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ABSTRACT

Neighborhood-Restricted Achromatic Colorings of Graphs

by

James D. Chandler Sr.

A (closed) neighborhood-restricted [≤ 2]-coloring of a graph G is an assignment of

colors to the vertices of G such that no more than two colors are assigned in any

closed neighborhood. In other words, for every vertex v in G, the vertex v and its

neighbors are in at most two different color classes. The [≤ 2]-achromatic number

is defined as the maximum number of colors in any [≤ 2]-coloring of G. We study

the [≤ 2]-achromatic number. In particular, we improve a known upper bound and

characterize the extremal graphs for some other known bounds.
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1 INTRODUCTION

1.1 Introduction to Graph Theory

A graph G = (V,E) consists of a finite vertex set, V (G), and a finite edge set,

E(G). The order of a graph G, denoted n(G), is the number of vertices in G, and the

size of a graph G, denoted m(G), is the number of edges in G; that is, n(G) = |V (G)|

and m(G) = |E(G)|. If G is clear from the context, we generally use V , E, m, and n.

Two vertices u and v are adjacent if there is an edge in E, denoted uv ∈ E, connecting

u and v. We say that the vertices u, v ∈ V are incident with edge uv. Further, we

consider only simple graphs where the edges of G do not have a direction component

and there are no instances of multiple edges connecting the same two vertices u and

v. The complement of G, denoted G, is the graph with V (G) = V (G) where two

vertices are adjacent if and only if they are not adjacent in G. Thus, E
(

G
)

= E (G).

A Nordhaus-Gaddum type result is a result wherein there is an upper bound on the

sum or product of a parameter on G and G. For any v ∈ V , we denote the graph

formed by removing v and all of its incident edges by G− v.

For two vertices u, v ∈ V , a u-v walk W is a sequence of vertices in G, beginning

with u and ending with v, such that the consecutive vertices in W are adjacent in

G. A path is a walk in which no vertex is repeated. The distance d(u,v) between

two vertices u, v ∈ V is the minimum of the lengths of all u-v paths in G. The

maximum distance from v to the other vertices of G is called the eccentricity of

v, e(v); that is, e(v) = max{d(u, v)|u ∈ V }. The diameter of G, diam(G), is the

maximum eccentricity among all the vertices of G. A graph that has a u-v path for
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all u, v ∈ V is a connected graph.

For a vertex v ∈ V , the set N (v) = {u ∈ V | uv ∈ E} is called the open

neighborhood of v where N (v) is the set of all vertices adjacent to v in G. Each vertex

u ∈ N (v) is called a neighbor of v. The closed neighborhood of a vertex v, N [v], is the

set of all vertices adjacent to v and v itself. That is, N [v] = N (v) ∪ {v}. The open

neighborhood of a set S ⊆ V is N(S) =
⋃

v∈S N(v), and the closed neighborhood of a

set S ⊆ V is N [S] =
⋃

v∈S N [v]. The degree in G of a vertex v is degG (v) = |N (v) |;

if G is clear from the context then we use deg (v). A vertex v with deg (v) = 1 is

called a leaf. The neighbor of a leaf is called a support vertex; a support vertex with

more than one leaf neighbor is called a strong support vertex.

A path Pn is a graph with V = {v1, v2, ..., vn} and E = {vivi+1 | i = 1, 2, ..., n−1}.

A cycle Cn of order n ≥ 3 is a graph with V = {v1, v2, ..., vn} and E = {vivi+1 mod n |

i = 1, 2, ..., n}. A graph in which every two distinct vertices are adjacent is called a

complete graph Kn. A connected graph that contains no cycles is a tree T. A star

S1,n−1 is a tree with exactly one support vertex and n−1 leaves, that is, a star S1,n−1

is a tree with diameter 2. A double star Sr,s is a tree with diameter 3, that is, Sr,s

has two support vertices u, v ∈ V such that uv ∈ E and u has r leaf neighbors while

v has s leaf neighbors. The corona G ◦K1, denoted cor(G), is formed from a graph

G by attaching a new vertex v′ adjacent to v for each v ∈ V (G).

A set S ⊆ V is a dominating set of G if every vertex v ∈ V is adjacent to a

vertex in S. The minimum cardinality of all possible dominating sets of G is called

the domination number γ (G) of G. A set S ⊆ V is a 2-packing set of a graph G if for

every u, v ∈ S, d(u, v) ≥ 3. The 2-packing number, ρ(G), is the maximum cardinality
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of all such 2-packing sets. A dominating set with cardinality γ(G) is called a γ(G)-

set, and a 2-packing set with cardinality ρ(G) is called a ρ(G)-set. A dominating

set S of G is called an efficient dominating set if it is also a 2-packing of G. It was

shown by Bange et al. in [1] that if a graph G has an efficient dominating set S, then

|S| = γ(G).

A coloring of a graph G is a partitioning of the vertex set V into color classes.

A proper coloring of the vertices of a graph G assigns a color to each vertex of G

in such a way that no two adjacent vertices have the same color. The chromatic

number χ(G) is the minimum number of colors required in any proper coloring of G.

Similarly, a proper achromatic coloring of a graph G assigns colors to each vertex of

G such that for each color class Ci, N [Ci] contains representatives of every color class.

The maximum number of color classes in a proper achromatic partition of G is the

achromatic number of G, and is denoted ψ(G).

Let π = {V1, V2, . . . , Vk} be a partition of the vertices V of a graph G into distinct

color classes Vi. For ease of discussion, if the vertices of a set S are assigned colors,

then we say that S contains these assigned colors. Let degπ[v] = |{i : N [v]∩Vi 6= ∅}|;

that is, degπ[v] equals the number of different colors assigned to vertices in the closed

neighborhood of v by the partition π. A (neighborhood-restricted) [≤ k]-coloring of

G is a π partition of the vertices of G wherein degπ[v] ≤ k for all v ∈ V [5]; that is,

every closed neighborhood contains at most k different colors. Figure 1 is an example

of a [≤ k]-coloring. The [≤ k]-achromatic number ψ[≤k](G) is the maximum order

of a [≤ k]-coloring of G; that is, ψ[≤k](G) is the maximum number of colors in any

[≤ k]-coloring of G. If π is a [≤ k]-coloring of G with ψ[≤k](G) colors, then we say that
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π is a ψ[≤k](G)-coloring. Note that the trivial partition π = {V } is a [≤ k]-coloring

for every integer k ≥ 1, so ψ[≤k](G) ≥ 1 is defined for all graphs G and all positive

integers k.

1 2 2 3 3 4

Figure 1: Achromatic coloring of the graph P6

The main focus in this thesis is to consider the special case of [≤ k]-colorings

where k = 2. We develop a Nordhaus-Gaddum type result for ψ[≤2](G) and improve

upon a known upper bound for ψ[≤2](G). We further characterize all extremal trees

in terms of a previously established upper bound on ψ[≤2](G) in terms of n.
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2 LITERATURE SURVEY AND RELATED RESULTS

Bujtás, Sampathkumar, Tuza, Subramanya, and Dominic [3] considered 3-consecutive

C-colorings, which they defined to be a mapping φ : V (G) → N such that there exists

no 3-colored path in G. This restriction is equivalent to our restriction of the number

of distinct colors present in the closed neighborhood of a vertex v for the special case

where k = 2. They gave the following upper bound on ψ[≤2](G).

Theorem 2.1 [3] For any graph G = (V,E) of order n and minimum degree δ, we

have ψ[≤2](G) ≤
⌊

2n
δ+1

⌋

.

In a graph G = (V,E), a set S ⊂ V is a neighborhood set if ∪v∈S〈(N [v])〉 = G,

where 〈N(v)〉 is the subgraph induced by N [v], the closed neighborhood of v. The

neighborhood number of a graph G, denoted by n0(G), is the minimum cardinality of

a neighborhood set in G.

Theorem 2.2 [3] Let G be a connected graph. Then, ψ[≤2](G) ≤ n0(G)+1. Further,

for a tree T, ψ[≤2](T ) = n0(T ) + 1.

Theorem 2.3 [3] For any connected graph G, ψ[≤2](G) ≤ 2γ(G).

Theorem 2.4 [3] A connected graph G = (V,E) has a 3-consecutive C-coloring with

exactly three colors; that is, ψ[≤2](G) ≥ 3 if and only if its diameter is at least 3.

And finally, Bujtás et al. in [3] showed that determining whether a graph G has

ψ[≤2](G) = 3 or ψ[≤2](G) = 4 is solvable in polynomial time.

Bujtás, Sampathkumar, Tuza, Dominic, and Pushpalatha [2] considered the case

where the star subgraph for each vertex v contains at most k colors. This restriction
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is equivalent to our restriction on the number of colors present in N [v] for all v ∈ G,

k ∈ N.

Goddard and Xu [6] expanded on the work in [3], calling the colorings forbidden

rainbow colorings. A subgraph is said to be rainbow if under a given coloring, its

vertices receive distinct colors. A coloring having no rainbow subgraph F is called a

no-rainbow-F coloring [6]. In the particular case where F is a P3, a no-rainbow-P3

coloring is equivalent to a neighborhood-restricted [≤ 2]-achromatic coloring. More

generally, for F = K1,k, a no-rainbow-K1,k coloring is equivalent to a neighborhood-

restricted [≤ k] achromatic coloring. Goddard and Xu [6] defined the maximum

cardinality of a no-rainbow-F coloring of a graph G as the F -upper chromatic number

of G, denoted NRF (G). Thus, NRK1,k
(G) = ψ[≤k](G), and NRP3

(G) = ψ[≤2](G).

Goddard and Xu [6] gave the following bound on ψ[≤2](G) in terms of the diameter

of G and the order of G.

Theorem 2.5 [6] For any graph G, ψ[≤2](G) ≥ diam(G)
2

+ 1, and for any non-empty

graph G, ψ[≤2](G) ≥ ρ(G) + 1.

Theorem 2.6 [6] For a connected graph G of order n, ψ[≤2](G) ≤ bn/2c + 1.

Theorem 2.7 [6] For a connected graph G of order n, then ψ[≤2](cor(G)) = |n|+ 1.

To build on the previous complexity result in [3], Goddard and Xu [6] showed

that computing the P3-upper chromatic number of G is equivalent to computing the

packing number of G. Thus, computing NRP3
(G) is NP-hard.

13



3 MAIN RESULTS

3.1 Background and Aims

The following bounds in terms of diameter are known.

Observation 3.1 [5, 6] For any connected graph G with diameter diam(G),

(i) ψ[≤2](G) ≥ ddiam(G)/2e + 1, and

(ii) ψ[≤3](G) ≥ diam(G) + 1.

Theorem 3.2 [3] A nontrivial connected graph G has ψ[≤2](G) = 2 if and only if

diam(G) ≤ 2.

In Section 2, we consider the diameter of graphs and determine some Nordhaus-

Gaddum type results for ψ[≤2](G). Another lower bound in terms of the 2-packing

number is found in [6].

Theorem 3.3 [6] For a graph G, ψ[≤2](G) ≥ ρ(G) + 1.

The graphs attaining the bound of Theorem 3.3 were characterized in [5] as follows.

Theorem 3.4 [5] For any isolate-free graph G, ψ[≤2](G) ≥ ρ(G) + 1 with equality if

and only if G has a ψ[≤2](G)-coloring in which at least one color class dominates G.

The following upper bound on ψ[≤2](G) in terms of the domination number is

given in [3].

Theorem 3.5 [3] For any graph G, ψ[≤2](G) ≤ 2γ(G).

14



It is known [7] that the 2-packing number is a lower bound on the domination

number of any graph G, that is, ρ(G) ≤ γ(G). In this section, we will characterize

the graphs attaining the bound of Theorem 3.5 and improve the bound by showing

that, in fact, ψ[≤2](G) ≤ 2ρ(G). Hence, we have that ρ(G) + 1 ≤ ψ[≤2](G) ≤ 2ρ(G).

We show every value in this range can be achieved by trees.

An upper bound on ψ[≤2](G) in terms of the order n of a graph G was determined

by Goddard, et al. [6].

Theorem 3.6 [6] For a connected graph G of order n, ψ[≤2](G) ≤ b(n+ 2)/2c.

Figure 2 gives another example of a [≤ k]-coloring of the graph K4 ◦K1. Since

ρ(K4◦K1) = 4 and n = 8, Theorem 3.6 and Theorem 3.3 give that ψ[≤2](K4◦K1) = 5.

Thus, the coloring in Figure 2 is also a ψ[≤k](G)-coloring.

2 3
1 1

1 1
4 5

Figure 2: Achromatic coloring of the corona graph K4 ◦K1

In Section 3, we give a constructive characterization of the extremal trees for the

bound of Theorem 3.6. Finally, in Section 4, we close with some open problems.
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3.2 Diameter

First we obtain a bound on the [≤ 2]-achromatic number of G by considering the

diameter of its complement G. Note that the diameter of a disconnected graph G is

defined to be diam(G) = ∞.

Proposition 3.7 If G is a graph and diam(G) ≥ 3, then ψ[≤2](G) ≤ 3.

Proof. Since diam(G) ≥ 3, there exists two vertices, say u and v, in G that are at

least distance 3 apart. In G, u and v are adjacent and {u, v} dominates G. Let π be

any ψ[≤2](G)-coloring. If u and v are colored the same color, say c1, then any vertex

of N(u) can be colored at most one color different from c1 and likewise for any vertex

in N(v). Hence, ψ[≤2](G) ≤ 3. If u and v are colored different colors, say c1 and c2,

then every vertex of N(u)∪N(v) must be colored c1 or c2 as well. Thus, ψ[≤2](G) < 3.

2

Theorem 3.2 and Proposition 3.7 imply the following.

Corollary 3.8 If G is a nontrivial graph, then ψ[≤2](G) = 2 or ψ[≤2](G) ≤ 3.

Our next result establishes a limit on the number of color classes in any ψ[≤2](G)-

coloring that can be dominating sets.

Proposition 3.9 For any ψ[≤2](G)-coloring of a graph G, at most two color classes

are dominating sets of G. Furthermore, if two color classes dominate a connected

graph G, then ψ[≤2](G) = 2.

Proof. Clearly, if three color classes in any ψ[≤2](G)-coloring are dominating sets

of G, every vertex in G has a least three different colors in its closed neighborhood.

Thus, no ψ[≤2](G)-coloring has more than two color classes that dominate.

16



Assume that a ψ[≤2](G)-coloring has two dominating color classes, say V1 and

V2. Then each vertex in Vi has a neighbor in V3−i, implying that no vertex in Vi

for i ∈ {1, 2} has a neighbor in V \ (V1 ∪ V2). Since G is connected, it follows that

V \ (V1 ∪ V2) = ∅, and so {V1, V2} is a partition of V . Hence, ψ[≤2](G) = 2. 2

Proposition 3.9 and Theorem 3.2 imply that for a connected graphG with diam(G) ≥

3, a ψ[≤2](G)-coloring has at most one color class that dominates G.

Notice the operation of adding a new vertex and joining it to every vertex in an

existing graph H yields a new graph G with ψ[≤2](G) = 2. Thus, for any graph H

with ψ[≤2](H) ≥ 3, there exists a graph G having H as an induced subgraph and

ψ[≤2](G) = 2 < ψ[≤2](H). On the other hand, let H be a graph having diam(H) = 2.

By Theorem 3.2, ψ[≤2](H) = 2. Let u and v be vertices at distance 2 apart in H

and add a new vertex, say v′, and edge vv′, to form graph G. Then diam(G) ≥ 3,

and by Theorem 3.2, ψ[≤2](G) ≥ 3 > ψ[≤2](H). Hence, there is no inequality between

the [≤ 2]-achromatic number of a graph G and the [≤ 2]-achromatic number of an

induced subgraph of G.

The following Nordhaus-Gaddum type results are proved for general k in [2]. We

state the theorem for the special case of k = 2.

Theorem 3.10 [2] For a graph G of order n and its complement G, ψ[≤2](G) +

ψ[≤2](G) ≤ n+ 3.

We note that if G is non-trivial, and both G and G are connected, then an im-

proved Nordhaus-Gaddum type result follows directly from Theorem 3.6 and Corol-

lary 3.8:
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Corollary 3.11 If G is non-trivial, and G and G are connected graphs of order

n ≥ 2, then ψ[≤2](G) + ψ[≤2](G) ≤ b(n+ 2)/2c + 3.

3.3 2-Packing Number

First we characterize the graphs attaining the bound of Theorem 3.5.

Theorem 3.12 A graph G has ψ[≤2](G) = 2γ(G) if and only if every γ(G)-set S is

an efficient dominating set such that for every vertex v ∈ S, the following hold:

1. if u ∈ N(v), then u is distance 2 from at most one vertex in S \ {v}, and

2. there exists a vertex u ∈ N(v) such that d(u, x) ≥ 3 for every x ∈ V \N [v].

Proof. To characterize graphs attaining the bound of 2γ(G), assume that G is a

graph with ψ[≤2](G) = 2γ(G). Let S = {v1, v2, ..., vγ} be any γ(G)-set, and let π be

a ψ[≤2](G)-coloring. Since S dominates G and every vertex of S can have at most

two colors from π in its closed neighborhood, it follows that N [vi] contains exactly

two colors and these colors are not contained in V \ N [vi] for 1 ≤ i ≤ γ(G). Hence,

N [vi] ∩ N [vj] = ∅ for all vi, vj ∈ S for i 6= j. In other words, S is a 2-packing, and

so S is an efficient dominating set. Among the vertices in N(vi) colored different

from vi, select one, say ui. Since ui and vi are colored differently under π, every

neighbor of ui must be colored one of the two colors assigned to ui and vi, that is,

N [ui] ⊆ N [vi]. In particular, ui has no neighbor in V \N [vi]. To see that d(ui, x) ≥ 3

for all x ∈ V \ N [vi], note that if d(ui, x) = 2 for some vertex x ∈ V \ N [vi], then

the common neighbor of ui and x, say w, is in N(vi). But then N(w) contains three

different colors under π, a contradiction. Now suppose that some vertex, say y, in

18



N(vi) is adjacent to a vertex in N(vj) and a vertex in N(vk), where i, j, and k are

distinct. Then y has at least three colors in its closed neighborhood, a contradiction.

Hence, no vertex in N(vi) is at distance 2 from two or more vertices in S \ {vi} for

1 ≤ i ≤ γ(G).

For the sufficiency, assume that S = {v1, v2, ..., vk} is an efficient dominating set

of G. As proved in [1], |S| = k = γ(G) and S is a packing. Assume that S satisfies

the property of the theorem, that is, no vertex in N(vi) is distance 2 from two or

more vertices in S \ {vi} for 1 ≤ i ≤ γ(G), and for every vi ∈ S, there exists some

ui ∈ N(vi) such that d(ui, x) ≥ 3 for every x ∈ V \N [vi]. For 1 ≤ i ≤ k, select such a

ui for vi and assign the color i to the vertices in N [vi]\{ui} and the color i+k to the

vertex ui. Note that for 1 ≤ i ≤ k, N [vi] and N [ui] contain only the colors i and i+k.

We claim that every vertex in N(vi) \ {ui} also has at most two colors in its closed

neighborhood. To see this, assume that xi ∈ N(vi) \ {ui}. Clearly, if N [xi] ⊆ N [vi],

then N [xi] contains only the colors i and i + k and the claim holds. First assume

that xi is adjacent to ui. Since ui is at distance three or more from every vertex in

V \N [vi], it follows that xi has no neighbor in V \N [vi], that is, N [xi] ⊆ N [vi]. Next

assume that xi is not adjacent to ui. Thus, every vertex in N [xi] ∩ N [vi] is colored

i. If xi has no neighbor in V \ N [vi], then the claim holds. Thus, assume xi has a

neighbor wj ∈ N [vj] for some j 6= i. Since S is a packing and xi is at distance 2 from

at most one vertex in S \{vi}, it follows that N [xi] ⊆ (N [vi]\{ui})∪N(vj). Further,

by our choice of uj, we deduce that wj 6= uj. Therefore, every vertex in N [xi] is

colored either i or j, so N [xi] contains at most two colors. Hence, this coloring is a

[≤ 2]-coloring with order 2|S| = 2γ(G). 2
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1 1 2 2 2 3 3

4 5 6

Figure 3: The graph G3

For an example of a graph attaining the bound, consider the following graph Gk for

k ≥ 2 constructed as follows. Begin with the corona Pk ◦K1 and subdivide each edge

of the Pk exactly twice. See Figure 3 for an example of G3. Then γ(Gk) = k and the

set of support vertices forms a γ(Gk)-set. Let v1, v2, ..., vk denote the support vertices.

Coloring each vi and its non-leaf neighbors color i for 1 ≤ i ≤ k, and assigning color

k + i to the leaf neighbor of vi yields an ψ[≤2](G)-coloring with 2k = 2γ(G) colors.

Recall that as mentioned in the introduction, the 2-packing number ρ(G) is a

lower bound on the domination number γ(G) for any graph G. Next we improve the

upper bound of Theorem 3.5.

Theorem 3.13 For any graph G, ψ[≤2](G) ≤ 2ρ(G).

Proof. Let S be a ρ(G)-set and π be a ψ[≤2](G)-coloring. Suppose, to the contrary,

that ψ[≤2](G) ≥ 2ρ(G)+1. We note that the vertices of S contain at most ρ(G) colors

of π. Accordingly, there are at least ρ(G) + 1 color classes of π that do not contain a

vertex of S. Let V1, V2, . . . , Vk where k ≥ ρ(G) + 1 denote the color classes of π that

do not contain a vertex of S. We form a set A by selecting one vertex, say vi, from

each Vi, for 1 ≤ i ≤ k, as follows: if Vi ∩ N(S) 6= ∅, then let vi ∈ Vi ∩ N(S), else let

vi be an arbitrary vertex of Vi. Thus, |A| = k ≥ ρ(G) + 1.
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Note that since S is a maximum 2-packing, every vertex vi ∈ A is either in N(S)

or has a neighbor, say xi, in N(S). Let vi ∈ Vi and vj ∈ Vj be two arbitrary vertices

of A. To show that A is a packing, we show that d(vi, vj) ≥ 3. Let ci denote the color

of vertex vi for all vi ∈ A, and let c(u) denote the color of vertex u, for all u 6∈ A.

Since ci 6= cj and π is a ψ[≤2](G)-coloring, it follows that any common neighbor

x of vi and vj must be colored either ci or cj ; else N [x] would contain at least three

colors. We consider three cases:

Case 1. {vi, vj} ⊆ N(S). Let u ∈ N(vi) ∩ S and w ∈ N(vj) ∩ S. Since no vertex

of Vi is in S, we have that c(u) 6= ci. Thus, every vertex in N(vi) must be colored

either c(u) or ci. Similarly, every vertex in N(vj) is colored either cj or c(w). Since

cj 6∈ {ci, c(u)} and ci 6∈ {cj, c(w)}, it follows that vi and vj are not adjacent. Further,

if x is a common neighbor of vi and vj, then c(x) ∈ {ci, cj}. But ci 6∈ {cj , c(w)} and

cj 6∈ {ci, c(u)}, contradicting that x is a common neighbor of vi and vj. See Figure 4.

u

c(u)

w

c(w)

vi

ci

vj

cj

x

S:

N(S):

Figure 4: Theorem 3.13, Case 1

Case 2. Without loss of generality, vi ∈ N(S) and vj ∈ V \N [S]. Note that since

vj ∈ V \ N [S], by the manner in which we constructed set A, Vj ∩ N [S] = ∅, so no

vertex of N [S] is colored cj. Since vi ∈ N(S), there exists some vertex u ∈ S that
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is adjacent to vi and c(u) 6∈ {ci, cj}. Further, every vertex in N [vi] is assigned either

color ci or c(u) under π. Since cj 6∈ {ci, c(u)}, vi and vj are not adjacent. Moreover,

vj has neighbor xj in N(S) and cj 6= c(xj), implying that every vertex in N [vj] is

colored either cj or c(xj). Also note that c(xj) 6= ci, else the neighbor of xj in S must

be colored either ci or cj, a contradiction. Now ci 6∈ {cj , c(xj)} and cj 6∈ {ci, c(u)},

implying that vi and vj have no common neighbor, z. See Figure 5.

u

c(u)

vi

ci

xj

c(xj)

vj

cj

z

S:

N(S):

V \N [S]:

Figure 5: Theorem 3.13, Case 2

Case 3. Consider where {vi, vj} ⊆ V \N [S]. By our construction of A, no vertex

of N [S] can be colored ci or cj. Again, vi has a neighbor xi in N(S) and vj has a

neighbor xj in N(S). Since c(xi) 6= ci, every vertex of N [vi] is colored either ci or

c(xi). Similary, every vertex of N [vj] is colored either cj or c(xj). Again, vi and vj

are not adjacent, and since ci 6∈ {cj, c(xj)} and cj 6∈ {ci, c(xi)}, they have no common

neighbor, z. See Figure 6.

Therefore, in all three cases, d(vi, vj) ≥ 3. Thus, A is a 2-packing of G with

cardinality k ≥ ρ(G)+1, a contradiction. Hence, we conclude that ψ[≤2](G) ≤ 2ρ(G).

2
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u

c(u)

xi

c(xi)

xj

c(xj)

vj

cj

vi

ci

z

S:

N(S):

V \N [S]:

Figure 6: Theorem 3.13, Case 3

Together, Theorems 3.4 and 3.13 yield the following corollary.

Corollary 3.14 For any graph G, ρ(G) + 1 ≤ ψ[≤2](G) ≤ 2ρ(G).

We next show that trees exist with [≤ 2]-achromatic number for every value in

the range established by the bounds of Corollary 3.14.

Theorem 3.15 Let a and b be positive integers such that 1 ≤ a ≤ b. There exists a

tree T such that ρ(T ) = b and ψ[≤2](T ) = a+ b.

Proof. Let a and b be positive integers such that 1 ≤ a ≤ b. Let T be the tree

obtained from a P3a = v1, v2, ..., v3a by adding a leaf vertex bi to each vi where

i ≡ 2 (mod 3) and attaching b − a copies of P2 attached to v3a. See Figure 7 for an

example where a = 2 and b = 5. It is straightforward to see that ρ(T ) = b. Let π

be an ψ[≤2](T )-coloring. Let B be the set of leaves labeled bi. Note that N [vi] can

contain at most two colors of π for each i where i ≡ 2 (mod 3). Thus, at most 2a

colors can be used on the vertices in {v1, v2, ..., v3a}∪B. For the added P2’s adjacent

to v3a, at most b− a new colors are possible. Hence, ψ[≤2](T ) ≤ 2a + b− a = a + b.
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Consider the [≤ 2]-coloring of T where the vertices of the P3a are colored se-

quentially as follows 111222...aaa, the vertices of B are colored a + 1 to 2a, and the

remaining vertices in the N(v3a) are colored a while their adjacent leaves are colored

b− a new distinct colors. See Figure 7. This coloring has a+ a+ b− a = a+ b colors,

implying that ψ[≤2](T ) ≥ a+ b, and so, ψ[≤2](T ) = a+ b. 2

1 1 1 2 2 2

3 4

2 22

65 7

Figure 7: The tree T where a = 2 and b = 5

3.4 Extremal Trees for Theorem 3.6

In this section, we characterize the trees attaining the upper bound of Theorem 3.6.

We say that two vertex sets S, T ∈ V (G) are adjacent if there exists vertices s ∈ S

and t ∈ T such that st ∈ E(G). We first give two lemmas. We say that a vertex v

is a monochromatic vertex under a coloring π if every vertex in N [v] is in the same

color class of π.

Lemma 3.16 A graph G of order n for which ψ[≤2](G) = b(n + 2)/2c has at most

one monochromatic vertex in any ψ[≤2](G)-coloring.

Proof. Suppose to the contrary that there exists some graph G of order n where

ψ[≤2](G) = b(n+ 2)/2c and G has a ψ[≤2](G)-coloring π with monochromatic vertices
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v1

G

v2 v1′

c1

v1

G

v2 v2′

c2

Figure 8: Consequences of having two monochromatic vertices

v1 and v2. We build the graph G′ from G by adding vertices v′1 and v′2 and edges v1v
′
1

and v2v
′
2. Then the coloring π for the vertices of G along with a new color each for

v′1 and v′2 yields a [≤ 2]-coloring of G′ with ψ[≤2](G) + 2 = b(n+ 2)/2c+2 colors. See

Figure 8. Thus, G′ has order n+2 and ψ[≤2](G
′) ≥ b(n+2)/2c+2 > b((n+2)+2))/2c,

contradicting Theorem 3.6. 2

Lemma 3.17 A tree T of order n with ψ[≤2](T ) = b(n+2)/2c has at most one strong

support vertex and that vertex supports exactly two leaves.

Proof. Assume to the contrary that there exists some tree T of order n for which

ψ[≤2](T ) = b(n+2)/2c, and T has either two strong support vertices or some support

vertex adjacent to at least 3 leaves. Let π be a ψ[≤2](T )-coloring.

Case 1. T has two or more strong support vertices, say v1 and v2. Let vi,1 and vi,2

be two leaf vertices adjacent to vi for i ∈ {1, 2}. By Lemma 3.16, we have that T has at

most one monochromatic vertex under π. If a support vertex is monochromatic, then

the adjacent leaves are also monochromatic, so neither v1 nor v2 is monochromatic.

Moreover, at most one of their adjacent leaves is monochromatic. Hence, we may

assume, without loss of generality, that each of v1,2, v2,1, and v2,2 has at least two

colors in their neighborhoods. This implies that v2 is a different color from each of
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c1
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T ′

v2

v2,2

c2

v2,1

c2

T

v
c1

v1

v2

c2

v3

c2

Figure 9: Consequences of strong support

v2,1 and v2,2. Thus, v2,1 and v2,2 are in the same color class. Also, v1 and v1,2 are in

different color classes in π, and v1,1 is in the same color class as either v1 or v1,2.

We now build T ′ from T by removing the two leaves, v1,1 and v2,1. See Figure 9.

Let π′ be the restriction of π on T ′. Note that π′ is an [≤ 2]-coloring of T ′. Since v1,1

is in the same color class as either v1 or v1,2, that color class is still represented in π′.

Similarly, v2,1 and v2,2 are in the same color class in π, so that color class is also present

in π′. Thus, |π′| = |π| = ψ[≤2](T ). Hence, ψ[≤2](T
′) ≥ |π′| = ψ[≤2](T ) = b(n + 2)/2c.

However, by Theorem 3.6, we have ψ[≤2](T
′) ≤ b[(n + 2) − 2]/2c = bn/2c < b(n +

2)/2c = ψ[≤2](T ), which is a contradiction. Thus, T does not have two or more strong

support vertices.

Case 2. Let T have a unique strong support vertex v with at least three leaf

neighbors, say v1, v2, and v3. By Lemma 3.16, at most one of v1, v2, and v3 is

monochromatic. Without loss of generality, assume that at least v2 and v3 are not

monochromatic. Hence, under π, v is in a different color class than v2 and v3, implying

that v2 and v3 are in the same color class. Moreover, v1 is either in the same color

class as v or the same color class as v2 and v3.
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Now we will construct T ′ from T by removing v1 and v2. See Figure 9. Let π′ be

π restricted to T ′. Since v1 is in the same color class under π as either v or v3, that

color class is still represented in π′. Similarly, v2 and v3 are in the same color class,

so that color class is also present in π′. Thus, ψ[≤2](T
′) ≥ |π′| = |π| = ψ[≤2](T ) =

b(n+2)/2c. As before, ψ[≤2](T
′) ≤ b[(n−2)+2]/2 < b(n+2)/2c = ψ[≤2](T ), yielding

the contradiction. Therefore, if T has a strong support vertex, then it is adjacent to

exactly two leaves. 2

Definition. Let f(T, v) be the function where v is a vertex of T and we add a P2

with vertices va and vb to T via edge vva. Let F be the smallest family of graphs

such that: F contains K1 and K2, and is closed under f .

Theorem 3.18 The family F is precisely the family of trees for which ψ[≤2](T ) =

b(n+ 2)/2c.

Proof. Note that K1 and K2 can trivially be colored with one and two colors,

respectively, and ψ[≤2](K1) = 1 = b(1 + 2)/2c and ψ[≤2](K2) = 2 = b(2 + 2)/2c. To

show that every tree in F satisfies the equality, we proceed by induction. Assume T

is a tree of order n in F with ψ[≤2](T ) = b(n + 2)/2c. Let π be a ψ[≤2](T )-coloring,

and let v be an arbitrary vertex of T . Form T ′ from T by applying f(T, v), that

is, adding a P2 with vertices va and vb to T via edge vva. Then T ′ is in F and T ′

has order n′ = n + 2. Let va be in the same color class as v under π, and let vb

be in some new color class, say Cvb
. This produces a [≤ 2]-coloring for T ′ having

ψ[≤2](T ) + 1 colors, so ψ[≤2](T
′) ≥ ψ[≤2](T ) + 1. See Figure 10. By Theorem 3.6,

ψ[≤2](T
′) ≤ b(n+ 4)/2c = b(n+ 2)/2c + 1 = ψ[≤2](T ) + 1, implying that ψ[≤2](T

′) =

27



G

v

va vb

Figure 10: Tree characterization, Part 1

b((n+ 2) + 2)/2c. Thus, f clearly preserves trees having ψ[≤2](T ) = b(n+ 2)/2c, and

every tree in F has ψ[≤2](T ) = b(n+ 2)/2c.

To show that every tree that has ψ[≤2](T ) = b(n + 2)/2c is in F , we proceed by

induction on the order of T . Since K1 and K2 are in F , and f(K1, v) = P3 (with

ψ[≤2](P3) = b(3 + 2)/2c = 2), let T be a tree of order at least 4 with ψ[≤2](T ) =

b(n+ 2)/2c.

By Theorem 3.2, ψ[≤2](G) = 2 < b(n + 2)/2c for any star of order n ≥ 4. Hence,

we may assume that T is not a star, that is, diam(T ) ≥ 3. Assume that any smaller

tree for which ψ[≤2](T ) = b(n+ 2)/2c is in F . We next identify a set P of vertices in

T that can be pruned to leave a tree Tp with ψ[≤2](Tp) = b(n(Tp) + 2)/2c, and show

that f(Tp, v) = T .

Choose a diametral path in T , labeling the vertices of this path as v1, v2, ..., vk. If

v2 is a strong support vertex, then from Lemma 3.17, it is the only such vertex. In this

case, relabel the diametral path with v1 = vk, v2 = vk−1, ..., vk−1 = v2, vk = v1. We

now observe that the degree of v2 is 2, because v2 has only v1 as a leaf neighbor since

it is not a strong support vertex and any neighbor other than v3 would contradict our

choice of a diametral path. Since T has at most one monochromatic neighborhood,
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Figure 11: Tree characterization, Part 2

v2 is not monochromatic. Thus, either v1 and v2 are in the same color class, or one

of {v1, v2} is in the same color class as v3.

Let P = {v1, v2}. Then T −P is a tree, say Tp, with order n− 2. In removing set

P , we have removed exactly two vertices and at most one color class from a coloring

of T , since either v1 and v2 are in the same color class or v3 is a representative of

the color class of either v1 or v2. If removing set P did not remove at least one color

class, then ψ[≤2](Tp) ≥ ψ[≤2](T ) = b(n + 2)/2c. But ψ[≤2](Tp) ≤ b((n − 2) + 2)/2c =

bn/2c < b(n + 2)/2c. Thus, removing P removed exactly one color class from T , so

Tp can be colored with ψ[≤2](T ) − 1 colors, implying that ψ[≤2](Tp) ≥ ψ[≤2](T ) − 1 =

b(n+2)/2c−1 = bn/2c. Since ψ[≤2](Tp) ≤ b((n−2)+2)/2c = bn/2c, by Theorem 3.6,

ψ[≤2](Tp) = bn/2c = b(n(Tp) + 2)/2c. See Figure 11.

Now clearly T ∈ F , since f(Tp, v3) = T , with va = v2 and vb = v1. 2

29



4 CONCLUDING REMARKS

For future study, we are interested in characterizing the connected graphs G at-

taining ψ[≤2](G) = ddiam(G)/2e + 1, and characterizing the graphs G attaining

ψ[≤2](G) = 2ρ(G). We are also interested in determining bounds on ψ[≤k](G) in

terms of ρ(G) for other values of k. And finally, we are interested in studying [≥ k]

chromatic colorings wherein we require at least k colors to be present in each closed

neighborhood.

30



BIBLIOGRAPHY

[1] D. W. Bange, A. E. Barkauskas, and P. J. Slater. Efficient dominating sets in

graphs. In R.D. Ringeisen and F. S. Roberts, editors. Applications of Discrete

Mathematics, pages 189-199. SIAM, Philadelphia, PA, 1988.

[2] Cs. Bujtás, E. Sampathkumar, Zs. Tuza, C. Dominic, and L. Pushpalatha. Vertex

coloring without large polychromatic stars. Discrete Math. 312:2102-2108, 2012.

[3] Cs. Bujtás, E. Sampathkumar, Zs. Tuza, M. S. Subramanya, and C. Dominic.

3-consecutive C-colorings of graphs. Discuss. Math. Graph Theory 30:393-405,

2010.

[4] J. D. Chandler, W. J. Desormeaux, T. W. Haynes, S. M. Hedetniemi, and S. T.

Hedetniemi. Neighborhood-restricted [≤ 2]-achromatic colorings. Discrete Appl.

Math. (2016), 10.1016/j.dam.2016.02.023.

[5] W. J. Desormeaux, T. W. Haynes, S. M. Hedetniemi, and S. T. Hedetniemi.

Neighborhood-restricted colorings of graphs. Submitted.

[6] W. Goddard and H. Xu. Vertex colorings without rainbow subgraphs. Manuscript,

2015.

[7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination

in Graphs, Marcel Dekker, Inc. New York, 1998.

[8] V. I. Voloshin. On the upper chromatic number of a hypergraph. Australas. J.

Combin. 11:25–45, 1995.

31



VITA

JAMES DUSTIN CHANDLER

Education: A.S. Mathematics, Walters State Community College

Morristown, Tennessee 2012

B.S. Mathematics, East Tennessee State University

Johnson City, Tennessee 2014

M.S. Mathematics, East Tennessee State University

Johnson City, Tennessee 2016

Professional Experience: Children’s Program Instructor, WSCC

Morristown, Tennessee, 2012–present

Math and Physics Tutor, Administrative GA, ETSU

Johnson City, Tennessee, 2012–present

Graduate Fellow, Northside Elementary School

Johnson City, Tennessee, 2014-2015

Graduate Teaching Assistant, ETSU

Johnson City, Tennessee, 2015–present

Publications: J. D. Chandler, W. J. Desormeaux, T. W. Haynes,

S. M. Hedetniemi, and S. T. Hedetniemi.

Neighborhood-restricted [≤ 2]-Achromatic

Colorings. Discrete Applied Mathematics (2016),

10.1016/j.dam.2016.02.023.

32


	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2016

	Neighborhood-Restricted Achromatic Colorings of Graphs
	James D. Chandler Sr.
	Recommended Citation


	achromatic-thesis-GS-corrections.DVI

