a$. So we have:

$$
w\left(v_{h-1}\right)=a \Longrightarrow w\left(v_{h-3}\right)=0 \Longrightarrow w\left(v_{h-5}\right)=a \Longrightarrow \cdots \Longrightarrow w\left(v_{1}\right)=0 \text {. Let }
$$ $u_{2}=b$. Then this implies $w(x)=a-b$, otherwise $\operatorname{deg}_{w}\left(u_{2}\right)=w(x)+w\left(u_{1}\right) \neq a$. Notice that the weights of $v_{1}, v_{2}, v_{3}, v_{4}$ are $0, b, a, a-b$ respectively. Therefore since the $\operatorname{deg}_{w}(v)=a$ for all $v \in V$, graph G_{2} is a_{w}-regular .

Example

Let the weight $a=4$ and the weight $b=1$.

Figure 14: A 4_{w} - regular G_{2} graph

Proposition $2.12 G_{2}$ has a nontrivial weighting scheme which makes it weightedregular if $k=p$, thus $q=s=t=0$.

Proof Let $w\left(u_{2}\right)=a$ where $a \neq 0$. This implies that $\operatorname{deg} g_{w}\left(u_{1}\right)=a$. Thus graph G_{2} must be a_{w}-regular. Let $P=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a path of length $h+1$ where
$h+1 \equiv 1(\bmod 4)$. This implies that $w\left(v_{h}\right)=a$ for all k legs. Note that this implies that $w\left(v_{h-2}\right)=0$, for otherwise $\operatorname{deg}_{w}\left(v_{h-1}\right) \neq a$. So we have:

$$
w\left(v_{h}\right)=a \Longrightarrow w\left(v_{h-2}\right)=0 \Longrightarrow w\left(v_{h-4}\right)=a \Longrightarrow \cdots \Longrightarrow w\left(v_{2}\right)=0 \text {. Then this }
$$ implies $w(x)=a$, otherwise $\operatorname{deg}_{w}\left(u_{1}\right)=w(x)+w\left(u_{2}\right) \neq a$. And since $w(x)=a \Longrightarrow$ $w\left(u_{1}\right)=0$, otherwise $\operatorname{deg} g_{w}\left(u_{2}\right) \neq a$. Notice that the wights of $v_{1}, v_{2}, v_{3}, v_{4}$ are a, b, b, a respectively, and this weighting pattern is repeated on all p legs. Therefore since the $d e g_{w}(v)=a+b$ for $b=0$. It implies that $\operatorname{deg}_{w}(v)=a$ for all $v \in V$, so graph G_{2} is $a_{w}-$ regular.

Example 2.13 Let the weight $a=3$ and $b=0$.

Figure 15: A $3_{w}-$ regular G_{2} graph

Proposition 2.14 There does not exist a nontrivial weighting scheme that makes G_{2} regular if $k=q$, thus $p=s=t=0$.

Proof Let $w\left(u_{2}\right)=a$ where $a \neq 0$. This implies that $\operatorname{deg}_{w}\left(u_{1}\right)=a$. Thus graph G_{2} must be a_{w}-regular. Let $P=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a path of length $h+2$ where $h+2 \equiv 2(\bmod 4)$. This implies that $w\left(v_{h+1}\right)=a$ for all k legs. Note that this implies that $w\left(v_{h-1}\right)=0$, for otherwise $\operatorname{deg}_{w}\left(v_{h}\right) \neq a$. So we have:

$$
w\left(v_{h+1}\right)=a \Longrightarrow w\left(v_{h-1}\right)=0 \Longrightarrow w\left(v_{h-3}\right)=a \Longrightarrow \cdots \Longrightarrow w\left(v_{1}\right)=a . \text { Now, since }
$$ u_{2} and v_{1} are both neighbors of x, it implies that $\operatorname{deg}_{w}(x)=w\left(u_{2}\right)+w\left(v_{1}\right)=a+a=$ 2a. So $d e g_{w}(x) \neq a$ and thus a contradiction. Therefore graph G_{2} does not have a nontrivial weighting scheme which makes it weighted-regular when $k=q$.

Proposition $2.15 G_{2}$ has a nontrivial weighting scheme which makes it weightedregular if $k=s$, thus $p=q=t=0$.

Proof Let $w\left(u_{2}\right)=a$ where $a \neq 0$. This implies that $\operatorname{deg} g_{w}\left(u_{1}\right)=a$. Thus graph G_{2} must be a_{w}-regular. Let $P=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a path of length $h+3$ where $h+3 \equiv 3(\bmod 4)$. This implies that $w\left(v_{h+2}\right)=a$ for all k legs. Note that this implies that $w\left(v_{h}\right)=0$, for otherwise $\operatorname{deg}_{w}\left(v_{h+1}\right) \neq a$. So we have:

$$
w\left(v_{h+2}\right)=a \Longrightarrow w\left(v_{h}\right)=0 \Longrightarrow w\left(v_{h-2}\right)=a \Longrightarrow \cdots \Longrightarrow w\left(v_{2}\right)=a \text {. Then this }
$$ implies $w(x)=0$, otherwise $\operatorname{deg}_{w}\left(u_{1}\right)=w(x)+w\left(u_{2}\right) \neq a$ and $\operatorname{deg}_{w}\left(v_{1}\right)=w(x)+$ $w\left(v_{2}\right) \neq a$. So since $w(x)=0$, it implies that $w\left(u_{1}\right)=a$, otherwise $\operatorname{deg}_{w}\left(u_{2}\right) \neq a$. Notice that the weights of $v_{1}, v_{2}, v_{3}, v_{4}$ are b, b, a, a respectively, and this weighting pattern is repeated on all s legs. Therefore since the $\operatorname{deg}_{w}(v)=a+b$ for $b=0$. It implies that $\operatorname{deg}_{w}(v)=a$ for all $v \in V$, hence graph G_{2} is a_{w} - regular.

Example 2.16 Let the weight $a=5$ and the weight $b=0$.

Figure 16: $\mathrm{A} 5_{w}-$ regular G_{2} graph

Proposition $2.17 G_{2}$ has a nontrivial weighting scheme which makes it weightedregular if $k=t+p$, thus $p=s=0$.

Proof We know from Proposition 2.12 that $w(x)=a$ since G_{2} has legs of length $1(\bmod 4)$ and we have p of such legs. So using the weight assignment pattern in Propositions 2.11 and 2.12 for legs t and p respectively where $b=0$: we have $\operatorname{deg}_{w}(v)=$ a for every $v \in V$, hence graph G_{2} has a nontrivial weighting scheme which makes it a_{w}-regular. Therefore since the $\operatorname{deg}_{w}(v)=a+b$ for $b=0$. It implies that $\operatorname{deg}_{w}(v)=a$ for all $v \in V$, hence graph G_{2} is a_{w}-regular.

Example 2.18 Let the weight $a=4$ and the weight $b=0$.

Figure 17: A $4_{w}-$ regular G_{2} graph

Proposition $2.19 G_{2}$ has a nontrivial weighting scheme which makes it weightedregular if $k=t+s$, thus $p=q=0$.

Proof We know from Proposition 2.14 that $w(x)=0$ since G_{2} has legs of length $3(\bmod 4)$ and we have s of such legs. Let $w(x)=0=b$, then $w\left(u_{2}\right)=a$ for otherwise $\operatorname{deg}_{w}\left(u_{1}\right) \neq a$. Also since $w(x)=b$, let $w\left(u_{1}\right)=a-b$, for otherwise $d e g_{w}\left(u_{2}\right)=w(x)+w\left(u_{1}\right) \neq a$. Notice that $v_{1}, v_{2}, v_{3}, v_{4}$ have weights $b, a-b, a, b$ where $b=0$, on all k legs. Thus, this is the repeated weighting pattern on all k legs. Note that $b=0$, for otherwise $d e g_{w}\left(v_{h}+3\right) \neq a$ since $w\left(v_{h}+2\right)=a-b$ for all s legs (legs of length $\equiv 3(\bmod 4))$. Therefore $\operatorname{deg}_{w}(v)=a$ for all $v \in V$, hence G_{2} has a nontrivial weighting scheme which makes it weighted regular when $k=t+s$.

Example 2.20 Let the weight $a=4$ and and the weight $b=0$.

Figure 18: A $3_{w}-$ regular G_{2} graph

Proposition $2.21 G_{2}$ does not have a nontrivial weighting scheme which makes it weighted-regular if $k=p+s$, thus $q=t=0$.

Proof By Proposition 2.12, we know that the presence of legs of length $P \equiv 3(\bmod$ 4) in G_{2} implies that $w(x)=0$, however by Proposition 2.12 we have that $w(x)=a$ since G_{2} also has legs of length $P \equiv 1(\bmod 4)$. So since $w(x)$ can not satisfy the weight requirements on both legs, there is a contradiction. Therefore we can conclude that there does not exist a nontrivial weighting scheme which makes G_{2} weightedregular when $k=p+s$.

3 OTHER FAMILIES OF GRAPHS

In this chapter we are going to consider graphs either than trees. In particular, we will consider cycles, fan graphs, wheel graphs and bipartite graphs.

Theorem 3.1 Let $C n$ be a cycle on n vertices. Then C_{n} has a nontrivial weighting scheme which makes it weighted regular only if $n \equiv 0(\bmod 4)$.

Proof Let C_{n} be a cycle with n vertices. Also let a, b, c be the assigned weights for v_{1}, v_{2}, v_{3} respectively. Then $\operatorname{deg}\left(v_{2}\right)=w\left(v_{1}\right)+w\left(v_{3}\right)=a+c$. So, $w\left(v_{5}\right)=a$, for otherwise $\operatorname{deg}_{w}\left(v_{4}\right) \neq a+c$.
$w\left(v_{7}\right)=c$, for otherwise $\operatorname{deg}_{w}\left(v_{6}\right) \neq a+c$.
\vdots
This implies that $w\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 4) \\ c & \text { if } i \equiv 3(\bmod 4)\end{cases}$
Case 1: Consider $n \equiv 1(\bmod 4)$.

Since $n \equiv 1(\bmod 4)$, then $w\left(v_{n}\right)=a$. This implies that $b=c$, for otherwise $d e g_{w}\left(v_{1}\right) \neq a+c$. So $w\left(v_{2}\right)=c$, and this implies $w\left(v_{4}\right)=a$ for otherwise $\operatorname{deg}_{w}\left(v_{3}\right) \neq$ $a+c$. Also, $w\left(v_{6}\right)=c$ for otherwise $\operatorname{deg}_{w}\left(v_{5}\right) \neq a+c$. So we have,

$$
w\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 0(\bmod 4) \\ c & \text { if } i \equiv 2(\bmod 4)\end{cases}
$$

Now, since $n \equiv 1(\bmod 4) \Longrightarrow n-1 \equiv 0(\bmod 4) \Longrightarrow n-2 \equiv 3(\bmod 4) \Longrightarrow n-3 \equiv 2$ $(\bmod 4)$. Therefore $w\left(v_{n-1}\right)=a$ since $i=n-1 \equiv(0 \bmod 4)$. This implies that $d e g_{w}\left(v_{n}\right)=w\left(v_{1}\right)+w\left(v_{n-1}\right)=a+a=2 a \neq a+c$. Hence C_{n} for $n \equiv 1(\bmod 4)$ is not weighted regular.

Case 2: Consider $n \equiv 2(\bmod 4)$.

Since $n \equiv 2(\bmod 4) \Longrightarrow n-1 \equiv 1(\bmod 4)$. So, $w\left(v_{n-1}\right)=a$. Therefore $\operatorname{deg}_{w}\left(v_{n}\right)=$ $w\left(v_{1}\right)+w\left(v_{n-1}\right)=a+a=2 a \neq a+c$. Hence C_{n} for $n \equiv 2(\bmod 4)$ is not weighted regular.

Case 3: Consider $n \equiv 3(\bmod 4)$.

Since $n \equiv 3(\bmod 4) \Longrightarrow w\left(v_{n}\right)=c$. This implies that $b=c$, for otherwise $\operatorname{deg}_{w}\left(v_{1}\right) \neq$ $a+c$. Therefore $w\left(v_{2}\right)=c$. Then,

$$
\begin{aligned}
& w\left(v_{4}\right)=c, \text { for otherwise } \operatorname{deg}_{w}\left(v_{3}\right) \neq a+c . \\
& w\left(v_{6}\right)=a, \text { for otherwise } \operatorname{deg}_{w}\left(v_{5}\right) \neq a+c .
\end{aligned}
$$

So we have that $w\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 2(\bmod 4) \\ c & \text { if } i \equiv 0(\bmod 4)\end{cases}$
Now, since $n \equiv 3(\bmod 4) \Longrightarrow n-1 \equiv 2(\bmod 4) \Longrightarrow n-2 \equiv 1(\bmod 4) \Longrightarrow$ $n-3 \equiv 0(\bmod 4)$. So $w\left(v_{n-1}\right)=a$ since $i=n-1 \equiv 2(\bmod 4)$ and therefore $d e g_{w}\left(v_{n}\right)=w\left(v_{1}\right)+w\left(v_{n-1}\right)=a+a=2 a \neq a+c$. Hence C_{n} for $n \equiv 3(\bmod 4)$ does not have a weighting scheme which makes it weighted regular.

Case 4: Consider $n \equiv 0(\bmod 4)$.

Since $n \equiv 0(\bmod 4) \Longrightarrow n-1 \equiv 3(\bmod 4)$, therefore $w\left(v_{n-1}\right)=c \Longrightarrow w\left(v_{n-3}\right)=$ a. The weight of v_{4} has to be either a or c, for otherwise $\operatorname{deg}_{w}\left(v_{3}\right) \neq a+c$. Without loss of generality, let $w\left(v_{4}\right)=c$. This implies that $w\left(v_{2}\right)=b=a$. Also,
$w\left(v_{6}\right)=a$ for otherwise $d e g_{w}\left(v_{5}\right) \neq a+c$.
$w\left(v_{8}\right)=c$, for otherwise $\operatorname{deg}_{w}\left(v_{7}\right) \neq a+c$.

So we have $w\left(v_{i}\right)=\left\{\begin{array}{ll}a & \text { if } i \equiv 2(\bmod 4) \\ c & \text { if } i \equiv 0(\bmod 4)\end{array}\right\}$
Therefore $\operatorname{deg}_{w}(v)=a+c$ for all $v \in V$, hence we can conclude that there exist a nontrivial weighting scheme which makes C_{n} for $n \equiv 0(\bmod 4)$ weighted regular.

Theorem 3.2 Let F_{4} be a fan graph on 4 vertices. Then there exist a nontrivial weighting scheme which makes F_{4} weighting regular.

Proof Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the 4 vertices with degrees $2,3,2,3$ respectively (Refer to Figure 19).

Figure 19: A Fan graph on 4 vertices $\left(F_{4}\right)$

Then, $\operatorname{deg}_{w}\left(v_{4}\right)=w\left(v_{1}\right)+w\left(v_{2}\right)+w\left(v_{3}\right)$ and $\operatorname{deg}_{w}\left(v_{1}\right)=w\left(v_{2}\right)+w\left(v_{4}\right)$. Since $\operatorname{deg}_{w}\left(v_{1}\right)=\operatorname{deg}_{w}\left(v_{4}\right)$, it implies that $w\left(v_{4}\right)=w\left(v_{1}\right)+w\left(v_{3}\right) \quad$ (1). $\operatorname{deg}_{w}\left(v_{2}\right)=$ $w\left(v_{1}\right)+w\left(v_{3}\right)+w\left(v_{4}\right)$. So since $d e g_{w}\left(v_{2}\right)=\operatorname{deg}_{w}\left(v_{1}\right)$, it implies that $w\left(v_{2}\right)=w\left(v_{1}\right)+$ $w\left(v_{3}\right)$
(2). So from equations (1) and
(2), we have $w\left(v_{2}\right)=w\left(v_{4}\right) . \operatorname{deg} g_{w}\left(v_{3}\right)=w\left(v_{2}\right)+w\left(v_{4}\right)$. So since $\operatorname{deg}_{w}\left(v_{3}\right)=\operatorname{deg} g_{w}\left(v_{2}\right)$, it implies that $w\left(v_{2}\right)=w\left(v_{1}\right)+w\left(v_{3}\right)$. Therefore, $w\left(v_{1}\right)=w\left(v_{2}\right)-w\left(v_{3}\right)$. So since $d e g_{w}(v)=2 w\left(v_{4}\right)$ for all $v \in V$, then there exist a nontrivial weighting scheme which makes F_{4} weighted regular.

Example 3.3 Let $w\left(v_{2}\right)=w\left(v_{4}\right)=7$ and $w\left(v_{3}\right)=2$, then $w\left(v_{1}\right)=7-2=5$.

Figure 20: A 14_{w}-regular Fan Graph

Clearly, $\operatorname{deg}_{w}(v)=14$ for all $v \in V$ hence the graph is a 14_{w}-regular graph.

Theorem 3.4 Let F_{5} be a fan graph on 5 vertices. Then there exists a nontrivial weighting scheme which makes F_{5} weighting regular.

Proof Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ be the 5 vertices with degrees $2,3,3,2,4$ respectively (Refer to Figure 21).

Figure 21: A Fan graph on 5 vertices $\left(F_{5}\right)$

The $\operatorname{deg}_{w}\left(v_{5}\right)=w\left(v_{1}\right)+w\left(v_{2}\right)+w\left(v_{3}\right)+w\left(v_{4}\right)$ and $\operatorname{deg}_{w}\left(v_{1}\right)=w\left(v_{2}\right)+w\left(v_{5}\right)$. Since $\operatorname{deg}_{w}\left(v_{1}\right)=\operatorname{de} g_{w}\left(v_{5}\right)$, it implies that,
$w\left(v_{5}\right)=w\left(v_{1}\right)+w\left(v_{3}\right)+w\left(v_{4}\right)$
(1). $\operatorname{deg}_{w}\left(v_{2}\right)=$ $w\left(v_{1}\right)+w\left(v_{3}\right)+w\left(v_{5}\right)$. Since $d e g_{w}\left(v_{2}\right)=\operatorname{deg}_{w}\left(v_{5}\right)$, it implies that, $w\left(v_{5}\right)=w\left(v_{2}\right)+w\left(v_{4}\right)$
(2). So from equations (1) and (2), we have $w\left(v_{2}\right)=w\left(v_{1}\right)+w\left(v_{3}\right)$
(3). $\operatorname{deg}_{w}\left(v_{4}\right)=$ $w\left(v_{3}\right)+w\left(v_{5}\right)$. Since $\operatorname{deg}_{w}\left(v_{4}\right)=d e g_{w}\left(v_{1}\right)$, it implies that, $w\left(v_{2}\right)=w\left(v_{3}\right)$
(4). So from
(3) and (4), we have $w\left(v_{1}\right)=0 . \operatorname{deg}_{w}\left(v_{3}\right)=w\left(v_{2}\right)+w\left(v_{4}\right)+w\left(v_{5}\right)$. So since $\operatorname{deg}_{w}\left(v_{3}\right)=$ $d e g_{w}\left(v_{1}\right)$, it implies that $w\left(v_{4}\right)=0$. So from equation (1) and the fact that $w\left(v_{1}\right)=$ $0=w\left(v_{4}\right)$, we have $w\left(v_{5}\right)=w\left(v_{3}\right)$
(5). So by transitivity, we have $w\left(v_{2}\right)=w\left(v_{5}\right)$ and this implies that $w\left(v_{2}\right)=w\left(v_{3}\right)=w\left(v_{5}\right)$.

Therefore since $d e g_{w}(v)=2 w\left(v_{2}\right)$ for all $v \in V$, then there exist a nontrivial weighting scheme which makes F_{5} weighted regular.

Example 3.5 Let $w\left(v_{2}\right)=w\left(v_{3}\right)=w\left(v_{5}\right)=3$ and $w\left(v_{1}\right)=w\left(v_{2}\right)=0$.

Figure 22: A 6_{w}-regular Fan Graph

Clearly, $\operatorname{deg}_{w}(v)=6$ for all $v \in V$ hence the graph is a 6_{w}-regular graph.

Theorem 3.6 Let F_{6} be a fan graph on 6 vertices. Then there does NOT exist a nontrivial weighting scheme which makes F_{6} weighting regular.

Proof Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ be the 6 vertices with degrees $2,3,3,3,2,5$ respectively (Refer to Figure 26). We need to show that the degree weights are equal for all the vertices in the graph.

Figure 23: A Fan graph on 6 vertices $\left(F_{6}\right)$

We have $\operatorname{deg}_{w}\left(v_{6}\right)=w\left(v_{1}\right)+w\left(v_{2}\right)+w\left(v_{3}\right)+w\left(v_{4}\right)+w\left(v_{5}\right)$ and $\operatorname{deg}_{w}\left(v_{1}\right)=$ $w\left(v_{2}\right)+w\left(v_{6}\right)$. Since $\operatorname{deg}_{w}\left(v_{1}\right)=\operatorname{deg}_{w}\left(v_{6}\right)$, it implies that
$w\left(v_{6}\right)=w\left(v_{1}\right)+w\left(v_{3}\right)+w\left(v_{4}\right)+w\left(v_{5}\right)$
(1). $\operatorname{deg}_{w}\left(v_{2}\right)=$ $w\left(v_{1}\right)+w\left(v_{3}\right)+w\left(v_{6}\right)$. Since $d e g_{w}\left(v_{2}\right)=d e g_{w}\left(v_{5}\right)$, it implies that, $w\left(v_{6}\right)=w\left(v_{2}\right)+w\left(v_{4}\right)+w\left(v_{5}\right)$
(2). So from
equations (1) and (2), we have $w\left(v_{2}\right)=w\left(v_{1}\right)+w\left(v_{3}\right)$
(3). $d e g_{w}\left(v_{5}\right)=w\left(v_{4}\right)+$ $w\left(v_{6}\right)$. Since $\operatorname{deg}_{w}\left(v_{5}\right)=\operatorname{deg}_{w}\left(v_{1}\right)$, it implies that
$w\left(v_{4}\right)=w\left(v_{2}\right)$
(4). So, since
$w\left(v_{2}\right)=w\left(v_{4}\right)$ from equations (2) and (4), we have $w\left(v_{6}\right)=w\left(v_{5}\right) . d e g_{w}\left(v_{4}\right)=w\left(v_{3}\right)+$ $w\left(v_{5}\right)+w\left(v_{6}\right)$. However since $\operatorname{deg}_{w}\left(v_{4}\right)=\operatorname{deg} g_{w}\left(v_{2}\right)$, it implies that $w\left(v_{5}\right)=w\left(v_{1}\right)$.
$d e g_{w}\left(v_{3}\right)=w\left(v_{2}\right)+w\left(v_{4}\right)+w\left(v_{6}\right)$. However since $\operatorname{deg}_{w}\left(v_{3}\right)=\operatorname{deg}_{w}\left(v_{5}\right)$, it implies $w\left(v_{2}\right)=0$. Therefore $w\left(v_{4}\right)=0$ by equation (4) and hence $w\left(v_{3}\right)=-w\left(v_{1}\right)$ by equation (3). Clearly, $w\left(v_{5}\right)=\operatorname{deg}_{w}\left(v_{1}\right)=\operatorname{deg}_{w}\left(v_{2}\right)=\operatorname{deg}_{w}\left(v_{3}\right)=\operatorname{deg}_{w}\left(v_{5}\right)=\operatorname{deg}_{w}\left(v_{6}\right) \neq$ $d e g_{w}\left(v_{4}\right)=2 w\left(v_{5}\right)+w\left(v_{3}\right)$. Hence the graph F_{6} does not have a nontrivial weighting scheme which makes it weighted regular.

Theorem 3.7 Let F_{7} be a fan graph on 7 vertices. Then there exist a nontrivial weighting scheme which makes F_{7} weighting regular.

Proof Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}$ be the 7 vertices with degrees $2,3,3,3,3,2,6$ respectively (Refer to Figure 24).

Figure 24: A Fan graph on 7 vertices $\left(F_{7}\right)$

$$
\operatorname{deg}_{w}\left(v_{7}\right)=w\left(v_{1}\right)+w\left(v_{2}\right)+w\left(v_{3}\right)+w\left(v_{4}\right)+w\left(v_{5}\right)+w\left(v_{6}\right) \text { and } d e g_{w}\left(v_{1}\right)=w\left(v_{2}\right)+
$$ $w\left(v_{7}\right)$. However since $\operatorname{deg}_{w}\left(v_{1}\right)=\operatorname{deg}\left(v_{7}\right)$, it implies that $w\left(v_{7}\right)=w\left(v_{1}\right)+w\left(v_{3}\right)+$ $w\left(v_{4}\right)+w\left(v_{5}\right)+w\left(v_{6}\right) . d e g_{w}\left(v_{2}\right)=w\left(v_{1}\right)+w\left(v_{3}\right)+w\left(v_{7}\right)$. So since $d e g_{w}\left(v_{2}\right)=\operatorname{deg}_{w}\left(v_{1}\right)$, it implies that,

$w\left(v_{2}\right)=w\left(v_{1}\right)+w\left(v_{3}\right)$ (1). $\operatorname{deg}_{w}\left(v_{3}\right)=$ $w\left(v_{2}\right)+w\left(v_{4}\right)+w\left(v_{7}\right)$. So since $\operatorname{deg}\left(g_{w}\right)=\operatorname{deg}_{w}\left(v_{1}\right)$, it implies $w\left(v_{4}\right)=0 . \operatorname{deg} g_{w}\left(v_{6}\right)=$ $w\left(v_{5}\right)+w\left(v_{7}\right)$. So since $\operatorname{deg}_{w}\left(v_{6}\right)=\operatorname{deg}\left(v_{1}\right)$, it implies $w\left(v_{5}\right)=w\left(v_{2}\right) . d e g_{w}\left(v_{5}\right)=$ $w\left(v_{4}\right)+w\left(v_{6}\right)+w\left(v_{7}\right)$. So since $d e g_{w}\left(v_{5}\right)=\operatorname{deg}_{w}\left(v_{6}\right)$, it implies $w\left(v_{5}\right)=w\left(v_{4}\right)+w\left(v_{6}\right)$. Therefore $w\left(v_{5}\right)=w\left(v_{6}\right)$ since $w\left(v_{4}\right)=0 . d e g_{w}\left(v_{4}\right)=w\left(v_{3}\right)+w\left(v_{5}\right)+w\left(v_{7}\right)$. So since $d e g_{w}\left(v_{4}\right)=d e g_{w}\left(v_{6}\right)$, it implies,
$w\left(v_{3}\right)=0$
(2). So from
equations (1) and (2), we have $w\left(v_{1}\right)=w\left(v_{2}\right)$. This implies that $w\left(v_{1}\right)=w\left(v_{2}\right)=$ $w\left(v_{5}\right)=w\left(v_{6}\right)$. Therefore without loss of generality, $\operatorname{deg}_{w}(v)=w\left(v_{5}\right)+w\left(v_{6}\right)$ for all $v \in V$. Hence there exist a nontrivial weighting scheme which makes F_{7} weighted regular.

Example 3.8 Let $w\left(v_{1}\right)=w\left(v_{2}\right)=w\left(v_{5}\right)=w\left(v_{6}\right)=2$ and $w\left(v_{3}\right)=w\left(v_{4}\right)=0$. This implies that $w\left(v_{7}\right)=6$.

Figure 25: A 8_{w}-regular Fan Graph

Clearly, $\operatorname{deg}_{w}(v)=8$ for all $v \in V$ hence the graph is a 8_{w}-regular graph.

OPEN CONJECTURE : A fan graph, F_{n}, has a nontrivial weighting scheme which makes it weighted regular when $n \equiv 0,1,3(\bmod 4)$, however for $n \equiv 2(\bmod 4), F_{n}$ is not weighted regular.

Theorem 3.9 A wheel graph, W_{n+1}, for $n \in \mathbb{N}$ has a nontrivial weighting scheme which makes them weighted regular.

Proof Let W_{n+1} be a wheel graph with cardinality $n+1$ and v_{n+1} be the central vertex with degree n. This implies that there will be n vertices with degree 3 each. Assign the degree 3 vertices $\left(v_{1}, v_{2}, v_{3}, v_{4}, \ldots, v_{n}\right)$ weights $a, b, a, b, \ldots \ldots$. This implies
that $d e g_{w}\left(v_{n+1}\right)=i a+j b$ where i and j are the number of assigned weights a and b respectively.

Note that $i+j=n$. So we need to show that $\operatorname{deg}_{w}(v)=i a+j b$ for all $v \in V$. Observe that $\operatorname{deg}_{w}\left(v_{2}\right)=w\left(v_{1}\right)+w\left(v_{3}\right)+w\left(v_{n+1}\right)=a+a+w\left(v_{n+1}\right)$. However, since $\operatorname{deg}_{w}\left(v_{2}\right)$ has to be equal to the $\operatorname{deg}_{w}\left(v_{n+1}\right)$, we have $a+a+w\left(v_{n+1}\right)=i a+j b$.

This implies that, $w\left(v_{n+1}\right)=(i-2) a+j b$
(1). There-
fore $d e g_{w}\left(v_{2}\right)=i a+j b$. Also, $d e g_{w}\left(v_{3}\right)=w\left(v_{2}\right)+w\left(v_{4}\right)+w\left(v_{n+1}\right)=b+b+w\left(v_{n+1}\right)=$ $2 b+w\left(v_{n+1}\right)$. However since $d e g_{w}\left(v_{3}\right)$ has to be equal to $d e g_{w}\left(v_{n+1}\right)=\operatorname{deg}_{w}\left(v_{2}\right)$, we have $2 b+w\left(v_{n+1}\right)=i a+j b$. This implies that

$$
w\left(v_{n+1}\right)=i a+(j-2) b
$$

(2). So from equations (1) and (2), we have $(i-2) a+j b=i a+(j-2) b$. This implies $a=b$. Therefore without loss of generality, $w\left(v_{n+1}\right)=(i-2+j) a=(i+j-2) a=(n-2) a$. This implies $\operatorname{deg}_{w}(v)=n a=(i+j) a=i a+j b$ for all $v \in V$ and thus W_{n+1} is weighted regular.

Example 3.10 Let $w\left(v_{i}\right)=3$ for $i=1,2,3,4$. Then $w\left(v_{5}\right)=(4-2) 3=6$.

Figure 26: A 12_{w}-regular Wheel Graph $\left(W_{4+1}\right)$

Clearly, $\operatorname{deg}_{w}(v)=12$ for all $v \in V$ hence the graph is a 12_{w}-regular graph.

Theorem 3.11 A complete bipartite graph $K_{m, n}$ has a nontrivial weighting scheme which makes it weighted regular.

Proof Let $K_{m, n}$ be a complete bipartite graph with partite sets A and B. Then $|A|=m$ and $|B|=n$ and thus $|V|=m+n$. So for all $v \in V ; \operatorname{deg}_{w}(v)=\sum w\left(v_{i}\right)$ for $v_{i} \in B$ and $i=1,2, \ldots, n$. Assign weights to $u_{i} \in A$ for $i=1,2, \ldots, m$ such that $\sum_{u \in A} w\left(u_{i}\right)=\sum_{v \in B} w\left(v_{i}\right)$. Therefore clearly $K_{m, n}$ is weighted regular.

Note that the above theorem is true for $\operatorname{both} \operatorname{equal}(m=n)$ and unequal $(m \neq n)$ partite sets.

Example 3.12 Let the weights of $v_{i} \in B$ for $i=1,2,3,4,5$ be $7,2,5,3,0$ respectively.
Then the $\operatorname{deg}_{w}\left(u_{i}\right)=17$ for all $u_{i} \in A$. Also let the weights of $u_{i} \in A$ for $i=1,2,3$ be 8, 2, 7 respectively.

Figure 27: A 17_{w}-regular Bipartite Graph

Clearly, $\operatorname{deg}_{w}(v)=17$ for all $v \in V$ hence the graph is a 17_{w}-regular graph.

4 CONCLUSION

is a large volume of work on regular graphs in the field of graph theory. On the other hand, a review of the literature did not reveal a substantial amount of work on vertex weighted graphs. Only a few topics such as graceful labellings employed vertex weights. In this thesis, we utilize vertex weights to generalized regularity of graphs. All regular graphs are trivially vertex weighted regular graphs, however, a graph that is not necessarily regular can be vertex weighted regular.

Vertex weighted graphs have numerous application in contemporary science. It is therefore important to know if there exist a weighting scheme that will make a graph a vertex weighted regular graph. We address this question for a number of families of graphs such as paths,stars, spider and the wheel graph.

A problem for further study will be to "weight-regularize" other families of graphs such as bipartite graphs, friendship graphs etc.

BIBLIOGRAPHY

[1] M. Abreu, G. Araujo-Pardo, C. Balbuena, D. Labbate, and J. Salas, Small regular graphs of girth 7, The Electronic Journal of Combinatorics, 22 (2015), pp. 3-5.
[2] J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, Discrete Mathematics, 150 (1996), pp. 3-15.
[3] I. C. Arkut, R. C. Arkut, and N. Ghani, Graceful label numbering in optical mpls networks, in Opticom 2000, International Society for Optics and Photonics, 2000, pp. 1-8.
[4] A. Basak, Mpls multicasting using caterpillars and a graceful labelling scheme, in Information Visualisation, 2004. IV 2004. Proceedings. Eighth International Conference on, IEEE, 2004, pp. 382-387.
[5] J. Bermond, Graceful graphs, radio antennae and french windmills, Graph Theory and Combinatorics, Pitman, London, (1979), pp. 18-37.
[6] G. S. Bloom, A chronology of the ringel-kotzig conjecture and the continuing quest to call all trees graceful*, Annals of the New York Academy of Sciences, 328 (1979), pp. 32-51.
[7] F. Botler, G. O. Mota, and Y. Wakabayashi, Decompositions of trianglefree 5-regular graphs into paths of length five, in The 9th International colloquium on graph theory and combinatorics, 2014.
[8] L. Brankovic and I. M. Wanless, Graceful labelling: state of the art, applications and future directions, Mathematics in Computer Science, 5 (2011), pp. 11-20.
[9] M. Edwards and L. Howard, A survey of graceful trees, Atlantic Electronic Journal of Mathematics, 1 (2006), pp. 5-30.
[10] C. Gary, Introductory graph theory, 1985.
[11] J. W. Grossman, F. Harary, and M. Klawe, Generalized ramsey theory for graphs, x: double stars, Discrete Mathematics, 28 (1979), pp. 247-254.
[12] F.-T. Hu and J.-M. Xu, The bondage number of $(n-3)$-regular graphs of order n, arXiv preprint arXiv:1109.3931, (2011).
[13] K. Koh, D. Rogers, and T. Tan, A graceful arboretum: a survey of graceful trees, in Proceedings of Franco-Southeast Asian Conference, Singapore, vol. 2, 1979, pp. 278-287.
[14] N. Kraayenbrink, F. De Nijs, and M. Vavic, Symmetries in graceful trees.
[15] H. Lei and H. Yang, Bounds for the sum-balaban index and (revised) szeged index of regular graphs, Applied Mathematics and Computation, 268 (2015), pp. 1259-1266.
[16] J. Lyle, A structural approach for independent domination of regular graphs, Graphs and Combinatorics, (2014), pp. 1-22.
[17] M. Murugan and G. Arumugam, Are banana trees graceful?, MATHEMATICS EDUCATION-INDIA-, 35 (2001), pp. 18-20.
[18] M. Murugan and G. Arumugan, An algorithm to find graceful numberings of a spl. class of banana trees, preprint, (2000).
[19] A. Reza Sepasian and F. Rahbarnia, An ($n \log n$) algorithm for the inverse 1-median problem on trees with variable vertex weights and edge reductions, Optimization, 64 (2015), pp. 595-602.
[20] E. Robeva, An extensive survey of graceful trees, Udergraduate Honours Thesis, Standford University, USA, (2011).
[21] A. Rosa, On certain valuations of the vertices of a graph, theory of graphs (internat. symposium, rome, july 1966), 1967, gordon and breach, n, Y. and Dunod Paris, pp. 349-355.
[22] G. Sethuraman and J. Jesintha, All banana trees are graceful, advances and applications disc, Math, 4 (2009), pp. 53-64.
[23] G. Sethuraman and J. Jesintha, All extended banana trees are graceful, in Proc. Internat. Conf. Math. Comput. Sci, vol. 1, 2009, pp. 4-8.
[24] M. C. Superdock, The graceful tree conjecture: a class of graceful diameter-6 trees, arXiv preprint arXiv:1403.1564, (2014).
[25] L. C. Udeigwe and G. B. Ermentrout, Waves and patterns on regular graphs, SIAM Journal on Applied Dynamical Systems, 14 (2015), pp. 1102-1129.
[26] V. Vilfred, Families of graceful banana trees, internat, J. Management and Systems, to appear, (1805).
[27] D. B. West et al., Introduction to graph theory, vol. 2, Prentice hall Upper Saddle River, 2001.
[28] G. Zhenbin, The labelings of a variation of banana trees, ARS COMBINATORIA, 94 (2010), pp. 175-181.

VITA
 FRANKLINA SAMANI

Education: B.S. Statistics and Computer Science, University Of Ghana,
Accra, Ghana 2009
M.S. Mathematical Sciences (Graph Theory),
East Tennessee State University.
Johnson City, Tennessee 2015
Professional Experience: Graduate Assistant, East Tennessee State University, Johnson City, Tennessee, 2014 - present
Customer Service Representative, Liberty Walmart
Liberty, North Carolina, 2012-2013
Client Relationship Officer, uniBank Ghana Limited
Accra, Ghana, 2009-2012

