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ABSTRACT

The 2-Domination Number of a Caterpillar

by

Presley Ugochukwu Chukwukere

A set D of vertices in a graph G is a 2-dominating set of G if every vertex in V −D

has at least two neighbors in D. The 2-domination number of a graph G, denoted by

γ2(G), is the minimum cardinality of a 2-dominating set ofG. In this thesis, we discuss

the 2-domination number of a special family of trees, called caterpillars. A caterpillar

is a graph denoted by Pk(x1, x2, ..., xk), where xi is the number of leaves attached to

the ith vertex of the path Pk. First, we present the 2-domination number of some

classes of caterpillars. Second, we consider several types of complete caterpillars.

Finally, we consider classification of caterpillars with respect to their spine length

and 2-domination number.
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1 INTRODUCTION

First we need to define some terminology and notation for the purpose of this

thesis. Let G be a finite, simple, and undirected graph with vertex set V = V (G)

and edge set E = E(G). The order of G, denoted |V (G)| = n, is the number of

vertices in G. The size of G, denoted |E(G)| = m, is the number of edges in G.

For any two vertices x, y ∈ V (G), x and y are adjacent if the edge xy ∈ E(G). The

open neighborhood of v in V is the set N(v) = {u ∈ V : uv ∈ E} and the closed

neighborhood of v ∈ V is the set N [v] = N(v)∪{v}. The open neighborhood of a set

D ⊆ V is the set N(D) = ∪v∈DN(v), and the closed neighborhood of a set D is the

set N [D] = N(D) ∪D. The degree of v is the cardinality of the open neighborhood

of v, or degG(v) = |N(v)|. A vertex with exactly one neighbor is called a leaf and its

neighbor is a support vertex. A support vertex with two or more leaf neighbors is

called a strong support vertex [2]. The independence number of G, denoted β(G),

is the cardinality of the largest independent set of vertices in G. A path Pk is a

graph of order k and size k − 1 with vertices denoted v1, v2, ..., vk and edges vivi+1

for i = 1, 2, ..., k − 1. A subgraph H of a graph G is a graph contained in G, i.e.,

V (H) ⊆ V (G), E(H) ⊆ E(G).

A dominating set of a graph G is a nonempty subset D of the vertex set V such

that for each u ∈ V −D, there exists a v ∈ D adjacent to u. Equivalently, a subset

D of V is a dominating set if for each v ∈ V , |N [v] ∩D| ≥ 1 [4]. A dominating set

having the smallest cardinality among all dominating sets in a given graph is called

a minimum dominating set. The cardinality of a minimum dominating set in graph

G is called the domination number of G and is denoted γ(G).
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In [9], Fink and Jacobson introduced the concept of k-domination, of which 2-

domination is a special case. It was shown in [9] that the dominating property of a

minimum dominating set can be destroyed by removing at most two edges or ver-

tices from the graph. In most cases, the removal of only one edge or vertex from

a graph will leave some vertices undominated by what had been a minimum domi-

nating set. For example, in Figure 1, a minimum dominating set D of graph G1 is

D = {v, c, u, d}. Figure 2 shows that the removal of vertex v in G1 will leave vertices

a and b undominated in G2 by what had been a minimum dominating set in G1.

a

u

dc

v

b

Figure 1: Graph G1

a

u

dcb

Figure 2: Graph G2 = G1 − v: removal of vertex v

As a result of this, the 2-domination number was introduced in [9] and mentioned

in [3, 12]. For a graph G, if D is a subset of V and u ∈ V −D is adjacent to at least

two members of D, we say that u is 2-dominated by D. If every vertex in V −D is 2-

dominated by D, then D is called a 2-dominating set. Among all 2-dominating sets of

the graph G, if D has the smallest cardinality then D is a minimum 2-dominating set
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and its cardinality is the 2-domination number of G, denoted γ2(G). An example of

2-domination is given in Figure 3. D = {a, b, c, d, e, f, g, h, i, j, u, t} is a 2-dominating

set of minimum cardinality, so γ2(G3) = 12.

a b c d e f g h i j

q u r t v p

Figure 3: 2-domination of graph G3

With this in mind, the removal of only one vertex or edge from a graph will leave

the vertices still dominated.

A caterpillar is a tree with the property that the removal of its leaves and incident

edges results in a path, which we call the spine of the caterpillar. We say a caterpillar

is complete if every vertex on the spine of the caterpillar has at least one leaf.

In this thesis, we study the 2-domination of a caterpillar. In Section 2, we will

give a literature survey over some related work which is relevant to this thesis. In

Section 3, we will discuss 2-domination of paths and by considering several simple

cases of caterpillars with the number of leaves attached to the spine of the caterpillar.

We will also consider upper bounds for all complete and general caterpillars. It is

actually simple to figure out the 2-domination number of some classes of caterpillars,

but making a generalization is a little more difficult. Thus we close with an open

problem.
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2 LITERATURE SURVEY

In this section, we review some background results to this thesis. These results

present the motivation and origin of 2-domination. First, we review the basic results

regarding this type of domination and then proceed with a simple observation of Fink

and Jacobson.

2.1 2-domination

The concept of domination in graphs was known earlier, but Ore [13] was the

first to use the term domination, who noticed that for every graph G, the relation

γ(G) ≤ β(G) holds. Since the origin of Ore’s initial introduction of domination, a

large amount of work has been done with dominating sets and the domination number.

The reader is referred to [5, 6, 11]. In [9], 2-domination is motivated by the following

theorem which says that the dominating property of a minimum dominating set can

be destroyed by the removal of only one or two edges (or vertices) from the graph G.

Theorem 2.1. [9, 11] If D is a minimum dominating set in a non-empty graph G,

then at least one vertex in V −D is dominated by at most two members of D.

As mentioned earlier, given any minimum dominating set D of G, one can remove

two edges from G such that D is no longer a dominating set of G. As a result of this

process, in [9], a greater degree of assurance is introduced via 2-domination so that

the removal of at most two edges or vertices from the graph G will still retain the

dominating property.

In [9, 11], a vertex v ∈ V −D is k-dominated if it is dominated by at least k vertices

in D, that is |N(v) ∩ D| ≥ k. If every vertex in V − D is k-dominated, then D is

13



called a k-dominating set. The minimum cardinality of a k-dominating set is called

the k-domination number of G, denoted γk(G).

Proposition 2.2. [9, 11] A k-dominating set D is minimal if and only if for every

vertex v ∈ D, either, (1) |N(v)∩D| < k or (2) there exists a vertex u ∈ V −D such

that |N(v) ∩D| = k and u ∈ N(v).

It was also noted in [9] that every k-dominating set is a dominating set and thus,

for every graph G we have γ(G) ≤ γk(G) for each k ≥ 1. Furthermore, if 1 ≤ j ≤ k,

then every k-dominating set in G is also a j-dominating set and hence γj(G) ≤ γk(G).

In [9], a lower bound for γk involving only the number of vertices and the number of

edges was obtained. This leads to an extremal result for the 2-domination number of

a tree.

Theorem 2.3. [9, 11] If G has n vertices and m edges, then γk(G) ≥ n− (m/k).

The subdivision of an edge e with endpoints {u, v} yields a graph containing one

new vertex w and with an edge set replacing e by two new edges, uw and wv.

Definition 2.4. [14] A subdivision of a graph G = (V,E) is a graph where each edge

is subdivided exactly once in G.

The path Pn can be subdivided into another path Pm by subdividing each edge

of Pn exactly once, that is, subdiv(Pn) = Pm where m = 2n− 1 is odd. For example,

if n = 3, then m = 2(3)− 1 = 5. Thus, T ′ = P5 is the subdivision graph of T = P3,

i.e., subdiv(P3) = P5 as seen in Figure 4.

The edges uw and wv have been subdivided into four edges, ux, xw, wy, and yv.

14



T :
u w v

T ′ :
u x w y v

Figure 4: T ′ is the subdivision of T

A tree is an undirected graph in which any two vertices are connected by exactly one

simple path. Alternatively, a tree can be defined as a connected graph without a cycle

subgraph. A caterpillar is a special type of tree. Theorem 2.3 yields the following

bounds on the 2-domination number of a tree T of order n.

Corollary 2.5. [9, 11] If T is a tree with n ≥ 2 vertices, then γ2(T ) ≥ n+1
2
.

Corollary 2.6. [9, 11] If T is a tree with n ≥ 2 vertices, then γ2(T ) = n+1
2

if and only

if T is a subdivision graph of a tree T ′.

An important theorem involving the number of vertices that are of degree one was

shown in [9].

Theorem 2.7. [7, 8] For a tree T , γ2(T ) ≤ n+`
2
, where ` refers to the number of

vertices that are of degree one and n is number vertices of T .

The vertices of degree one are included in any 2-dominating set D.

15



3 RESULTS

3.1 2-domination of Paths

The path graph Pn is a tree with two end vertices of degree 1, and the other n−2

vertices of degree 2. Examples are given in Figure 5.

P3 :
1 2 3

n = 3, {1,3} is a 2-dominating set and γ2(P3) = 2.

P4 :
1 2 3 4

n = 4, {1,3,4} is a 2-dominating set and γ2(P4) = 3.

P5 :
1 2 3 4 5

n = 5, {1,3,5} is a 2-dominating set and γ2(P5) = 3.

P6 :
1 2 3 4 5 6

n = 6, {1,3,5,6} is a 2 - dominating set and γ2(P6) = 4.

Figure 5: Examples of 2-domination of paths

From the above examples, we have a pattern for odd and even vertices for any

path graph, Pn. When n is even, the 2-domination number of a path graph Pn is

given by γ2(Pn) = n+2
2

. When n is odd, the 2-domination number of a path graph Pn

is given by γ2(Pn) = n+1
2

. From the patterns above, we have the following theorem.

Theorem 3.1. For a path Pn, the 2-domination number is given by γ2(Pn) =
⌈
n+1
2

⌉
.

Proof. Let V be the vertex set and D be a minimum 2-dominating set of Pn. For n

odd, the path Pn is a subdivision graph of Pn+1
2

. Thus, by Corollary 2.6, γ2(Pn) = n+1
2

.

16



For n even, we show that γ2(Pn) = n+2
2

. First, we show that γ2(Pn) ≥ n+2
2

. By

Corollary 2.5 and 2.6, γ2(Pn) > n+1
2

, which implies that γ2(Pn) ≥ n+2
2

.

Next, we show that γ2(Pn) ≤ n+2
2

. Consider a 2-dominating set of a path Pn, where

D = {v1, v3, ..., vn−1, vn}. Every vertex u ∈ V −D − {vn} is at least 2-dominated by

two vertices of D. Since vn ∈ D, then γ2(Pn) ≤ |D| = n
2

+1 = n+2
2

. Hence, combining

the results, we have γ2(Pn) =
⌈
n+1
2

⌉
.

3.2 Caterpillar

Recall, a caterpillar is a graph which can be obtained from the path on k vertices

by appending xi pendant vertices to the the ith vertex of the path, Pk. The caterpillar

with parameters k, x1, ..., xk, where x1, xk 6= 0, will be denoted Pk(x1, x2, ..., xk) as in

[1].

Figure 6: A caterpillar P4(6, 1, 4, 3)

Note, this is a tree with the property that the removal of its leaves and incident

edges results in a path Pk called the spine of the caterpillar. Let ` denote the number

of leaves, i.e., ` =
∑k

i=1 xi. We say a caterpillar is complete if every vertex on the

spine of the caterpillar is adjacent to at least one leaf.

17



3.3 Preliminary Results

Let Pk(x1, x2, ..., xk) be a caterpillar. We first consider the case of caterpillars

where xi 6= 1 for 1 ≤ i ≤ k. An example is given in Figure 7.

Figure 7: A caterpillar P7(3, 0, 2, 0, 0, 0, 4)

Note, the 2-domination number of the above caterpillar is

γ2(P7(3, 0, 2, 0, 0, 0, 4)) = `+3. First, we dissect our caterpillar into complete caterpil-

lars and paths of maximal length. We denote the complete caterpillars with xi > 1 as

Ci and the paths as Pki . From the above example in Figure 7, C1 = P1(3), C2 = P1(2),

C3 = P1(4), k1 = 1 and k2 = 3.

Proposition 3.2. For a caterpillar, Pki(x1, ..., xk), where xi 6= 1 for 1 ≤ i ≤ k, then

γ2(Pki(x1, ..., xk)) ≤ `+
∑r

i=1

⌈
ki+1
2

⌉
.

Proof. Let D be a minimum 2-dominating set. Let ki be the order of the path Pki ,

where Pki is the set of vertices with xi = 0 on the spine for i = 1, ..., r. Since the leaves

are in D, we only need to 2-dominate each of the paths Pki . Thus, D is the union of

the leaves and a 2-dominating set for each path Pki . Hence, |D| ≤ `+
∑r

i=1

⌈
ki+1
2

⌉
.

Thus, from Figure 7, we have

γ2(P7(3, 0, 2, 0, 0, 0, 4)) = (3 + 2 + 4) +

⌈
k1 + 1

2

⌉
+

⌈
k2 + 1

2

⌉
= `+

⌈
1 + 1

2

⌉
+

⌈
3 + 1

2

⌉
= `+ 3.

18



This is an example where equality holds, but below is another example where

equality fails.

Figure 8: A caterpillar P7(3, 0, 0, 3, 0, 0, 3).

From Figure 8, C1 = P1(3), C2 = P1(3), C3 = P1(3), k1 = 2 and k2 = 2. Thus,

γ2(P7(3, 0, 0, 3, 0, 0, 3)) < (3 + 3 + 3) +

⌈
k1 + 1

2

⌉
+

⌈
k2 + 1

2

⌉
< `+

⌈
2 + 1

2

⌉
+

⌈
2 + 1

2

⌉
< `+ 4.

3.4 Complete Caterpillars

Recall, a caterpillar, Pk(x1, x2, ..., xk), is complete if the xi > 0 for 1 ≤ i ≤ k.

Note, since each leaf has degree one, each leaf must be in a 2-dominating set. First,

let us consider the case of complete caterpillars with xi > 1 for 1 ≤ i ≤ k . An

example of a complete caterpillar with xi > 1 for 1 ≤ i ≤ k is given in Figure 8.

Figure 9: A complete caterpillar P5(2, 3, 2, 2, 3).

Proposition 3.3. For a complete caterpillar, Pk(x1, x2, ..., xk), where xi > 1 for 1 ≤

i ≤ k, then γ2(Pk(x1, x2, ..., xk)) = `.
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Proof. Let D be a minimum 2-dominating set of Pk(x1, x2, ..., xk), where xk > 1 for

1 ≤ i ≤ k.

First, we show that |D| ≤ `. Suppose D is the set of leaves. Then each vertex on the

spine, say vi, has xi > 1 neighbors in D. So, D is a 2-dominating set. Thus |D| ≤ `.

Next we show that |D| ≥ `. Suppose to the contrary that |D| < `. Then, at least one

leaf v /∈ D. That is, v has only one neighbor. So, D is not a 2-dominating set. Thus,

|D| ≥ `. Hence, |D| = ` and we are done.

The next class of caterpillars that we consider will be complete caterpillars where

xi = 1 for 1 ≤ i ≤ k, that is, having only one leaf attached to each vertex on the

spine of the caterpillar. Examples are given in Figure 9.

P3(1, 1, 1) :

1 2 3

4 5 6

D = {1, 2, 3, 5}, γ2(P3(1, 1, 1)) = 4.

P4(1, 1, 1, 1) :

1 2 3 4

5 6 7 8

D = {1, 2, 3, 4, 6, 8}, γ2(P4(1, 1, 1, 1)) = 6.

Figure 10: Complete caterpillars where xi = 1.

Observe that the 2-domination number of the above caterpillars is the sum of the

number of leaves and the domination number of path.

We need the following lemma to prove our result.

Lemma 3.4. [10] For k ≥ 3, γ(Pk) =
⌈
k
3

⌉
.
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Now, we are ready to prove Proposition 3.5.

Proposition 3.5. For a complete caterpillar, Pk(x1, x2, ..., xk), where xi = 1 for 1 ≤

i ≤ k, then γ2(Pk(x1, x2, ..., xk)) = `+
⌈
k
3

⌉
.

Proof. Let D be a minimum 2-dominating set. Since the leaves are of degree one,

each leaf must be in D. The set of leaves dominate each vertex on the path exactly

once. Thus, a minimum dominating set of the path Pk unioned with the set of leaves

` is a minimum 2-dominating set of the caterpillar. Hence, |D| = `+
⌈
k
3

⌉
and we are

done.

Theorem 3.6. For a caterpillar, Pk(x1, x2, ..., xk), where xi ≥ 1 for 1 ≤ i ≤ k, we have

γ2(Pk(x1, x2, ..., xk)) ≤ `+ γ(Pk) = `+
⌈
k
3

⌉
.

Proof. Let V be the vertex set andD be a minimum 2-dominating set of Pk(x1, x2, ..., xk),

where xi ≥ 1 for all positive integers i. Since the leaves are of degree one, then each

leaf must be in D. Since xi ≥ 1 for all i, a 1-dominating set of the spine Pk is sufficient

to 2-dominate the caterpillar.

Our next result of interest gives both a descriptive and a constructive family of

caterpillars denoted T .

Let T be a family of caterpillars Pki(x1, ..., xk) satisfying the following conditions:

• x1 = xk = 1 and

• if xi > 1, then xi+1 = 1, for i = 2, ..., k − 1.

Complete caterpillars satisfying the above conditions for the family of caterpillars,

T , can be written in the form C1 − v1 − C2 − v2 − C3 − v3 − ... − vr−1 − Cr, where
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Cj = Pkj(1, 1, ..., 1), vj is the vertex on the spine with more than one leaf and |Cj| is

the length of Pkj with xi = 1 for 1 ≤ i ≤ kj. An example of a caterpillar satisfying

the given conditions is given in Figure 10.

Figure 11: A complete caterpillar P6(1, 2, 1, 1, 3, 1).

In Figure 11, the complete caterpillar P6(1, 2, 1, 1, 3, 1) is of the form C1 − v1 −

C2−v2−C3 where |C1| = 1, |C2| = 2, |C3| = 1, and r = 3. Note that x1 = xk = 1 and

every xi > 1 is followed by xi+1 = 1. The 2-domination number, γ2 = `+2 = `+
⌈
k
3

⌉
.

Note, there are some cases when equality fails as well, i.e., γ2(T ) < ` +
⌈
k
3

⌉
. What

matters is the how much the vertex vj with xj > 1 for 1 ≤ j ≤ r is “helping” both

sides. An example where equality fails is given in Figure 12.

Figure 12: A complete caterpillar P11(1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1).

In Figure 12, γ2 = `+3 < `+
⌈
k
3

⌉
= `+4. We can dissect the complete caterpillar

into Cj = Pkj(1, 1, ..., 1) and vj which is the vertex on the spine with xj > 1 for

1 ≤ j ≤ k. We have the following upper bounds since equality fails in some families

of caterpillars T .

Proposition 3.7. For a complete caterpillar in T ,

γ2 ≤ `+
r∑

j=1

⌈
kj
3

⌉
. (1)
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Proof. Let D be a minimum 2-dominating set and kj be the length of the spine with

xi = 1 for 1 ≤ kj ≤ r, 1 ≤ j ≤ r. Since all leaves ` are of degree one, the leaves are in

D, so |D| ≥ ` =
∑r

i=1 xi. Next, we dominate the spine of each of the sub-caterpillars

kj with xi = 1 and thus, γ2 = |D| ≤ `+
∑r

j=1

⌈
kj
3

⌉
.

Proposition 3.8. For a complete caterpillar in T ,

γ2 ≤ `+
r−1∑
j=1

|vj|+
r−1∑
j=2

⌈
kj − 2

3

⌉
+

⌈
k1 − 1

3

⌉
+

⌈
kr − 1

3

⌉
. (2)

Proof. Let D be a minimum 2-dominating. Let kj be the length of the spine with

xi = 1 and vj the vertex with xj > 1 for 1 ≤ i ≤ r. First, all the leaves are in D

and, which 2-dominates each of the interior vertices vj with xj > 1 for 1 ≤ i ≤ r.

Thus, we are dominating a path of length smaller than k1 and kr by 1 and by 2 in

the middle. Hence, |D| ≤ `+
∑r−1

j=1 |vj|+
∑r−1

j=2

⌈
kj−2
3

⌉
+
⌈
k1−1
3

⌉
+
⌈
kr−1
3

⌉
.

We consider some cases to show that sometimes (1) is better than (2) and vice

versa. We have the following:

Case 1: γ2 = Upper Bound (1) = Upper Bound (2).

Let us consider the caterpillar P7(1, 2, 1, 1, 1, 3, 1) where γ2 = `+ 3 as seen in Figure

13.

Figure 13: A complete caterpillar P7(1, 2, 1, 1, 1, 3, 1).
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For Upper Bound (1):

γ2(P7(1, 2, 1, 1, 1, 3, 1)) ≤ `+
r∑

i=1

⌈
kj
3

⌉

= `+

⌈
k1
3

⌉
+

⌈
k2
3

⌉
+

⌈
k3
3

⌉
= `+

⌈
1

3

⌉
+

⌈
3

3

⌉
+

⌈
1

3

⌉
= `+ 1 + 1 + 1

= `+ 3.

For Upper Bound (2):

γ2 ≤ `+
r−1∑
j=1

|vj|+
r−1∑
j=2

⌈
kj − 2

3

⌉
+

⌈
k1 − 1

3

⌉
+

⌈
kr − 1

3

⌉

= `+
2∑

j=1

|vj|+
2∑

j=2

⌈
kj − 2

3

⌉
+

⌈
k1 − 1

3

⌉
+

⌈
k3 − 1

3

⌉

= `+ 2(1) +

⌈
3− 2

3

⌉
+

⌈
1− 1

3

⌉
+

⌈
1− 1

3

⌉
= `+ 2 + 1 + 0 + 0

= `+ 3.

Case 2: γ2 < Upper Bound (2) < Upper Bound (1).

Let us consider the caterpillar P19(1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1) where

γ2 = `+ 6 as seen in Figure 14.

Figure 14: A caterpillar P19(1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1).
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For Upper Bound (1):

γ2 ≤ `+
r∑

j=1

⌈
kj
3

⌉

= `+

⌈
k1
3

⌉
+

⌈
k2
3

⌉
+

⌈
k3
3

⌉
+

⌈
k4
3

⌉
= `+

⌈
4

3

⌉
+

⌈
4

3

⌉
+

⌈
4

3

⌉
+

⌈
4

3

⌉
= `+ 2 + 2 + 2 + 2

= `+ 8.

For Upper Bound (2):

γ2 ≤ `+
r−1∑
j=1

|vj|+
r−1∑
j=2

⌈
kj − 2

3

⌉
+

⌈
k1 − 1

3

⌉
+

⌈
kr − 1

3

⌉

= `+
3∑

j=1

|vj|+
3∑

j=2

⌈
kj − 2

3

⌉
+

⌈
k1 − 1

3

⌉
+

⌈
k3 − 1

3

⌉

= `+ 3(1) +

⌈
4− 2

3

⌉
+

⌈
4− 2

3

⌉
+

⌈
4− 1

3

⌉
+

⌈
4− 1

3

⌉
= `+ 3 + 1 + 1 + 1 + 1

= `+ 7.

Case 3: γ2 < Upper Bound (1) < Upper Bound (2).

Let us consider the caterpillar P15(1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1) where γ2 = `+ 5

as seen in Figure 15.

Figure 15: A complete caterpillar P15(1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1).
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For Upper Bound (1):

γ2 ≤ `+
r∑

j=1

⌈
kj
3

⌉

= `+

⌈
k1
3

⌉
+

⌈
k2
3

⌉
+

⌈
k3
3

⌉
+

⌈
k4
3

⌉
+

⌈
k5
3

⌉
+

⌈
k6
3

⌉
= `+

⌈
2

3

⌉
+

⌈
1

3

⌉
+

⌈
3

3

⌉
+

⌈
1

3

⌉
+

⌈
1

3

⌉
+

⌈
2

3

⌉
= `+ 1 + 1 + 1 + 1 + 1 + 1

= `+ 6.

For Upper Bound (2):

γ2 ≤ `+
r−1∑
j=1

|vj|+
r−1∑
j=2

⌈
kj − 2

3

⌉
+

⌈
k1 − 1

3

⌉
+

⌈
kr − 1

3

⌉

= `+
5∑

j=1

|vj|+
5∑

j=2

⌈
kj − 2

3

⌉
+

⌈
k1 − 1

3

⌉
+

⌈
k6 − 1

3

⌉

= `+ 5(1) +

⌈
1− 2

3

⌉
+

⌈
3− 2

3

⌉
+

⌈
1− 2

3

⌉
+

⌈
1− 2

3

⌉
+

⌈
2− 1

3

⌉
+

⌈
2− 1

3

⌉
= `+ 5 +

⌈
−1

3

⌉
+

⌈
1

3

⌉
+

⌈
−1

3

⌉
+

⌈
−1

3

⌉
+

⌈
1

3

⌉
+

⌈
1

3

⌉
= `+ 5 + 0 + 1 + 0 + 0 + 1 + 1

= `+ 8.

Observation: In Case 1, we found that the Upper Bound (1) equals Upper Bound

(2) and both equal γ2 = `+
⌈
k
3

⌉
.

In Case 2, the Upper Bound (2) is better than the Upper Bound (1). This is an

example where equality fails. That is γ2 < `+
⌈
k
3

⌉
.
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In Case 3, the Upper Bound (1) is better than the Upper Bound (2). This is an

example where equality fails. Hence, γ2 < `+
⌈
k
3

⌉
.

From the cases above, we found out that in general neither of the upper bounds are

better than the other. Thus, both serve as a useful upper bound.

3.5 Upper Bounds for all Complete Caterpillars

In this section, we construct a congruence class of caterpillars in T for which we

conjecture that equality holds in Theorem 3.6. That is γ2 = `+
⌈
k
3

⌉
.

We let Cj = Pkj(1, 1, ..., 1). Let us consider the following congruence classes for T :

Class 1: Let |Cj| ≡ 0(mod 3) for 1 ≤ j ≤ r.

For P7(1, 1, 1, x4, 1, 1, 1), γ2(P7(1, 1, 1, x4, 1, 1, 1)) = `+ 2 ≤ `+
⌈
7
3

⌉
. So, equality fails

with x4 > 1.

Class 2: Let |Cj| ≡ 1(mod 3) for 1 ≤ j ≤ r.

For P3(1, x2, 1), γ2(P3(1, x2, 1)) = `+ 1 = `+
⌈
3
3

⌉
.

For P5(1, x2, 1, x4, 1), γ2(P5(1, x2, 1, x4, 1)) = `+ 2 = `+
⌈
5
3

⌉
.

For P7(1, x2, 1, x4, 1, x6, 1), γ2(P7(1, x2, 1, x4, 1, x6, 1)) = `+ 2 < `+
⌈
7
3

⌉
. So, equality

holds when k = 3, 5, but fails when k = 7 where xi > 1 for i = 2, 4, 6.

Class 3: Let |Cj| ≡ 2(mod 3) for 1 ≤ j ≤ r.

For P5(1, 1, x3, 1, 1), γ2(P5(1, 1, x3, 1, 1)) = `+ 2 = `+
⌈
5
3

⌉
.

For P8(1, 1, x3, 1, 1, x6, 1, 1),

γ2(P8(1, 1, x3, 1, 1, x6, 1, 1)) = `+ 3 = `+
⌈
8
3

⌉
.

For P11(1, 1, x3, 1, 1, x6, 1, 1, x9, 1, 1),

γ2(P11(1, 1, x3, 1, 1, x6, 1, 1, x9, 1, 1)) = `+ 4 = `+
⌈
11
3

⌉
.
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For P11(1, 1, 1, 1, 1, x6, 1, 1, 1, 1, 1),

γ2(P11(1, 1, 1, 1, 1, x6, 1, 1, 1, 1, 1)) = `+ 4 = `+
⌈
11
3

⌉
.

Thus, equality holds in the cases above.

Figure 16: A complete caterpillar P14(1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1).

In Figure 16, γ2(P14(1, 1, x3, 1, 1, x6, 1, 1, x9, 1, 1, x12, 1, 1)) = ` + 5 = ` +
⌈
14
3

⌉
,

where xi > 1 for i = 3, 6, 9, 12.

We also have other classes of T where equality fails when Cj = Pkj(1, 1, ..., 1) for

1 ≤ j ≤ k.

Class 4: Let |Cj| 6≡ |Cj+1|(mod 3) for 1 ≤ j ≤ r.

For P4(1, x2, 1, 1) ≡ P4(1, 1, x3, 1), γ2(P4(1, x2, 1, 1)) = `+ 2 = `+
⌈
4
3

⌉
.

For P6(1, 1, 1, x4, 1, 1) ≡ P6(1, 1, x3, 1, 1, 1),

γ2(P6(1, 1, 1, x4, 1, 1)) = `+ 2 = `+
⌈
6
3

⌉
.

For P13(1, x2, 1, 1, x5, 1, 1, 1, x9, 1, 1, 1, 1),

γ2(P13(1, x2, 1, 1, x5, 1, 1, 1, x9, 1, 1, 1, 1)) = `+ 5 = `+
⌈
13
3

⌉
.

For 1 ≤ j ≤ r, equality holds when |Cj| 6≡ |Cj+1|(mod 3) in the examples above but

fails for P26(1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1).

We calculate

γ2(P26(1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1)) = `+ 8

< `+

⌈
26

3

⌉
= `+ 9.
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Let Tc be the family of caterpillars in T satisfying the additional condition:

• |Cj| ≡ 2(mod 3) for 1 ≤ j ≤ r.

Conjecture 3.9. Let T be a caterpillar, Pk(x1, x2, ..., xk), with ` leaves. If T ∈ Tc then

γ2(T ) = `+
⌈
k
3

⌉
.

3.6 Upper Bounds for all General Caterpillars

In this section, we obtain an upper bound for the 2-domination number of general

caterpillars. We begin by dissecting a caterpillar C into subgraphs of the following

types

• Pk

• Pk(1, 1, 1, 1, ..., 1)

• Pk(x1, ..., xk), xi > 1.

Denote the first type subgraph by Pkj , the second type by C`, and the third type by

CCm. An example is given in Figure 17.

Figure 17: The caterpillar P18(1, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 2, 0, 1, 1, 1).

In Figure 17, the above caterpillar can be dissected into C1 = P3(1, 1, 1), C2 =

P2(1, 1), C3 = P3(1, 1, 1), Pk1 = P3, Pk2 = P3, Pk3 = P1, CC1 = P2(2, 2), and
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CC2 = P1(2). Thus,

γ2(P18(1, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 2, 0, 1, 1, 1)) = `+ 8

≤ `+
3∑

j=1

γ(Cj) +
3∑

j=1

γ2(Pkj).

Theorem 3.10. For a complete caterpillar, Pk(x1, x2, ..., xk), dissected as above we

have, γ2 ≤ `+
∑r

j=1 γ(Cj) +
∑r

j=1 γ2(Pkj).

Proof. Let D be a minimum 2-dominating set. First, all the leaves are in D. Next, we

dissect the caterpillar into C ′js, P
′
kj
s and CC ′js. Then, dominate each of the spines of

Cj and 2-dominate each of the paths Pkj . Hence, |D| ≤ `+
∑

j γ(Ci)+
∑

j γ2(Pki).

3.7 Caterpillars of Small Length

Our aim in this section is to determine the 2-domination number of caterpillars

with small length. Let us consider a caterpillar, Pk(x1, ..., xk) for 1 < k ≤ 5. The

following tables below give the 2-domination number of the caterpillars with a spine

of small length. In the tables below we consider the caterpillars up to isomorphism

and order them lexicographically in xi. Also, we always choose the isomorphism class

so that x1 ≥ xk. Furthermore, when we don’t specify the value of xi, we have xi > 1

for 1 ≤ i ≤ k.
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P2(x1, x2) γ2
(1,1) `+ 1

(x1,1) `+ 1
(x1,x2) `

Table 1: Caterpillars of length 2
P3(x1, x2, x3) γ2

(1,0,1) `+ 1
(1,1,1) `+ 1

(1,x2,1) `+ 1
(x1,0,1) `+ 1
(x1,1,1) `+ 1

(x1,1,x3) `+ 1
(x1,x2,1) `+ 1

(x1,x2,x3) `

Table 2: Caterpillars of length 3

P4(x1, x2, x3, x4) γ2
(1,0,0,1) `+ 2
(1,0,1,1) `+ 2

(1,0,x3,1) `+ 2
(1,1,1,1) `+ 2

(1,1,x3,1) `+ 2
(1,x2,x3,1) `+ 2
(x1,0,0,1) `+ 2

(x1,0,0,x4) `+ 2
(x1,0,1,1) `+ 2

(x1,0,1,x4) `+ 1

P4(x1, x2, x3, x4) γ2
(x1,0,x3,x4) `+ 1

(x1,1,0,1) `+ 1
(x1,1,1,1) `+ 1

(x1,1,1,x4) `+ 1
(x1,1,x3,1) `+ 1
(x1,x2,0,1) `+ 1
(x1,x2,1,1) `+ 1

(x1,x2,1,x4) `+ 1
(x1,x2,x3,1) `+ 1

(x1,x2,x3,x4) `

Table 3: Caterpillars of length 4
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P5(x1, x2, x3, x4, x5) γ2
(1,0,0,0,1) `+ 2
(1,0,0,1,1) `+ 2

(1,0,0,x4,1) `+ 2
(1,0,1,0,1) `+ 2
(1,0,1,1,1) `+ 2

(1,0,x3,1,1) `+ 2
(1,0,x3,x4,1) `+ 2

(1,1,0,1,1) `+ 2
(1,1,0,x4,1) `+ 2
(1,1,1,1,1) `+ 2

(1,1,1,x4,1) `+ 2
(1,1,x3,x4,1) `+ 2
(1,x2,0,x4,1) `+ 2
(1,x2,1,x4,1) `+ 2

(1,x2,x3,x4,1) `+ 2
(x1,0,0,0,1) `+ 2

(x1,0,0,0,x5) `+ 2
(x1,0,0,x4,1) `+ 2

(x1,0,0,x4,x5) `+ 2
(x1,0,1,0,x5) `+ 2

P5(x1, x2, x3, x4, x5) γ2
(x1,0,1,1,1) `+ 2

(x1,0,1,x4,1) `+ 2
(x1,0,x3,1,1) `+ 2
(x1,0,x3,0,1) `+ 2
(x1,1,0,0,1) `+ 2
(x1,1,1,1,1) `+ 2

(x1,1,1,1,x5) `+ 1
(x1,1,x3,0,1) `+ 2

(x1,1,x3,1,x5) `+ 1
(x1,x2,0,0,1) `+ 2
(x1,x2,0,1,1) `+ 2

(x1,x2,0,x4,x5) `+ 1
(x1,x2,1,1,1) `+ 1

(x1,x2,1,x4,x5) `+ 1
(x1,x2,x3,0,1) `+ 1

(x1,x2,x3,0,x5) `+ 1
(x1,x2,x3,1,1) `+ 1

(x1,x2,x3,1,x5) `+ 1
(x1,x2,x3,x4,1) `+ 1

(x1,x2,x3,x4,x5) `

Table 4: Caterpillars of length 5
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4 CONCLUDING REMARKS

After many cases were discussed and many different caterpillars were examined,

we obtained a general upper bound for the 2-domination number of caterpillars,

γ2(Pk(x1, ..., xk)) ≤ `+
⌈
k
3

⌉
. We discussed different cases of caterpillars with varying

number of leaves on the spine of caterpillars.

In Section 3.5, we conjectured that which equality holds for the family of caterpillars

Tc.

4.1 Open Problems

In this thesis, we have that for any caterpillar, γ2 ≤ `+
∑r

j=1 γ(Cj)+
∑r

j=1 γ2(Pkj).

• Can we characterize the caterpillar for which the bound is sharp?

• Can we determine the 2-domination number of caterpillars?
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