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Photodetachment of a model molecular system by an elliptically polarized field

M.V. Frolova , N.L. Manakova , S.S. Marmoa and Anthony F. Staraceb∗

aDepartment of Physics, Voronezh State University, Voronezh, Russia; bDepartment of Physics and Astronomy, The University of
Nebraska, Lincoln, NE, USA

(Received 25 March 2015; accepted 22 April 2015)

The differential cross section for one-photon molecular detachment by an elliptically polarized field is analyzed for a
one-electron molecular model comprised of an electron in the field of two (generally nonequivalent) attractive zero-range
potentials (ZRPs) separated by the distance R. A phenomenological parametrization of the photodetachment cross section
for a fixed-in-space molecular system in terms of two scalar dynamical parameters is presented and circular dichroism
effects are discussed. Analytic results for the dynamical molecular parameters within the ZRP molecular model are
used to analyze interference phenomena (including two-center interference) and dichroic effects in the detached electron
angular distributions and their dependence on the interatomic distance R and on the orientation of the molecular axis
with respect to the polarization plane. Numerical ZRP results for angular distributions are presented for both symmetric
and asymmetric molecules in an elliptically polarized field.

Keywords: photodetachment; diatomic molecule; elliptical polarization; photoelectron angular distribution; circular
dichroism; theoretical model

1. Introduction

The great progress of attosecond science in producing short
wavelength pulses of attosecond durations represents a ma-
jor advance for the study of electronic dynamics in atomic
and molecular systems [1–4]. In particular, nonlinear atto-
second physics holds great promise for both scientific
investigations and for technological applications owing to
the possibility of studying and using nonlinear effects in a
new range of frequencies. At present, however, the intensi-
ties of attosecond pulses are sufficiently low that perturba-
tion theory represents an appropriate approach for analyzing
their interactions with atoms and molecules. Thus, attosec-
ond pulse photoionization can be described by a transition
matrix element given by first-order perturbation theory that
is similar to that for photoionization in a monochromatic
field [5]. In contrast to photoionization by a monochromatic
field, however, the large bandwidth of a very short laser
pulse ensures a wide range of ionized electron energies in
the final state. This large range of final state photoelec-
tron energies upon ionization by a short attosecond pulse
provides an opportunity to observe the interference of the
first- and second-order transition amplitudes of perturba-
tion theory in attosecond photoionization of atoms [5]. In
photoionization of molecules by attosecond pulses [6–8]
as well as by X-rays [9,10], the short wavelength of the
radiation has led to novel interference phenomena in the
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photoelectron angular distributions. For sufficiently short
wavelengths, the photoelectron acquires large momentum,
making it possible to observe Young-type double-slit inter-
ference fringes in the photoionization spectra of molecules
[6–10], as proposed by Fano and Cohen [11] and by Kaplan
and Markin [12]. More recently [13], this type of inter-
ference was observed in partial ionization cross sections,
which correspond to the ionization of a molecular electron
with a fixed angular momentum in the continuum. These
measurements provide access to molecular data that is un-
available in measurements of total (angle-integrated) cross
sections, such as, e.g. differences between photoionization
of “gerade” and “ungerade” states.

Photoionization cross sections corresponding to the pro-
duction of photoelectrons with large momenta are necessary
also for the control of both laser-induced and laser-assisted
strong field processes, such as, e.g. high-order harmonic
generation (HHG) and laser-assisted electron recombina-
tion and bremsstrahlung processes. This control is based
upon the relationship between the photorecombination cross
section and that for photoionization by means of the princi-
ple of detailed balance. The photorecombination cross sec-
tion enters the probability of the aforementioned strong field
processes as an atomic or molecular factor, which describes
the features of the atomic or molecular dynamics in strong
field phenomena (see, e.g. Refs. [14–16] for HHG, Refs.
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[17,18] for recombination, and Ref. [19] for bremsstrahlung).
Based on this factorized dependence of the probability of
a strong field process on the target’s photorecombination
cross section, a new spectroscopic method has been de-
veloped: HHG-based spectroscopy of atoms [20,21] and
molecules [22–32]. In particular, any occurrence of double-
slit interference fringes in the photoionization cross section
of a molecule is manifested by corresponding oscillation
features in that molecule’s HHG spectrum (see, e.g. Refs.
[23,28,30]). Many-electron and multichannel dynamical ef-
fects in molecular photoionization are also being revealed
in molecular HHG spectra [33–39].

Owing to this obvious importance of molecular photoion-
ization cross sections to both attosecond and strong field
molecular physics, different theoretical approaches have
been developed recently for the calculation of molecular
photoionization cross sections. Most are based on numer-
ical solution of the Schrödinger equation [6–8,10,40–45]
(see also the recent review [46]), which can provide pre-
cise values of cross sections for simple molecular systems.
The applications of these methods include calculations of
attosecond pulse photoionization of molecules with analy-
ses of the angular and momentum distributions as well as
calculations of ordinary one-photon ionization of molecular
systems with subsequent analysis of double-slit interfer-
ence fringes in the momentum distributions. The qualitative
description of interference fringes in molecular photoion-
ization spectra is based on the simple picture of the atomic
centers of a molecular system as coherent emitters of elec-
tronic waves [47]. Within this picture, ionization of an elec-
tron (whose initial wave function extends over all molecular
centers) by a high-frequency photon results in electronic
outgoing waves from all molecular centers. These waves
interfere and thereby form interference fringes. Although
this picture is oversimplified (since it does not take into ac-
count any dynamical effects involving the molecular core),
it nevertheless gives reasonable agreement with numeri-
cal and experimental results. For nonsymmetric diatomic
molecules, however, this “two-emitters” mechanism cannot
be employed to describe interference fringes because in this
case the electron wave function is mostly localized on one
center. Thus the “intensity” of matter waves from one of the
two emitters is strongly suppressed with respect to that from
the other [9]. The second (less intense) center plays in this
case the role of a reflector, i.e. a source of a secondary wave.
This secondary wave and the initially emitted spherical
wave interfere and exhibit interference fringes [9,48]. These
two mechanisms leading to interference fringes cannot be
distinguished in numerical simulations, but they are treated
explicitly in the two zero-range potential (ZRP) molecular
model [48,49].

Owing to the significant dependence of HHG on the
driving laser ellipticity, applications of HHG-based spec-
troscopy have stimulated investigations of photoionization
by an elliptically polarized laser field. For this case, in

contrast to atomic photoionization, the angular distribution
of molecular photoelectrons depends on the sign of the laser
ellipticity [42,44]. These dichroic effects in the molecular
photoionization are yet not well studied. However, they
provide an additional means to control molecular dynamics,
since their magnitude is determined by an unusual kind of
interference, i.e. that between the real and imaginary (or the
Hermitian and non-Hermitian) parts of the photoionization
amplitude [50]. Note that such dichroic effects disappear
upon averaging the molecular photoionization cross section
over the direction of the molecular axis. They also disappear
in the plane-wave approximation (in which case the pho-
toionization amplitude is Hermitian). It may be expected
that dichroic effects also modify interference phenomena
(including two-center interference). However, this problem
has apparently never been investigated as far as we are
aware.

Clearly, in contrast to the atomic case, both aforemen-
tioned specific interference and polarization phenomena in
photoionization of a diatomic molecule originate predomi-
nantly from the two-center nature of the molecular potential.
Thus these phenomena can be qualitatively explained by
analyzing the amplitude for molecular photoionization (or
photodetachment) for the simplest molecular model, that
of an electron bound in the field of two spatially-separated
attractive atomic centers subjected to an elliptically polar-
ized, monochromatic (for simplicity) electric field. A more
detailed modeling of the atomic center potentials would be
required to analyze the role of molecular dynamics on the
interference and polarization phenomena that we analyze
here.

This paper is organized as follows. In Section 2 we
present a general phenomenological parametrization of the
amplitude and cross section for one-photon ionization/
detachment of a fixed-in-space diatomic molecular system
by an elliptically polarized field. This parametrization in-
volves a geometrical factor, given in terms of scalar products
of the vectors of the problem, and two scalar dynamical pa-
rameters. In Section 3 we present our results for the simplest
dynamical model of a molecule, i.e. one in which the poten-
tials of the two atomic centers are described by (generally,
non-equivalent) zero-range (or δ-function) potentials [48].
In Section 3.1 we describe this molecular model system
briefly, and present explicit expressions for the dynami-
cal parameters appearing in our general parametrization in
Section 2. We then give detailed discussions of interfer-
ence phenomena and dichroic effects in the photoelectron
angular distributions for both symmetric (Section 3.2) and
asymmetric (Section 3.3) molecular systems in an ellipti-
cally polarized field. We also present the dependence of
these angular distributions on both the interatomic distance
R and on the orientation of the molecular axis with respect
to the polarization plane. For all cases, numerical ZRP res-
ults for the angular distributions are also presented. In
Section 4 we summarize our results and present some
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conclusions. Finally, in Appendix 1 we present some
details of the analytic evaluation of the photodetachment
amplitudes for our ZRP molecular model. Throughout this
manuscript we employ atomic units (me = e = � = 1).

2. Phenomenological parametrization of the molecular
photodetachment cross section in an elliptically polar-
ized field

We consider here a very general model of a diatomic
molecule comprised of an electron in the field of two attrac-
tive potentials separated by the vector R, which is a param-
eter of the problem, without specification of any explicit
form for the potentials. For simplicity, we only consider
molecules in which the electron is in a � orbital. Within
the electric dipole approximation, the one-photon detach-
ment cross section for this case is determined by the scalar
amplitude A:

dσ

d�
= 4π2 p

cω
|A|2, (1)

A = 〈
ψ(−)p

∣∣(e · p̂)
∣∣ψb

〉
, (2)

where ψ(−)p is a continuum state with asymptotic ingoing
spherical waves, ψb is the initial bound state with energy
Eb, ω is the frequency of the laser field (so that p2/2 =
Eb + ω), and e is its polarization vector. For the general
case of an elliptic polarization, we parameterize the complex
polarization vector e (e · e∗ = 1) in the form:

e = ε̂ + iη[κ̂ × ε̂]√
1 + η2

, −1 ≤ η ≤ 1, (3)

where η is the ellipticity of the field, and the unit vectors ε̂

and κ̂ × ε̂ are the directions of the major and minor axes of
the polarization ellipse, where κ̂ is the propagation direction
of the laser field. The amplitude A depends linearly on the
polarization vector e and must be a scalar. Thus its general
form in terms of the other vectors of the problem, R and p,
can be presented as a superposition of two terms:

A = Ap(e · p)+ AR(e · R), (4)

where the polarization-independent parameters Ap ≡
Ap(ω, R, p) and AR ≡ AR(ω, R, p) depend on the photon
energy and on scalar products of the vectors R and p.
Therefore these parameters are unchanged upon substitut-
ing R → −R and p → − p.

Substituting (4) into (1), we obtain the following general
form for the differential cross section:

dσ

d�
= 4π2 p

cω

[
|Ap|2|e · p|2 + |AR |2|e · R|2

+ 2Re
[

A∗
p AR

]
Re

[
(e∗ · p)(e · R)

]
− 2Im

[
A∗

p AR

]
Im

[
(e∗ · p)(e · R)

]]
. (5)

The scalar products in (5) can be expressed in terms of the
linear (
) and circular (ξ ) polarization degrees of the photon

(which satisfy 
2 + ξ2 = 1):


 = 1 − η2

1 + η2
= e ·e = e∗ ·e∗, ξ = 2η

1 + η2
= i κ̂ ·[e∗×e].

(6)
Using Equations (3) and (6), we can re-write three of the
polarization factors in (5) as:

|e · p|2 = 
(ε̂ · p)2 + 1 − 


2
[κ̂ × p]2, (7a)

Re{(e∗ · p)(e · R)}
= 
(ε̂ · p)(ε̂ · R)+ 1 − 


2
[κ̂ × p] · [κ̂ × R], (7b)

Im{(e∗ · p)(e · R)} = 1

2
ξ(κ̂ · [ p × R]). (7c)

Equation (7c) shows that the last term in (5) differs for
ξ = ±|ξ |, and thus describes a circular dichroism effect (i.e.
the difference between the angular distributions of photo-
electrons for opposite helicities of the elliptically polarized
photon). This dichroism effect originates from the interfer-
ence between the real and imaginary parts of the parameters
Ap and AR [50].

An alternative parametrization of the differential cross
section (1) can now be obtained by introducing the cross
sections for linearly polarized fields along the major and
minor axes of the actual laser field [44]. Indeed, introducing
the unit vector ε̂ ≡ [ε̂ × κ̂] for the direction of the minor
axis of the polarization ellipse and using Equations (5) and
(7), the photodetachment cross section can be presented as:

dσ

d�
= 1 + 


2

dσ (ε̂)lin

d�
+ 1 − 


2

dσ (ε̂)lin

d�
+ ξ

dσCD

d�
, (8)

where the differential photodetachment cross section
dσ (n)lin /d� for a linearly polarized field with polarization
vector n follows from (5) upon making the substitution
e = n,

dσ (n)lin

d�
= 4π2 p

cω

{
|Ap|2(n · p)2 + |AR |2(n · R)2

+ 2Re
[

A∗
p AR

]
(n · p)(n · R)

}
, (9)

and the explicit form for the dichroic cross section dσCD/d�
follows from Equations (5) and (7c):

dσCD

d�
= 4π2 p

cω
Im

[
Ap A∗

R

]
(κ̂ · [ p × R]). (10)

Note that the general parametrization of the one-photon
ionization cross section in [44] was presented in a slightly
different (but equivalent) form from that in (8) (see Equation
(19) in [44]):

dσ

d�
= dσ0

d�
+ 


dσl

d�
+ ξ

dσCD

d�
, (11)
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Figure 1. Geometry for the description of one-photon ioniza-
tion/detachment of a fixed-in-space molecule by an elliptically
polarized field.

where

dσ0

d�
= 1

2

(
dσ (ε̂)lin

d�
+ dσ (ε̂)lin

d�

)
,

dσl

d�
= 1

2

(
dσ (ε̂)lin

d�
− dσ (ε̂)lin

d�

)
.

These general results for the photoelectron angular distri-
bution simplify in particular cases. For the “perpendicular”
geometry (in which the molecular axis R is perpendicular
to the polarization plane), we have (ε̂ · R) = 0, (ε̂ · R) = 0,
and (κ̂ · [ p × R]) = 0, so that the angular distribution is
described by only a single invariant parameter:

dσ

d�
= 2π2 p3

cω
|Ap|2 sin2 θ(1 + 
 cos 2φ), (12)

where θ is the angle between R and p, and φ is the angle
between ε̂ and the projection of p onto the polarization plane
(see Figure 1). (Note that in the perpendicular geometry,
θ = �.) The angular distribution also has a simple form if
both R and p lie in the polarization plane of a circularly
polarized field (i.e. ξ = ±1):

dσ

d�
= 2π2 p

cω

{
|Ap|2 p2 + |AR |2 R2

+ 2Re
[

A∗
p ARe−iξθ

]}
. (13)

The dichroic term dσCD/d� in Equation (8) causes a
difference in the photodetachment cross sections for ellipti-
cally polarized fields with opposite handedness, ξ = ±|ξ |:

�C D = dσ(ξ)

d�
− dσ(−ξ)

d�

= ξ
8π2 p

cω
Im [Ap A∗

R](κ̂ · [ p × R]). (14)

This difference is largest for circularly polarized fields and
for a geometry in which both the momentum p of the

detached electron and the molecular axis R lie in the polar-
ization plane. It should be emphasized that the dynamic part
of the dichroic term is given by the imaginary part of the
product Ap and A∗

R , so that the dichroism effect disappears
in the plane-wave approximation (when the final continuum

state
∣∣∣ψ(−)p

〉
is approximated by a plane wave). Indeed, in

the plane-wave approximation, the transition matrix ele-
ment (2) is Hermitian and the product Ap A∗

R is real. The
dichroism term also disappears either upon integration over
all directions of the vector p or over all directions of the
vector R (i.e. for randomly-oriented molecules).

Since the dichroic term (10) disappears after integration
over all directions of the momentum p of the detached
electron, the total photodetachment cross section (8) for an
elliptically polarized field can be expressed in terms of the
total detachment cross sections for two orthogonal linear
polarizations:

σ = 1 + 


2
σ
(ε̂)
lin + 1 − 


2
σ
(ε̂)
lin . (15)

The angle-integrated cross section σ (n)lin can be parameter-
ized in terms of components perpendicular (σ⊥) and parallel(
σ||
)

to the molecular axis R [40]:

σ
(n)
lin = σ⊥ + (

σ|| − σ⊥
) (

n · R̂
)2
, R̂ = R/R. (16)

Thus only two independent dynamical parameters are
needed for a complete description of the angle-integrated
detachment cross section for the case of an elliptically po-
larized field, while four dynamical parameters are required
for the description of the angle-resolved cross section in
Equation (5). The total cross section (15) can also be pa-
rameterized in terms of σ⊥ and σ|| by introducing the angles
α and β, where cosα ≡ ε̂ · R̂ and cosβ ≡ ε̂ · R̂:

σ = 1 + 


2

(
σ|| cos2 α + σ⊥ sin2 α

)
+ 1 − 


2

(
σ|| cos2 β + σ⊥ sin2 β

)
. (17)

3. Photodetachment of a diatomic molecule in the ZRP
molecular model

3.1. Field-free molecular model

In order to specify the dynamical parameters Ap and AR

introduced in our phenomenological analysis above, we use
a model of a one-electron molecular system comprised of
an electron in the field of two attractive ZRPs separated
by the distance R (or the vector R). Since details of this
model have been discussed recently in [48], here we briefly
discuss only its main ingredients. Each isolated zero-range
(or δ-function) potential supports a single bound s state,
ψ

E (0)j
(r) = √

κ j/(2π)r−1 exp(−κ j r), with energy E (0)j =
−κ2

j /2 ( j = 1, 2), where κ j (for definiteness, we assume

κ1 ≥ κ2) is a positive parameter and κ−1
j is the scattering

length for electron scattering by the j th δ-center.
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For R > 1/
√
κ1κ2, an electron in the field of two

δ-centers localized at positions r = R1 = R/2 and r =
R2 = −R/2 has two bound states with energies E±: the
ground state, ψ+(r), and the excited state, ψ−(r). The cor-
responding wave functions can be represented as a super-
position of two single-ZRP orbitals [48,51]:

ψ±(r) = c(±)1
e−k±|r−R1|

|r − R1|
+ c(±)2

e−k±|r−R2|

|r − R2| , k± = √−2E±, (18)

where the coefficients c(±)1 and c(±)2 are:

c(±)1 =
√

N±
4π

⎡
⎣1 ± ρ±√

1 + ρ2±

⎤
⎦

1/2

,

c(±)2 = ±
√

N±
4π

⎡
⎣1 ∓ ρ±√

1 + ρ2±

⎤
⎦

1/2

,

N± =
k±
√

1 + ρ2±√
1 + ρ2± ± e−k± R

, ρ± = κ− R ek± R . (19)

The energies E+ and E− can be found as the solutions of
the transcendental equations:

k± − κ+ = ±
√
κ2− + e−2k± R

R2
, (20)

where κ± ≡ (κ1 ± κ2)/2. Note that c(+)1 = c(+)2 for equiv-
alent δ-centers (for which κ− = 0), so that the ground
state wave function ψE+(r) is symmetric with respect to
the permutation of δ-centers (R1 � R2), while c(−)1 =
−c(−)2 and the wave function ψE−(r) of the excited state is
antisymmetric. On the contrary, for nonequivalent centers
(κ− 
= 0), the major contribution to the wave function (18)
comes from one center, while the contribution of the second
center decreases exponentially with increasing R.

For our molecular model, the continuum (scattering) state
of an electron with asymptotic momentum p, energy E =
p2/2, and satisfying ingoing spherical wave boundary con-
ditions asymptotically can be presented in the form [48,51]:

(2π)3/2ψ(−)p (r) = ei p·r

− 1

�∗(p)

[(
(κ2 − i p)ei p·R1 − ei p·R2−i pR

R

)
e−i p|r−R1|

|r − R1|
+
(
(κ1 − i p)ei p·R2 − ei p·R1−i pR

R

)
e−i p|r−R2|

|r − R2|
]
,

(21)

where

�(p) = (κ1 + i p)(κ2 + i p)− e2i pR/R2. (22)

Further discussion of Equations (18)–(22) can be found in
[48].

3.2. One-photon detachment of a symmetric molecular
system

We begin our analysis with the simplest case: two equivalent
centers (i.e. κ1 = κ2 = κ), which models a symmetric
diatomic molecular system.As the analytic evaluation of the
photodetachment amplitude (2) in Appendix 1 shows, the
results for the dynamical parameters Ap and AR in Equation
(4) for the case of equivalent centers can be presented in the
form:

Ap = i j

πω

√
N±
2

cos

(
p · R

2
+ j

π

2

)
, (23a)

AR = i j

πω

√
N±
2

sin

(
p · R

2
− j

π

2

)
G±(p), (23b)

G±(p) = g(p)

κ + i p ∓ eipR/R
,

g(p) = 1

R

∂

∂R

eipR − e−k± R

R
. (24)

where j = 0 and the symbol “+” label the symmetric
ground state, while j = 1 and the symbol “−” label the
antisymmetric excited state.

Explicit expressions for the scalar dynamical amplitudes
Ap and AR show that the imaginary part of the product
A∗

p AR describing the circular dichroism effect is deter-
mined by that of the function G±(p):

Im (A∗
p AR) = N±

4(πω)2
sin( p · R)Im G±(p). (25)

We emphasize that the interference term in the photodetach-
ment cross section describing dichroic effects disappears
for the perpendicular geometry ( p ⊥ R), as well as for
p · R = πn (n = 1, 2, . . .).

The function G±(p) simplifies for large R, in which case
it can be approximated as:

G±(p) ≈ i p

κ + i p

eipR

R2
= p

R2
√
κ2 + p2

eipR+iδ+iπ/2,

(26)
where δ (defined by tan δ ≡ −p/κ) is the s-wave electron
scattering phase for a single ZRP and 1/

√
κ2 + p2 is the

modulus of the electron scattering amplitude, f (p), for a
ZRP: f (p) = (κ + i p)−1. Substituting (26) into (25), we
obtain:

Im (A∗
p AR) = N± p sin( p · R) cos(pR + δ)

4(πωR)2
√
κ2 + p2

. (27)

For fixed R and large momentum p (p � κ), the inter-
ference term (27) simplifies further since δ → −π/2 and
p/
√
κ2 + p2 → 1. Thus, in the limit of large p we obtain:

Im (A∗
p AR) = N± sin( p · R) sin(pR)

4(πωR)2
. (28)

Although the imaginary part (28) does not decrease with
increasing p, we note that contribution of the dichroic term
in Equation (5) is masked by the leading term ∼ |A(±)p |2 p2
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(a) (b) (c)

Figure 2. Photoelectron angular distributions for photodetachment by an elliptically polarized laser field with ω = 2.56 a.u. for three
values of the ellipticity: (a) η = 0, (b) η = 0.5, and (c) η = 1. The diatomic molecular system in its ground state is oriented perpendicularly
to the polarization plane and κ = 1 a.u., R = 2 a.u., and p = 2 a.u. The white arrows in the (ε̂, R) plane mark the positions of the
interference maxima corresponding to θ = 90◦ and θ = 43◦. The sphere shows the surface of E p = p2/2, while the colors on the sphere
indicate the probability of detachment. (The colour version of this figure is included in the online version of the journal.)

(a) (b) (c)

Figure 3. The same as in Figure 2, but for p = 6 a.u. (The colour version of this figure is included in the online version of the journal.)

and thus the dichroism effects become weaker with increas-
ing p. The dichroic effects disappear also with increasing
R, since the imaginary part (27) decreases as R−2 with
increasing R.

In Figures 2 and 3 we present 3D photoelectron angular
distributions for a symmetric molecular system oriented
perpendicularly to the polarization plane of an elliptically
polarized field with ellipticity η = 0, 0.5, and 1. As dis-
cussed in Section 2, the dichroic effects vanish in this ge-
ometry, while the angular distributions exhibit side lobes,
whose number does not depend on the ellipticity. For a
linearly polarized field, the side lobes take their maximum
values in the plane of the vectors ε̂ and R, while in the
plane of the vectors ε̂ and R the side lobes are vanished
(see Figures 2 and 3(a)). Indeed, for small ellipticity or for
a linearly polarized field, the side lobes are suppressed in the
direction of the minor axis of the polarization ellipse owing
to the overall factor (1 + 
 cos 2φ) (see Equation (12)),
which is small for φ = π/2 and 3π/2 (and equals zero for
η = 0). With increasing η, the side lobes form in the plane
of the vectors ε̂ and R (see Figures 2 and 3(b)) and for
circular polarization the formation of side lobes is the same
in any plane containing the molecular axis. The intensity
of the side lobes gradually decreases from the equatorial
plane to the poles in Figures 2 and 3 due to the overall factor
sin2 θ . Note that for the ground state, electron ejection in
the direction of the major axis of the polarization ellipse is
more probable than in other directions, while for the excited
state it is zero. These observations can be explained in terms

of two-center interference [11,12]. Indeed, substituting the
expression (23a) for Ap into (12) and using the identity
cos2(γ /2) = (1 + cos γ )/2 with γ ≡ ( p · R + jπ) shows
that the two centers of the diatomic molecular system emit
two interfering electron waves with phase difference p · R
for the ground state and p · R+π for the excited state. Each
side lobe originates from constructive interference of these
two waves and thus in the polarization plane (where θ = 90◦
and p · R = 0) these two waves interfere constructively
for the ground state, but destructively for the excited state.
The number of side lobes Nl is given by the number of
interference maxima, i.e. Nl = 2[pR/(2π)] + 1 for the
ground state and Nl = 2[pR/(2π)] for the excited state.
For maxima far from the poles, their positions θn (in terms
of the angle θ ) can be well approximated by the expression
θn = arccos[2πn/(pR)], while near either pole the value
of θn is significantly modified by the overall factor sin2 θ

and thus can be found only numerically.
In Figures 4–6 we present the 2D photodetachment prob-

ability distribution as a function of the photoelectron angles
(�,φ) (see Figure 1) for the molecular axis R located in the
polarization plane. For the case of linear polarization and
the molecular system oriented along the polarization axis,
the angular distribution exhibits fourfold symmetry (see
Figure 4(a)). This symmetry is broken if the angle between
the molecular axis and the polarization axis is non-zero
(see Figure 4(b)). We note that for the angle α = 90◦
between the molecular axis R and the polarization axis ε̂,
the angular distribution once again has fourfold symmetry



Journal of Modern Optics S27

(see Figure 4(c)). This happens for this geometry since (e ·
R) = 0 and the invariant parameter AR does not contribute
(see Equation (5) and the discussion above for the case of R
perpendicular to the polarization plane). Note that different
orientations of the molecular axis R with respect to the
polarization axis ε̂ leads to different interference fringes.
Indeed, if the molecular axis is parallel to the polarization
axis, the interference fringes have an oval form (see Figure
4(a)), while for the perpendicular geometry they have a
stripe-like form (see Figure 4(c) and compared with Figures
2 and 3(a)).

In Figures 5 and 6 we present photoelectron angular
distributions for detachment by elliptically- and circularly
polarized fields. These angular distributions exhibit notice-
able breaking of fourfold symmetry as well as sensitivity to
the sign of η, so that dichroic effects are manifested in these
angular distributions. For the molecular system oriented
along either the major or minor axes of the polarization
ellipse, the angular distributions for opposite signs of η have
mirror symmetry. This symmetry becomes clear in terms
of the parametrization (8). Indeed, the differential cross
sections dσ (ε̂)lin /d� and dσ (ε̂)lin /d� have fourfold symmetry
if the molecular axis is oriented along the major or minor
axis of the polarization ellipse (see the discussion above
of Figures 4(a) and (c)), while the CD-term, dσCD/d�,
changes its sign upon shifting the azimuthal angle φ by
180◦ (i.e. φ → φ + π ) (see the definition of the azimuthal
angle φ in Figure 1) for fixed ξ . Thus the sign of the CD-
term remains unchanged if both ξ and ϕ change sign. This
property explains the mirror symmetry in the angular dis-
tributions for ξ → −ξ . The angular distribution for a circu-
larly polarized field is fixed by the position of the molecular
axis, so that if the molecular axis is shifted by an angle�α,
then the angular distribution rotates by the same angle (see
Figure 6).

Integrated over the solid angle � p of the photoelectron,
the photodetachment cross section can be parameterized in
terms of parallel (σ||) and perpendicular (σ⊥) cross sections
(see Equation (15)). For the ZRPmolecular model, σ (±)⊥ and
σ
(±)
|| can be expressed in terms of spherical Bessel functions

[48]:

σ
(±)
⊥ = 4πN± p3

3cω3
[1 ± j0(x)± j2(x)] , (29)

σ
(±)
|| = 4πN± p3

3cω3

[
1 ± j0(x)∓ 2 j2(x)+ 6

R

p
Re G± j1(x)

+ 3
R2

p2
|G±|2(1 ∓ j0(x))

]
, (30)

where jn(x) is the spherical Bessel function of the first kind
with x = pR. If in addition we average over the orientation
of the molecular axis, the photodetachment cross section
becomes independent of the photon polarization:

σ (±) = 1

3
σ
(±)
|| + 2

3
σ
(±)
⊥ . (31)

Figure 4. 2D photodetachment probability distribution for the
case of linear polarization as a function of the photoelectron angles
(�,φ) (see Figure 1) with the molecular system in its ground state
and its axis R located in the polarization plane. Results are shown
for three angles α of R relative to the polarization axis ε̂: (a)
α = 0◦; (b) α = 45◦; and (c) α = 90◦. The molecular system is
characterized by its interatomic separation R = 2 a.u. and κ = 1,
and the photon energy is ω = 2.56 a.u. (so that p = 2 a.u.). (The
colour version of this figure is included in the online version of
the journal.)

If the angular distribution is averaged over the orientation
of the molecular axis, the differential cross section takes the
simplified form:

dσ (±)
d�

= σ (±)
4π

(
1 + β

3|e · p̂|2 − 1

2

)
(32)

where p̂ = p/p and

β = 2

(
1 − �σ(±)

σ (±)

)
, �σ (±) = R2|G±|2σ (±)⊥

p2
.

Integration of dσ (±)
d� over the solid angle p̂ removes the last

term in Equation (32), so that the angle-integrated cross
section, σ (±), coincides with Equation (31). Note that the
factor �σ(±) behaves asymptotically for large interatomic
separations as ∼ R−2 (and for large p as ∼ p−2). Thus the
angular distribution of photoelectrons for large interatomic
separation of a diatomic molecular system approaches that
for the atomic ZRP case [50].
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Figure 5. The same as in Figure 4, but for the case of elliptical polarization with η = 0.5 in panels (a)–(c) and η = −0.5 in panels (d)–(f).
(The colour version of this figure is included in the online version of the journal.)

Figure 6. The same as in Figure 5, but for η = 1 in (a) and η = −1 in (b). (The colour version of this figure is included in the online
version of the journal.)

3.3. One-photon detachment of an asymmetric molecu-
lar system

For the case of an asymmetric molecule, the dynamical pa-
rameters Ap and AR in Equation (4) are more complicated
as compared to the symmetric case (see Appendix 1):

Ap = 1√
2πω

[
c(±)1 e−i p·R/2 + c(±)2 ei p·R/2] ,

AR = 1√
2πω

[
b1(p)e

−i p·R/2 + b2(p)e
i p·R/2] , (33)

where

b1(p) = i

�

[
c(±)2 (κ2 + i p)+ c(±)1

eipR

R

]
g(p),

b2(p) = − i

�

[
c(±)1 (κ1 + i p)+ c(±)2

eipR

R

]
g(p). (34)

Since the parameters Ap and AR are independent of the
laser field polarization, they have the same results as were
obtained for the case of linear polarization in Ref. [48] (cf.
Equation (42) for the one-photon detachment amplitude).
The partial amplitude Ap gives the transition matrix element
(2) in the plane-wave (or Born) approximation. Two terms
in Ap show explicitly the contributions of two centers: an
electron can be detached from either of the two atomic
centers, whose individual contributions are governed by the
magnitudes of the coefficients c(±)1 and c(±)2 . The second
partial amplitude, AR , describes a “non-Born” one-photon
transition to the spherically outgoing part of the scattering
stateψ(−)p . This latter amplitude vanishes in the plane-wave
approximation.

In order to present the results (33) for Ap and AR in forms
that are more transparent, we consider the limiting case in
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which ρ± � 1 and pR � 1. In this case, the electron is
mostly localized either near the first atomic center (for the
case of the ground stateψ+) or near the second atomic center
(for the case of the excited state ψ−). For definiteness,
we consider the case of the ground state, so that the terms
involving c(+)2 can be neglected. In this approximation, the
parameters Ap and AR simplify significantly:

Ap ≈
√
κ1e−i p·R/2

2πω
,

AR ≈
√
κ1 p A2ei(pR+δ2)

2πωR2

[
ei p·R − A1

eipR+iδ1

R

]
e−i p·R/2,

(35)

where Ai = 1/
√
κ2

i + p2 and δi are, respectively, the mod-
ulus of the electron scattering amplitude and the scattering
phase (tan δi = −p/κi ) for the i th isolated ZRP center. We
focus our analysis on the interference term A∗

p AR , since this
term contributes most to the asymmetry of the photoelectron
angular distributions for nonsymmetric molecules and to
the circular dichroism effect. This term originates from the
interference of the leading wave, which results from the
detachment of the electron from the first atomic center, and
the secondary wave, which originates from the scattering
of the leading wave from the two atomic centers [9,47]:

A∗
p AR = κ1 p A2

(2πωR)2
ei(pR + p·R + δ2)

− κ1 p A2 A1

(2πωR)2 R
ei(2pR + δ2 + δ1). (36)

The first term in (36) describes the interference between
the leading waves emitted from the first center and the
secondary wave emitted from the second atomic center
(which stems from the scattering of the leading wave from
the second center). Indeed, this term is proportional to the
electron scattering amplitude A2 from the second center and
the corresponding phase difference is given by the quan-
tum mechanical scattering phase, δ2, and the “geometrical”
phase, pR + p · R, between the leading and the secondary
waves (see Figure 7(a)). The secondary wave emitted from
the second center can rescatter from the first center, produc-
ing a less intense secondary wave from the first center (see
Figure 7(b)). The interference between the leading wave and
this latter secondary wave is given by the second term in
(36). Indeed, this term is proportional to the product A2 A1
of two scattering amplitudes, which explicitly indicates the
double scattering from the first and second atomic centers.
The phase of this term equals the sum of the quantum phases,
δ2 + δ1, and the “geometrical” phase, 2pR, which the
electron accumulates by moving back and forth between the
first and second centers. In contrast to the case of equivalent
centers, which are equivalent sources for interfering waves,
in the case of nonequivalent centers one center is the source
of secondary waves, which interfere with the leading wave
produced by the other center. Substituting Equations (35)

(a) (b)

Figure 7. Sketch of different pathways for one-photon
detachment from an asymmetric diatomic molecule. (a) Right
(red) center produces a “leading” wave, which moves to the left
(blue) center, which emits secondary waves in the direction of
electron detachment. The partial phase shifts accumulated along
each step are indicated: the “geometrical” phase between the two
centers, pR; the quantum mechanical phase, δ2, resulting from
interaction with the left atomic center; and the “geometrical” phase
difference, ( p · R), between the secondary and leading waves in
the direction of detachment. (b) Right (red) center produces a
“leading” wave, which moves to the left (blue) center. The left
center is a source of a secondary wave, which moves back to the
right center and leads to a reflected wave from the right center that
is emitted in the detachment direction. The partial phase shifts
accumulated along each step are indicated: the “geometrical”
phase between the two centers, pR in each direction; and two
quantum mechanical phases, δ1 and δ2, resulting from interaction
with the two atomic centers. (The colour version of this figure is
included in the online version of the journal.)

and (36) into the general Equation (5), we obtain an approx-
imate expression for the photodetachment cross section for
large pR:

dσ

d�
≈ σ1

[
3

4π
|e · p̂|2 + 3

2π

× A2|(e · p̂)(e · R̂)|
R

cos(pR + p · R + δ2 +�)

]
,

� = φ̃R − φ̃p. (37)

where σ1 = (4πκ1 p3)/(3cω3), φ̃p = arg(e · p), and φ̃R =
arg(e · R). For linear polarization� = 0, while for circular
polarization � = −ξθ , where θ is the angle between p
and R.

Although the origin of interference fringes is the same
for both linear and circular polarization, there is a crucial
difference between the photoelectron angular distributions
for linear and circular polarizations. In Figures 8–10 we
present the angular distribution of electrons detached by
linearly polarized and by circularly polarized fields. (For the
circularly polarized field, we consider a molecular system
oriented in the polarization plane.) Our numerical results
show that interference fringes for linear polarization are
sensitive to the orientation of the molecular axis with respect
to the polarization axis: the interference effects are maximal
if the molecular axis is collinear with the polarization axis
and they disappear completely if these axes are perpendic-
ular to one another. Moreover, the interference fringes for
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Figure 8. 2D map of the photoelectron angular distribution in photodetachment of an asymmetric molecular system in its ground state
(κ1 = 1 a.u., κ2 = 0.8 a.u., interatomic distance R = 2 a.u.) for ω = 2 a.u. (panels (a) and (c)) and ω = 10 a.u. (panels (b) and (d)).
Results for linear polarization are in the upper row (panels (a) and (b)), while results for the circular polarization are in the bottom row
(panels (c) and (d)). The molecule is oriented along the major polarization axis. Angles� and φ are shown in Figure 1. (The colour version
of this figure is included in the online version of the journal.)

Figure 9. The same as in Figure 8, but for R = 4 a.u. Vertical lines mark the positions of maxima given by (38) for given n. (The colour
version of this figure is included in the online version of the journal.)

a linearly polarized field are masked by the contribution
of the leading term (i.e. the first term in (37)), which only
disappears for the same geometry as the interference term
(i.e. when (e · p) = 0). For the case of a circularly po-
larized field, the interference fringes are pronounced in the
polarization plane, and their form does not change upon
changing the orientation of the molecular system in the
polarization plane. We note, however, that for the case of a
circularly polarized field, a rotation of the molecular axis by
the angle α leads to a rotation of the angular distribution by
the same angle. In contrast to the case of linear polarization,
for circular polarization with the electron momentum p in

the polarization plane, we have |e · p̂| = |e · R̂| = 1/
√

2, so
that the leading and interference terms contribute with the
same angle-independent weights.

Interference phenomena in the photodetachment cross
section for asymmetric molecules originate from the inter-
ference term A∗

p AR , whose approximate expression is given
by Equation (36). The positions of the interference maxima
and minima for the cases of both linear and circular polar-
ization can be found using Equation (37). (For simplicity,
we only consider the case when both vectors p and R lie
in the polarization plane.) The positions of the interference
maxima for an arbitrary polarization are given by:
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Figure 10. The same as in Figure 9, but for R = 10 a.u. (The colour version of this figure is included in the online version of the journal.)

2pR cos2 θ/2 + δ2 − ξθ = 2πn + 
π�(θ), (38)

where n = 0 · · · [pR/π ] (where the square brackets [x]
denote the integer part of x), θ is the angle between p and
R, and �(θ) depends upon the sign of e · p̂: �(θ) = 1 for
θ ∈ (π/2, 3π/2) and � = 0 otherwise. We emphasize that
Equations (37) and (38) only apply for circularly- and lin-
early polarized fields, where ξ = ±1 (
 = 0) for a circularly
polarized field and ξ = 0 (
 = 1) for a linearly polarized
field. Expression (38) is applicable for large pR, which
is suitable for observation of interference phenomena. For
a linearly polarized field, the positions of the maxima are
symmetric with respect to θ = π , while for a circularly
polarized field this symmetry breaks down owing to the
dichroic term, ξθ . It should be emphasized that interference
phenomena for the case of linear polarization are suppressed
due to the additional modulation factor, (e · p) ∼ sin θ .
Thus the observation of interference phenomena is more
appropriate for the case of circular polarization.

4. Conclusions

In this paper, we have presented an analytic description
of one-photon molecular ionization/detachment by an el-
liptically polarized monochromatic field based on a simple
one-electron, two-center molecular model. Our phenomeno-
logical analysis shows that the general parametrization of
the differential (angle-resolved) photoionization cross sec-
tion for the case of an elliptically polarized field involves
four dynamical parameters, which can be expressed in terms
of two polarization-independent complex parameters (Ap

and AR) that comprise the photoionization amplitude (see
Equations (4) and (5)). One of the four dynamical param-
eters (i.e. the product Ap A∗

R) corresponds to the dichroic
term in the cross section, which depends on the helicity of

the photon and describes the circular dichroism effects in the
photoelectron angular distribution. The general parametri-
zation (5) for the differential cross section simplifies
significantly in two particular cases: (i) the perpendicular
geometry (in which the molecular axis is perpendicular
to the polarization plane, see Equation (12)); and (ii) the
polarization plane geometry (in which both the molecular
axis and the photoelectron momentum lie in the polarization
plane of a circularly polarized field, see Equation (13)).

In order to demonstrate quantitatively the interference
and dichroic effects for both symmetric and asymmetric
molecular systems, we used the analytic results for the
dynamical molecular parameters Ap and AR obtained for
the two ZRP molecular model. Since for this model only
two (ground and excited) bound electron states exist, these
results can be used for a qualitative description of pho-
todetachment of a negative molecular ion. For a symmetric
molecular system, we have shown that two-center interfer-
ence effects can be observed more easily in the photoelec-
tron angular distributions produced by a circularly polarized
field for the perpendicular geometry. (As Figure 3(c) shows,
the interference fringes for this case have the form of uni-
form concentric strips around the molecular axis.) However,
dichroic effects disappear completely for the case of perpen-
dicular geometry. These effects for the symmetric molecu-
lar system have been discussed for a molecule oriented in
the plane of the polarization ellipse. The parametrization
of the photoelectron angular distribution for a randomly
oriented symmetric molecular system can be expressed in
terms of total (angle-integrated) detachment cross sections
of the molecular system in two linearly polarized fields,
whose polarization vectors are, respectively, perpendicular
and parallel to the molecular axis (see Equation (32)).

For asymmetric molecules, we have shown that the inter-
ference fringes have a different origin from those in the case
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of symmetric molecules. For this case, one molecular center
produces “direct” electronic waves, while the second center
emits a “secondary” wave. Thus the interference fringes
are formed as the result of interference between the direct
and secondary waves. Our analysis shows that dichroic
effects for the case of asymmetric molecules modify the
interference patterns by adding extra interference maxima
to the angular distribution. For linearly- and circularly po-
larized fields and large photoelectron momenta, we have
derived an analytic expression (38) for the angular locations
of the interference maxima in the photoelectron angular
distributions.
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Appendix 1.
The analytic evaluation of the photodetachment amplitude (2) for
the ZRP molecular model is simplified in the momentum repre-
sentation. Performing the Fourier transformation of Equations (18)
and (21), we obtain the following results for the bound state wave
functions ψ± and the continuum state ψ(−)p in the momentum
representation:

ψ±(q) =
√

2

π

1

q2 + k2±

(
c±

1 e−iq·R1 + c±
2 e−iq·R2

)
, (A1)

ψ
(−)
p (q) = δ(q − p)− 1

2π2(�(p))∗

×
[(
(κ2 − i p)ei p·R1 − ei p·R2−i pR

R

)
e−iq·R1

q2 − p2 + i0

+
(
(κ1 − i p)ei p·R2 − ei p·R1−i pR

R

)
e−iq·R2

q2 − p2 + i0

]
.

(A2)

Substituting these expressions into the definition (2) for the
photodetachment amplitude A and replacing the operator p̂ by
the integration variable q, we obtain after some simple algebra:

A =
√

2

π

{
1

p2 + k2±

(
c±

1 e−i p·R/2 + c±
2 ei p·R/2) (e · p)

− 1

2π2�

[
c±

1

(
(κ1 + i p)ei p·R/2 − eipR

R
e−i p·R/2

)
I (R)

+ c±
2

(
(κ2 + i p)e−i p·R/2 − eipR

R
ei p·R/2

)
I (−R)

]}
,

(A3)

where

I (R) =
∫

(e · q)e−iq·R(
q2 + k2±

) (
q2 − p2 − i0

)dq

= i

(
e · ∂

∂R

)∫
e−iq·R(

q2 + k2±
) (

q2 − p2 − i0
)dq.

Performing the integration in I (R) over the angular variables of
the vector q and calculating the final integral over q using the
residue theorem, we find

I (R) = −I (−R) = i
2π2g

p2 + k2±
(e · R),

where

g = 1

R

∂

∂R

eipR − e−k± R

R
.

Substituting these expressions for I (±R) into (A3), we obtain for
the amplitude A the result (4) with the parameters A p and AR
given by (33). For the case of equivalent centers, κ1 = κ2 = κ;
using Equations (33) for the parameters A p and AR , we obtain
after some algebra the expressions (23a) and (23b).
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