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ABSTRACT

Global Supply Sets in Graphs

by

Christian Moore

For a graph G = (V,E), a set S ⊆ V is a global supply set if every vertex v ∈ V \S

has at least one neighbor, say u, in S such that u has at least as many neighbors in

S as v has in V \S. The global supply number is the minimum cardinality of a global

supply set, denoted γgs (G). We introduce global supply sets and determine the global

supply number for selected families of graphs. Also, we give bounds on the global

supply number for general graphs, trees, and grid graphs.
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1 INTRODUCTION

1.1 Introduction to Graph Theory

A graph G = (V,E) consists of a finite vertex set, V (G), and a finite edge set,

E(G). If G is clear from the context, then we generally use V and E. The order of

a graph G, denoted n, is the number of vertices in G, that is, n = |V |. The size of a

graph G, denoted m, is the number of edges in G, that is, m = |E|. Two vertices u

and v are adjacent if there is an edge in E, typically denoted as uv ∈ E, connecting

the two. We say that the vertices u, v ∈ V are incident with edge uv ∈ E. We only

consider graphs that do not have directions on the edges and do not have multiple

edges connecting the same two vertices.

A vertex and an edge are said to cover each other in G if they are incident in G.

A vertex cover in G is a set of vertices that covers all the edges of G. The minimum

cardinality of a vertex cover in G is called the vertex covering number β(G). A set

S ⊂ V is said to be independent if for all u, v ∈ S, uv /∈ E. The independence number

α(G) of a graph G is the maximum cardinality of an independent set in G.

The complement G of G is a graph with vertex set V and where two vertices are

adjacent if and only if they are not adjacent in G. So, E
(
G
)
= E (G).

For a vertex v ∈ V , the set N (v) = {u ∈ V | uv ∈ E} is called the open

neighborhood of v. That is, N (v) is the set of all vertices that v is adjacent to in G.

Each vertex u ∈ N (v) is called a neighbor of v. The closed neighborhood of a vertex v

is N [v] = N (v) ∪ {v}. The open neighborhood of a set S ⊆ V is N(S) =
∪

v∈S N(v),

and the closed neighborhood of a set S ⊆ V is N [S] =
∪

v∈S N [v]. The degree in G of

8



a vertex v is degG (v) = |N (v) |. If G is clear from context, then we use deg (v). A

vertex v with deg (v) = 1 is called a leaf. The neighbor of a leaf is called a support

vertex. A support vertex with more than one leaf neighbor is called a strong support

vertex. If S ⊆ V , then the boundary of S is ∂(S) = N(S) ∩ (V \S). In other words,

the boundary of S is the set of vertices in V \S that are adjacent to at least one vertex

in S.

For two vertices u, v ∈ V , a u− v walk W is a sequence of vertices in G, beginning

with u and ending with v such that the consecutive vertices in W are adjacent in

G. A path is a walk in which no vertex is repeated. The distance d(u,v) between

two vertices u, v ∈ V is the minimum length of any u− v path in G. The maximum

distance from v to all other vertices is called the eccentricity of v. The diameter of G,

diam(G), is defined as the greatest eccentricity among all the vertices of G. A vertex

that has eccentricity equal to diam(G) is called a peripheral vertex. A graph that has

a u− v path for all u, v ∈ V is a connected graph.

A path Pn is a graph with V = {v1, v2, ..., vn} and E = {vivi+1 | i = 1, 2, ..., n−1}.

A cycle Cn of order n ≥ 3 is a graph with V = {v1, v2, ..., vn} and E = {vivi+1 | i =

1, 2, ..., n}. A connected graph that contains no cycles is a tree T. We root a tree at

vertex r ∈ V , such that for all v ∈ V where v ̸= r, the parent of v is the neighbor of

v on the unique r− v path, and a child of v is any other neighbor of v. A star S1,n−1

is a tree with exactly one support vertex and n − 1 leaves, that is, a star S1,n−1 is a

tree with diameter 2. A double star Sr,s is a tree with diameter 3, that is, Sr,s has

two support vertices u, v ∈ V such that uv ∈ E and u has r leaf neighbors while v

has s leaf neighbors.

9



The cartesian product H = G1□G2 has a vertex set V (H) = V (G1) × V (G2). If

u, x ∈ V (G1) and v, y ∈ V (G2) then the two distinct vertices (u, v), (x, y) ∈ H are

adjacent if either u = x and vy ∈ E (G2) or v = y and ux ∈ E (G1). A grid graph

Gr,c = Pr □ Pc where r, c ≥ 2. The join of two graphs H = G1 ∨G2 has a vertex set

V (H) = V (G1)∪ V (G2) and edge set E(H) = E(G1)∪E(G2)∪ {uv | u ∈ V (G1), v ∈

V (G2)}. A wheel graph with order n is the join of a single vertex and a cycle of order

n− 1, that is, W1,n−1 = P1 ∨ Cn−1.

A graph in which every two distinct vertices are adjacent is called a complete graph

Kn. A graph is a complete bipartite graph Kr,s if the vertex set can be partitioned

into two disjoint independent sets, say R and S, where for all r ∈ R and s ∈ S we

have that rs ∈ E.

A set S ⊆ V is a dominating set of G if every vertex v ∈ V is either in S or ∂(S),

that is, ∂(S) = V \S. The minimum cardinality of any dominating set of G is called

the domination number γ (G) of G. A set S ⊆ V is a total dominating set of G if S

is a dominating set and every v ∈ S has a neighbor in S. The minimum cardinality

of a total dominating set is called the total domination number γt (G) of G.

For terminology not defined here, refer to Graphs and Digraphs by Chartrand,

Lesniak, and Zhang [2].

1.2 Problem Statement

Consider the following new definition, which was suggested by Professor S. T.

Hedetniemi [7]. A set S ⊆ V is a supply set if every vertex v ∈ ∂(S) is adjacent to a

vertex u ∈ S with degS(u) = |N(u) ∩ S| ≥ degV \S(v) = |N(v) ∩ (V \S)|.

10



Figure 1: Petersen Graph

One way to look at supply sets is to think of a vertex v ∈ ∂(S) and its neighbors in

V \S as needing some number of units of some resource, one unit per vertex. Vertex v

can ask a vertex u ∈ (S ∩N(v)) to deliver |N [v]∩ (V \S)| units. Vertex u can provide

this amount only if vertex u can receive from itself and its neighbors in S at least this

number, that is, |N [u] ∩ S| ≥ |N [v] ∩ (V \S)|. We can think of a supply set as a set

that is capable of providing two-day delivery to any vertex in ∂(S). On day-one each

neighbor of u in S ships a unit of resource to u. Then on day-two, vertex u ships all

of the resources to vertex v ∈ ∂(S) over the edge uv. Figure 1 demonstrates a supply

set for the well-known Petersen Graph.

If a supply set S is also a dominating set, then S is called a global supply set.

We denote a global supply set as a gs-set. The global supply number γgs (G) is the

minimum cardinality of a global supply set of G. We let γgs (G)-set denote a gs-set

S of G where |S| = γgs (G). Figure 2 illustrates a global supply set for the Petersen

Graph.

In this thesis, we are introducing the study of supply sets, focusing on global supply

sets. Thus, our main goal is to determine the global supply number for families of

11



Figure 2: Petersen Graph, γgs (G) = 5

graphs and to establish bounds on γgs (G).

To begin, we look at a related subject, global alliances in graphs. This was first

introduced by Hedetniemi, Hedetniemi, and Kristiansen in [3]. In Section 2, we

discuss two types of global alliances that are closely related to global supply sets.

Preliminary results for k-day supply sets will be given in Section 3. In Section 4,

we will determine the global supply number for select families of graphs.

We found it was difficult to establish bounds on the global supply number for some

select families of graphs and for graphs in general. In Section 5, we provide a few

bounds on the global supply number and discuss the comparability of global supply

sets with similar parameters. In particular, we discuss bounds in terms of the order,

n, of a graph. We finish with a discussion of a few conjectures and open problems for

the global supply number in Section 6.

12



2 ALLIANCES IN GRAPHS

An alliance is a pact, coalition, or friendship between two or more parties, made

in order to advance common goals and to secure common interests. In this section

we consider two different types of graph models for alliances, that is, sets of entities

uniting for a common cause. The applications of these sets are widespread from social

and business associations to national defense coalitions. We focus primarily on global

alliances.

2.1 Global Offensive Alliances

As defined in [3], a non-empty set S is an offensive alliance if for every vertex

v ∈ ∂(S), |N(v) ∩ S| ≥ |N [v] ∩ (V \S)|. If set S is also a dominating set, then S is a

global offensive alliance. The global offensive alliance number γoa (G) is the minimum

cardinality of a global offensive alliance ofG. Many applications of alliances, including

the coalition of nations for defense purposes, were also stated in [3]. Considering this

application for an offensive alliance S, it is reasonable to imagine each vertex in

S is in alliance with its neighbors in S (assuming strength in numbers) against its

neighbors in ∂(S). For the set S as a whole, since an attack by a offensive alliance

S on the vertices of ∂(S) can result in no worse than a “tie,” the vertices in S can

“successfully” attack ∂(S). Two examples of global offensive alliances are given in

Figure 3 and Figure 4. For graphs G and H, we have γoa(G) = 4 = γoa(H).

Global offensive alliances have been studied since 2004. In one particular research

paper [5], the authors explored both upper and lower bounds on the global supply

number of graphs. Their results include the following two theorems.

13



Figure 3: γoa (G) = 4

Figure 4: γoa (H) = 4

Theorem 2.1 [5] For all connected graphs G of order n ≥ 2,

• γoa (G) ≤ min{n− α (G) , ⌊n+α(G)
2

⌋};

• γoa (G) ≤ ⌊2n
3
⌋;

• γoa (G) ≤ ⌊γ(G)+n
2

⌋.

Theorem 2.2 [5] For all graphs G of order n and size m,

γoa (G) ≥
⌊
3n−

√
9n2 − 8n− 16m

4

⌋

2.2 Global Defensive Alliances

A non-empty set of vertices S ⊆ V is called a defensive alliance if for every v ∈ S,

|N [v]∩S| ≥ |N(v)∩ (V \S) |. We say that S is a global defensive alliance if it is also a

14



dominating set. The global defensive alliance number, denoted γa (G), is the minimum

cardinality of a global defensive alliance of G. Similar to an offensive alliance, it is

reasonable to imagine each vertex in S is in alliance with its neighbors in S (assuming

strength in numbers) against its neighbors in ∂(S). For the set S as a whole, since an

attack by the vertices of ∂(S) on a defensive alliance S can result in no worse than

a “tie,” the vertices in S can “successfully” defend against ∂(S). Defensive alliances

were also first introduced in [3].

Two examples of a global defensive alliance are given in Figure 5 and Figure 6.

Figure 5: γa (S1,4) = 3

In 2003, Haynes, Hedetniemi, and Henning determined the global defensive al-

liance number for several families of graphs in [4]. The following is a selection of their

results.

Proposition 2.3 [4] For the complete graph Kn, γa (Kn) = ⌊n+1
2
⌋.

Proposition 2.4 [4] For the complete bipartite graph Kr,s,

1. γa (K1,s) = ⌊ s
2
⌋+ 1.

2. γa (Kr,s) = ⌊ r
2
⌋+ ⌊ s

2
⌋ if r, s ≥ 2.

Proposition 2.5 [4] For cycles Cn, n ≥ 3, γa (Cn) = γt (Cn).

15



Figure 6: γa (G) = 6

Proposition 2.6 [4] For n ≥ 2, γa (Pn) = γt (Pn) unless n ≡ 2 (mod 4), in which

γa (Pn) = γt (Pn)− 1.

Proposition 2.7 [4] For r, s ≥ 1, γa (Sr,s) = ⌊ r−1
2
⌋+ ⌊ s−1

2
⌋+ 2.

The authors also introduce a family of trees T1 as follows: Let T = P5 or T = K1,4

or let T be the tree obtained from tK1,4 (the disjoint union of t copies of K1,4) by

adding t−1 edges between leaves of these copies of K1,4 in such a way that the center

of each K1,4 is adjacent to exactly three leaves in T . An example of such trees can

be seen in Figure 7. Let T1 be the family of all such trees T . They then go on to give

the following theorem.

Theorem 2.8 [4] If T is a tree of order n ≥ 4, then

γa (T ) ≤
3n

5

with equality if and only if T ∈ T1.

16



Figure 7: An example of a tree in T1
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3 GLOBAL SUPPLY NUMBER

We now turn our attention to global supply sets and give the main results of this

thesis. In this section we provide the global supply supply number for several families

of graphs. Since a global supply set is a dominating set and the vertex set of any

graph is a global supply set, we make the following observation.

Observation 3.1. For any graph G of order n, 1 ≤ γ (G) ≤ γgs (G) ≤ n.

Now we show that the only graph G having γgs (G) = 1 is the star, S1,n−1.

Theorem 3.2. A graph G of order n has γgs (G) = 1 if and only if G = S1,n−1.

Proof. ⇒ Let S be a γgs (G)-set with |S| = 1. Let u ∈ S. Therefore, any v ∈ V \{u}

must have deg (v) = 1 and uv ∈ E. Thus, G = S1,n−1.

⇐ Let G = S1,n−1. Clearly, γgs (S1,n−1) = 1. ■

Next, we show that the only graph G having γgs (G) = n is the complexment of

the complete graph.

Theorem 3.3. A graph G of order n has γgs (G) = n if and only if G = Kn.

Proof. Clearly, γgs
(
Kn

)
= n.

Therefore, suppose G ̸= Kn. Then G has at least one edge, say uv. Thus, V \{u}

is a gs-set of G. Hence, γgs (G) ≤ |V \{u}| = n− 1. ■

Theorem 3.4. For a non-trivial path Pn of order n, γgs (Pn) = ⌊n
2
⌋.

Proof. For n = 2 or n = 3, γgs (Pn) = 1 = ⌊n
2
⌋. So, let n ≥ 4. Label the vertices

of Pn as v1, v2, ..., vn. Let S be a γgs (Pn)-set. Since S is a dominating set, no

18



three consecutive vertices are in V \S. Also, since S is a γgs (Pn)-set, for every four

consecutive vertices of Pn at most two can be in V \S. Therefore at least two out of

any four consecutive vertices are in S. Thus, |S| ≥ ⌊n
2
⌋.

To achieve equality, let S = {vi| i is even}. Clearly, S is a gs-set of Pn and

|S| = ⌊n
2
⌋. Thus, we conclude that γgs (Pn) = ⌊n

2
⌋. ■

Theorem 3.5. For a cycle Cn of order n, γgs (Cn) = ⌈n
2
⌉.

Proof. For n = 3, γgs (Cn) = 2 = ⌈n
2
⌉. So, let n ≥ 4. Label the vertices of Cn as

v1, v2, ..., vn. Let S be a γgs (Cn)-set. Since S is a dominating set, no three consecutive

vertices are in V \S. Also, since S is a γgs (Cn)-set, for every four consecutive vertices

of Cn at most two can be in V \S. Therefore at least two out of any four consecutive

vertices are in S. Thus, |S| ≥ ⌈n
2
⌉.

To achieve equality, we must examine two cases.

Case 1. n is even.

Let S = {vi| i is even}. Clearly, S is a gs-set of Cn and |S| = n
2
.

Case 2. n is odd.

Let S = {vi| i is even} ∪ {vn}. Clearly, S is a gs-set of Cn and |S| = n+1
2
.

Thus, we can conclude that γgs (Cn) = ⌈n
2
⌉. ■

Notice that γt (Cn) = ⌈n
2
⌉. Thus, the previous result along with Proposition 2.5

gives the following corollary.

Corollary 3.6. For a cycle Cn of order n ̸≡ 2 (mod 4), γgs (Cn) = γt (Cn) = γa (Cn).

Theorem 3.7. For the complete graph Kn of order n, γgs (Kn) = ⌈n
2
⌉.
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Proof. Let S be a γgs (Kn)-set. By definition of Kn and γgs (Kn)-set, we have that

|S| ≥ |V \S|. If n is even, then |S| = n
2
= |V \S|. If n is odd, then |S| = n+1

2
>

|V \S| = n−1
2
. Thus, |S| = ⌈n

2
⌉ and γgs (Kn) = ⌈n

2
⌉. ■

Theorem 3.8. For the complete bipartite graph Kr,s where 1 ≤ r ≤ s, γgs (Kr,s) = r.

Proof. Let R and S be the partite sets with |R| = r and |S| = s. If r = 1, then

γgs (Kr,s) = 1. Thus, assume that r ≥ 2. Notice that R is a gs-set. Hence, γgs (Kr,s) ≤

|R| = r.

To see that γgs (Kr,s) ≥ r, suppose to the contrary that D is a gs-set such that

|D| = γgs (Kr,s) < r. Thus there exists a vertex v ∈ R such that v /∈ D. Hence, to

dominate v, there must be a vertex u ∈ S such that u ∈ D. That is, D ∩ S ̸= ∅.

Further, since γgs (Kr,s) < r ≤ s, then there exists a vertex w ∈ S such that w /∈ D.

Moreover, w has a neighbor in R ∩ D. So, we know that D ∩ S ̸= ∅, D ∩ R ̸= ∅,

S\D ̸= ∅, and R\D ̸= ∅. Let R1 = R\D, R2 = D ∩ R, |R1| = r1, and |R2| = r2.

We define S1, S2, s1, and s2 in an analogous way. Note that r1, r2, s1, s2 ≥ 1. Now,

every vertex in R1 has a demand of s1 + 1 and a supply of r2 + 1. Similarly, a vertex

of S1 has a demand of r1 + 1 and a supply of s2 + 1. Thus, we can deduce that

r2 + 1 ≥ s1 + 1 and s2 + 1 ≥ r1 + 1. That is, r2 ≥ s1 and s2 ≥ r1. Recall that

|D| = γgs (Kr,s) = r2 + s2 ≥ r2 + r1 = r. Thus, we have a contradiction.

Hence, we can conclude that γgs (Kr,s) = r. ■

Theorem 3.9. For the wheel graph W1,n−1 where n ≥ 5, γgs (W1,n−1) = 3.

Proof. Note that W1,n−1 = K1∨Cn−1. Label the vertices of W1,n−1 as v and ui where

i = 1, 2, ..., n− 1 such that v ∈ V (K1) and ui ∈ V (Cn−1).

20



Let S = {v, ui, uj | i ̸= j}. Clearly, S is a dominating set. Notice that for

uk ∈ V (W1,n−1) \S such that k ̸= i, j, we have |N (uk) ∩ (V \S) | ≤ 2 = |N (v) ∩ S|.

Since v ∈ N(uk), S is a gs-set with |S| = 3. Thus, γgs (W1,n−1) ≤ 3.

To see that γgs (W1,n−1) ≥ 3, assume to the contrary that γgs (W1,n−1) < 3. Let S

be a γgs (W1,n−1)-set. Then for x ∈ S, |N (x)∩S| ≤ 1. If v /∈ S, then |N (v)∩(V \S) | ≥

2 > 1 ≥ |N (x) ∩ S|, a contradiction. Hence, v ∈ S. If |S| = 1, then |N (v) ∩ S| = 0.

Notice that v has a neighbor ui ∈ ∂(S) such that |N (ui) ∩ (V \S) | = 2 > 0 =

|N (v) ∩ S|, a contradiction. Thus, S = {v, ui}, |S| = 2 and |N (v) ∩ S| = 1. Again,

v has a neighbor uj ∈ ∂(S) (i ̸= j) such that |N (uj)∩ (V \S) | = 2 > 1 = |N (v)∩S|,

a contradiction.

Hence, S = {v, ui, uj} and |S| ≥ 3. Thus, γgs (W1,n−1) = 3. ■
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4 BOUNDS ON THE GLOBAL SUPPLY NUMBER

Here, we discuss bounds on the global supply number. We also make observa-

tions about the comparability of global supply sets with global alliances and other

parameters. Our first bound is for grid graphs Gr,c = Pr □ Pc.

Theorem 4.1. Let the grid graph Gr,c be such that 2 ≤ r ≤ c. Then

1. If r is even and c is odd, then γgs (Gr,c) ≤ ⌊ c
2
⌋ · r

2. γgs (Gr,c) ≤ ⌊ r
2
⌋ · c, otherwise.

Proof. Label the vertices of Gr,c as (xi, yj) where i = 1, 2, ..., r and j = 1, 2, ..., c.

Then, two vertices (xi, yj) and (xk, yl) are adjacent if i = k and j = l ± 1 or if

i = k ± 1 and j = l. If r is even and c is odd, let S = {(xi, yj) | i = 1, 2, ..., r and j

even}. Clearly, S is a gs-set and |S| = ⌊ c
2
⌋ · r.

If r is even and c is even, let S = {(xi, yj) | i even and j = 1, 2, ..., c}. Clearly,

S is a gs-set and |S| = r·c
2
. If r is odd, let S = {(xi, yj) | i even and j = 1, 2, ..., c}.

Clearly, S is a gs-set and |S| = ⌊ r
2
⌋ · c. ■

Illustrations for this proof can be found in Figures 8 and 9. We next give an

upper bound on the global supply number in terms of the vertex cover number.

Theorem 4.2. A graph G with no isolates and order n with vertex cover number

β (G) has γgs (G) ≤ β (G).

Proof. Let S be a α (G)-set. Then V \S is a vertex cover with |V \S| = β (G) and

so every edge of G has at least one end vertex in V \S. Moreover, since G has no
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Figure 8: γgs (G3,4) = 4.

Figure 9: γgs (G4,5) = 8.

isolates, every vertex in S has a neighbor in V \S. Thus, V \S is a dominating set.

Since S is an indepedent set, V \S is a gs-set and so γgs (G) ≤ |V \S| = β (G). ■

Next we give an upper bound on the global supply number of trees.

Theorem 4.3. For any tree T of order n, γgs(T ) ≤
⌊
n
2

⌋
.

Proof. Let T be a tree of order n. We proceed by induction on n. Note that if T

is the star K1,n−1, then γ(K1,n−1) = 1 ≤
⌊
n
2

⌋
. If T is the double star Sr,s (where

1 ≤ r ≤ s), and γgs(Sr,s) = 2 ≤
⌊
n
2

⌋
. Hence, we may assume that the the diameter of

T is at least 4, and so, n ≥ 5.

Assume that any tree T ′ with order n′ < n has γgs(T
′) ≤

⌊
n′

2

⌋
. Among all leaves

of T , choose r and v to be two leaves such that the distance between r and v is the
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diameter of T . We root the tree T at vertex r. Let w be the unique neighbor of v.

Note that by our choice of v, every child of w is a leaf of T . Let T ′ = T − Tw. Then

T ′ is a non-trivial tree of order n′ ≤ n−2. Now any γgs(T
′)-set S ′ can be extended to

a gs-set of T by adding w. Hence, γgs(T ) ≤ |S ′|+1 = γgs(T
′)+1. Now, applying our

inductive hypothesis, we have γgs(T ) ≤ γgs(T
′)+1 ≤

⌊
n′

2

⌋
+1 ≤

⌊
n−2
2

⌋
+1 =

⌊
n
2

⌋
. ■

Theorem 4.3 is not true for graphs in general. Consider the graph in Figure 10

where a gs-set is illustrated. Thus, γgs (G) ≤ 8.

To see that γgs (G) ≥ 8, let S be a γgs (G)-set. First suppose that one of the C5

subgraphs has at most two vertices in S. In this case, it follows that the vertex of

degree 3, say v, in the C5 is not dominated by vertices in the C5. Thus, the neighbor

of v not on the C5, say u, must be in S. Since |N (v)∩ (V \S) | = 2, we have that the

two neighbors of u on the C4 subgraph are in S. This argument holds for both C5

subgraphs, so in this case γgs (G) ≥ 8.

Therefore, assume that each of the C5 subgraphs have three vertices in S. The

best case leaves two degree two vertices in the C4 subgraph that are not dominated.

Further, at least two more vertices from the C4 are needed for any gs-set. Again,

γgs (G) ≥ 8.

Observation 4.4. The values γt (G) and γgs (G) are incomparable.

We have already seen an example of γgs (G) = γt (G) in Corollary 3.6. Now, notice

for Pn where n ̸≡ 0 (mod 4) we have γgs (Pn) < γt (Pn). Next, consider the wheel

graph where n ≥ 5, then γgs (W1,n−1) = 3 > γt (W1,n−1) = 2.

Observation 4.5. The values γoa(G) and γgs(G) are incomparable.
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Figure 10: γgs (G) > ⌈n
2
⌉.

Figure 11: γgs (S1,4) = 1

Consider for example, the cycle Cn, where γoa(Cn) = γgs(Cn) = ⌊n
2
⌋. For the

graph G in Figure 3, we have γoa(G) = 4 and γgs(G) = 2; while for the graph H in

Figure 4, we have γoa(H) = 4 and γgs(H) = 5.

Observation 4.6. The values γa(G) and γgs(G) are incomparable.

Again, we have already seen an example of γgs (G) = γa (G) in Corollary 3.6. To

see γgs (G) < γa (G), notice that Figure 11 shows that γgs (S1,4) = 1 and Figure 5

shows that γa (S1,4) = 3. Figure 6 and Figure 12 can be used to see an example of a

case where γgs (G) > γa (G).

This is also true for trees. Figures 13 and 14 illustrate an example of the case

where γgs (T ) > γa (T ). If we take i copies of T and make adjacent vi and vi−1 where

vi is a leaf in the ith copy of T (similarly for vi−1), then we get γgs (T ) is arbitrarily
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larger than γa (T ).

Figure 12: γgs (G) = 7.

Figure 13: γa (T ) = 13.

Figure 14: γgs (T ) = 14.
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5 CONCLUDING REMARKS

In this thesis we have introduced and studied global supply sets. Provided herein is

the global supply number for several common families of graphs and upper bounds for

graphs in general and two other families. Also, we demonstrated the incomparability

of γgs (G) with γt (G), γoa (G), and γa (G). We conclude with a conjecture and ideas

for future study.

The conjecture naturally arises from Theorem 4.1 in which we proved an upper

bound on the global supply number for grid graphs Gr,c.

Conjecture 5.1. Let the grid graph Gr,c be such that r ≤ c, then

1. If r is even and c is odd, then γgs (Gr,c) = ⌊ c
2
⌋ · r

2. γgs (Gr,c) = ⌊ r
2
⌋ · c, in all other cases.

For graphs G in general, we often seek bounds on parameters in terms of the order

n of a graph G. We saw that we did not have an upper bound on γgs (G) as ⌈n
2
⌉. A

problem of interest would be to establish a bound on the global supply number in

terms of n. Similarly, it would be interesting to study bounds on the global supply

number for all graphs G in terms of the minimum and maximum degree of G, δ (G)

and ∆ (G), respectively.

Another particular area of interest would be in classifying graphs for which γgs (G) =

⌈n
2
⌉. If this proves to be difficult, relaxing it to trees would be equally as intriguing.

Similarly, another open problem is to classify graphs (or relaxing to trees) for which

γgs (G) = γ (G), γgs (G) = γa (G), or γgs (G) = γoa (G). This problem would be
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of great importance since bounds on γ (G), γa (G), and γoa (G) have already been

determined in previous work.
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