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Abstract 
 

Supercritical carbon dioxide is used to exfoliate graphite, producing a small, several-layer 

graphitic flake. The supercritical conditions of 2000, 2500, and 3000 psi and 

temperatures of 40°, 50°, and 60°C, have been used to study the effect of critical density 

on the sizes and zeta potentials of the treated flakes. Photon Correlation Spectroscopy 

(PCS), Brunauer-Emmett-Teller (BET) surface area measurement, field emission 

scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM) are used 

to observe the features of the flakes. N-methyl-2-pyrrolidinone (NMP), 

dimethylformamide (DMF), and isopropanol are used as co-solvents to enhance the 

supercritical carbon dioxide treatment. As a result, the PCS results show that the flakes 

obtained from high critical density treatment (low temperature and high pressure) are 

more stable due to more negative charges of zeta potential, but have smaller sizes than 

those from low critical density (high temperature and low pressure). However, when an 

additional 1-hour sonication is applied, the size of the flakes from low critical density 

treatment becomes smaller than those from high critical density treatment. This is 

probably due to more CO2 molecules stacked between the layers of the graphitic flakes. 

The zeta potentials of the sonicated samples were slightly more negative than non-

sonicated samples. NMP and DMF co-solvents maintain stability and prevented 

reaggregation of the flakes better than isopropanol. The flakes tend to be larger and more 

stable as the treatment time increases since larger flat area of graphite is exfoliated. In 

these experiments, the temperature has more impact on the flakes than pressure. The BET 

surface area results show that CO2 penetrates the graphite layers more than N2. Moreover, 

the negative surface area of the treated graphite indicates that the CO2 molecules may be 

adsorbed between the graphite layers during supercritical treatment. The FE-SEM and 

AFM images show that the flakes have various shapes and sizes. The effects of 

surfactants can be observed on the FE-SEM images of the samples in one percent by 

weight solution of SDBS in water since the sodium dodecylbenzene sulfonate (SDBS) 

residue covers all of the remaining flakes. The AFM images show that the vertical 

thickness of the graphitic flakes can ranges from several nanometers (less than ten layers 



xi 
 

thick), to more than a hundred nanometers. In conclusion, supercritical carbon dioxide 

treatment is a promising step compared to mechanical and chemical exfoliation 

techniques in the large scale production of thin graphitic flake, breaking down the 

graphite flakes into flakes only a fewer graphene layers thick.  
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1. Introduction 

1.1 Graphite 
 
Graphite is a carbon allotrope which has a 3D-planar structure with a hexagonal 

(honeycomb) lattice structure in each plane1. Different from ideal graphene, which 

consists of a single layer sheet of carbon, graphite is a multi-layer carbon sheet with the 

distance between layers of approximately 0.335 nm2. In other words, graphite is a multi-

layer carbon sheet which consists of many layers of graphene, a single-layer carbon 

sheet. These single sheets are held together by van der Waals forces which are weak 

enough to separate to some degree by simple mechanical exfoliation3. The structure of 

graphite and synthetic graphite powder from Aldrich Chemical Company, Inc. are shown 

in Figure 1.1 and 1.2, respectively. 

 

 
 
Figure 1.1 Graphite is a multi-layer carbon material with 0.335 nm interlayer spacing. It 
consists of a single layer hexagonal planar of carbon (graphene) with 1.42 Å c-c bond 
distance (inspired by Geim et al.1). 
 

 

 

0.335 nm

1.42 Å               
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Figure 1.2 The synthetic graphite powder with the size less than twenty microns from 
Aldrich Chemical Company, Inc (a,b), which is used in this experiment.  

                                             

Typically, graphite is black and soft, so it is applied in many ways such as pencil, 

coating, etc. It is one of the most stable substances due to its high melting point and 

resistance to acid and chemical reactions. In the world market, natural graphite is 

classified into three types that are used in different kinds of applications. Amorphous 

graphite (microcrystalline graphite) is created from the metamorphism of coal. 

Amorphous graphite is the finest of the graphite classes and is used in applications 

including lubrication, coatings, and high thermal shock resistance. Lump graphite (vein 

graphite) is a class of pure coarse-grained graphite that can be discovered as a part of 

metamorphic rocks. It is used in casting, batteries, powder metal industries, etc. The last 

class of natural graphite is crystalline flake graphite. This graphite occurs disseminated in 

the metamorphic rock, and occurs often less than the other classifications, making the 

price the highest. Its application is mostly in applications that require high performance 

and quality of graphite such as medical treatment, fuel cells, computer circuit, etc4.  
 

Synthetic graphite can be made by from precursors of carbon such as petroleum coke, 

pitch coke, carbon black, coal tar-based cokes, etc. In the synthesizing process, these 

materials are mixed and heated at temperatures above 2500°C in the absence of oxygen 

conditions5. At a result, the carbon precursors are decomposed and crystallized as 

crystalline graphite. From this process, high purity synthetic graphite is produced. 

Eventually, crushing and ball milling processes are applied to control the size of the 

synthetic graphite powder6. The purity of synthetic graphite depends on the type of the 

raw materials and the purifying processes. With high-purity precursors, 99.9% pure 

a b 
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graphite can be made7. In this experiment, synthetic graphite powder from Aldrich 

Chemical Company, Inc.8, as shown in Figure 1.2, was used. 

 

As mentioned previously, graphite is one of the most inert materials since it has a high 

melting point and high thermal and acid resistivity4.  Moreover, other properties such as 

high thermal and electrical conductivity, high compressive strength, high resistance to 

erosion, corrosion from chemicals, low friction, etc., make graphite a versatile material 

which is applied in many fields. Some general properties are shown in Table 1.19. 

 

From Table 1.1, graphite is a sp2 carbon allotrope with 1.412 Å carbon distance. The 

electrical resistivities perpendicular to and parallel to c-axis are 9.8×10-6 and 4.1×10-5 

ohm·m, respectively. The thermal conductivities (at 273K) perpendicular and parallel to 

c-axis are 250 and 80 W/m·K, respectively. The linear thermal expansion coefficient (α) 

of a-axis is 1.2, while that of c-axis is 25.9 at 293K. This coefficient increases when 

temperature increases (the overall value increases from 7.8 at 293K to 8.9 at 500K). The 

bulk modulus for a single crystal is 34 Gpa with the hardness approximately 1 to 2 in 

Mohs scale. Since it has a negative magnetic susceptibility, graphite is one of the 

strongest diamagnetic. 
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Table 1.1                                                                                                                            

Some interesting properties of graphite9 

Property   Reference 
Formular C   
Unit Cell a=2.4612 Ang., c=6.7079 Ang.   
Crystal Class and Space Group 6/m 2/m 2/m and P6_3/mmc   
Formula Units per Unit Cell trigonal planar (sp2)   
Bonding with -C-C- 1.412 Ang.   
JCPDS 25-284 for 2H (26-1079 for 3R)   
Polymorphs Diamond, Chaoite, Graphite 3R   
Conductivity     
Electical Resistivity (ohm.m)     
perpendicular to c-axis 9.8×10-6 10 
parallel to c-axis 4.1×10-5   
natural 1.2×10-6   
Thermal (Watts/m·K at 273K)     
perpendicular to c-axis 250 10 
parallel to c-axis 80   
natural 160   
Thermal      
Linear Thermal Expansion   Coeff. Alpha(×10-6 K-1) 10 
overall 7.8 (at 293K); 8.9 (at 500K)   
a-axis -1.2 (at 293K); 0.7 (at 500K)   
c-axis 25.9 (at 293K); 28.2 (at 500K)   
Optical     
Bireflectance and reflection  o-vibration: higher reflectance and  11 
pleochroism yellow or brownish tint 

   e-vibration: bluish-grey tint   
Mechanical     
Bulk Modulus (single xtl) 34 Gpa 12,13 
Bulk Modulus (polycrystal) 7.3-10.7 Gpa (non-irradiated,  14 

 
uncoated) 

   2.5-7.3 Gpa (non-irradiated, coated)   
  14.0-16.9 Gpa (irradiated, uncoated)   
  7.8-8.4 Gpa (irradiated, coated)   
Mohs Hardness 1 to 2   
Specific Gravity 2.2   

 
 
 
 
 
 
 
 
 
 

Magnetic     
Magnetic Susceptibility strongly diamagnetic 15 
(pyrolitic) 
 

-450×10-6 perpendicular to c-axis   
(pyrolitic) -85×10-6 parallel to c-axis   
(rod) -160×10-6   
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Graphite is normally used as a conductive substance in the cathode of alkaline batteries, 

due to its low electrical resistivity, and high resistance to heat and chemical corrosion7,8. 

Moreover, graphite layers can exchange lithium ions between themselves so it is also 

popularly used in rechargeable lithium-ion batteries7,8. Recently, graphene, a new 

allotrope of carbon, was introduced. In the case of electrical characteristics, the Dirac 

cones16 are created due to the conduction and valence bands of graphene. This causes the 

other phenomena of graphene such as the abnormal quantum Hall effect (QHE) and 

nonzero Barry’s phase, etc17. These phenomena make for unique properties of graphene, 

especially in electronics18. Due to high electron mobility (excess 15,000 cm2V-1s-1) 1 and 

low resistivity (10-6 ohm·m19), less than silver, graphene is expected to replace graphite 

in electrode and battery applications.  

 

Wang C et al.20 studied the electrochemical properties of graphene paper electrodes used 

in lithium batteries. The graphene paper was made by chemical exfoliation3. As a result, 

the graphene paper could provide a discharge capacity of 582 mA h g-1 (to the cut off 

voltage of 2.0V), better than that of graphite (298 mA h g-1), with a specific energy 

density of 1162 W h kg-1. This points out that the graphene paper cathode and lithium 

anode battery has the potential to replace traditional graphite battery due to its higher 

performance.  However, the performance of the graphene paper was decreased by the 

oxide group contained in the graphene paper due to the production method. 

 

Due to the promising properties of graphene, especially in electrical energy storage21, 

many new synthesizing methods have been introduced. However, current production 

methods do not produce significant amounts of pure graphene3. Therefore, the motivation 

of this thesis is to synthesize high yields of few-layer graphenic materials without 

destroying its unique properties, for applications in electrodes and batteries applications.  
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1.2. Supercritical carbon dioxide 
 

Supercritical is a condition that occurs when the temperature and pressure of the fluid are 

higher than its critical temperature and pressure, respectively. The point that the 

temperature and pressure of any fluid becomes supercritical is called the “critical point”. 

At this point, fluid that reaches its critical condition will show both gas and liquid 

properties at the same time. On the other hand, the critical fluid can show the ability to 

diffuse and dissolve like gas and liquid21,22. Moreover, the combination of gas and liquid 

properties, brings about a homogeneous fluid phase without surface tension between the 

two phases23. Therefore, critical fluid is applied in many applications, such as extraction, 

cleaning, dyeing, drying, refrigeration, deposition, etc. The critical properties of several 

substances are shown in Table 1.224.  

Table 1.2                                                                                                                       

Critical temperature, pressure, and density of different fluids24 

  Molecular Critical  Critical Critical 
Substance Weight Temperature Pressure Density 

  g/mol K (°C) MPa (psi) kg/m3 
Carbon dioxide (CO2) 44.01 304.10 (30.95) 7.38 (1070.38) 469 

Water (H2O) 18.015 647.10 (373.95) 22.06 (3200.11) 322 
Methane (CH4) 16.04 190.40 (-82.75) 4.60 (667.17) 162 
Ethane (C2H6) 30.07 305.30 (32.15) 4.87 (706.33) 203 
Propane (C3H8) 44.09 369.80 (96.65) 4.25 (616.41) 217 
Ethylene (C2H4) 28.05 282.40 (9.25) 5.04 (730.99) 215 
Propylene (C3H6) 42.08 364.90 (91.75) 4.60 (667.17) 232 

Methanol (CH3OH) 32.04 512.60 (239.45) 8.09 (1173.36) 272 
Ethanol (C2H5OH) 46.07 513.90 (240.75) 6.14 (890.53) 276 

NMP (C5H9NO)25 99.1325 724.15 (451.00)26 4.52 (655.57)27 31927 

DMF (C3H7NO)28 73.0928 922.75 (649.60)24 4.42 (641.07)24 27929 
Isopropanol 

(CH3)2CHOH30 60.0930 526.35 (253.20)31 4.76 (691.00)31 27332 
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The solubility of chemicals in supercritical fluids is a function of the supercritical density. 

This density depends on temperature and pressure set to create the supercritical condition. 

Therefore, the solubility and the density can be altered by adjusting the temperature and 

pressure23.  

 

Among supercritical fluids, supercritical CO2 is one of the most commonly used because 

of its low critical pressure (7.38 MPa (1070.38 psi)), low critical temperature (304.1K 

(31°C)) and high solvating potential24. Moreover, CO2 is abundant, and its low toxicity 

makes less impact on humans and the environment. For these reasons, supercritical CO2 

is a widely used fluid in many applications21,22,33. 

1.3. Graphene 
 

Carbon is one of the most common elements on the earth’s surface. It exists in many 

forms in the environment due to different kinds of structures that it can form. In terms of 

crystallography, pure carbon has several interesting forms or allotropes. The allotropes 

are not only different in appearances, but also in properties. Diamond and graphite, for 

example, are carbon allotrope which have been familiar to humans for centuries. These 

allotropes are arranged in three-dimensions (3D). For the next generation, nanotubes and 

fullerene were introduced several decades ago (1990s). Their structures are one-

dimensional (1D) and zero-dimensional (0D), respectively1,3.  

 

Graphene is the most recently discovered carbon allotrope. Its structure is two-

dimensional (2D) with aromatic lattices of carbon atom1. Since it is a two-dimensional 

structure (2D), it is only one carbon-atom thick, and with 1.42 Å for the carbon-bond 

distance1,34. Therefore, it appears like a carbon net that contains many hexagonal holes. 

This newly discovered material is present in graphite (the multi-layer carbon sheet) with 

the layer-layer distance apploximately 0.335 nm2. However, this thickness can increase 

due to disorder such as rotation and twist of the layers34. The structures of graphene and 

other carbon allotropes are shown in figure 1.31,3. 
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Figure 1.3  Carbon structures of carbon allotrope (inspired by Geim et al. 1). From the 
figure, graphene is a fundamental form of other allotropes. 

 

As a 2D structure, graphene is theoretically expected to have many excellent properties in 

terms of electronics35, mechanics36, thermals37, etc. Consequently, many scientists try to 

study and discover its properties as well as utilize this promising material for many 

applications such as transistors38,39, electrodes40, ultracapacitors41, biodevices42,43 , etc. 

However, the biggest challenge is its production in commercially useful quantities and 

preservation of high quality. Current production methods do not produce pure graphene, 

are slow, and have poor yields or high disorder. Moreover, they often degrade some of 

the properties that pure graphene is expected to have3.  

Theoretically, the melting point of any substance decreases dramatically when the 

thickness of that substance decreases. Therefore, a one- atom thick plane or the two-

dimensional material might be unable to exist1. Moreover, scientists such as Landau44 and 

Peierls45 stated 70 years ago that a 2D material could not be stable due to thermal 

fluctuations. Therefore, the 2D plane was only known as a basic part of 3D material. This 

belief continued until the success of Aundrey Geim and his colleague, Konstantin 

Nevoselov, at the University of Manchester, in extracting the 2D graphene from 3D 

0.335 nm

1.42 Å               
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graphite by a “Scotch tape method38,46”. Together they won the Nobel Prize in Physics in 

2010 for this discovery. 

 

The “Scotch tape method” is the simplest way to extract the 2D material or graphene. 

Since the graphite layers are held together by weak van der Waals forces, the force which 

is required to separate (exfoliate) the graphite layers is around 300 nN/µm2 3,47. This 

intensity of force could be easily achieved by a mechanical exfolication or Scotch tape 

method as mentioned above. Geim and Nevoselov utilized this method by sticking the 

tape to graphite flakes and peeling the tape multiple times38,46. After observing by optical 

microscopy, they placed the residuals on the oxidized silicon wafer (SiO2) by lightly 

applying and removing the peeled tape. The residuals were examined by optical 

microscopy. This shows graphene-silicon interaction which leads to different contrast in 

terms of different flake colors.  Since then, several other methods of synthesizing 

graphene have been introduced. They are discussed further in the next sections. 

1.3.1. Graphene synthesis 
 
Mechanical exfoliation or the “Scotch tape method” can synthesize graphene38,46, but it is 

not suitable for large scale production. Moreover, the quality of the graphene from this 

method is highly variable. Therefore, researchers have been trying to find a way to 

produce graphene precisely and productively3. New methods have been introduced, 

several of which are very promising are mentioned. 

1.3.1.1. Growth of graphene  
 
Graphene can be grown in metals and carbide substrates. The one method is chemical 

vapor decomposition (CVD) which is a technique used to produce a thin film on a 

substrate3,48,49. In this technique, a substrate is exposed to a vapor or volatile substrate 

which can react with or attach on the substrate itself. As a result, a thin film is created. 

Another technique is using heat to decompose metal and carbide substrates. For both 

techniques, substrates and growth conditions are specified for the graphene production.  
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Kim KS et al.16 tested the electronic properties of graphene synthesized by CVD on 

nickel substrate with 300 nm thickness.  SEM, TEM, Raman spectroscopy, and AFM 

were used to characterize the graphene. As a result, the grown graphene had very low 

resistance between the layers (approximately 280 ohm per unit area), high yield 

transparent layers (approximately eighty percent yield), and high electron mobility (more 

than 3,700 cm2V-1s-1). Moreover, the electron mobility was almost identical with that of 

graphene from mechanical exfoliation. Therefore, CVD is a good method to synthesize 

graphene which can preserve the electronic properties for electrode applications. 

 

Lee Y et al49. produced large flakes of graphene by transferring graphene to a polymer 

substrate. This graphene was produced by CVD on a metal substrate, such as Ni or Cu. 

Then, an etching process by FeCl3 was applied to remove the metal layer before 

transferring it to the polymer substrate. This method reduced the limits of the metal 

substrate on size of the growth graphene by CVD. As a result, a 3-in graphene film was 

created with high electron mobilities. 

 

Shi Y et al.50 tested electrode properties of graphene which were synthesized by chemical 

vapor deposition (CVD). The chemical doping of graphene covered by metal ions such as 

Au, was tested and compared with traditional graphene (without chemical doping). In this 

way, graphene was grown as a film and dispersed into AuCl3 solution. Then, the Au 

particle would cover the graphene surface due to surface interactions with the metal ions. 

This phenomenon maintained the stability of the graphene film. As a result, a maximum 

power conversion efficiency (PCE) reached 0.08 percent which was forty times greater 

than that without chemical doping. 

 

Although grown graphene has a high quality structure compared with pure graphene, this 

method still has some disadvantages. By interaction with the substrate, grown graphene 

has a carrier mobility five times less than that of pure graphene3. Moreover, the lateral 

size is limited due to this substrate interaction3. Therefore, additional methods are 

required to improve the properties of this growth34. Nickel is the best substrate to increase 

the lateral size of grown graphene3. This substrate can dissolve in hydrochloric acid 
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solution so the deposited graphene is transferred from the metal substrate to a polymer 

covering16,51,52. A polymer film is formed at this point. With this technique, the lateral 

size of grown graphene depends on the crystal size of the nickel substrate. Moreover, the 

mobility is doubled compared to traditionally grown graphene53,54. In conclusion, these 

methods make a high quality graphene, however, special conditions are required, which 

means additional cost. Grown graphene is suitable for high performance applications that 

need high quality graphene3. 

1.3.1.2. Graphene oxide 
 
Another method of producing graphene is “chemical exfoliation”. The key is to oxidize a 

graphite layer using chemical substances3,53,54. Since the graphite layers are connected to 

each other by a weak van der Waals force, this oxidation exfoliates a single sheet in the 

form of graphene oxide3. Graphite, sodium nitrate, and sulfuric acid are mixed together in 

an ice bath, and then potassium permanganate is slowly added. The reaction is stirred at 

room temperature for an hour. Then, water is added and the temperature is set at 45°C. 

The reaction is continued for another half an hour. Next, hydrogen peroxide and 

additional water are added slowly. Finally, the mixture is filtered and washed until a pH 

of six is reached. The graphite oxide is separated out at this point40. It remains stable for 

around six months. To exfoliate a single sheet, a thermal treatment is applied to produce 

CO2 between layers. This inter-generated CO2 will expand the graphite layer. Then, the 

single layer graphite oxide sheet (graphene oxide) is exfoliated. Typically, the 

temperature that is used to generate the CO2 is 1050°C (with a heating rate of more than 

200°C/min). To obtain good quality graphene oxide flake, the additional treatment such 

as sonication may be required55. 

 

However, due to the effects of the chemical treatment, the obtained graphene oxide loses 

some of its desirable properties compared with that of graphene from mechanical 

exfoliation. The structure of graphite is changed dramatically during the chemical 

reactions56,57. Moreover, the chemicals can revert the single layer (graphene) into the 

multi-layers (graphite). Therefore, to restore the properties, additional treatments, such as 
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hydrazine vapors (NH2-NH2) or hydrogen plasma, are required to change the product 

from graphene oxide to graphene, making the process more complex and expense58,59. 

Moreover, the identification of graphene oxide in graphene is still problematic in the final 

product. 

1.4. Other graphene synthesis methods  
 
Jiang et al.17 studied the electronic properties of graphene using infrared spectroscopy. In 

the case of electrical characteristics of graphene, the Dirac cones16 are created due to the 

conduction and valence bands of graphene. This causes the other electrical phenomena of 

graphene, such as the abnormal quantum Hall effect (QHE) and nonzero Barry’s phase, 

etc. The infrared spectroscopy together with a magnetic field can reveal the Landau Level 

(LL) spectrum of graphene.  In this task, the magnetic field was set at 6 Tesla, 12.1 Tesla, 

and 18 Tesla. As a result, the transition energies were approximately equal to the square 

root of the magnetic field.  Moreover, the LL transitions were shown to result with no 

exact pattern among different transitions. This was because of the effects of a large 

amount of the observed particles. 

 

Pu NW et al.21 exfoliated graphene sheets from graphite powder using a supercritical CO2 

technique. The natural graphite powder was put into the cell and the supercritical CO2 

was set to flow through the cell for thirty minutes. The products were collected by 

passing the output CO2 gas into water with sodium dodecyl sulfate (SDS) surfactant to 

prevent reaggregating of the expanded sheets. Transmission electron microscopy (TEM), 

atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM) 

were used to observe the products and showed that multi layers graphenic materials (~10 

layers) were produced.  

 

Malesevic A et al.48 synthesized graphene using the microwave plasma-enhanced 

chemical vapor deposition technique. The obtained graphenes were observed by electron 

microscopy, x-ray diffraction, Raman spectroscopy and scanning tunneling microscopy. 
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As a result, the flakes which were approximately six-layer thick, appear in a vertical 

direction, perpendicular to the substrate surface. 

 

Shen J et al.53 synthesized graphene from graphene oxide. First, the reaction between 

graphite and benzoyl peroxide (BPO) was used to produce graphene oxide. Then, the 

graphene oxide sheet was converted to graphene using its in situ reduction. CO2 was also 

used to expand the distance between graphite layers. Thermogravimetric analysis, Raman 

spectroscopy, and Fourier transform infrared spectroscopy showed the completion of 

graphene oxide production. TEM and AFM were used to compare graphene oxide with 

obtained graphene (from graphene oxide) in a final state. The result showed that the 

graphene oxide with a single layer could be produced by this technique.  

 

Wu ZS et al.54 studied the effect of the lateral size and the crystallinity of the graphite, 

which was used as a reactant on the graphene product. Graphene oxide, also refered to as 

chemical exfoliation mean, was used to synthesize the graphene. Four kinds of graphite 

which were artificial graphite, flake graphite powder, Kish graphite, and natural flake 

graphite were used as reactants. As a result, the highest yield of monolayer graphenes 

was produced when artificial graphite was used as a reactant. These graphenes also were 

found to have high quality and electrical conductivity (~1×103 S/cm). 

 

Lotya M et al.60 made graphene by dispersing graphite in a water-based surfactant 

(sodium dodecylbenzene sulfonate (SDBS)). The solution was sonicated for thirty 

minutes in a sonication bath. Transmission electron microscopy, atomic-resolution TEM, 

Raman and IR spectroanalysis, and X-ray photoelectron spectroscopy were used to 

examine the product. Moreover, the stability of the exfoliated flake was also observed in 

terms of Coulomb repulsion. As a result, more than forty percent of the product had less 

than five layers (approximately three percent were monolayer). Those flakes lacked any 

defects and oxides with high stability and had a semitransparent appearance. 

 

Ferrari AC et al.61 studied the Raman spectra of graphene which was influenced by its 

number of layers. The increasing number of layers affected the topography (shape and 
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size) of the flake. This also affected the D peak second order (2D) in the Raman spectrum 

of graphene because of double resonance in the Raman process. The G peak, which was 

slightly changed, represented no defect or impurity in the graphene flakes. 

 

Rangappa D et al.62 exfoliated graphene using the supercritical fluid exfoliation method 

of graphite crystals. N-methyl-pyrrolidone (NMP), dimethylformamide (DMF), and 

ethanol were used as supercritical solvents due to their high solubilities. In preparation, 

graphite crystals were dispersed in the solutions and sonicated for ten minutes. Then, the 

sonicated crystals were put into the pressure vessel and the supercritical conditions were 

set within 300-400 °C and 38-40 MPa for 15-60 minutes. The process was completed 

after the vessel was placed in an ice bath. The collection was done by removing the 

residues, washing and centrifuging them, then drying them overnight in a vacuum oven at 

100 °C. Raman spectroscopy, high resolution transmission electron microscopy (HR-

TEM), AFM, and X-ray diffraction (XRD) were used to characterize the obtained flakes. 

Most of the flakes (ninety to ninety five percent) were found to be less than eight layers. 

Moreover, monolayer flakes were found approximately comprise six to ten percent. 

 

Woods HM et al.63 studied materials under supercritical carbon dioxide. The study was 

separated into three tasks: applied surfactant in the supercritical CO2 as a new material 

synthesizing method, the effect of the supercritical CO2 on polymer processing, and the 

supercritical CO2 in biomedical applications. In conclusion, the supercritical CO2 was an 

effective tool to create a new interesting feature and property of the product, which was 

hard to reveal from other means. 

 

Kaschak DM et al.64 expanded graphite using oxidizing solutions which were nitric acid 

based. Moreover, additional treatment by supercritical water, carbon dioxide, and helium 

was used to exfoliate graphite. The conditions below supercritical and near supercritical 

for each fluid were also examined. As a result, the graphite flakes with fifty micron 

thickness were created. This might be due to the reaggregation of a few layers of the 

graphite flakes. 
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Green AA and Hersam MC65 made graphene using solution dispersion and controlled the 

thickness using gradient ultracentrifugation (DGU). This method began by dispersing 

graphite in sodium cholate surfactant, which was amphiphilic. Then, horn ultrasonication 

was used to exfoliate the graphene flakes. These exfoliated flakes were stable because of 

the amphiphilic molecules of sodium cholate that covered the surface area of the flakes. 

Then, the solution was centrifuged by gradient ultracentrifugation to separate the desired 

thickness of the graphene flakes due to different density. The separated graphene flakes 

were placed on a SiO2 substrate for AFM and Raman spectroscopy observation. As a 

result, different shades of density occurred in the centrifuge tube. These shades contained 

different thicknesses of graphene flakes. The shade became darker as the thickness 

(density) of the contained flakes increased.  

 

Ghosh A et al.66 measured H2 and CO2 adsorption of graphene at 1 atm with 77 and 195 

K, respectively, using a Quantacrome instrument. The surface areas of graphene were 

also measured by using Brunauer-Emmett-Teller (BET). The graphenes were prepared 

from the method of graphene oxide29,30 and nanodiamond transformation30,31.  As a result, 

the H2 adsorption of graphene was 1.7 weight percent while the CO2 adsorption was 35 

weight percent. Moreover, for the single layer graphene the H2 adsorption was more than 

three weight percent and might be approximately 7.7 weight percent. These adsorptions 

changed proportionally with the surface areas, but inversely with the number of layers. 

 

Behabtu N et al.67 studied the graphite dispersion in chlorosulphonic acid with 2 mg-

carbon/mL-acid concentration. From this method, graphite was exfoliated to single layer 

graphene without additional treatments or solvents to produce single layer flakes, 

recovered some properties of the flakes, and maintained the stability of those flakes. 

Three kinds of graphite (expanded, microcrystalline, and highly ordered pyrolytic) were 

compared with each other. Raman spectroscopy, TEM and HR-TEM, X-ray 

photoelectron microscopy (XPS), and AFM were used to examine the obtained graphene. 

As a result, the liquid-phase graphene was produced with a concentration of 

approximately 20-30 mg/L. Moreover, eighty percent of the crystalline flakes were 

transparent. 
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Subrahmanyam KS et al.68 studied and compared the characteristics of graphene which 

were synthesized from different methods. Graphene produced from pyrolysis of camphor, 

graphitic oxide exfoliation, and conversion of nanodiamond, were used in this task. X-ray 

diffraction (XRD), TEM, AFM, Raman spectroscopy, magnetic measurement, and 

Brunauer-Emmett-Teller (BET) were used to characterize the obtained graphenes. As a 

result, exfoliated graphene showed the smallest size, the least number of layers, and the 

best crystalline graphene with minimum defects. Moreover, it also showed the highest 

surface area and the highest weight percent of hydrogen and carbon dioxide                   

adsorptions.   

 

Kozhemyakina NV et al.69 studied the electronic characteristics of graphene-perylene 

bisimide (PBI) interaction in N-methylpyrrolidone (NMP). The graphene was made by 

dispersion of turbostratic graphite in NMP. The solution was stirred for five days and 

then centrifuged to separate single-layer and few-layer graphene. Perylene bisimide was 

also dispersed in NMP. To study the interaction of these two materials (graphene and 

perylene bisimide), the sample was prepared by dropping both dispersed solutions on a 

silicon substrat with 300 nm SiO2 coating. Raman spectroscopy and fluorescence 

spectroscopy were used after evaporation of the solvent. As a result, the Raman spectra of 

graphene at 532 nm excitation was interfered by those of perylene bisimide, although the 

D-band, 2D-band, and G-band were still seen. However, the spectra at 633 nm showed 

graphene-like spectra, since perylene bisimide was not activated by this wavelength. As 

for fluorescent spectroscopy, both graphene and bisimide were fluoresced by green light 

(545 nm wavelength) and emitted from 605 nm. Graphene showed a blue contrast while 

perylene bisimide showed various colors (red, yellow, and light blue) in the fluorescent 

micrograph. 

 

Li Q et al.70 studied the solubility of 2- napththol and anthracene in supercritical CO2. 

Acetone, ethanol, and cyclohexane were used as co-solvents. The process was run at 

temperatures between 308.1 K and 328.1 K, and pressures between 10 MPa and 30 MPa. 

The solubility of both solid materials was measure by making equilibrium flow between 
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two phases (fluid and solid), and applying the gravimetric analysis method. As a result, 

when the temperature or pressure increased, the solubility of both solids was increased. 

Moreover, the non-polar co-solvent (cyclohexane) could increase the solubility of both 

materials in supercritical CO2 better than the polar solvent (ethanol and acetone) could 

do. 

1.5. Co-solvents 
 
Due to lack of polarity of the supercritical carbon dioxide, co-solvents are used to 

increase its polarity. This increases the solubility power of the supercritical carbon 

dioxide70. Moreover, another function of co-solvent is to make more comfortable and 

effective way in collecting the samples since the treated flakes are dispersed in exiting 

drops of co-solvent. In this experiment, three solvents, N-methyl pyrrolidinone (NMP), 

dimethylformamide (DMF), and isopropanol, were used as co-solvents. Some of the 

properties are shown in Table 1.3. 

 

Table 1.3                                                                                                                                                                   

Some properties of N-methyl pyrrolidinone (NMP), dimethylformamide (DMF), and 

isopropanol. 

Solvent NMP71 DMF28 Isopropanol30 

Formular C5H9NO C3H7NO (CH3)2CHOH 

Molecular Weight (g/mol) 99.13 73.09 60.0926 
pH 7.7 to 8.0 6.0 to 8.0 N/A 
Vapor Pressure  0.29-0.32 3.68 33.00 
(×10-5 MPa at 293.15K)       
Melting Point (K(°C)) 249.15(-24) 212.15(-61) 184.15(-89) 
Boiling Point (K(°C)) 457.15(202) 426.15(153) 355.45(82.3) 

Critical Temperature (K(°C)) 724.15(451.00)26 922.75(649.60)24 526.35(253.20)31 

Critical Pressure (MPa(psi)) 4.52(555.57)27 4.42(641.07)24 7.76(691.00)31 
Dielctric constant  
(at 293.15°C) 3372 36.773 19.2674 
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2. Hypothesis 
 
Graphite is a carbon allotrope that is a multi-layer stacking of hexagonal network planes1. 

The distance between carbon atoms in the same plane is 1.42 Å34. In other words, 

graphite consists of a single-atom-layer material (graphene) attached together by a van 

der Waals force that is weak enough to allow graphite to be exfoliated by normal method, 

such as pressing and peeling an adhesive tape (Scotch tape method)1,3. However, the 

percent yield is the main problem of a few-layer production3. Other methods, such as 

chemical vapor deposition (CVD) and thermal decomposition of metal on carbride 

substrate3,48,49, and chemical exfoliation3,53,54,55, are also invented by many groups of 

people as mentioned previously. However, those methods also bring about some 

unfavorable results of the product, such as the lack of some properties, defects, etc., due 

to chemical interactions and treatment of the process3. Therefore, more processes are 

required to recover those loosen properties3. This means more time, labors, and funds are 

consumed in the production. At this point, supercritical CO2 is considered as a promising 

way to exfoliate graphite. 

 

As mentioned previously, the distance between layers is approximately 0.335 nm, but can 

be increased due to rotation and twisting of the layers2,3. As for the carbon dioxide, the 

vertically molecular size of carbon dioxide is approximately 0.33 nm75. Moreover, due to 

the high kinetic energy of carbon dioxide and its polarizability, carbon dioxide has the 

potential to pass between the graphite layers since its molecular size is approximately 

smaller than the layer-layer distance76. In addition, when the supercritical condition is 

applied, the diffusivity and dissolvability of the fluid are enhanced36. Together with 

added co-solvents (N-methylpyrrolidone, dimethylformamide, and isopropanol), which 

can increase the polarity and the fluid-solid interaction36, the graphite layers are expected 

to be expanded and exfoliated at this point. The exfoliated pieces will come out with the 

output fluid and can be collected in a u-tube. In conclusion, supercritical carbon dioxide 

might be an effective and productive method to synthesize a few-layer graphenic material 

via the exfoliation of graphite. A schematic of this hypothesis is shown in Figure 2.1. 
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Figure 2.1 A schematic of graphite exfoliation by supercritical carbon dioxide. The 
carbon dioxide molecule is small enough to pass through the layer-layer space of 
graphite. Moreover, the supercritical condition increases the diffusivity and dissolvability 
of the fluid. Co-solvents are used to increase the polarity of the supercritical carbon 
dioxide and the interaction between fluid and solid phase. A few-layer graphite is 
expected to exfoliated at this point. 

 
From Figure 2.1, when graphite is treated by supercritical carbon dioxide, its layers are 

expanded because of carbon dioxide molecules that pass between the graphite layers. Co-

solvents are injected to maintain the expanded distances between the graphite layers. The 

graphite layers are also exfoliated into smaller flat pieces under the supercritical 

treatment. The degree of exfoliation depends on the supercritical density of the treatment. 

In other words, higher supercritical density treatment can exfoliate ant break down the 

graphite layers into smaller sizes while lower supercritical density treatment cannot 

exfoliate and break down the graphite layers as completely as higher supercritical density 

treatment. Instead, it expands the graphite layers which loose the force held between the 

layers. 

 

 

 

CO2
molecule

Co-solvents

Graphite layer
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3. Experiment 

3.1. Supercritical CO2 extraction 
 
 The supercritical CO2 extractor system consists of a pump, a pressure cell, a heating unit, 

and a release valve. The procedure begins when the carbon dioxide, which is stored as a 

liquid in a cylinder tank, is pumped into the extraction cell with a high-pressure syringe 

pump. In this tube, the supercritical pressure is set by the pump. Then, this CO2 is 

released to the pressure cell which contains the material or substance that is to be 

extracted. The pressure cell is a cylindrical stainless steel tube with two hexagonal 

stainless steel caps. The inner diameter of the tube is 1 cm and the outer diameter is 1.2 

cm. The length of the tube including caps is 12.2 cm. The volume is approximately 9.582 

cm3. It can contain approximately 2.8 grams of graphite powder (without applying force). 

This cell is placed in the controlled temperature oven, and set to the desired supercritical 

temperature. The supercritical conditions are held until the extraction process is 

complete, which is normally ten to sixty minutes, depending on the extracted material. 

The sample is collected into a collection vessel, often a glass U-tube by opening the 

needle valve at the extraction cell exit, and reducing the pressure to subcritical levels. The 

supercritical CO2 flashes into a gas and passes through the tube, whereas the co-solvent 

and graphenic materials are condensed and collected. This collection method is very 

effective in collecting fine shape and small piece of products since the pressure cell has 

0.5 micron filters at end each. Therefore, large and rough pieces are filtered out. 

Moreover, the U-tube can collect pieces which come out with the fluid, along with the 

co-solvent because it creates a phase separation between the supercritical fluid and co-

solvent. The released CO2 gas will flow in to the U-tube and flow out of the other side, 

while the co-solvent stays in the curve of the tube. The extracted material, which comes 

out with the supercritical fluid, will be collected in the liquid phase of co-solvent. The 

flow of the outlet is controlled by a release valve (needle valve). The schematic of the 

supercritical CO2 system and a photo of the supercritical CO2 extractor (Varian 

Aerograph Series 1400) used in this experiment are shown in Figure 3.1 and 3.2, 

respectively.  
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Co-solvent can be injected into the pressure cell using a 6-way valve system which can 

be rotated to select the path of injection to the pressure cell. Once the path is changed 

from CO2 to co-solvent, the co-solvent is injected into the pressure cell before shifting 

back to the CO2. It is necessary to momentarily reduce the inside pressure in the pressure 

cell by opening the release valve. Consequently, the co-solvent can flow into the pressure 

cell because the pressure inside the cell is released and less than that in the injection tube. 

The schematic of the 6-way valve system, which is used to inject the co-solvent, is shown 

in Figure 3.3. 

 

 
Figure 3.1 The supercritical CO2 extraction system. This system consists of a liquid CO2 
tank, high-pressure syringe pump, pressure guage, thermocouple, pressure cell, 6-way 
valve release needle valve, and U-tube. The red arrow line shows the CO2 path. 
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Figure 3.2 The supercritical CO2 extractor Series 1400from Varian Aerograph (a), 
pressure vessel (b), and syringe pump controller model REV D 260d from ISCO, Inc. (c). 
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Figure 3.3 The 6-way valve diagram. The valve can be rotated to select whether                                         
the supercritical CO2 path or co-solvent path goes to the pressure cell.  

 

The synthetic graphite powder (Aldrich Chemical Company, Inc.) was filled into the 

pressure cell until it is full (approximately 2.8 grams) without applying any pressure 

when filling, then close both sides with filter caps. Then, the pressure cell was installed in 

the supercritical CO2 extractor (Series 1400 from Varian Aerograph) by screwing on and 

tightening both sides with the plastic fittings.  The temperature can be set by the 

a b c 
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temperature control box, to 40°C, then close the oven door, turn on the oven fan and then 

the oven heater. In the case of pressure setting, open the main valve on the CO2 tank and 

turn on the syringe pump controller (model REV D 260d from ISCO, Inc.). Open the CO2 

inlet valve, fill the syringe pump by pushing the “refill” button, and close the CO2 inlet 

valve when the pump is full. Then, set the pressure as 2000 psi and push the “run” button. 

To inject CO2 into the system, open the CO2 outlet valve to pressurize the cell and check 

for leaks. 

 

Co-solvent (N-methyl-pyrrolidone (NMP)) was inject by moving the injection valve fully 

clockwise (arm up), filling Luer-lok syringe with NMP; attaching the syringe to the 

injection valve, depressing the syringe plunger to push solvent through the injection valve 

loop, moving injection valve counter-clockwise to put loop into high pressure line, 

bleeding off CO2 pressure with outlet valve; close valve, and move the injection valve 

back into the load position (arm up), respectively. Inject the NMP two times 

(approximately 0.3 mL) every three minutes for one and half hours to ensure the co-

solvent pass through all of the graphite powder in the cell.  

 

The 0.5 mg/mL sodium dodecylbenzene sulfonate (SDBS) surfactant was prepared60 by 

mixing 125 mg of SDBS salt technical grade (Aldrich Chemical Company, Inc.) into 250 

mL of water. The mixture was stired overnight in an oil bath at a temperature of forty 

degrees Celsius, then pipet 10 mL of the surfactant into small bottles.   

 

Before collecting a sample, the U-tube was rinsed with ten milliliters of the SDBS 

surfactant. The metal tube connected to the release needle valve was placed inside the U-

tube and the release valve was opened slowly to let the drops of the exiting NMP fall into 

the U-tube for ten minutes (gathering approximately three milliliters).  

 

The process was shut off by closing the CO2 outlet valve, depressurized system by 

opening the release needle valve completely, turned the oven heater and oven fan off, 

removed the cell, turned off the pump and closed the CO2 tank main valve. Removed the 

powder from inside the cell and place it into a bottle for further analysis.  
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The process was repeated three times to collect three sets of samples for all temperature 

(40°, 50°, and 60°C) and pressures (2000, 2500, 3000 psi).        

3.2. Photon Correlation Spectroscopy (PCS) 
 

The Zetasizer Nano Particle Analyzer is the instrument to measure the net charge (zeta 

potential), size, and molecular weight of dispersed particles77. In this experiment, the net 

charge and size measurement are considered. As for zeta potential theory77, when 

particles are dispersed in solution, the net charges on the surface of the particles will 

attach to opposite charges in solution. This creates a double-charge layer. The inner 

region will have higher concentration of ions which are tightly attached together while 

the outer region has lower concentration and less tight attaching. This outer charge is 

called the “zeta potential” of the colloid particle. This parameter shows the stability of the 

colloid particle. Normally, the particle is considered stable if its zeta potential is more 

positive or more negative than +30 mV or -30 mV77, respectively. This means the particle 

tends to repulse each other since it has the same strong charge. The zeta potential can be 

measured using the folded capillary cell or the dip cell in the glass square cuvette.                                  

                                                                                                                                                        

In the case of size measurement77, the Zetasizer software simulates the particle size by 

measuring laser scattering and its correlating change due to Brownian motion. When a 

light source, such as a layer, is applied, the light is scattered due to the particles. The 

detector screen detects this scattered light which is shown as a bright-dark pattern. The 

bright regions are from the light scattering reaching the detector screen, while the dark 

region shows that no light is detected because it is blocked by the particle. Due to the 

Brownian theory, the particles always move because of the collision between molecules. 

Therefore, the light scattered pattern is unstable both in position and intensity. The 

Zetasizer Nano System measures this rate of change and uses it for calculating the size of 

the particle. As a result, the intensity contribution of the size is shown.                                                                                                                                                                                 
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The Zetasizer Nano Particle Analyzer (Nano ZS model ZEN3500, Malvern Instruments 

Ltd.) and the DTS (Nano) software77 were used to measure sizes and zeta potentials of 

the dispersed graphenic flakes in the SDBS solution. Before the analysis, the system 

needs to be warmed up for thirty minutes. For the sizing analysis, the sample (in the 

SDBS solution) was rinsed into the glass square cuvette until it reaches a ten millimeter 

height and placed in the Zetasizer Nano Particle Analyzer then close the lid. The analysis 

was begun by selecting the “size’ measurement, “graphene” material, “water” dispersion, 

and “PCS1115 Glass cuvette with square aperture” cell in the DTS (Nano) software. The 

data were collected when the analysis was complete. In the case of zeta potential 

analysis77, the universal dip cell was applied into the glass square cuvette before placing 

both of them in the analyzer. In the software, the option of “zeta potential” measurement, 

“graphene” material, “water” dispersion, and “DTS1070 – Zeta dip cell” were selected 

before starting the analysis. The data were collected when the analysis was complete.  

                                                                                                                                               

Sonication was applied after the supercritical treatment to study its effects on the 

obtained flaked. The sonication was done in a sonication bath (Branson 3510). 30% 

volume of ethanol (Pharmco-AAPER, ACS/USP Grade) was added in the sample. In this 

experiment, 7 mL of suspended sample was mix with 3 mL of ethanol in small tube. The 

sample tube was place in the sonication bath covered by water. The sonication was run 

without heat for one hour before doing the PCS analysis.  

 

After analysis, the glass square cuvette and the bottom of the universal dip cell were 

rinsed with deionized (DI) water, and put into the sonication bath (Branson 3510) to be 

sonicated for 15 minutes77. They were cleaned with DI water and ethanol (Pharmco-

AAPER, ACS/USP Grade) and dried by applying air under chemical hood.  
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Figure 3.4 The Zeta Nano Instrument: ZS model ZEN3500 with a 532 nm green laser, 
Marvern Instruments Limited (a) and the universal ‘dip’ cell and the glass square cuvette 
(b). The instrument is located in the Chemical Science and Engineering Building, 
Michigan Technological University, USA. 

3.3. Brunauer, Emmett, and Teller (BET) analysis 
 
Before doing the analysis, the sample was degassed to make sure that no other gas came 

out from sample during analysis at low-pressure conditions. The sample weighted 

approximately 0.0555 grams and was put into the sample tube. Liquid nitrogen was filled 

to approximately 2/3 of the BET degas tank. An O-ring (with some vacuum sealer) and 

metal knob were place on the sample tube. The sample tube was attached and tightened to 

the BET degas port by screwing on the metal knob. Then, the heater pad was applied to 

the bottom of the sample tube with the metal clip. The instrument was started by turning 

on the machine, vacuum pump, and nitrogen-, helium-, and carbon dioxide tanks. The 

degas condition of 210°C, which is higher than boiling point of NMP, DMF, and 

isopropanol (Table 3), with a holding time 360 minutes and an increasing rate of 10°C 

per minute was set in the ASAP2000 software. The sample tube was removed from the 

degas port after the process was complete78. 

 

The BET process measurement was operated with the degassed sample. The BET tank 

was filled by liquid nitrogen (until it reaches a marker level to determine the amount 

needed). Plastic sleeve, metal knob and O-ring (with some vacuum sealer) were placed 

on the sample tube. Then, the sample tube was attached and tightened to the BET port by 

screwing on the metal knob. The weight of the sample and adsorptive gases (N2 and CO2) 

were filled and selected in the ASAP2000 software. The sample was removed from the 

a b 
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port when the analysis was complete. The untreated and treated graphite were analyzed 

with both of N2 and CO2 adsorption78.  

 

For cleaning, a solution of 50 mL (10%) of Micro-90 (item#M-9031-12) in warm water 

was used. The solution was rinsed in a sonication bath (Branson 3510). After removal of 

sample, the sample tube was place into the sonication bath by letting the water cover all 

of the tube with no air inside it. The sonication was applied for 15 minutes. Then, the 

sample tube was removed from the bath and rinsed with isopropanol. A metal tube 

connecting to nitrogen tank was inserted into the sample tube to dry out the interior of the 

tube. After it dried, the sample tube was baked in the oven at 110 °C for two hours78.  

 

 
Figure 3.5 The ASAP 2020 analyzer from Micromeritics Instrument Corporation, located 
in the Chemical Science and Engineering Building, Michigan Technological University, 
USA. 

3.4. Field Emission Scanning Electron Microscopy (FE-SEM) 
 
The FE-SEM was used to observe the characteristics of flakes obtained. To avoid residual 

surfactant (SDBS), the samples for FE-SEM were prepared by using the flakes in NMP 

directly obtained from the supercritical extractor. Another way was prepared by using the 

flakes in one percent of weight of SDBS in weight of water (9.94 mg SDBS/mL water).  

The one percent weight by SDBS to weight of water was prepared by mixing 2.4846 

grams of SDBS in 245.98 grams (250 mL) of water, then the mixture was stirred 

overnight at 40°C. The sample was dropped on the sample holder, which is aluminum, 

until all of surface was covered. The prepared sample holder was left for two days under 
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a chemical hood (Labconco – Protector Laboratory Hood); or until it was the solution 

was completely evaporated. The process was repeated three times for the same sample 

holder. The analysis was done using Hitachi S-4700 FE-SEM with a working distance of 

five millimeters and five kilo-electron volts (keV) at various magnifications for each 

sample. 

 

      
Figure 3.6 The Hitachi S-4700 FE-SEM located in Material Science and Engineering 
Building, Michigan Technological University, USA. 

3.5. Atomic Force Microscopy (AFM) 
 
Veeco Dimension 3000 Atomic Force Microscopy was used to construct topographic and 

3D images, and analyze the horizontal and vertical sizes of flakes obtained. AFM 

samples were prepared from the flakes in the NMP co-solvent, which were obtained 

directly from the exit of the supercritical extractor. The sample was dropped directly on a 

silicon substrate until the solution covered all surface of the substrate. The deposited 

substrate was left to dry for two days under a chemical hood (Labconco – Protector 

Laboratory Hood); or until the solution completely evaporated62. A tapping mode, 1:1 

aspect ratio, 1 Hz scan rate, and 5 and 50 micrometer scan sizes were set for the AFM 

operation. 
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Figure 3.7 Veeco Dimension 3000 Atomic Force Microscope and Control Center. The 
instrument is located in the Materials Science and Engineering laboratory at Michigan 
Technological University. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



30 
 

4. Results and Discussion 

4.1. Experimental conditions for Photon Correlation Spectroscopy 
(PCS) 
 
In this study, the flakes obtained from several different processing conditions using 

supercritical CO2 treatment were analyzed. Temperatures of 40°, 50°, and 60°C and 

pressures of 2000, 2500, and 3000 psi were used in this experiment to study effects of 

supercritical density on the flakes obtained. NMP was used as a main co-solvent due to 

its high solubility, polarity (Table 3) and ability to dissolve in supercritical CO2
19. 

Therefore, it was expected to be the best co-solvent to exfoliate and maintain stability of 

the flakes. DMF and isopropanol, which has a high dielectric constant and a different 

polarity range, respectively, were used in some experiments to study the effects of co-

solvents on the flakes obtained. The PCS samples were prepared by collecting the exiting 

co-solvent suspensions into a 0.5 mg/mL SDBS solution. This water-based surfactant 

served to maintain the stability of the suspensions for a short period during the PCS 

analysis without damaging the instrument from organic solvents (NMP and DMF). The 

majority of treatments were run for one hour. However, to study the effect of treatment 

time on the flakes obtained, the treatment at 60°C and 3000 psi was run for 2 and 3 

additional hours with NMP as a co-solvent. The experiments for PCS are shown in Table 

4.1. 
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Table 4.1                                                                                                                                                                    

Matrix of experimental conditions for PCS analysis. a = NMP, b = DMF,                           

c = isopropanol, 2 = two hour treatment with NMP as co-solvent, and                                    

3 =three hour treatments with NMP as co-solvent. 

Condition Pressure (psi) 40°C 50°C 60°C 
Sonication 2000 a a a 

 
2500 a a a 

 
3000 a,b,c a,b,c a,b,c, 2,3 

Non- 2000 a a a 
Sonication 2500 a a a 

 
3000 a,b,c a,b,c a,b,c, 2, 3 

 

The analysis were separated into studying effects of temperatures, pressures, co-solvents, 

times, and additional sonication to diameters, z-average sizes, and zeta potentials of 

obtained flakes. All of the raw data for all experiment runs is in the appendix A. 

4.1.1. Effects of pressure and temperature of supercritical carbon 
dioxide (ScCO2) on sizes and zeta potentials of graphitic flakes, using 
NMP as a co-solvent 

4.1.1.1. Effects of pressures and temperatures of supercritical carbon 
dioxide (ScCO2) on diameters of flakes obtained 
 
Table 4.2 shows the PCS results of each individual experimental condition with NMP as 

a co-solvent. The PCS analysis can obtain the mean diameter, which is the highest 

intensity size of the flakes obtained; the z-average size, which is the log mean size of the 

flakes obtained; and the zeta potential, which is the charge that covers the outer surface of 

the flakes obtained68. 
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Table 4.2                                                                                                                                                                     

Sizes and zeta potentials of graphitic flakes after supercritical CO2 treatment at different 

temperatures (40°, 50°, and 60°) and pressures (2000, 2500, and 3000 psi) with and 

without additional one-hour sonication. NMP was used as a co-solvent. 

Parameter Pressure   Sonication   Non- Sonication 
  (psi) 40°C 50°C 60°C 40°C 50°C 60°C 

Diameter 2000 153.80 117.50 78.66 157.30 143.20 175.70 
(nm) 2500 144.60 122.22 85.28 155.90 122.30 207.10 

  3000 130.90 121.10 105.10 151.90 160.90 215.20 
Z-average  2000 142.90 100.90 82.15 148.30 158.40 167.10 
size (nm) 2500 136.80 107.40 96.86 163.80 161.80 167.80 

  3000 111.40 102.70 85.58 121.10 175.40 133.60 
Zeta  2000 -56.90 -41.20 -27.80 -33.30 -29.10 -32.20 

potential  2500 -57.80 -42.40 -28.50 -32.10 -29.20 -20.20 
 (mV) 3000 -43.50 -39.10 -32.20 -56.40 -44.10 -40.80 

 
 

 
 
Figure 4.1 The diameter (nm) of the graphitic flakes at different treatment temperatures 
(°C) and pressures (psi)  with additional one-hour sonication. NMP was used as a co-
solvent. 
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Figure 4.2 The  diameter (nm) of the graphitic flakes at different treatment temperatures 
(°C) and pressure (psi) without additional sonication. NMP was used as a co-solvent. 

 
From Table 4.2 and Figure 4.1, in the case of the additional one-hour sonication, the 

diameters of the flakes are clearly affected by the temperature of the supercritical carbon 

dioxide. In the case of sonication at 60°C, flakes show the smallest sizes, 78.66 nm, while 

at 40°C, the flakes are the largest, 153.80 nm, in comparison to other temperatures at the 

same pressures. The effects of pressure are less obvious. Although the pressure changes, 

the diameters of the flakes at the same temperature are relatively close to each other. At 

60°C, diameter tends to increase when the pressure increases (78.66 nm, 85.28 nm, and 

105.10 at the pressures of 2000 psi, 2500 psi, and 3000 psi, respectively). The diameters 

are almost constant at 50°C (117.50 nm, 122.22 nm, and 121.10 nm at the pressures of 

2000 psi, 2500 psi, and 3000 psi, respectively). In contrast, the diameter tends to decrease 

when the pressure rises at the pressure for 40°C (153.80 nm, 144.60 nm, and 130.90 nm 

at the pressures of 2000 psi, 2500 psi, and 3000 psi, respectively).  

 

For the non-sonicated data in Table 4.2 and Figure 4.2, the results are different from 

those of the sonicated samples in terms of the order of the temperature which affects the 

diameter of the flake. At 60°C, the diameters of the flakes are the largest compared with 

those of other temperatures at the same pressure. However, the diameters of flakes at 
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50°C at the pressures of 2000 psi and 2500 psi (143.2 nm and 122.3 nm, respectively) are 

lower than at 40°C (157.3 nm and 155.9 nm, respectively). The largest diameter for the 

non-sonicated samples is 215.2 nm, at 60°C and the pressure of 3000 psi while the 

smallest diameter is 122.3 nm at 50°C and the pressure of 2500 psi. 

 

For the supercritical condition, the critical point of carbon dioxide is 304.1K and 7.38 

MPa (30.95°C and 7070.38 psi; Table 1.2). However, the supercritical density of the 

carbon dioxide depends on the temperature and pressure used to create the supercritical 

condition23. For carbon dioxide, the supercritical density is high when the temperature is 

slightly higher than its critical temperature and when the pressure is much higher than its 

critical pressure. Therefore, in this case the supercritical density is the highest at 40°C 

and 3000 psi, but is the lowest at 60°C and 2000 psi. The data shown in Table 4.2, and 

Figures 4.1 and 4.2 indicates that the temperature has more of an effect on the flake 

diameter than the pressure does. For the sonicated samples, the diameter increases when 

the temperature decreases. This trend is the same for all pressures presented in this 

experiment. In contrast, the diameters of the non-sonicated samples increase when the 

temperature increases. This is because when the temperature increases, the supercritical 

density of carbon dioxide decreases. The carbon dioxide molecules per unit area 

decreased. Therefore, at 40°C and 3000 psi, the supercritical fluid has the highest yield of 

the carbon dioxide molecules per unit area.  Consequently, the graphitic flakes are 

intercalated by a large number of the supercritical CO2 molecules. However, the ability to 

absorb the molecule per unit area of the graphite surface is limited. As a result, the 

graphite layers are exfoliated and broken up into small flakes. When sonication is applied 

after the supercritical carbon dioxide treatment, the diameter of the flake decreases less 

than the low-critical density treated samples because the high-critical density treated 

flakes are already exfoliated and broken up to small pieces. This is why the differences 

between the diameter of the sonicated sample and non-sonicated sample at the high 

critical density (40°C and 3000 psi) are less than that of the low critical density (60°C 

and 2000 psi). 
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In the case of the effect of the temperatures on the diameters of non-sonicated samples, 

the high critical density at 40°C creates the smallest flakes diameters for non-sonicated 

samples, followed by those of temperature at 50° and 60°C. However, the data shown in 

Table 4.2 and Figure 4.2 show some differences. The diameters of the non-sonicated 

flakes at the temperature of 50°C at pressures of 2000 psi (143.2 nm) and 2500 psi (122.3 

nm) are less than those of 40°C (157.3 nm and 155.9 nm, respectively) which has higher 

critical density at the same pressures. This is not statically significant due to high 

deviation of the sample sizes obtained. 

 

In the case of the effect of the temperature, the smallest diameters are created by the 

temperatures of 60°C, followed by those of 50° and 40°C, respectively. These are the 

inverse of the data set for the non-sonicated samples where the lower temperatures can 

make smaller flakes in terms of the diameters. This is because in the supercritical 

treatment, the carbon dioxide molecules pass through and are adsorbed between the 

layers of graphite. This can cause exfoliation via expansion, due to the carbon dioxide 

molecules are stacked between the graphite layers. For the high supercritical density 

treatment (low temperature), the graphite layers are already exfoliated more completely 

than low supercritical density treatment (high temperature), which the layers are 

expanded and loosen. Therefore, applying energy to the treated graphite by sonication 

breaks down these expanded and loosen layers. This is why the sonicated flakes sizes are 

relatively smaller than those of non-sonicated flakes.  Pressure do not affect the diameter 

of the flakes as much as the temperatures do since we cannot see the exact trend of the 

pressure. This may be because high deviation of obtained sample sized that may interfere 

the trend of pressure effects. 

4.1.1.2. Effects of pressure and temperature of supercritical carbon 
dioxide (ScCO2) on z-average sizes of flakes obtained 
 
The z-average size is another method to calculate the size of a flake. This parameter is a 

log mean size of suspended particle77. However, it is also based on Brownian motion and 

laser scattering of particles77. Therefore, z-average sizes have the same inclinations as the 
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diameter sizes of various temperatures and pressures and sonicated and non-sonicated 

samples as shown in Table 4.2 and Figure 4.3 and 4.4.  

 

 
 
Figure 4.3 The  z-average size (nm) of graphitic flakes at different treatment 
temperatures (°C)and  pressures (psi)with additional one-hour sonication. NMP was 
used as a co-solvent. 

 

 
 
Figure 4.4 The z-average size (nm) of the graphitic flakes at different  treatment 
temperatures (°C) and pressures (psi) without additional sonication. NMP was used as a 
co-solvent. 
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In the case of the effects of temperature for the sonicated samples, at the same pressure, 

the temperature of 60°C creates the smallest z-average size, followed by 50° and 40°C, 

respectively. For non-sonicated samples, the smallest z-average sizes are created by 40°, 

50°, and 60°C, respectively. These can be explained in the same way as with the 

diameters. Repeatedly, at lower temperatures, the supercritical density of carbon dioxide 

is lower than it is at higher temperatures. Therefore, the lower temperatures can break the 

graphite more completely than higher temperatures, due to high amounts of the carbon 

dioxide molecule per unit area of the layer surface. In contrast, at higher temperature, the 

graphite flakes are not completely exfoliated but expanded due to carbon dioxide 

molecules that go inside and be stacked more between the graphite layers.  As a result, 

the lower temperatures make a smaller z-average size for non-sonicated sample but larger 

z-average sizes for sonicated samples since the expanded layers of graphite are broken up 

further by sonication. These make the z-average size differences between sonicated and 

non-sonicated samples of the higher temperatures larger than those of the lower 

temperatures. However, for non-sonicated samples, the z-average size at 50°C (161.80 

nm) is smaller than at 40°C (163.80 nm) and 2500 psi; and the z-average size at 50°C and 

3000 psi is the largest (175.40 nm).  

 

For the effects of pressure on the z-average size, higher pressure yields higher critical 

density. When pressure increases, the z-average size should be decreased for non-

sonicated samples but increased for sonicated samples. However, these inclinations are 

not clear, as shown in Table 4.2 and Figures 4.3 and 4.4. This might be due to the error of 

high deviation of obtained sample. Moreover, they are close to each other if the 

temperatures are the same. In this case, the effects of pressure on the z-average size are 

minor, while temperature is a main factor that has more impact on the z-average size. 

4.1.1.3. Effects of pressure and temperature of supercritical carbon 
dioxide (ScCO2) on zeta potentials of flakes obtained 
 
The zeta potential is the outer charge that covers the surface of dispersed particles in a 

solution. These outer charges belong to the solution charges which are attracted by the 

opposite charges on the dispersed particle surfaces77. To maintain the stability of the 
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suspended particles, the zeta potential has to be as negative or positive as much as 

possible60,77. Normally, dispersed particles with a zeta potential less than -30 mV or more 

than +30 mV are considered to be highly stable due to high repulsive forces between the 

particles in solution, which prevent reaggregation60,77.  

 
 

 
 
Figure 4.5 The zeta potential (mV) of the graphitic flakes at different treatment 
temperatures (°C)and  pressures (psi) with additional one-hour sonication. NMP was 
used as a co-solvent. 

 

 
 
Figure 4.6 The zeta potential (nm) of the graphitic at different treatment temperatures 
(°C) and pressures (psi) without additional sonication. NMP was used as a co-solvent. 
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Table 4.2 and Figure 4.5 show the zeta potentials of the sonicated samples at various 

temperatures and pressures used in the supercritical carbon dioxide treatment. The data 

show that at 40°C, where the critical density is the highest, the zeta potential is lowest, 

followed by 50° and 60°C, respectively. In this case, the zeta potentials at 40°C are much 

lower than -30 mV, especially at 2000 psi (-56.90 mV) and 2500 psi (-57.80 mV), while 

the zeta potentials at 60°C fluctuated close to -30 mV (-27.80, -28.50, and -32.20 mV at 

2000, 2500, and 3000 psi, respectively). These show that flakes at 40°C are more stable 

than at 50° and 60°C, respectively. This is due to the high critical density of supercritical 

CO2 at 40°C, which can expand the graphite layers more completely. The lower critical 

densities at 60°C do not break the graphite layers as much. However, the carbon dioxide 

molecules can be adsorbed without complete exfoliation or expansion. Although 

sonication is applied and breaks up more flakes after the supercritical treatment, some 

partly expanded flakes still exist with carbon dioxide molecules still adsorbed between 

the layers. In this case, the Van der Waals forces which hold the layers together are 

weaker than in the original graphite, due to the increased distances between the layers 

Therefore, the stability of the dispersed flakes in terms of zeta potential is small due to 

excess carbon dioxide absorption on the surface of the flake layers, thus leading to a high 

degree of reaggregation. 

 

For the non-sonicated sample data in Table 4.2 and Figure 4.6, the trends are the same as 

that of the sonicated samples. The zeta potentials are the lowest at 40°C, followed by 50° 

and 60°C. Except for at 2000 psi, where the zeta potential at 60°C (-32.20 mV) is lower 

than that of at 50°C (-29.10 mV). However, they are close enough that this difference is 

not statistically significant since they are very comparable. This may be due to error from 

high dispersity in zeta potential of the suspended flakes. 

 

In the case of the effects of pressure on the zeta potential, the trends are once again not as 

clearly distinguished as those of temperatures. At 3000 psi when the critical density is 

highest, the zeta potential should show the most stability. This feature can be seen for the 

non-sonicated samples that, at the same temperature, 3000 psi creates the lowest zeta 

potentials (-56.40 nm, -44.10 nm, and -40.80 nm at 40°, 50°, and 60°C, respectively). 
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However, this is not the case for the sonicated samples since only those at 60°C follow 

this hypothesis. Although the stability of the flakes cannot be related clearly to the 

pressure, the zeta potentials are very close at the same temperature. In conclusion, for 

diameters and z-average sizes data, the effect of supercritical pressure is not as important 

as temperature. 

4.1.2. Effects of sonication after supercritical carbon dioxide (ScCO2) 
treatment on sizes and zeta potentials of graphitic flakes 

4.1.2.1. Effects of sonication after supercritical carbon dioxide (ScCO2) 
on diameters of flakes obtained 
 
Table 4.2 and Figure 4.7 show the comparison of the diameters between sonicated and 

non-sonicated samples. The relationship shows that at the same temperatures and 

pressures, the sonicated diameters are always less than those of non-sonicated samples. 

This is because sonication applies energy to the sample through vibration. As a result, the 

flakes are broken up into small pieces depending on how loosely they are stacked with 

the high critical density treatment (40°C, 3000 psi), the flakes are already extensively 

exfoliated by the attack of the carbon dioxide molecules. Although sonication is applied, 

the differences of the diameter before and after doing sonication are not large as those at 

low critical density (60°C, 2000 psi). This is because at low critical density the flakes and 

layers are not as completely expanded due to a lower concentration of carbon dioxide 

molecules between the flakes. Instead, they stack together loosely as large chunks. When 

sonication is applied, these flakes are loosen and broken up vertically and hexagonally 

into much small pieces, even smaller than those processed at a high critical CO2 density.  
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Figure 4.7 The diameters (nm) of sonicated and non-sonicated samples after 
supercritical(Sc) CO2 treatment at different temperatures and pressures. NMP was used 
as a co-solvent. 

 
In addition, sonication also brings about homogeneity in terms of the size and stability of 
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message “Refer to quality report”. This is due to high heterogeneity in the sizes and 

reaggregration of the dispersed flakes, resulting in a high Poly Dispersity Index (PDI). In 

contrast, all the results for sonicated samples are labeled “good” quality (appendix A) 

since sonication can break down the loosely-bonded flakes from the supercritical 

treatment more completely into small pieces in the same size range. These small flakes 

are separated more thoroughly from each other, so reaggregration is more difficult 

compared to those without additional sonication. 

 

The flake diameter shows no clear trend with changing pressure. In contrast, the 

diameters of the flakes are clearly different at different treatment temperatures. If 

temperature increases, the diameter decreases for non-sonicated samples, but increases 

for sonicated samples. This shows that treatment temperature has a more significant 

effect on the diameter of the flakes. 
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4.1.2.2. Effects of sonication after supercritical carbon dioxide (ScCO2) 
treatment on z-average sizes of flakes obtained 
 
Table 4.2 and Figure 4.8 show the comparison of the z-average size between sonicated 

and non-sonicated samples. In the same way, the sonicated samples have lower z-average 

size than that of non-sonicated samples due to the destruction of flakes from sonication. 

Moreover, the z-average size difference between the sonicated and non-sonicated 

samples at a high critical density temperature at 40°C is the smallest, followed by 50° and 

60°C, respectively. This is due to the density of the carbon dioxide molecules at the 

treatment conditions and the absorption capacity of the graphite flakes. Temperature is 

still a major factor, and the effect of pressure is relatively minor.  

 

 
 
Figure 4.8 The z-average sizes (nm) of sonicated and non- sonicated samples after 
supercritical(Sc) CO2 treatment at different temperatures and pressures. NMP was used 
as a co-solvent. 
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the first time, so the layers of the treated flakes may be partly expanded and still be 

loosely bonded together by Van der Waals forces. Applying sonication provides energy 

to these expanded flakes, which are then the flakes are cracked and broken up into small 

pieces. In the case of the flakes that already broken into the small pieces by the 

supercritical treatment, although sonication is applied, the differences in sizes are not as 

significant. That is why the differences between the z-average size and the diameter of 

the sonicated and non-sonicated samples at the high critical density are less than those 

treated at the low critical density. 

4.1.2.3. Effects of sonication after supercritical carbon dioxide (ScCO2) 
treatment on zeta potentials of flakes obtained 
 
Since sonication can break the loosely stack flakes into smaller flakes, the sonicated 

flakes should be more stable than non-sonicated flakes. The data in Table 4.2 and Figure 

4.9 show that the zeta potentials of the sonicated flakes have more negative charges than 

that of non-sonicated flakes at the same temperature and pressure. Although, at 3000 psi, 

the zeta potentials of the non-sonicated are less than that of sonicated flakes at the same 

termperature, they are close enough not to be statically different.  

 

 
 
Figure 4.9 The zeta potentials (mV) of sonicated and non-sonicated samples after 
supercritical(Sc) CO2 treatment at different temperatures and pressures. NMP was used 
as a co-solvent. 
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4.1.3. Effects of co-solvents on sizes and zeta potentials of graphitic 
flakes 

4.1.3.1. Effects of co-solvents of supercritical carbon dioxide (ScCO2) 
treatment on diameters of flakes obtained 
 
Co-solvents were used to increase the solvating power of the supercritical CO2

59. 

Moreover, they also served to disperse the treated flakes and carry them out of the 

pressure cell through the pressure release valve. NMP, DMF and isopropanol were used 

due to their range of polarities to study the effect of co-solvents on the supercritical 

processing. The PCS results show the diameter, z-average size, and zeta potential of the 

flakes obtained from each experimental condition in Table 4.3. 

 

Table 4.3                                                                                                                          

Sizes and the zeta potentials of graphitic flakes after the supercritical CO2 treatment with 

different co-solvents. The processes were run at different temperatures (40°, 50° and 

60°C) and 3000 psi with and without additional one-hour sonication. 

Parameter Co-solvent   Sonication   Non- Sonication   
    40°C 50°C 60°C 40°C 50°C 60°C 

Diameter NMP 130.9 121.1 105.1 151.9 160.9 215.2 
(nm) DMF 191.2 153.6 82.27 253.7 178.9 277.5 

  Isopropanol 290.1 314.9 291.5 231.6 236.8 217.8 
Z-average  NMP 111.4 102.7 85.58 121.1 175.4 133.6 
size (nm) DMF 181.2 123.1 81.87 198.2 122.1 197.9 

  Isopropanol 202.2 262.7 247.1 226.2 243.9 218.2 
Zeta  NMP -43.5 -39.1 -32.2 -43.5 -39.1 -32.2 

potential  DMF -47.1 -63.6 -60.5 -47.1 -63.6 -60.5 
 (mV) Isopropanol -25.4 -28.5 -29.1 -25.4 -28.5 -29.1 
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Figure  4.10 The diameter (nm) of graphitic flakes with different co-solvents used and 
treatment  temperature (°C) at 3000 psi with additional one-hour sonication. 

 

 
 
Figure 4.11 The diameter (nm) of graphitic flakes with different co-solvents used and 
treatment temperature (°C) at 3000 psi without sonication. 
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60°C (215.20 nm) is very close to that of the isopropanol (217.80 nm). This case of the 

effects of temperature, the relationship between diameters and temperatures are unclear.  

 

As for the diameters of the sonicated samples (Table 4.3 and Figure 4.10), the NMP-

diameters are the smallest, followed by the DMF- and isopropanol-diameters, 

respectively, at the same treatment termperatures and 3000 psi. However, at 60°C, the 

diameter of the DMF-sample (82.27 nm) is the smallest, and smaller than that of the 

NMP-sample (105.10 nm). Moreover, the diameters of the flakes tend to decrease when 

the temperature increases for NMP and DMF, but for the isopropanol-flakes, the trend is 

not clear (290.10 nm, 314.90 nm, and 291.50 nm at 40°, 50°, and 60°C, respectively). 

This might be due to reaggregation. Obviously, the isopropanol-diameters are much 

larger than those of NMP- and DMF-diameters which are close to each other. This also 

might be due to reaggregration of the flakes. Since isopropanol has a low dielectric 

constant (Table 3), it cannot maintain the stability of the flakes. Consequently, those 

smaller flakes become reaggregated after sonication. This occurs less in the organic 

solvents with high dielectric constant like NMP and DMF (Table 1.3). 

  

In conclusion, NMP and DMF which have high dielectric constants, can maintain the 

stability of the flakes by preventing reaggregation better than isopropanol, which has a 

low dielectric constant. As a result, the diameters of the NMP- and DMF-flakes are 

smaller than those of the isopropanol-flakes. This can be observed clearly in sonicated 

samples (Figure 4.10) since sonication breaks the graphitic flakes into smaller pieces 

after supercritical treatment. Those small and sonicated flakes are less stable than the 

flakes before sonication.  

4.1.3.2. Effects of co-solvents of supercritical carbon dioxide (ScCO2) 
treatment on z-average sizes of flakes obtained 
 

Table 4.3 and Figures 4.12 and 4.13 show the data of the z-average size (nm) of the 

flakes obtained at 3000 psi with various temperatures (40°, 50°, and 60°C, respectively) 

for sonicated and non-sonicated samples. The effects of different co-solvents (NMP, 
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DMF, and isopropanol) used in the supercritical carbon dioxide treatment on the z-

average sizes, are observed and compared to each other. The results show the same trends 

as the diameters sizes. For the non-sonicated samples, the NMP- and DMF-flakes have 

the smallest z-average ranges followed by the isopropanol-flakes. However, the 

relationship between the z-average sizes of each co-solvent and the temperature is not 

clear. These might be due to high polydispersity index (PDI) of the sample (Appendix A).  

 

 
 
Figure 4.12 The z-average sizes (nm) of graphitic flakes with different co-solvents used 
and treatment temperature (°C) at 3000 psi with additional one-hour sonication. 

 

  
 

Figure 4.13 The z-average sizes (nm) of graphitic flakes with different co-solvents used 
and treatment temperature (°C) at 3000 psi without sonication. 
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In the case of the sonicated flakes, the NMP- diameters are the smallest, followed by the 

DMF- and Isopropanol, respectively, except at 60°C, for which the DMF-flakes (81.87 

nm) is are comparable to the NMP-flakes (85.58 nm). Both of these organic solvents have 

high dielectric constants. The relationship between the temperatures and the z-average 

sizes for these two solvents show that when temperature increases, the z-averages of each 

co-solvent tend to decrease due to the sonication effects on the low critical density of the 

supercritical treatment. However, for isopropanol, no clear trend is observed.  

 

These results can be explained in the same way as the differences in diameters were. 

NMP and DMF are the best co-solvents for dissolving in the supercritical carbon dioxide 

in order to exfoliate the graphite layers into the smallest flakes, and maintaining the 

stability of those flakes after the treatment due to their high dielectric constant. 

Isopropanol cannot prevent flake reaggregation due to its low dielectric constant. 

Therefore, the z-average sizes of the isopropanol-flakes are larger than those of the NMP- 

and DMF- flakes for both sonicated and non-sonicated samples. 

4.1.3.3. Effects of co-solvents of supercritical carbon dioxide (ScCO2) 
treatment on the zeta potentials of obtained flakes 
 
For the non-sonicated samples (Table 4.3 and Figure 4.15), the NMP- and DMF treated 

flakes are stable since their zeta potentials are much less than -30 mV. Although the zeta 

potentials of the DMF treated flakes are somewhat less than that of the NMP treated 

flakes, in general, they are comparable to each other. For the isopropanol treated flakes, 

the zeta potentials have very small negative charges (-8.52, -13.80,  and -12.00 mV for 

40°, 50°, and 60°C, respectively), and much smaller than -30 mV. This means the 

isopropanol treated flakes are much more likely to experience reaggregation due to small 

repulsive force of the same charge.  

 

The trend is the same in the sonicated sample (Table 4.3 and Figure 4.14), the DMF- 

flakes should be most stable since thery have the highest negative charges. This is due to 

DMF, which has the highest dielectric constant compared to those of NMP and 

isopropanol. However, the NMP-flakes should also be stable since the zeta potential is 
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lower than -30 mV. In the case of isopropanol, although the zeta potentials are higher, the 

zeta potentials do not exceed the stable ranges (more than +30 mV or less than -30 

mV)77. Therefore, the isopropanol treated flakes are not stable in suspension.  

 

 
 
Figure 4.14 The zeta potential (mV) of graphitic flakes with different co-solvents used 
and treatment  temperature (°C) at 3000 psi with additional one-hour sonication. 

 
 

 
 
Figure 4.15 The zeta potential (mV) of graphitic flakes with different co-solvents used 
and treatment temperature (°C) at 3000 psi without sonication. 

 

-70.00
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00

0.00
40 50 60

Ze
ta

 P
ot

en
tia

l (
nm

) 

Treatment temperature (°C) 

Effect of the Co-solvents used in ScCO2    
on Zeta Potential (mV)                                               

with 1-hr Sonication 
NMP

DMF

Isopropanol

-80.00

-60.00

-40.00

-20.00

0.00
40 50 60

Ze
ta

 P
ot

en
tia

l (
nm

) 

Treatment temperature (°C) 

Effect of the Co-solvents used in ScCO2                 
on Zeta Potential (mV)                                   

without Sonication 
NMP

DMF

Isopropanol



50 
 

4.1.3.4. Effects of sonication after supercritical carbon dioxide (ScCO2) 
treatment on sizes and zeta potentials of flakes obtained with different 
co-solvents 
 
Comparing the effects of the sonication on the diameters of the flakes of different co-

solvents used in the supercritical treatment (Table 4.3 and Figure 4.16), all NMP- and 

DMF-flakes show the same trend. The diameters are relatively smaller after sonication. 

However, for the isopropanol treated flakes, the sonicated diameters are larger than the 

non-sonicated diameter at the same temperatures. This is due to the non-sonicated flakes 

of isopropanol not being as stable as shown by the zeta potentials data (Table 4.3 and 

Figure 4.15). These flakes more readily reaggregate with each other. After sonication, the 

flakes are broken down into smaller pieces which are less stable than before. Therefore, 

reaggregation occurs faster and easier than those before sonication. The diameters shown 

for the sonicated flakes treated in isopropanol are the diameters those which are already 

reaggregated, and are therefore larger than the non-sonicated diameters. 

 

For the effects of sonication on the z-average sizes (Table 4.3 and Figure 4.17), the trends 

are the same as that of the diameters. However, since the z-average sizes are calculated 

from the mean of the size distribution, there is less difference in the z-average sizes than 

the diameters. Form the data (Table 4.3 and Figure 4.12, and 4.13), at 40°C, the z-average 

size of the non-sonicated isopropanol-flakes (226.20 nm) is slightly larger than that of the 

sonicated flakes (202.20 nm), and at 50°C, the z-average size of non-sonicated DMF 

flakes (122.10 nm) is essentially the same as that of the sonicated flakes (123.10 nm). 

This might be due to the PDI of the non-sonicated flakes, which more variance in the 

results.    
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Figure 4.16 The diameters (nm) of sonicated and non-sonicated samples from different 
co-solvents used and treatment temperatures at 3000 psi.  

 
            

 
 
Figure 4.17 The diameters (nm) of sonicated and non-sonicated samples from different 
co-solvents used and treatment temperatures at 3000 psi. 
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sonicated flakes show the message: “Refer to quality report” for the result quality, which 

means these obtained data are not punctually sharp. This might be due to the solution 

containing inhomogeneous sizes (high PDI) or reaggregations of flakes71. After 

sonication, the software shows “good” result quality for most samples, which mean the 

deviation of the suspended flakes is low (observed from low PDI, appendix A). This 

might be due to the sonicated samples being more homogeneous in size. The sonication 

makes the samples more homogeneous since the energy from vibration is transferred 

equally to the flakes, and the flakes are broken down to the same degree. 

 

 
 
Figure 4.18 The zeta potential (mV) of sonicated and non-sonicated samples from 
different co-solvents used and treatment temperatures at 3000 psi. 
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zeta potentials less than -30 mV). Moreover, the zeta potentials of the samples before and 

after sonication are very similar. This trend is different from that in the isopropanol 

treated samples. In that case, the zeta potentials of the sonicated samples are 

approximately two times stronger than those of the non-sonicated samples in term of the 

negative charges. For isopropanol samples, both sonicated and non-sonicated samples 

may undergo reaggregation since their surface charges are less than -30 mV. In the 

sonicated samples, the flakes are broken up into smaller flakes and are more unstable 

than before. These broken flakes can be reaggregated more easily.  

4.1.4. Effects of treatment times on sizes and zeta potentials of graphitic 

flakes 

 
To study the effects of the treatment times at one, two, and three hours on the sizes and 

the zeta potentials of the graphitic flakes, the supercritical carbon dioxide is set at 60°C 

and 3000 psi for one, two, and three hours. Additional one-hour sonication is applied 

after the supercritical treatment to compare with those of non-sonicated samples of each 

time. Table 4.4, Figure 4.19, 4.20, and 4.21 show the data of the diameters, z-average 

sizes, and zeta potentials of the flakes, respectively, for one-, two- and three-hour 

treatments with NMP with and without sonication. 

 

Table 4.4                                                                                                                                   

The sizes and zeta potentials (mV) of flakes obtained from the 1-hour, 2hour, and             

3-hour treatment at 3000 psi and 60°C, with and without additional 1-hour sonication. 

NMP was used as a co-solvent. 

Condition Time (hr) Dimension (nm) Z-ave.size (nm) Zeta potential (mV) 
3000psi/60 °C 1 105.10 85.58 -32.20 

Sonication 2 137.70 168.30 -44.70 
  3 161.70 235.10 -45.90 

3000psi/60 °C 1 215.20 133.60 -40.80 
No sonication 2 225.80 173.70 -47.10 

  3 446.40* 1489.00* -50.40 
* = the result is low quality due to a high PDI 
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Figure 4.19 Effects of treatment time of supercritical CO2 treatmrnt on diameter (nm) of 
graphitic flakes with and without additional sonication. NMP was used as a co-solvent.    

 

 
 
Figure 4.20 Effects of treatment time of supercritical CO2 treatment on z-average size 
(nm) of graphitic flakes with and without additional sonication. NMP was used as a co-
solvent. 
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Figure 4.21 Effects of treatment time of supercritical CO2 treatment on zeta potential 
(mV) of graphitic flakes with and without additional sonication. NMP was used as a co-
solvent. 
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sonicated sample (-40.80, -47.10, and -50.40 mV for 1,2, and 3 hours treatment, 

respectively). This may be because of the same reason that we obtain larger flat area 

sample since larger areas of graphite are exfoliated due to increasing of the treatment 

time. This large flat area sample has more stability due to the size is larger than that of 

shorter treatment. The zeta potentials of sonicated samples are less negative than non-

sonicated samples at the same treatment time due to the flakes are broken down into 

smaller sizes from sonication. However, they are relatively close to each other and 

considered stable since the charges are more negative than -30 mV.  

4.2. Brunauer, Emmett, and Teller (BET) analysis 
 
BET surface area analysis was done for both the N2 and CO2 adsorption. For the N2 

adsorption analysis, the analysis was done on untreated and treated graphite at different 

treatment conditions and co-solvents. The treated samples were selected from the highest 

(at 3000 psi, 40°C) to the lowest supercritical density treatment (at 2000 psi, 60°C) for 

easy comparison. For the comparison of the surface area of the sample obtained from 

different co-solvents treatment, the condition of 3000 psi and 40°C was fixed since, from 

the PCS data, the graphite layers were the most completely exfoliated and broken up. 

Therefore, the difference might be more easily noticed. In the case of the CO2 adsorption, 

the purpose was to prove our hypothesis that CO2 molecules could pass between the 

graphite layers better than N2, and compare the surface area between untreated and treated 

graphite. Since the adsorption process for CO2 is very long due to its ability to intercalate 

between the layers, only untreated and graphite treated at 3000 psi and 40°C, the most 

highly exfoliated flakes, were analyzed. The experimental analysis and results of the BET 

for several samples are shown in Table 4.5 and 4.6, respectively. The BET surface area 

plots and the BET isotherm linear plots are shown in Figure 4.23-4.25 and 4.26-4.28, 

respectively. 
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Table 4.5                                                                                                                            

The BET experimental analysis. a = NMP, b = DMF, c = isopropanol,                                

1 = analysis with N2 adsorption, and 2 =. analysis with CO2 adsorption 

Condition Pressure (psi) 40°C 50°C 60°C 
Sonication 2000       
  2500       
  3000       
No 2000     a(1) 
Sonication 2500     a(1) 
  3000 a(1,2),b(1),c(1) a(1) a(1) 
          
  Graphite (1,2)     

 
 

Table 4.6                                                                                                                             

The BET surface areas of samples obtained from different supercritical carbon dioxide 

conditions. 

Condition Gas Co-solvent BET Surface Area (m2/g) 
Graphite  N2 NMP 8.29 

3000 psi, 40°C N2 NMP 9.54 
3000 psi, 50°C N2 NMP 8.47 
3000 psi, 60°C N2 NMP 8.26 
2500 psi, 60°C N2 NMP 5.07 
2000 psi, 60°C N2 NMP 5.80 
3000 psi, 40°C N2 Isopropanol 7.53 
3000 psi, 40°C N2 DMF 10.00 

Graphite  CO2 NMP 381.01 
3000 psi, 40°C CO2 NMP -29.22 
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Figure 4.22 The differences in BET surface areas (m2/g) of various samples prepared by 
different supercritical conditions, co-solvents, with N2 adsorption. 

 

 
 
Figure 4.23 The BET surface area plot between relative pressure (P/P0) and value of 
1/[Q(Po/P - 1)] with N2 absorbtion of samples from different supercritical treatments. 
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Figure 4.24 The BET surface area plot between relative pressure (P/P0) and value of 
1/[Q(Po/P - 1)] with N2 absorbtion of samples from different co-solvents used in 
supercritical treatments at 3000 psi, 40°C. 

 
 

 
 
Figure 4.25 The BET surface area plot between relative pressure (P/P0) and value of 
1/[Q(Po/P - 1)], between N2 and CO2 absorbtion of NMP-samples treated in 
supercritical treatments at 3000 psi, 40°C. 
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From Table 4.6 and Figure 4.22, the BET surface areas with N2 adsorption of measured 

samples are slightly different from each other. This is because the low polarity of N2 

limits its ability to access the small volume between graphite layers76. Consequently, the 

absorption of N2 can occur only on the outside of the graphite surface. This is completely 

different using CO2 as the adsorption gas. In this case, although the molecule size of CO2 

is close to that of N2, CO2 has higher polarity than that of N2
75,76. This allows carbon 

dioxide molecules to pass through and be adsorbed between the graphitic flakes. As a 

result, the BET surface area of untreated graphite with CO2 adsorption is significantly 

higher than that of N2. 

 

In the case of N2 adsorption for NMP treated samples, the samples at 2500 psi and 60°C 

and at 2000 psi and 60°C had the smallest surface areas (5.07 and 5.80 m2/g, 

respectively), while at 3000 psi, 40°C had the largest surface area (9.54 m2/g), larger than 

untreated graphite powder (8.29 m2/g). This is because at 3000 psi and 40°C, the 

supercritical density of the supercritical carbon dioxide is the highest. Therefore, it can 

exfoliate and break down the graphite layer more completely than at a lower supercritical 

density. Consequently, the surface area measured by N2 adsorption at this condition is the 

highest. In contrast, the supercritical carbon dioxide density at 2000 psi and 60°C is the 

lowest. At this condition, during the supercritical treatment, the graphite layers are not 

exfoliated as completely as at the highest critical density condition. Instead, the layers are 

expanded by the supercritical molecules of carbon dioxide which pass through and are 

adsorbed between the layers. This carbon dioxide adsorbed from the supercritical 

treatment may block the N2 molecules during the BET surface measurement. As a result, 

the N2 molecules are adsorbed less on the surface, and the measured surface area is less 

than the untreated graphite or high supercritical density treated graphite. Therefore, the 

sample at 2500 psi and 60°C should have more surface area than that of 2000 psi and 

60°C. However, from Table 4.5 and Figure 4.22, the surface area of the 2500 psi and 

60°C sample (5.07 m2/g) is slightly smaller than that of the 2000 psi and 60°C sample 

(5.80 m2/g). This is not significant and may be due to error in manually sample 

weighting. Figure 4.23 shows the plot between relative pressure (P/P0) and the value of 
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1/[Q(Po/P - 1)] of each sample. Using the BET equation79, the BET surface area can be 

calculated from the binomial equation of those lines. 

 

To determining the effects of different co-solvents on the surface area with N2 adsorption, 

the samples were run at supercritical condition of 3000 psi and 40°C with NMP, DMF 

and isopropanol. The surface areas are similar; however, the surface area of DMF-sample 

is the largest (10.00 m2/g), followed by those of NMP treated sample (9.54 m2/g) and 

isopropanol treated sample (7.53 m2/g), respectively (Table 4.5 and Figure 4.22). The low 

surface area of the isopropanol-sample may be due to reaggregation. Figure 4.24 shows 

the plot between relative pressure (P/P0) and the value of 1/[Q(Po/P - 1)] of each co-

solvent used in the supercritical treatment at 3000 psi, 40°C.  

 

In the case of CO2 adsorption, the untreated graphite and treated sample at 3000 psi and 

40°C were tested and compared with those of the N2 adsorption. For the untreated 

graphite, the CO2 adsorptive can provide much more surface area (381.01 m2/g) than that 

of the N2 adsorption (8.29 m2/g) due to high polarity of CO2
70. However, for the treated 

sample, the surface area is negative (-29.22 m2/g). This might be due to the adsorbed 

carbon dioxide molecules from the supercritical treatment. When the CO2 from the BET 

try to pass thought between the sample layers, they cannot be adsorbed since they are 

already occupied by the molecules from the supercritical treatment. Instead of adsorbing 

the BET CO2, the treated sample releases CO2 stored between the layers during handling 

in the experiment. Consequently, the release CO2 molecules are greater than that 

adsorbed. That is why the surface area calculated is negative for the treated sample. This 

does not occur with N2. N2 molecules are adsorbed only on the outer surface of the 

sample. Figure 4.25 shows the plot between relative pressure (P/P0) and the value of 

1/[Q(Po/P - 1)] of N2 and CO2 adsorption of untreated graphite and treated graphite at 

3000 psi, 40°C with NMP as a co-solvent.  

 

Ghosh A et al. measured the surface areas of graphene using BET with H2 and CO2 

adsorption66. The graphenic samples were synthesized from the method using graphene 

oxide55,68 and nanodiamond transformation71.  As a result, BET surface areas of graphene 
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synthesized from graphene oxide were 639-1550 m2/g; and from nanodiamond 

conversion are 280-1013 m2/g, while completely single layer graphene is expected to 

have a surface area of 2600 m2/g66. These show that the surface areas of graphene do not 

only depend on types of the adsorption gas, but also synthesis methods. The surface areas 

measured are less than what is expected in the single layer graphene. 

 

For isotherm linear plot which show the relationship between the quantity absorbed 

(mmol/g) and relative pressure (P/P0), the plots are shown in figure 4.26, 4.27, and 4.28. 

Figure 4.26 shows the relationship of the samples with N2 adsorptive gas. The 

relationship shows that when the relative pressure increases, the quantity adsorbed tends 

to decrease at the beginning. However, when the relative pressure approaches one, the 

quantity adsorbed increased dramatically. This shows that when the equilibrium pressure 

of the sample (P) is equal to the saturated pressure of the sample (P0), P/P0 =1, the ability 

to absorb gas reaches its highest point. Moreover, the order of the conditions for quantity 

absorbed at the same relative pressure points of the samples is (from highest to lowest) 

3000 psi and 40°C; 3000 psi, and 50°C; 3000 psi and 60°C; untreated graphite; 2000 psi 

and 60°C; and 2500 psi and 60°C; respectively. The surface area is determined by the 

quantity of the adsorbed gas on the sample; therefore, the surface areas have the same 

order. 
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Figure 4.26 The isotherm linear plot between relative pressure (P/P0) and quantity 
absorbed (mmol/g) of N2 adsorption for the original graphite and NMP treated graphites 
from different conditions of  supercritical treatment. 

 

 
 
Figure 4.27 The isotherm linear plot between relative pressure (P/P0) and quantity 
absorbed (mmol/g) of N2 adsorption for the treated graphites with different co-solvents  
used in supercritical treatment at 3000 psi and 40°C. 
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Figure 4.28 The isotherm linear plot between relative pressure (P/P0) and aquantity 
absorbed(mmol/g) of N2 and CO2 for the original and treated graphites. The supercritical 
treatment was operated at 3000 psi, 40°C with NMP as a co-solvent. 

 

For the relationship between the quantity absorbed (mmol/g) and relative pressure (P/P0) 

of the samples with different co-solvents used, a plot is shown in Figure 4.27. The 

samples were treated at supercritical condition of 3000 psi and 40°C with NMP, DMF, 

and isopropanol as co-solvents. The trend of the relationship is similar to that in Figure 

4.26 and can be explained in the same way. The quantity of N2 absorbed of the NMP- and 

DMF- samples are equal at the same relative pressures. However, that of isopropanol-

sample is noticeably lower than those of the NMP- and DMF- samples. This may be due 

to reaggregation of the flakes. Since isopropanol has the lowest dielectric constant 

compared to those of NMP and DMF, reaggregation occurs significantly in the 

isopropanol sample before the degasification process. This reaggregation reduces the 

adsorbing surfaces of the flakes. As a result, the N2 molecules are somewhat less 

adsorbed and the surface area is the lowest for isopropanol-sample.  

 

For the effects of different adsorptive gases on the quantity adsorbed, the N2 and CO2 

gases were used as adsorptive materials. The untreated graphite and treated graphite at 

3000 psi and 40°C, with NMP co-solvent, were used in the comparison. The relationship 
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between the quantity absorbed (mmol/g) and relative pressure (P/P0) of N2 and CO2 

adsorptive gases is shown in Figure 4.28. For CO2, the absorption increases dramatically 

even at very low relative pressure. This means when CO2 gas is injected into the sample, 

it is absorbed immediately due to its ability to pass readily between the graphitic layers. 

When it reaches a maximum point, the quantity adsorbed becomes stable. The relative 

pressure increases at this point since CO2 molecules are no longer adsorbed. The 

untreated graphite adsorbed more CO2 molecules than the treated graphite due to more 

unoccupied spaces. When compared with the quantity absorbed of N2 molecules, the 

quantity adsorbed of CO2 is much more significant at the same conditions.  

4.3. FE-SEM images 
 
The purpose of FE-SEM analysis is to observe the shape and morphology of the flakes 

obtained. Therefore, there is no need to do the analysis for flakes obtained at all treatment 

conditions. The samples obtained from the highest temperature treatment (60°C) were 

analyzed because the PCS data shows that the flakes at 60°C and 2000 psi without 

sonication were the largest. However, the sample obtained from 40°C and 3000 psi was 

also observed in 9.94 mg/mL SDBS solution for more comparison. The 0.5 mg/mL 

SDBS solution left some undesirable residue. This residue ultimately conceals the 

appearance of the flakes in the FE-SEM image. To avoid the effect of the remaining 

surfactant, the samples were prepared in two ways. The first method was to deposit the 

NMP sample containing flakes directly onto the sample holder. NMP will evaporate 

completely without any residues. Only the flakes will remain on the sample holder. The 

second method is to drop the NMP sample into a 9.94 mg/mL SDBS solution (1% w/w of 

SDBS in water). At this concentration, the residue will cover all of the sample holder 

surface, including the deposited flakes. The deposited flakes were also observed under 

this condition. In this analysis, the Hitachi S-4700 FE-SEM is used to observe the 

graphitic flakes. The samples prepared at 60°C with the pressures of 2000, 2500, and 

3000 psi are observed. The samples do not need to be coated by metal before doing FE-

SEM since they are conductive. Moreover, coating interferes with the flakes appearance 

on the FE-SEM images. The beam energy, working distance and scan speed were 
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adjusted to yield the highest quality of the images. The experimental analysis are shown 

in Table 4.7. 

Table 4.7                                                                                                                              

The experimental analysis for FE-SEM. 

Condition Pressure (psi) 40°C 50°C 60°C 
NMP 2000     Y 
No sonication 2500     Y 
  3000     Y 
9.94 mg/mL SDBS 2000     Y 
Sonication 2500     Y 
  3000 Y   Y 

 

4.3.1. FE-SEM images for the samples in N-methyl pyrrolidinone 
(NMP) without additional sonication 
 
Figure 4.29 shows the FE-SEM image of sampled NMP after 60°C and 3000 psi 

treatment with 3k× magnification. The deposited flakes, small pale pieces, are scattered 

randomly on the sample holder.  Most of the flakes are less than 0.5 micron. These sizes 

are comparable to the diameter (215.20 nm) and z-average size (133.60 nm) of the NMP 

treated flakes with no sonication at 60°C and 3000 psi of the PCS data (table 4.2). 

However, several large pieces with diameters larger than one micron, occur. This may be 

due to reaggregation since the sample holder was coated three times The roughness of the 

sample holder is shown as unordered pattern on the background.   
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Figure 4.29 FE-SEM image of NMP treated sample from 60°C and 3000 psi treatment.  
The Hitachi S-4700 FE-SEM was used at 5.0 kV beam energy, 4.9 mm working distance, 
and 5k× magnification, with slow scan speed. The sample holder was dosed three times. 

 

From Figure 4.30, which show the FE-SEM images of sampled NMP after 60°C and 

2500 psi treatment with 6k× magnification, the deposit flakes, small pale pieces, are 

scattered randomly on the sample holder. Their sizes are approximately 0.5 micron in 

diameter. These sizes are comparable to the diameter (207.10 nm) and z-average size 

(167.80 nm) of non-sonicated samples observed by the PCS analysis of the treated flakes 

at 60°C and 2500 psi (Table 4.2). Reaggregation cannot be observed clearly since the 

sample holder was dosed once. The roughness of the sample holder is shown as 

unordered pattern on the background. 
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Figure 4.30 FE-SEM of NMP treated sample from 60°C and 2500 psi treatment. The 
Hitachi S-4700 FE-SEM was used at 5.0 kV beam energy, 5.0 mm working distance, and 
6k× magnification, with fast scan speed. The sample holder was dosed once. 

 
Figure 4.31 shows the FE-SEM images of sampled NMP after 60°C and 2000 psi 

treatment with 10k× magnification, respectively. The supercritical density of CO2 is 

lowest at this condition. From the PCS data, the non-sonicated flakes are the largest, 

compared to other conditions. From the images, the deposit flakes show some unique 

patterns with approximately sizes one micron. This might be because at 60°C and 2000 

psi, where the supercritical density is the lowest, the flakes were not exfoliated and 

broken down as much as at higher supercritical density. Therefore, the sizes are larger 

than those of at higher supercritical density. However, the flakes in Figure 4.36-4.38 are 

relatively larger than the diameter (175.50nm) and z-average size (167.80) of non-

sonicated samples shown at this condition in the PCS data (table 4.2). This may be 

because the FE-SEM specifically observes the samples in a small area, and does not 

calculate the distribution data as completely as the PCS do. 
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Figure 4.31 FE-SEM of NMP treated sample from 60°C and 2000 psi treatment. The 
Hitachi S-4700 FE-SEM was used at 5.0 kV beam energy, 5.0 mm working distance, and 
10k× magnification, with fast scan speed. The sample holder was dosed once. 

 
In conclusion, for samples collected in NMP without additional sonication (Figures 4.29-

4.31), the flakes appear to be in a very small size range. The largest sizes are 

approximately one micron, while the smallest sizes are smaller than 0.5 microns. Large 

chunks (two microns) could be due to reaggregation. Reaggegation of the flakes is clearly 

noticeable for the treatment at 60°C and 3000 psi (Figures 4.29). This is due to the 

preparation procedure of the FE-SEM sample that used three dosages of the samples onto 

the sample holder, while other NMP treated samples are only one dosage. The 

relationship between the sizes and the pressures is not clear from these images. The 

flakes appear in many shapes and sizes.  

 



70 
 

4.3.2. FE-SEM images for the samples in a one percent by weight 
solution of sodium dodecylbenzene sulfonate (SDBS) with additional 
one-hour sonication  
 
The FE-SEM images of samples in 9.94 mg/mL SDBS surfactant are shown in Figure 

4.32-4.35. Figure 4.32 shows the FE-SEM image of the sonicated flakes at 60°C and 

3000 psi treatment in 9.94 mg/mL SDBS surfactant at 3k× magnification, respectively. 

The images show different features than the flakes prepared in NMP (Figure 4.29-4.31). 

In this case, the flakes are larger with approximate sizes more than three microns. The 

sizes are relatively larger than the diameter (105.10 nm) and z-average size (85.58 nm) 

shown in the PCS data of the sonicated flakes at 60°C and 3000 psi (Table 4.2). This 

might be because the small flakes reaggregate due to the low stability of the water-based 

surfactant (SDBS). Some reaggregation can be seen in Figure 4.32. Moreover, several 

layers can be clearly seen in many flakes. This shows that most of the flakes are not a 

single layer material. The roughness of the sample holder cannot be observed since the 

surface is covered by the SDBS surfactant residue.  
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Figure 4.32 FE-SEM image of the sample from 60°C and 3000 psi treatment in a 1% w/w 
solution of SDBS. The Hitachi S-4700 FE-SEM was used at 1.0 kV beam energy, 5.1 mm 
working distance, and 3k× magnification, with fast scan speed. The sample holder was 
dosed three times. 

 
Figure 4.33 show the FE-SEM image of the sonicated flakes with 60°C and 2500 psi 

treatment in 9.94 mg/mL SDBS surfactant at 3k× magnification, respectively. The sizes 

of the flakes are various (Figure 4.33). If compared with those of at 60°C and 3000, the 

layers of the flakes at 60°C and 2500 psi cannot be seen as clearly as at 60°C and 3000. 

This might be due to the effect of sonication since at 60°C and 2500 psi, the layers were 

not exfoliated or broken up as completely as at 60°C and 3000 psi. Therefore, when 

sonication was applied, the sonicated flakes of 60°C and 2500 psi became more 

exfoliated and broken down than the sonicated flakes treated at 60°C and 3000 psi. As a 

result, the layers of the flakes of 60°C and 2500 psi are less visible than those of 60°C 

and 3000 psi after sonication. This result is in agreement with the PCS data. However, the 

sizes are larger than the diameter (85.28 nm) and z-average (96.86 nm) of the PCS 
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analysis for the sonicated sample at 60°C and 2500 psi due to low stability of the water-

based surfactant (SDBS). 

                                                                                                                                 

 

Figure 4.33 FE-SEM image of the sample from 60°C and 2500 psi treatment in a 1% w/w 
solution of SDBS. The Hitachi S-4700 FE-SEM was used at 1.0 kV beam energy, 5.2 mm 
working distance, and 3k× magnification, with fast scan speed. The sample holder was 
dosed three times. 

 
Figure 4.34 shows the FE-SEM image of the sonicated flaked of 60°C and 2000 psi 

treatment in 9.94 mg/mL SDBS surfactant at 3k× magnification, respectively. The images 

show that these flakes are obviously smaller than those of 60°C and 3000 psi (Figure 

4.32) and 60°C and 2500 psi (Figure 4.33). Moreover, the layers of the flakes are difficult 

to see. This could be explained using the PCS data (Table 4.2). At 60°C and 2000 psi, the 

treated flakes are the largest if compare with other conditions due to low supercritical 

density, which leads to low degree of exfoliation. However, when sonication was applied, 

these incompletely exfoliated flakes are broken up and exfoliated more than those treated 

at high supercritical density where the flakes are more completely exfoliated. As a result, 
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the sonicated flakes at 60°C and 2000 psi are smaller and contain fewer layers. Also, the 

sizes are relatively larger than the diameter (78.66 nm) and z-average (82.15 nm) 

obtained from the PCS analysis for the sonicated sample at 60°C and 2500 psi due to low 

stability of the water-based surfactant (SDBS). 

 

 

 

Figure 4.34 FE-SEM image of the sample from 60°C and 2000 psi treatment in a 1% w/w 
solution of SDBS.  The Hitachi S-4700 FE-SEM was used at 1.0 kV beam energy, 5.2 mm 
working distance, and 3k× magnification, with fast scan speed. The sample holder was 
dosed three times. 
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Figure 4.35 FE-SEM image of the sample from 40°C and 3000 psi treatment in a 1% w/w 
solution of SDBS. The Hitachi S-4700 FE-SEM was used at 2.0 kV beam energy, 5.1 mm 
working distance, and 3k× magnification, with fast scan speed. The sample holder was 
dosed three times. 

 

Figure 4.35 shows the FE-SEM image of the sonicated flaked of 40°C and 3000 psi 

treatment in 9.94 mg/mL SDBS surfactant at 3k× magnification. At 40°C and 3000 psi, 

the supercritical density is the highest compared to other conditions. The sizes of the 

flakes are smallest compared to the other FE-SEM images. Moreover, the layers of the 

flakes cannot be seen. This might be because these flakes contain only a very few layers. 

This high degree of exfoliation is due to the high supercritical density treatment. 

Moreover, when sonication was applied after the treatment, those flakes were exfoliated 

more completely. The FE-SEM flakes at 40°C and 3000 psi (Figure 4.35) are slightly 

larger than the diameter (130.90 nm) and z-average size (111.40 nm) of the sonicated 

flakes at this condition as shown in the PCS data (Table 4.2). Moreover, the PCS data 

show that the sonicated flakes of 60°C and 2000 psi should have smaller size than those 

of 40°C and 3000 psi. However, if we consider the zeta potentials, the flakes of 60°C and 
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2000 psi are less stable than those of 40°C and 3000 psi (Table 5). Therefore, the reason 

that the lateral sizes of the flakes of 60°C and 2000 psi become larger than those of 40°C 

and 3000 psi might be due to reaggregation. Reaggregation might be severe from the 

water-based surfactant and the FE-SEM preparation that needs to leave the sample for 

long time to let the surfactant evaporate. However, the layers of the both flakes of 60°C 

and 2000 psi and 40°C and 3000 psi are not clearly seen. This shows that both the high 

critical density treatment condition together with additional sonication can produce few 

graphene layers materials from synthetic graphite. 

 

However, the FE-SEM does not allow us distinguish the quantitative differences between 

the flakes obtained at different treatment conditions. It can give us an overview of what 

the graphitic flakes look like, but cannot quantity the differences between flakes.  With 

these limitations, the transmission electron microscopy (TEM) needs to be used in future 

studies to examine these smaller details. 

4.4. AFM analysis 
 
For AFM analysis, samples were prepared by depositing the exit NMP sample directly on 

a silicon substrate, which has a low surface roughness3,21. The substrate was cleaned by 

thirty minutes sonication in a water bath then washed by DI water and ethanol. Like FE-

SEM, AFM can observe flakes only in specific areas. It cannot determine the average size 

of the flakes or reveal clearly the effect of the treatment condition of the flakes. The main 

objective of AFM is to determine the vertical thickness of the flakes to approximately 

determine its numbers of layer as well as its shape via the tip-surface interaction. To 

construct a sharp image, the flakes obtained from 60°C treatment were considered since it 

can produce larger flakes than at lower temperature. The experimental analysis and the 

results are shown in Table 4.8 and Table 4.9, respectively. In this analysis some AFM 

images and size analysis are shown in Figure 4.36-4.39.  
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Table 4.8                                                                                                                           

The experimental analysis for AFM. 

Condition Pressure (psi) 40°C 50°C 60°C 
NMP 2000     Y 
Non-sonication 2500     Y 
  3000     Y 
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Table 4.9                                                                                                                             

The horizontal and vertical sizes of the flakes at some supercritical conditions. 

Condition 
Flake  

Number 
Horizontal  

distance (nm) 
Vertical  

distance (nm) 
60°C,  1.1 1006.000 182.910 

3000 psi  1.2 1367.000 145.550 
  1.3 556.640 49.997 

60°C,  2.1 1465.000 59.153 
2500 psi  2.2 488.280 48.630 

  2.3 1074.000 51.750 
  2.4 205.080 6.670 
  2.5 537.110 52.064 
  2.6 224.610 12.488 
  2.7 390.630 35.382 
  2.8 156.250 21.793 
  2.9 332.030 10.157 
  2.10 97.656 1.897 
  2.11 87.891 1.864 
  2.12 93.750 3.703 
  2.13 74.219 1.816 
  2.14 64.453 2.135 

60°C,  3.1   10.129 
2000 psi  3.2   204.130 

  3.3 195.310 48.536 
  3.4 468.750 78.791 
  3.5 419.920 160.650 
  3.6 537.110 83.522 
  3.7 332.030 35.846 
  3.8 175.780 62.432 
  3.9 292.970 37.390 
  3.10 195.310 20.081 
  3.11 107.420 58.594 
  3.12 62.500 3.707 
  3.13 68.359 4.507 
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Figure 4.36 AFM two- (a) and three-dimensional image (b) of the graphitic flakes 
obtained from 60°C and 2000 psi treatment, on the silicon substrate. The image was 
constructed at a 5.00 µm scan size, a 1.387 Hz scan rate, 512 numbers per line, and a 
500.0 nm data scale.  

a 

b 
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Figure 4.37 Horizontal (a) and vertical section analysis (b) of the flake 3.7 of Figure 4.53 
(60°C, 2000 psi). The image was constructed at a 5.00 µm scan size, a 1.387 Hz scan 
rate, 512 numbers per line, and a 500.0 nm data scale. 

 

a 

b 
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Figure 4.38 AFM two- (a) and three-dimensional image (b) of the graphitic flakes 
obtained from 60°C and 2000 psi treatment, on the silicon substrate. The image was 
constructed at a 1.00 µm scan size, a 1.001 Hz scan rate, 512 numbers per line, and a 
50.00 nm data scale. 

a 

b 
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Figure 4.39 Horizontal (a) and vertical section analysis (b) of the flake 3.12 of Figure 
4.55 (60°C, 2000 psi). The image was constructed at a 1.00 µm scan size, a 1.001 Hz 
scan rate, 512 numbers line, and a 50.0 nm data scale. 

a 

b 
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The AFM samples were prepared by dropping the NMP carrier solution, which contains 

the graphitic flakes from the supercritical carbon dioxide treatment, directly onto the 

silicon substrate3,21. The water-based surfactant (SDBS) was not used for the AFM 

samples since it affects the topography of the image due to residual surfactant when it 

dries out. The samples were put in a chemical hood to let the NMP co-solvent evaporate, 

until only the treated flakes on the substrates remained. The exiting NMP was collected 

from the release valve of the supercritical carbon dioxide extractor. The supercritical 

conditions were set at 60°C and 3000, 2500, and 2000 psi. From the zeta analysis data, 

the flakes sizes of these samples are the largest, with low stability. Therefore, they might 

be easier to observe by AFM than the small flakes of the treatments at 40° and 50°C. At 

these treatment temperatures, the critical densities are higher than that of at 60°C at the 

same pressure, so some features might be distorted or lost due to the more complete 

exfoliation. The samples were not sonicated since sonication could destroy the original 

features of the flakes obtained. 

 

From the section analysis shown in Table 4.8, the horizontal and vertical sizes of the 

flakes are quite varied. At 60°C and 3000 psi, the largest horizontal distance flake 

observed was 1367 nm (flake 1.2) and the largest vertical distance was 182.91 nm (flake 

1.1). The smallest flake observed was 556.64 nm horizontal distance, and 49.997 nm 

vertical distance (flake 1.3). At 60°C and 2500 psi, the largest flakes observed was 1465 

nm horizontal distance and 59.153 nm vertical distance (flake 2.1). The smallest flake 

was 87.891 nm and 1.864 nm for horizontal and vertical distances (flake 2.11), 

respectively. This flake is around six graphene layers thick. For the treatment at 60°C and 

2000 psi, the largest flake in term of the horizontal distance observed was 468.75 (flake 

3.4) nm. In terms of the vertical distance, the largest was 204.13 nm (flake 3.2). The 

smallest flake was 62.5 nm horizontal and 3.707 nm vertical distances (flake 3.12). This 

flake contains approximately twelve layers of graphene. Some examples of section 

analysis of flakes 3.7 and 3.12 are shown in Figure 4.37 and 4.39, respectively. From 

these figures, the horizontal and vertical distances of the flakes can be examined by using 

the AFM software drawing straight line across each flakes and moving the arrows to 
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reach its width and height. More sections analysis of these flakes are shown in appendix 

C. 

 

Figure 4.36-4.39 shows the various shapes and horizontal and vertical sizes of the flakes. 

The bright yellow shows the flakes with higher vertical heights. However, the brightness 

of the flakes depends on the data scale set in the examination. More accurate distances 

(horizontal and vertical) analysis of the flakes are shown in section analysis in Appendix 

C.  As a result, the flakes show a wide range of sizes. They can be as big as a thousand 

nanometers or less than ten nanometers, with the layers are less than ten layers. 

Therefore, we can say that at these conditions of the supercritical treatment, few graphene 

layers materials less than ten layers (less than two nanometers) were produced. These 

were not shown in the PCS data, which indicated that the smallest treated flakes were 

approximately eighty nanometers in sizes (Table 4.2). This might be since the PCS 

measures the sizes from correlation of laser light that is scattered from the dispersed 

flakes and detected by the detector. Although, few-layer materials were produced, the 

absolute amounts were not large compared to the larger flakes. 

 

The limitations of AFM in this experiment are that it can only examine the flakes in small 

areas. It cannot estimate the overall sizes of the flakes obtained or even the average sizes 

as the PCS analysis can does. Therefore, we did not do AFM for all of the samples since 

they indicate the same trends in term of the shapes of the flakes. Another disadvantage of 

AFM in this case is the tip is easy to be convoluted by the small flakes due to tip-sample 

interaction. Moreover, some images blur due to instability of the since the sample 
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5. Conclusion 
 
The supercritical carbon dioxide treatment can exfoliate the graphite layers into ten to 

several-hundred nanometer thick flakes. The supercritical density, which depends on the 

temperature and pressure of the supercritical conditions, is a major factor that affects the 

sizes and stabilities of the flakes obtained. From the experiment, the sizes of the treated 

flakes at low supercritical density (high temperature and low pressure) are larger with 

lower stability, while the sizes at the high supercritical density (low temperature and high 

pressure) are smaller with higher stability. Inversely, if sonication is applied, the 

sonicated samples of low critical density treatments have smaller sizes than at high 

supercritical density treatments due to incomplete exfoliation of the layers. Instead, the 

layers are expanded due to carbon dioxide molecules that pass and be adsorbed between 

the layers of those flakes. After sonication, the flakes obtained from low supercritical 

density treatment, therefore, are smaller than those of from high supercritical density 

treatment. The zeta potentials are more negative on average, which means they are more 

stable after applying sonication. Moreover, the temperature has more significant effects 

on the exfoliation than pressure. 

 

NMP can maintain the stability of the flakes as well as DMF due to the highly negative 

charges of their flakes in zeta potential analysis. This is because NMP and DMF have 

high polarity (high dielectric constant). However, the zeta potentials of the samples 

treated with isopropanol are significantly lower indicating (low stability). Although 

sonication is applied, the zeta potential of the isopropanol treated samples are still out of 

acceptance range (-30 mV to +30 mV)77 for the stable dispersions. This is because 

isopropanol has a lower dielectric constant than NMP or DMF.  Therefore, isopropanol 

does not have the ability to maintain stability and prevent reaggregation of the dispersed 

flakes.  

 

For the effects of treatment time on the sizes and zeta potential of the flakes, when the 

treatment time increases, the sizes of the flake sheets increased. The zeta potentials are 
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more negative (more stable) when the treatment time increases due to larger flake sheets 

produced from longer treatment time. 

 

The evidence that proves that CO2 molecules can pass between the graphite layers is the 

BET surface area results. With the CO2 adsorption, the BET surface area of untreated 

graphite is much larger than that with N2 adsorptive. Moreover, the BET surface area 

with CO2 adsorption of treated graphite is negative due to the CO2 molecules are 

adsorbed or intercalated between the graphite layers from the supercritical treatment.  

 

The FE-SEM and AFM images show the various sizes and shapes of the graphitic flakes. 

The horizontal and vertical sizes also varied from several nanometers to more than a 

hundred nanometers. The effect of the water-based surfactant (sodium dodecylbenzene 

sulfonate, SDBS) can be observed clearly in the FE-SEM images in terms of larger 

appeared flakes from reaggregation due to low stability of the SDBS surfactant.    
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6. Future work 
 
This research gives an initial explanation of how graphite is exfoliated by supercritical 

carbon dioxide. The parameter that plays a major role on the sizes and stability of the 

obtained graphenic flakes is the supercritical density of the exfoliant.  Supercritical 

density relies mainly on temperature. From this work, we can conclude that carbon 

dioxide at low supercritical density with NMP as a co-solvent, and one hour sonication, 

can produce graphenic flakes smaller than 100 nm. However, due to agglomeration, large 

flakes are present, and there is high deviation in flake sizes obtained.  In order to apply 

this method in a commercial production, further process to separate the graphenic flakes, 

which are less than ten layers thick, from the large flakes, is necessary.  

 

Further examinations and experiments are required to improve the graphene synthesis 

method outlined in this thesis.  These include: 

 

1) Examine the treated flakes using transmission electron microscopy (TEM) to study the 

crystallography of the graphenic flakes. TEM can also clearly indicate whether the 

obtained flakes are actually graphene, since graphene is transparent46. 

 

2) Determine the number of layers in the graphenic flakes producecd using Raman 

spectrocopy61.  Certain peaks in the Raman spectra will change in size, position, and 

shape with the number of graphene layers and defects/impurities.   

   

3) Study more in-depth the reaggregation of the obtained flakes that inevitably occurs in 

this experiment. Investigations of the time effects of reaggregation are necessary to 

predict the active life of the obtained flakes before reaggregating.  

 

4) More study on effects of treatment time on intercalation of the supercritical carbon 

dioxide and graphite layers, since treatment time has a significant effect on the size and 

stability of the treated flakes.  The treatment time should be extended to times longer than 

three hours, which was the maximum used during these experiments. 



87 
 

References 
 

1. Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007;6:183-

191. 

2. Delhaes P. Graphite and Precursors. Amsterdam(the Netherlands): OPA 

(Overseas Publishers Association) N.V. Published by license under the Gordon 

and Breach Science Publishers imprint; 2001.p. 141-178. 

3. Soldano C, Mahmood A, Dujardin E. Production, properties and potential of 

graphene. ScienceDirect. 2010;48:2127-2150. 

4. The graphite project 2006 [Internet]. Toronto(Canada): Worldwide Graphite 

Producers Ltd.; 2011 [cited 2011 July 28]. Available from: 

http://www.worldwidegraphite.com/Images/WWG_BP_111306.pdf 

5. The reference in natural & synthetic graphite powders and highly conductive 

carbon black [Internet]. Bodio(Switzerland): Timcal Limited. Hight-purity 

graphite powders for high perfomrnance; 2011 [cited 2011 Jul 10]. Available 

from:  http://www.timcal.com/scopi/group/timcal/timcal.nsf/pagesref/MCOA-

7S6H6L/$File/High_purity_graphite_powders_for_high_performance.pdf 

6. Carbon Materials [Internet]. USA: SubTech (Substances and Technologies). 

Graphite manufacturing process; 2011 [cited 2011 Jul 10]. Available from: 

http://www.substech.com/dokuwiki/doku.php?id=graphite_manufacturing_proces

s&DokuWiki=308bce2cd72f41493e1b6bb315cec9e6#powder_preparation 

7. Minerals infromation [Internet]. Reston(VA): US Geological Survey (USGS). 

Graphite; 2011 [cite 2011 Jul 10]. Available from: 

http://minerals.usgs.gov/minerals/pubs/commodity/graphite/graphmyb04.pdf 

8. Material Safety Data Sheet [Internet]. Saint Louis (MO): Sigma-Aldrich 

Corporation.  Synthetic Graphite (282863); 2011 [updated 1989 Aug 11, cited 

2011 Jul 10]. Available from: 

http://www.sigmaaldrich.com/catalog/DisplayMSDSContent.do 

http://www.worldwidegraphite.com/Images/WWG_BP_111306.pdf
http://www.timcal.com/scopi/group/timcal/timcal.nsf/pagesref/MCOA-7S6H6L/$File/High_purity_graphite_powders_for_high_performance.pdf
http://www.timcal.com/scopi/group/timcal/timcal.nsf/pagesref/MCOA-7S6H6L/$File/High_purity_graphite_powders_for_high_performance.pdf
http://www.substech.com/dokuwiki/doku.php?id=graphite_manufacturing_process&DokuWiki=308bce2cd72f41493e1b6bb315cec9e6#powder_preparation
http://www.substech.com/dokuwiki/doku.php?id=graphite_manufacturing_process&DokuWiki=308bce2cd72f41493e1b6bb315cec9e6#powder_preparation
http://minerals.usgs.gov/minerals/pubs/commodity/graphite/graphmyb04.pdf
http://www.sigmaaldrich.com/catalog/DisplayMSDSContent.do


88 
 

9. Graphite 2H properties - Jaszczak JA – Physics - Michigan Technological 

University. Houghton (MI). Graphite 2H properties; 2011 [cited 2011 July 28]. 

Available from: http://www.phy.mtu.edu/~jaszczak/graphprop.html 

10. Billings BH, Frederikse HPR, Bleil DF, Lindsay RB, Cook RK, Marion JB, 

Crosswhite HM, Zemansky M, Gray DE. American Institute of Physics 

Handbook. 3rd ed. New York(USA): McGraw-Hill; 1972. p. 4-142 to 4-160, 4-

119 to 4-142. 

11. Peckett A. The Color of Opaque Minerals. New York(USA): John Wiley & Sons 

Inc; 1992.  p. 204-207. 

12. Kelly BT. Physics of Graphite. London(UK): Applied Science Publishers; 1981. 

477 p. 

13. Ruoff RS, Ruoff AL. The bulk modulus of C60 molecules and crystals: A 

molecule mechanics approach. Applied Physics Letters. 2009;59(13):1553-1555. 

14. Boey SY, Bacon DJ. Deformation of Polycrystalline graphite under pressure. 

Carbon. 1986;24(5):557-564. 

15. Simon MD, Geim AK. Diamagnetic levitation: flying frogs and floating magnets 

(invited). Journal of Applied Physics. 2000;87:6200-6204. 

16. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, 

Hong BH. Large-scale pattern growth of graphene films for stretchable 

transparent electrodes. Nature. 2009;457: 7230-706 to 7230-710. 

17. Jiang Z, Henriksen EA, Tung LC, Wang YJ, Schwarts ME, Han MY, Kim P, 

Stormer HL. Infrared spectroscopy of Landau level of graphene. Physical Review 

Letters. 2007;98(19):197403-1 to 197403-4. 

18. Geim AK, MacDonald AH. Graphene: Exploring carbon flatland. American 

Institute of Physics. 2007;6:35-41. 

19. Fraundoef P, Wackenhut M. The core structure of presolar graphite onions. The 

Astrophysical Journal. 2002;578:L153-L156. 

20. Wang C, Li D, Too CO, Wallace. Electrochemical properties of graphene paper 

electrodes used in lithium batteries. Chemistry of Materials. 2009;21(13):2604-

2606. 

http://www.phy.mtu.edu/~jaszczak/graphprop.html


89 
 

21. Pu NW, Wang CA, Sung Y, Liu YM, Ger MD. Production of few-layer graphene 

by supercritical CO2 exfoliation of graphite. Matterials Letters. 2009;63:1987-

1989. 

22. Li Q, Zhang Z, Zhong C, Liu Y, Zhou Q. Solubility of solid solutes in 

supercritical carbon dioxide with and without cosolvents. Elsevier Science. 

2003;207:183-192. 

23. Supercritical Fluid Extraction [Internet]. New York(USA): Supercritical Fluid 

Extraction. Density consideration; 2011 [cited 2011 July 28]. Available from: 

http://eng.ege.edu.tr/~otles/SupercriticalFluidsScienceAndTechnology/Wc488d76

f2c655.htm 

24. Green DW, Perry RH. Perry’s Chemical Engineers’s Handbook. 8th ed. New 

York(USA): McGraw-Hill; 2007. p. 2-138 to 2-142. 

25. Material Safety Data Sheet [Internet]. Saint Louis(MO): Sigma-Aldrich 

Corporation. 1-Methyl-2-pyrrolidione (M79603); 2011 [updated 2011 Mar 3, 

cited 2011 Jul 1]. Available from: 

http://www.sigmaaldrich.com/catalog/DisplayMSDSContent.do 

26. Material Safety Data Sheet [Internet]. Houston (TX). Sciencelab.com, 

Incorporation. N-Methyl-2-pyrrolidione (M79603); 2010 [updated 2010 Nov 1, 

cited 2011 Jul 1]. Available from: 

http://www.sciencelab.com/msds.php?msdsId=9926094 

27. NIST Chemistry Webbook [Internet]. Gaithersburg(MD): National Institute of 

Standards and Technology (NIST). 1-Methyl-2-Pyrrolidinone; 2011 [cited 2011 

Jul 10]. Available from: 

http://webbook.nist.gov/cgi/cbook.cgi?ID=C872504&Units=CAL&Mask=6F 

28. Material Safety Data Sheet [Internet]. Fair Lawn (NJ): Fisher Scienctific 

Incorporation. N, N Dimethylformamide (ACC#07860); 2008 [updated 2008 

AUG 30, cited 2011 Jul 1]. Available from: 

http://fscimage.fishersci.com/msds/07860.htm 

29. NIST Chemistry Webbook [Internet]. Gaithersburg(MD): National Institute of 

Standards and Technology (NIST). N-Methyl-Formamide; 2011 [cited 2011 Jul 

http://eng.ege.edu.tr/~otles/SupercriticalFluidsScienceAndTechnology/Wc488d76f2c655.htm
http://eng.ege.edu.tr/~otles/SupercriticalFluidsScienceAndTechnology/Wc488d76f2c655.htm
http://www.sigmaaldrich.com/catalog/DisplayMSDSContent.do
http://www.sciencelab.com/msds.php?msdsId=9926094
http://webbook.nist.gov/cgi/cbook.cgi?ID=C872504&Units=CAL&Mask=6F
http://fscimage.fishersci.com/msds/07860.htm


90 
 

10]. Available from: 

http://webbook.nist.gov/cgi/cbook.cgi?ID=C68122&Units=SI&Mask=6F 

30. Material Safety Data Sheet [Internet]. Brookfield (CT): Pharmco-Aaper. 

Isopropyl Alcohol 99%; 2011 [cited 2011 Jul 1]. Available from: 

http://www.pharmcoaaper.com/pages/MSDS/MSDS_I/isopropanol_99_percent.p

df 

31. IPA [Internet]. Silver Spring(MD): CAMEO Chemicals. Isopropyl Alcohol; 1999 

[created 1999 Jun, cited 2011 Jul 1]. Available from: 

http://cameochemicals.noaa.gov/chris/IPA.pdf 

32. NIST Chemistry Webbook [internet]. Gaithersburg(MD): National Institute of 

Standards and Technology (NIST). Isopropyl alcohol; 2011 [cited 2011 Jul 10]. 

Available from: 

http://webbook.nist.gov/cgi/cbook.cgi?Name=isopropanol&Units=SI&cTG=on&

cTC=on&cTP=on&cTR=on&cIE=on&cIC=on 

33. Supercritical Fluid Extraction [Internet]. New York(USA): Supercritical Fluid 

Extraction. Introduction; 2011 [cited 2011 July 28]. Available from 

http://eng.ege.edu.tr/~otles/SupercriticalFluidsScienceAndTechnology/Wc97b52a

bd63c8.htm 

34. Atomic structures of graphene, benzene and methane with bond lengths as sums 

of the single, double and resonance bond radii of carbon [Internet]. Czech 

Republic: Institute of Biophysics, Academy of Sciences of the Czech Republic; 

2011 [cited 2011 JUL 7]. Available from: 

http://arxiv.org/ftp/arxiv/papers/0804/0804.4086.pdf 

35. Geim AK, MacDonald AH. Graphene: Exploring carbon flatland. American 

Institute of Physics. 2007;6:35-41.  

36. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and 

intrinsic strength of monolayer graphene. Science. 2008;321:385-388. 

37. Saito K, Nakamura J, Natori A. Ballistic thermal conductance of a graphene sheet. 

Physical Review. 2007;76: 115409-1 to 115409-4.  

http://webbook.nist.gov/cgi/cbook.cgi?ID=C68122&Units=SI&Mask=6F
http://www.pharmcoaaper.com/pages/MSDS/MSDS_I/isopropanol_99_percent.pdf
http://www.pharmcoaaper.com/pages/MSDS/MSDS_I/isopropanol_99_percent.pdf
http://cameochemicals.noaa.gov/chris/IPA.pdf
http://webbook.nist.gov/cgi/cbook.cgi?Name=isopropanol&Units=SI&cTG=on&cTC=on&cTP=on&cTR=on&cIE=on&cIC=on
http://webbook.nist.gov/cgi/cbook.cgi?Name=isopropanol&Units=SI&cTG=on&cTC=on&cTP=on&cTR=on&cIE=on&cIC=on
http://eng.ege.edu.tr/~otles/SupercriticalFluidsScienceAndTechnology/Wc97b52abd63c8.htm
http://eng.ege.edu.tr/~otles/SupercriticalFluidsScienceAndTechnology/Wc97b52abd63c8.htm
http://arxiv.org/ftp/arxiv/papers/0804/0804.4086.pdf


91 
 

38. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, 

Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. 

Science. 2004; 306: 5696-666 to 5696-669.  

39. Lemme MC, Echtermeyer TJ, Baus M, Kurz H. A graphene field effect device. 

IEEE Electron Device Letters. 2007;28(4):282-284.  

40. Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-

sensitized solar cells. Nano Letters. 2008;8(1):323-327. 

41. Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. 

Nano Letters. 2008;8(10):3498-3502. 

42. Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and 

DNA transistor: interfacing graphene derivatives with nanoscale and microscale 

biocomponents. Nano Letters. 2008;8(12):4469-4476. 

43. Xu M, Fujita D, Hanagata N. Perspectives and challenges of emerging single-

molecule DNA sequencing technologies. Wiley InterScience. 2009;5(23):2638-

2649. 

44. Peierls RE. Quelques properties typiques des corpses soliders. Annales de 

I’Institut Henri Poincaré. 1935;5:177-222. 

45. Laudau LD. Zur Theorie der phasenum wandlungen II. Phys. Z. Sowjetunion. 

1937;11: 26-35. 

46. Novoselov KS, Jiang D, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two 

dimensional atomic crystals. Proceeding of the National Academy of Sciences 

(PNAS). 2005;102(30):10451-10453. 

47. Zhang YB, Small JP, Pontius WV, Kim P. Fabrication and electric-field-

dependent transport measuremens of mesoscopic graphite devices. Applied 

Physics Letters. 2005;86: 073104-1 to 073104-3. 

48. Malesevic A, Vitchev R, Schouteden K,Volodin A, Zhang L, Tendeloo GV, 

Vanhulsel A, Haesendonck CV. Synthesis of few-layer graphene via microwave 

plasma-enhanced chemical vapour deposition. Nanotechnology. 2008;19: 305604-

1 to 305604-6 



92 
 

49. Lee Y, Bae S, Jang H, Jang S, Zhu SE, Sim SH, Song YI, Hong BH, Ahn JH. 

Wafer-scale synthesis and transfer of graphene films. Nano Letters. 2010; 10:490-

493.  

50. Shi Y, Kim KK, Reina A, Hofmann M, Li LJ, Kong J. Work function engineering 

of graphene electrode via chemical doping. Article. Americal Chemical Society 

Nano. 2010;4(5):2689-2694. 

51. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. 

Large area, few layer graphene film on arbitrary substrates by chemical vapor 

deposition. Nano Letters. 2009;9(1):30-35. 

52. Li XS, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, 

Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-

quality and uniform graphene films on copper foils. Science. 2009;324: 5932-

1312 to 5932-1314. 

53. Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M. Preparation of graphene oxide 

and reduced graphene oxide nanoplatelets. Chemistray of Materials Article. 

2009;21:3514-3520. 

54. Wu ZS, Ren W, Gao L, Liu B, Jiang C, Cheng HM. Synthesis of high-quality 

graphene with a pre-determined number of layers. ScienceDirect. 2009;47:493-

499. 

55. Schniepp HC, Li JL, McAllister MJ, Sai H, Alonso MH, Adamson DH, 

Prud’homme RK, Car R, Saville DA, Aksay A. Functionalized single graphene 

sheets derived from splitting graphite oxide. The Journal of Physical Chemistry B. 

2006;110(17):8535-8539. 

56. Boehm HP. Dunnste Kohlenstoff-Folin. Zeitschrift Fur Naturforschung Part B-

Chemie Biochemie Biophysik Biologie Und Verwandten Gebiete. 

1962;B17(3):150. 

57. Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene 

oxide as a transparent and flexible electronic material. Nature Nanotechnology. 

2008;3(5):270-274. 

58. Gilje S, Han S, Wang M, Wang KL, Kaner RB. A chemical route to graphene for 

device applications. Nano Letters. 2007;7(11):3394-3398. 



93 
 

59. Navarro CG, Weitz RT, Bittner AM, Scolari M, Mews Alf, Burghard M, Kern K. 

Electronic transport properties of individual chemically reduced graphene oxide 

sheets. Nano Letters 2007;7(11):3499-3503. 

60. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, 

De S, Wang Z, McGovern IT et al. Liquid phase production of graphene by 

exfoliation of graphite in surfactant/water solutions.  Journal of the American 

Chemical Society (JACS). 2009;131(10),3611-3620. 

61. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, 

Jiang D, Novoselov KS, Roth S et al. Raman spectrum of graphene and graphene 

layers. Physical Review Letters. 2006;97: 187401-1 to 187401-4. 

62. Rangappa D, Sone K, Wang M, Gautam UK, Golberg D, Itoh H, Ichihara M, 

Honma I. Rapid and direct conversion of graphite crystals into high-yielding, 

good-quality graphene by supercritical fluid exfoliation. Chemistry-A Europeon 

Journal. 2010;16(22):6488-6494.  

63. Woods HM, Silva M, Nouvel C, Shakesheff KM, Howdle SM. Materials 

processing in supercritical carbon dioxide: surfactants, polymers and biomaterials. 

Journal of Materials Chemistry. 2004;14:1663-1678. 

64. Kaschak DM, Reynolds RA, Krassowski DW, Ford BM. Graphite intercalation 

and exfoliation process. United States Patent. Patent no.: US 7,105,108 B2; date 

of patent: Sep. 12, 2006. p.1-14. 

65. Green AA, Hersam MC. Solution phase production of graphene with controlled 

thickness via density differentiation. Nano Letters. 2009;9(12):4031-4036. 

66. Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A, Pati SK, Rao 

C. Uptake of H2 and CO2 by graphene. The Journal of Physic Chemistry C. 

2008;112(40):15704-15707.  

67. Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, 

Tsentalovich D, Vasquez NG, Schmidt J, Kesselman E et al. Spontaneous high-

concentration dispersions and liquid crystals of graphene. Nature 

Nanotechnology. 2010;5:406-411. 



94 
 

68. Subrahmanyam KS, Vivekchand S, Govindaraj A, Rao C. A study of graphene 

prepared by different methods: characterization, properties and solubilization. 

Journal of Materials Chemistry. 2008;18:1517-1523. 

69. Kozhemyakina NV, Englert JM, Uang G, Spiecker E, Schmidt CD, Hauke F, 

Hirsch A. Non-covalent chemistry of graphene: electronic communication with 

dendronized perylene bisimides. Advanced Materials. 2010;22:5483-5487.  

70. Li Q, Zhang Z, Zhong C, Liu Y, Zhou Q. Solubility of solid solutes in 

supercritical carbon dioxide with and without cosolvents. Fluid Phase Equilibria. 

2003:207:183-192. 

71. Material Safety Data Sheet [Internet]. Saint Louis(MO): Sigma-Aldrich 

Corporation. 1-Methyl-2-pyrrolidione (M79603); 2011 [updated 2011 Mar 3, 

cited 2011 Jul 1]. Available from: 

http://www.sigmaaldrich.com/catalog/DisplayMSDSContent.do 

72. DDB Explorer Edition [Internet]. Oldenburg (Germany). Dortmund Data Bank 

Software & Separation Technology (DDBST). DEC (dielectric constant) data for 

N-methyl-2-pyrrolidinone; 2009 [updated 2009 Jul 9, cited 2011 Jul 1]. Available 

from: 

http://ddbonline.ddbst.de/EE/284%20DEC%20(Dielectric%20Constant).shtml 

73. IPCS international programme on chemical safety, health and safety guide no. 43 

[Internet]. Hamilton(Canada): International Programme on Chemical Safety 

(IPCS). Dimethylformamide (DMF) health and safety guide; 2011 [cited 2011 Jul 

1]. Available from: http://www.inchem.org/documents/hsg/hsg/hsg043.htm 

74. DDB Explorer Edition [Internet]. Oldenburg (Germany). Dortmund Data Bank 

Software & Separation Technology (DDBST). DEC (dielectric constant) data for 

2-propanol; 2009 [updated 2009 Jul 9, cited 2011 Jul1]. Available from: 

http://ddbonline.ddbst.de/EE/95%20DEC%20(Dielectric%20Constant).shtml 

75. Scholes CA, Kentish SE, Stevens GW. Carbon dioxide separation through 

polymeric membrane systems for flue gas applications. Recent Patents on 

Chemical Engineering. 2008;1:52-66. 

http://www.sigmaaldrich.com/catalog/DisplayMSDSContent.do
http://ddbonline.ddbst.de/EE/284%20DEC%20(Dielectric%20Constant).shtml
http://www.inchem.org/documents/hsg/hsg/hsg043.htm
http://ddbonline.ddbst.de/EE/95%20DEC%20(Dielectric%20Constant).shtml


95 
 

76. Omi H, Ueda T, Mityakubo K, Eguchi T. Dynamics of CO2 molecules confined in 

the micropores of solids as studied by 13C NMR. Applied Surface Science. 

2005;252(3):660-667. 

77. Malvern Instruments. Zetasizer Nano Series - user manual. Worcestershire (UK). 

Malvern Insrtruments Limited; 2008. p. 1-1 to 16-12. 

78. Micromeritics. ASAP 2020: Accelerated Surface Area and Porosimetry System - 

Operator’s Manual. Norcross(GA): Micromeritics Instrument Corporation; p. 1-1 

to 9-19.  

79. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. 

The American Journal Society. 1938;60:309-319.  

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 



96 
 

 

 

 

 

 

 

                                                                                                     

Appendix A. PCS analysis 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



97 
 

A.1. Overall PCS data 
 

Table A.1                                                                                                                                 

Overall PCS data of flakes obtained from different treatment temperature and pressure. 

The supercritical treatment was processed for one hour with NMP as a co-solvent. 

Parameter Pressure   Sonication   No sonication 
  (psi) 40°C 50°C 60°C 40°C 50°C 60°C 

    131.50 112.70 73.29 111.50 114.20 155.80 
  2000 153.80 117.50 78.66 157.30 143.20 175.70 
    182.30 120.30 89.31 210.10 185.30 183.90 
Diameter   136.80 112.90 74.72 116.50 107.90 175.00 

(nm) 2500 144.60 122.22 85.28 155.90 122.30 207.10 
    142.70 135.00 91.81 178.60 153.90 277.90 

    126.70 123.40 97.81 131.90 131.20 118.30 
  3000 130.90 121.10 105.10 151.90 160.90 215.20 
    132.30 129.10 102.90 170.60 194.80 276.40 
    110.00 138.30 91.26 106.40 118.10 209.50 
  2000 142.90 100.90 82.15 148.30 158.40 167.10 
    144.10 121.60 104.90 212.10 241.50 169.20 
Z-average    134.50 115.30 71.48 210.80 183.70 191.80 
size (nm) 2500 136.80 107.40 96.86 163.80 161.80 167.80 

    138.90 116.00 96.86 93.89 111.60 236.50 
    111.80 103.80 102.00 183.30 184.60 556.00 
  3000 111.40 102.70 85.58 121.10 175.40 133.60 
    113.90 104.50 85.52 136.00 119.40 242.60 
    -33.90 -36.10 -23.60 -30.10 -28.90 -28.50 
  2000 -56.90 -41.20 -27.80 -33.30 -29.10 -32.20 

Zeta   -66.10 -46.00 -34.20 -45.90 -28.50 -37.80 
potential   -54.30 -36.20 -26.40 -26.90 -29.00 -12.30 

(mV) 2500 -57.80 -42.40 -28.50 -32.10 -29.20 -20.20 

 
  -64.70 -45.40 -32.10 -36.90 -52.70 -19.60 

    -46.20 -33.60 -30.90 -51.70 -32.50 -44.50 
  3000 -43.50 -39.10 -32.20 -56.40 -44.10 -40.80 
    -48.70 -54.40 -29.10 -69.90 -37.80 -35.20 
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Table A.2                                                                                                                                                                 

Overall PCS data of flakes obtained from different co-solvents treated. The supercritical 

treatment was processed for one hour. 

Parameter Co-   Sonication   No Son.   
  solvent  40°C 50°C 60°C 40°C 50°C 60°C 

    126.70 123.40 97.81 131.90 131.20 118.30 
  NMP 130.90 121.10 105.10 151.90 160.90 215.20 
    132.30 129.10 102.90 170.60 194.80 276.40 
Diameter   228.60 156.50 61.74 340.10 161.30 226.30 

(nm) DMF 191.20 153.60 82.27 253.70 178.90 277.50 
    222.30 177.90 78.22 443.10 169.90 350.60 

    257.50 349.00 195.50 209.80 230.60 209.50 
  Iso. 290.10 314.9 291.50 231.60 236.80 217.80 
    323.60 338.80 196.80 234.80 278.90 280.80 
    111.80 103.80 88.02 183.30 184.60 556.00 
  NMP 111.40 102.70 85.58 121.10 175.40 133.60 
    113.90 104.50 85.52 136.00 119.40 242.60 
Z-average    187.50 125.20 118.50 255.00 110.50 154.10 
size (nm) DMF 181.20 123.10 81.87 198.20 122.10 197.90 

    194.50 140.30 79.29 182.10 123.50 167.40 
    202.50 271.30 186.60 182.50 224.20 269.00 
  Iso. 202.20 262.70 247.10 226.20 243.90 218.20 
    246.90 268.70 181.00 225.10 224.00 275.90 
    -46.20 -33.60 -30.90 -51.70 -32.50 -44.50 
  NMP -43.50 -39.10 -32.2 -56.40 -44.10 -40.80 

Zeta   -48.70 -54.40 -29.10 -69.90 -37.80 -35.50 
potential   -50.60 -62.70 -48.20 -31.30 -54.60 -58.00 

(mV) DMF -47.10 -63.60 -60.50 -48.70 -63.30 -64.00 
    -54.80 -67.70 -48.40 -41.60 -59.30 -69.40 

    -33.50 -24.30 -22.20 -10.70 -20.10 -12.20 
  Iso. -25.40 -28.50 -29.10 -8.52 -13.80 -12.00 
    -22.30 -29.10 -30.10 -13.80 -22.80 -19.50 
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Table A.3                                                                                                                                                               

Overall PCS data of flakes obtained from different treatment time.                                     

NMP was used as a co-solvent. 

Condition Time 
(hr) 

Dimension 
(nm) 

Z-ave.size 
(nm) 

Zeta potential 
(mV) 

  
97.80 85.52 -30.90 

 
1 105.10 85.58 -32.20 

3000 psi/ 
 

102.90 88.02 -29.10 
60 °C 

 
147.50 183.30 -43.30 

Sonication 2 137.70 168.30 -44.70 

 
 

184.50 292.50 -45.10 

  
144.20 174.10 -53.10 

 
3 161.70 235.10 -45.90 

  
164.40 327.30 -52.80 

  
118.30 556.00 -35.20 

 
1 215.20 133.60 -40.80 

  
276.40 242.00 -44.50 

3000 psi/ 
 

204.50 189.00 -42.40 
60 °C 2 225.80 173.70 -47.10 

No 
 

250.70 159.20 -47.70 
sonication 

 
461.20 1772.00 -49.90 

 
3 446.40 1489.00 -50.40 

  
604.60 1626.00 -51.20 
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A.2. Sonicated NMP-samples 

  

 

Figure A.1 PCS software for sizing analysis of the NMP-treated sample obtained from 
the 2000 psi and 60°C treatment with additional 1-hour sonication. 
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Figure A.2 PCS software for zeta potential analysis of the NMP-treated sample obtained 
from the 2000 psi 60°C treatment with additional 1-hour sonication. 
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Figure A.3 PCS software for sizing analysis of the NMP-treated sample obtained from 
the 3000 psi 40°C treatment additional 1-hour sonication. 
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Figure A.4 PCS software for zeta potential analysis of the NMP-treated sample obtained 
from the 3000 psi 40°C treatment with additional 1-hour sonication. 
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A.3. Non-sonicated NMP-samples 
 

 

Figure A.5 PCS software for sizing analysis of the NMP-treated sample obtained from 
the 2000 psi 60°C treatment without additional sonication. 
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Figure A.6 PCS software for zeta potential analysis of the NMP-treated sample obtained 
from the 2000 psi 60°C treatment without additional sonication. 
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Figure A.7 PCS software for sizing analysis of the NMP-treated sample obtained from 
the 3000 psi 40°C treatment without additional sonication. 
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Figure A.8 PCS software for zeta potential analysis of the NMP-treated sample obtained 
from the 3000 psi 40°C treatment without additional sonication. 
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A.4. DMF- and isopropanol-samples 
 
 

 

Figure A.9 PCS software for sizing analysis of the DMF-treated sample obtained from 
the 3000 psi 40°C treatment with additional 1-hour sonication. 
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Figure A.10 PCS software for zeta potential analysis of the DMF-treated sample 
obtained from the 3000 psi 40°C treatment with additional 1-hour sonication. 
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Figure A.11 PCS software for sizing analysis of the isopropanol-treated sample obtained 
from the 3000 psi 40°C treatment with additional 1-hour sonication. 
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Figure A.12 PCS software for zeta potential analysis of the isopropanol-treated sample 
obtained from the 3000 psi 40°C treatment with additional 1-hour sonication. 

 

 

 

 

 

 

 
 



112 
 

A.5. Effect of treatment time on the obtained flakes 
 

 

Figure A.13 PCS software for sizing analysis of the 2-hour treated sample obtained from 
the 3000 psi and 60°C treatment with additional 1-hour sonication. NMP was used as a 
co-solvent. 

 



113 
 

 

Figure A.14 PCS software for zeta potential analysis of the 2-hour treated sample 
obtained from the 3000 psi and 60°C treatment with additional 1-hour sonication. NMP 
was used as a co-solvent. 
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Figure A.15 PCS software for sizing analysis of the 3-hour treated sample obtained from 
the 3000 psi and 60°C with additional 1-hour sonication. NMP was used as a co-solvent. 
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Figure A.16 PCS software for zeta potential analysis of the 3-hour treated sample 
obtained from the 3000 psi and 60°C treatment with additional 1-hour sonication. NMP 
was used as a co-solvent. 
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Figure A.17 PCS software for sizing analysis of the 2-hour treated sample obtained from 
the 3000 psi and 60°C without additional sonication. NMP was used as a co-solvent. 
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Figure A.18 PCS software for zeta potential analysis of the 2-hour treated sample 
obtained from the 3000 psi and 60°C without additional sonication. NMP was used as a 
co-solvent. 
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Figure A.19 PCS software for sizing analysis of the 3-hour treated sample obtained from 
the 3000 psi and 60°C without additional sonication. NMP was used as a co-solvent. 
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Figure A.20 PCS software for zeta potential analysis of the 3-hour treated sample 
obtained from the 3000 psi and 60°C without additional sonication. NMP was used as a 
co-solvent. 
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Appendix B. BET analysis data 
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Table B.1                                                                                                                                 

The data of relative pressure (P/P0) and the value of 1/[Q(Po/P - 1)]  of each sample from 

different supercritical treatment condition. 

Graphite : N2 3000 psi, 40°C (NMP): N2 
Relative Pressure 1/[Q(Po/P - 1)] Relative Pressure 1/[Q(Po/P - 1)] 

(P/P0)   (P/P0)   
0.125096107 1.033468036 0.096123732 0.898335313 
0.148229356 1.256862387 0.1255397 1.156014305 
0.175293887 1.56631249 0.150378841 1.415329524 
0.200264787 1.837758491 0.175345382 1.633968549 
0.225157132 2.135584397 0.200504514 1.860856672 
0.248609243 2.500609484 0.225354107 2.118343386 
0.27491877 2.881901823 0.250633884 2.438327557 
0.299794099 3.270809835 0.275514798 2.746981366 

    0.300445911 3.015273895 
 
 

Table B.1 (cont.) 

3000 psi, 50°C (NMP): N2 3000 psi, 60°C (NMP): N2 
Relative Pressure 1/[Q(Po/P - 1)] Relative Pressure 1/[Q(Po/P - 1)] 

(P/P0)   (P/P0)   
0.098386948 0.83837791 0.097128279 0.9664418 
0.125363032 1.083720801 0.125632618 1.235436222 
0.150092563 1.320194083 0.150435434 1.510195993 
0.175084799 1.590033367 0.17546813 1.779735814 
0.196423046 1.860341934 0.200540808 2.10795877 
0.225044668 2.176729891 0.225581943 2.383518743 
0.249999922 2.548962372 0.25049426 2.678660236 
0.274875815 2.841820748 0.275768598 3.056374996 
0.299907229 3.254269051 0.300578049 3.453187854 
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Table B.1 (cont.) 

2500 psi, 60°C (NMP): N2 2000 psi, 60°C (NMP): N2 
Relative Pressure 1/[Q(Po/P - 1)] Relative Pressure 1/[Q(Po/P - 1)] 

(P/P0)   (P/P0)   
0.101062629 1.289261191 0.100288838 1.123893348 

0.125013483 1.593151921 0.125026915 1.421660507 
0.150639986 2.052620814 0.14832988 1.788771539 
0.175461908 2.508251634 0.175370248 2.139947923 
0.200516992 3.123081944 0.20062975 2.581094415 
0.225487265 3.560943089 0.225368281 3.051550412 
0.250288461 4.171508728 0.249517938 3.562295716 
0.27555234 4.509963031 0.275326215 3.957429755 
0.300352606 5.333303559 0.300361052 4.7430308 

 
 

Table B.1 (cont.) 

3000 psi, 40°C (Iso): N2 3000 psi, 40°C (DMF): N2 
Relative Pressure 1/[Q(Po/P - 1)] Relative Pressure 1/[Q(Po/P - 1)] 

(P/P0)   (P/P0)   
0.098121356 0.855218414 0.100964378 0.816157814 
0.125635762 1.12799448 0.125111932 1.003925115 
0.14872568 1.385771758 0.150569265 1.225850351 
0.173676803 1.665914699 0.175292053 1.451784722 
0.200332208 2.024995639 0.200366215 1.652838089 
0.224624126 2.350218705 0.225463648 1.936725052 
0.250470892 2.715800315 0.250589983 2.208916974 
0.274942434 3.141178232 0.275516199 2.569846283 
0.299288193 3.623342748 0.300397881 2.786770545 
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Table B.1 (cont.) 

3000 psi, 40°C (NMP): CO2 Graphite  : CO2 
Relative Pressure 1/[Q(Po/P - 1)] Relative Pressure 1/[Q(Po/P - 1)] 

(P/P0)   (P/P0)   
0.112048745 1.020787263 0.003795029 0.006126219 
0.163116177 1.112511478 0.007860901 0.006061596 
0.177274705 1.07931605 0.016228289 0.008136095 

0.193860233 1.085516034 0.050195556 0.019018857 
0.205737502 0.904094263 0.104267201 0.038428859 

0.218091047 0.296523768 0.140304726 0.043682405 
0.263018988 0.265470532 0.195292702 0.054440146 
0.308983156 0.267407208 0.250930203 0.069508322 

    0.260680497 0.069933993 
    0.279599253 0.067113619 
    0.320368387 0.072870294 
    0.337433528 0.077765633 
    0.52047158 0.163374492 
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Table B.2                                                                                                                          

The isotherm relationship between relative pressure (P/P0) and quantitiy absorbed 

(mmol/g) of absorbtive gases (N2 and CO2) for various samples. 

Graphite :N2 Graphite N2 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
        

0.100421784 0.137246515 0.839474278 0.102289381 
0.120170404 0.138821998 0.859581654 0.115310724 
0.125096107 0.138352304 0.874293097 0.132533884 
0.140309738 0.138208534 0.88944084 0.155039065 
0.148229356 0.138459839 0.904522377 0.179717562 
0.160316339 0.136704327 0.914417989 0.200435153 
0.175293887 0.135702905 0.924433643 0.22420217 
0.183362612 0.137418215 0.932336655 0.250479109 
0.200264787 0.136260487 0.939434401 0.277017634 

0.225157132 0.136067789 0.946206355 0.313484924 
0.248609243 0.132313924 0.952383446 0.343289069 

0.27491877 0.131564448 0.958162806 0.383111459 
0.299794099 0.130900715 0.963235689 0.423628436 
0.349667271 0.127218115 0.967205652 0.460136197 
0.399585178 0.117709135 0.970208819 0.491169784 
0.446176852 0.114394904 0.973080416 0.528122275 
0.499933093 0.104887971 0.976120225 0.576526153 
0.546130197 0.095077449 0.979026095 0.632252584 
0.599742971 0.083911354 0.982340347 0.685646994 
0.649977039 0.077773378 0.98389047 0.727527861 
0.699912026 0.072091359 0.986412802 0.781420521 
0.739760869 0.073851252 0.987869896 0.831232712 
0.769761899 0.073982394 0.989273204 0.873854359 

0.799606697 0.081157776 0.989902955 0.917706307 
0.819674965 0.088520985     
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Table B.2 (cont.) 

3000 psi, 40°C (NMP): N2 3000 psi, 40°C (NMP): N2 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
        

0.096123732 0.118381317 0.840156521 0.176286667 
0.12055014 0.123790159 0.860119256 0.193816124 
0.1255397 0.12418747 0.875290316 0.212412868 

0.140418196 0.125546044 0.890197212 0.238114238 
0.150378841 0.125055802 0.905335653 0.264035933 
0.16032517 0.126569041 0.915225836 0.286767007 
0.175345382 0.130130334 0.925251602 0.314496392 
0.180626209 0.130574275 0.933150141 0.342705808 
0.200504514 0.134770616 0.940229419 0.371007744 

0.225354107 0.13733015 0.947161831 0.405031597 
0.250633884 0.137168278 0.95311543 0.442246257 

0.275514798 0.138439397 0.959202304 0.487638742 
0.300445911 0.142435495 0.964263827 0.52963829 
0.350560598 0.141036185 0.968149094 0.569638191 
0.40055127 0.141475736 0.971156206 0.607483107 
0.45054533 0.13718023 0.974217436 0.651637137 
0.500583984 0.13510526 0.977115489 0.697860175 
0.550814844 0.129805158 0.980219304 0.75396082 
0.600811803 0.12785885 0.982226434 0.799871463 
0.650707487 0.126673787 0.984235047 0.847601014 
0.700689609 0.127180943 0.986199426 0.901137671 
0.74014952 0.134316304 0.988118996 0.960498579 
0.770150788 0.144222281 0.989080593 1.001786894 

0.800210046 0.15394018 0.990215416 1.046461942 
0.820079949 0.164243582     
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Table B.2 (cont.) 

3000 psi, 50°C (NMP): N2 3000 psi, 50°C (NMP): N2 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
        

0.098386948 0.130159979 0.840272936 0.136873226 
0.120197307 0.131016941 0.860139238 0.155518813 
0.125363032 0.1322587 0.875313524 0.172737303 
0.140425154 0.132291569 0.890192998 0.193699919 
0.150092563 0.133767239 0.905079495 0.22051366 
0.160110617 0.13426158 0.915288104 0.244505522 
0.175084799 0.133485133 0.925268049 0.271275322 
0.180327507 0.132155569 0.933181446 0.295228679 
0.196423046 0.131392989 0.940243724 0.32091312 
0.225044668 0.133409734 0.947084689 0.359129652 
0.249999922 0.130772113 0.953208221 0.394710442 
0.274875815 0.133391286 0.959211215 0.435626035 
0.299907229 0.131636972 0.964134263 0.477073724 
0.349773678 0.125476192 0.968194513 0.517517476 
0.399590997 0.123173327 0.971169346 0.554898807 
0.447162952 0.117853345 0.974219557 0.589321944 
0.494386306 0.114027594 0.97705564 0.630909363 
0.549762978 0.106920052 0.980239292 0.681490918 
0.600375727 0.097441568 0.982093509 0.720661815 
0.650362795 0.093255243 0.984159404 0.766123 
0.700122752 0.095745422 0.986112845 0.81457061 
0.740203496 0.100023523 0.988168205 0.866241308 
0.77007947 0.107762822 0.988974817 0.905836119 
0.800325633 0.113196316 0.990449371 0.954511929 
0.820034892 0.125148447     
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Table B.2 (cont.) 

3000 psi, 60°C (NMP): N2 3000 psi, 60°C (NMP): N2 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
        

0.097128279 0.111312501 0.840224217 0.136525773 
0.120336377 0.114671829 0.860120643 0.151910509 
0.125632618 0.116302254 0.875280807 0.164502889 
0.140413484 0.118381815 0.890150536 0.179535604 
0.150435434 0.117252049 0.905151299 0.202494597 
0.160452305 0.121059179 0.915238916 0.22335636 
0.17546813 0.119573588 0.925194345 0.248729712 
0.180572116 0.120168363 0.93316728 0.276647736 
0.200540808 0.118999284 0.940240957 0.302711669 
0.225581943 0.122210998 0.947025106 0.333867341 
0.25049426 0.124768566 0.953138583 0.3675154 
0.275768598 0.124583585 0.959161269 0.406622322 
0.300578049 0.12445083 0.964110616 0.44348085 
0.350802697 0.123229687 0.96814784 0.484673399 
0.400759039 0.122320858 0.971301472 0.519238764 
0.447222616 0.11988266 0.97419914 0.557267443 
0.501024057 0.112022054 0.977159809 0.600999323 
0.547288905 0.099603436 0.980144723 0.649695721 
0.600307175 0.098289364 0.98205135 0.689126025 
0.650268623 0.095601402 0.984233733 0.736276891 
0.700222568 0.097053855 0.98599506 0.789154241 
0.74020723 0.102367314 0.988279368 0.86160605 
0.770198942 0.106068716 0.988864608 0.898728432 
0.800118582 0.115515759 0.990662879 0.957569186 
0.820142908 0.127752621     
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Table B.2 (cont.) 

2500 psi, 60°C (NMP): N2 2500 psi, 60°C (NMP): N2 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
        

0.101062629 0.087200755 0.839501183 0.032230798 
0.120480562 0.087605165 0.859511849 0.037551928 
0.125013483 0.089680558 0.874474472 0.044780373 
0.140583608 0.08832576 0.889503245 0.053506813 
0.150639986 0.086405169 0.904375232 0.066080014 
0.158499936 0.090343894 0.914224746 0.078960839 
0.175461908 0.08484007 0.924360796 0.094406507 
0.180528692 0.084275882 0.932347247 0.108493962 
0.200516992 0.080307954 0.939236756 0.123912233 
0.225487265 0.081757654 0.946103953 0.148170376 
0.250288461 0.080030121 0.952147363 0.173970241 
0.27555234 0.084338157 0.958227057 0.202611196 
0.300352606 0.080492586 0.963142199 0.227828865 
0.350313159 0.073335456 0.96697751 0.254372233 
0.400359615 0.069589266 0.970113972 0.279871647 
0.446864485 0.063061593 0.973094966 0.305876465 
0.493456792 0.052643286 0.975990774 0.333924901 
0.546894737 0.039744387 0.978854865 0.366410158 
0.600044603 0.031656179 0.98091598 0.396251251 
0.64557833 0.02677175 0.984265631 0.442365546 
0.699817158 0.019671891 0.986147813 0.477775849 
0.739802664 0.021505937 0.988220062 0.519533034 
0.769797713 0.017824497 0.988789602 0.541903799 
0.799548705 0.023321038 0.990484606 0.581068689 
0.819631224 0.026939201     
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Table B.2 (cont.) 

2000 psi, 60°C (NMP): N2 2000 psi, 60°C (NMP): N2 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
        

0.100288838 0.099180066 0.839531055 0.047605379 
0.120257256 0.10087546 0.859639522 0.059916149 
0.125026915 0.100510844 0.874491904 0.073982678 
0.140433355 0.098359527 0.889519838 0.091177766 
0.14832988 0.097364886 0.904395592 0.114777844 
0.156386148 0.098325137 0.914484136 0.136455214 
0.175370248 0.099378792 0.924426674 0.163475229 
0.180188727 0.098044574 0.932437047 0.190951533 
0.20062975 0.097239666 0.939402346 0.217247581 
0.225368281 0.095340399 0.947139884 0.251174234 
0.249517938 0.093332197 0.953131044 0.283941498 
0.275326215 0.096004546 0.959197722 0.325064775 
0.300361052 0.09051357 0.964203347 0.367645516 
0.350264414 0.084751055 0.968211387 0.406159682 
0.397430307 0.079024279 0.971227909 0.442589597 
0.444357218 0.065701624 0.974284858 0.482554865 
0.499119607 0.05617235 0.97716619 0.52831973 
0.545628253 0.048772463 0.980257502 0.580206769 
0.599773802 0.038319149 0.98210705 0.62278026 
0.646014554 0.034332163 0.984182748 0.673114247 
0.699944799 0.025438595 0.986175247 0.724679314 
0.739890788 0.025125464 0.988060047 0.7849591 
0.769755713 0.028812679 0.98915215 0.829325916 
0.799648913 0.033420917 0.990172776 0.872099738 
0.819598017 0.038170854     
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Table B.2 (cont.) 

3000 psi, 40°C (Iso): N2 3000 psi, 40°C (Iso): N2 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
        

0.098121356 0.127215021 0.839909617 0.087828018 
0.120258681 0.128159776 0.859821257 0.104030278 
0.125635762 0.127383717 0.874887175 0.118901479 
0.140491135 0.127084841 0.889840542 0.136646744 
0.14872568 0.126073765 0.904823859 0.163007787 
0.157073346 0.126017805 0.914893365 0.187493453 
0.173676803 0.126165063 0.924851196 0.216901979 
0.180339757 0.125727797 0.932852387 0.244426423 
0.200332208 0.123713496 0.939704425 0.276988188 
0.224624126 0.123263881 0.946841297 0.310806003 
0.250470892 0.123046971 0.952639145 0.346445819 
0.274942434 0.120719299 0.958792855 0.390168055 
0.299288193 0.117880164 0.963736057 0.432466988 
0.347872006 0.110783006 0.968124306 0.47702857 
0.395982403 0.104755621 0.97124625 0.511358108 
0.450355316 0.092143278 0.974163747 0.549878558 
0.500372018 0.082532418 0.9771757 0.593229166 
0.548088825 0.074659699 0.980106679 0.648449791 
0.595763558 0.068122977 0.982204745 0.697287207 
0.643299981 0.060945842 0.984251926 0.748736825 
0.700193113 0.058668351 0.986184922 0.799808671 
0.739974697 0.062139962 0.988037849 0.857099654 
0.770066226 0.064538077 0.989066495 0.902471893 
0.799924476 0.069895067 0.99029408 0.953671005 
0.819977869 0.07642001     
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Table B.2 (cont.) 

3000 psi, 40°C (DMF): N2 3000 psi, 40°C (DMF): N2 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
        

0.100964378 0.137599587 0.840280754 0.174646184 
0.120291374 0.142400838 0.860146598 0.193299196 
0.125111932 0.142444249 0.875179707 0.217251209 
0.140665051 0.14216377 0.890390764 0.240778101 
0.150569265 0.144600869 0.905055046 0.275227256 
0.160404458 0.144368405 0.915298311 0.300611726 
0.175292053 0.146406321 0.925157116 0.334630565 
0.180338034 0.149362507 0.933377315 0.359484022 
0.200366215 0.151601343 0.940075795 0.387614394 
0.225463648 0.15030269 0.947202691 0.426379522 
0.250589983 0.151378717 0.953245124 0.462793283 
0.275516199 0.147982825 0.959045436 0.511308073 
0.300397881 0.154079385 0.964150412 0.56036304 
0.350633079 0.147401058 0.968165931 0.60886659 
0.4004731 0.150831467 0.971222958 0.648513144 
0.45051269 0.146312736 0.974203125 0.684441188 
0.500578429 0.145610266 0.977208175 0.717022882 
0.550517325 0.135605736 0.980012278 0.768316196 
0.600408709 0.138171559 0.982149774 0.823503232 
0.650501351 0.136217886 0.984209673 0.889674977 
0.700508877 0.131692778 0.986231184 0.962043119 
0.740442986 0.135119218 0.988171579 1.026930775 
0.770296715 0.135427405 0.988900639 1.070688561 
0.800181303 0.1439672 0.990530813 1.133893468 
0.820138576 0.157848163     

 
. 
 
 
 
 
 
 
 



132 
 

Table B.2 (cont.) 

Graphite : CO2  Graphite : CO2  
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
0.003795029 0.621833226 0.039184276 20.55520768 
0.007860901 1.307111913 0.038270742 21.29659011 
0.016228289 2.027507145 0.018576905 21.94899613 
0.050195556 2.778731958 0.013575861 22.61335107 
0.104267201 3.029087031 0.015434324 23.28978969 
0.140304726 3.736123465 0.015619044 23.90811612 
0.195292702 4.457884322 0.015795821 24.52622969 
0.250930203 4.819409681 0.015188462 25.26735989 
0.260680497 5.041828334 0.015382067 25.92457158 
0.279599253 5.782973414 0.013117235 26.54974031 
0.320368387 6.468827377 0.0107283 27.21006062 
0.337433528 6.548940806 0.011053905 27.99718826 
0.52047158 6.643522628 0.011481089 28.67410684 
0.634591781 6.75741771 0.011840919 29.35107214 
0.039798904 7.369470834 0.012149334 30.02791286 
0.048011876 8.110810796 0.012364837 30.70458696 
0.059161588 8.84195169 0.013274922 31.38121407 
0.067906237 9.569142942 0.011600813 32.1199962 
0.082072402 10.29920324 0.010417121 32.85982386 
0.085898843 11.03525924 0.011167036 33.60204614 
0.089353483 11.77614352 0.011459181 34.27881021 
0.091873568 12.52122962 0.011727996 34.95548473 
0.094442689 13.27618507 0.01194452 35.63223005 
0.091403502 14.01805652 0.012135371 36.30898142 
0.086878675 14.75993178 0.013182849 36.98541647 
0.083983271 15.51592371 0.011916484 37.64252247 
0.037296262 16.12256953 0.010888416 38.3005149 
0.037819542 16.8269716 0.010864024 38.96310633 
0.038729147 17.58941633 0.010845839 39.6388805 
0.040948053 18.33082256 0.011033074 40.31516272 
0.04056105 19.07224225 0.012335123 40.99204904 
0.039917806 19.8137147 0.013094685 41.66915993 
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Table B.2 (cont.) 

Graphite : CO2  Graphite : CO2  
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
0.01390205 42.34620688 0.005781588 64.40994697 
0.014789413 43.02307463 0.006455831 65.08623511 
0.01557391 43.69999275 0.007134759 65.76256921 
0.017809028 44.37678197 0.007781531 66.43867678 
0.01475556 45.09140304 0.007507379 67.11476141 
0.013703448 45.80427192 0.006957995 67.79038686 
0.012948365 46.49881811 0.006433097 68.46570947 
0.013503352 47.29886108 0.006035459 69.14091936 
0.013783341 47.97622693 0.005725471 69.81559205 
0.010297303 48.67140452 0.005372898 70.4901788 
0.011431032 49.44827685 0.005254138 71.16469861 
0.012352799 50.12566077 0.005212481 71.83896236 
0.013258196 50.80303709 0.005167154 72.51301949 
0.01414986 51.48034109 0.005118662 73.18723161 
0.016477919 52.15725261 0.005070222 73.8614379 
0.01419108 52.82134894 0.005022278 74.53576032 
0.013778092 53.47147078 0.004899708 75.21036141 
0.01328737 54.09196595 0.004839408 75.88515279 
0.015131126 54.89693253 0.004776986 76.56042381 
0.016354994 55.57445802 0.004714202 77.2358179 
0.017551498 56.25173665 0.004652833 77.91163465 
0.018598519 56.88379561 0.004596425 78.58743682 
0.019649152 57.51546221 0.00448795 79.26351278 
0.021908177 58.25660866 0.004424656 79.93972564 
0.023132862 58.91098965 0.004366605 80.61616971 
0.024332263 59.56519017 0.004311558 81.2927965 
0.025022143 60.30621769 0.004302626 81.96926501 
0.012189722 61.01898681 0.004247497 82.64589893 
0.008262405 61.63938632 0.004135336 83.32251854 
0.006273512 62.25130979 0.004070019 83.99874877 
0.0057646 62.99222584 0.003989267 84.67512454 

0.005138118 63.73357875 0.003929408 85.35108374 
 
 



134 
 

Table B.2 (cont.) 

Graphite : CO2  Graphite : CO2  
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
0.003854295 86.02717496 0.002868676 112.5715467 
0.003772943 86.70298126 0.00277727 113.2143477 
0.00370655 87.37871954 0.002796244 114.3391546 
0.003640094 88.05423418 0.002758056 115.4649582 
0.003579122 88.72998456 0.002701597 116.1241055 
0.003522549 89.40542752 0.002698486 117.2497456 
0.003464903 90.08075529 0.002643629 117.893682 
0.003412337 90.75629537 0.002648123 119.0189992 
0.003369937 91.43182968 0.00258022 119.6784575 
0.003317982 92.10721286 0.002596968 120.8045421 
0.003267488 92.78272452 0.002610214 121.9301243 
0.003223955 93.45807905 0.002579728 123.0558239 
0.003179262 94.13336649 0.002502399 123.6993275 
0.003138756 94.80868943 0.002519254 124.8265523 
0.003140422 95.67138985 0.002559227 125.9512469 
0.003202573 97.03395946 0.002546867 127.0200842 
0.0032585 98.52435436 0.00236026 127.8552298 

0.003178799 99.37693118 0.002377803 128.9227784 
0.003123145 100.2859226 0.002368614 130.0444568 
0.003075812 101.1943256 0.002223314 130.8961455 
0.003030571 102.0639453 0.002146905 132.0089359 
0.002990107 102.9330727 0.002128633 132.6130627 
0.002969154 103.8409783 0.002079555 133.7891952 
0.002944604 104.7486237 0.00201306 134.9654333 
0.002928094 105.6175649 0.001995034 135.6241561 
0.00290525 106.5424424 0.001989707 136.2275163 
0.002902968 107.4663156 0.001948339 137.0621024 
0.002872615 108.3197054 0.001998043 138.0501065 
0.002858269 109.1732259 0.002020518 139.0972312 
0.002843839 110.027515 0.002033362 140.0908306 
0.002979087 110.8809903 0.002070705 141.1390295 
0.00289873 111.5234906 0.002378828 142.3122642 
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Table B.2 (cont.) 

Graphite : CO2  3000 psi, 40°C (NMP): CO2 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
0.002228036 143.4873468 0.11205 0.123618261 
0.002165128 144.0898607 0.15412 0.164869327 
0.00205422 145.2660178 0.16312 0.175197281 
0.00196234 146.440916 0.17727 0.199638035 
0.001938656 147.0437079 0.17874 0.209978528 
0.001857983 148.2189932 0.19386 0.221534895 
0.001823717 148.8212745 0.20574 0.2865073 
0.001855695 149.4251471 0.21809 0.940637178 
0.001847172 150.2807786 0.26302 1.344356599 
0.001816759 151.1982625 0.30898 1.67214164 
0.001689003 152.246267 0.31987 1.798200678 
0.001700946 153.2400801 0.05358 2.404243266 
0.001687534 154.2322341 0.06352 3.058842208 
0.001667254 155.1544013 0.07985 3.684172224 
0.001527198 155.9942326 0.10402 4.308384692 
0.001545596 156.9152682 0.10596 5.049406675 
0.00154229 157.8531414 0.11097 5.750511756 
0.001560259 158.7889951 0.11685 6.43875449 
0.001540437 159.8426148 0.12385 7.106269999 
0.001884055 160.6667962 0.11773 7.751131314 
0.00327275 161.6615929 0.11262 8.38968647 
0.006596328 162.7864972 0.10943 9.00761978 
0.008861375 163.626342 0.04362 9.613417869 
0.012341385 164.7390046 0.01741 10.22075843 
0.018545489 165.794449 0.02955 10.84112486 
0.032126712 166.8595451 0.0359 11.46482829 
0.08082192 167.9994466 0.04181 12.09081061 
0.185397084 169.0227174 0.05309 12.71763798 
0.412912043 169.8526699 0.05787 13.4586891 
0.698299716 170.3190161 0.06261 14.18762317 
0.834067064 170.3319186 0.07104 14.91586645 
1.046212205 170.3923617 0.0751 15.63156171 
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Table B.2 (cont.) 

3000 psi, 40°C (NMP): CO2 3000 psi, 40°C (NMP): CO2 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
0.07559762 16.3390299 0.002594277 38.47759965 
0.075929848 17.0427302 0.002551709 39.12204297 
0.078786348 17.73925244 0.002489188 39.7330281 
0.003065791 18.4427967 0.002472974 40.41129087 
0.002935195 19.18504265 0.00252593 41.08946945 
0.00302039 19.86298828 0.002463817 41.74371119 
0.003226125 20.54088784 0.002420716 42.40986045 
0.003524583 21.21874314 0.002377781 43.07587509 
0.003670688 21.89658285 0.002369757 43.74184234 
0.003790698 22.57450042 0.00232955 44.41945868 
0.003888951 23.25226849 0.002371943 45.09692277 
0.003841316 23.93006156 0.002327032 45.77426418 
0.003961947 24.60769606 0.002283007 46.45159975 
0.003690467 25.28472793 0.002242917 47.12880576 
0.00345907 25.96204222 0.002218031 47.80600402 
0.003261878 26.63958037 0.00227063 48.4831852 
0.003260071 27.38062525 0.002223127 49.16012458 
0.003276927 28.05890331 0.002187183 49.83717243 
0.003283965 28.73706931 0.002151013 50.51436442 
0.003284304 29.41507658 0.002144701 51.1914921 
0.003272927 30.09325754 0.002112096 51.86885873 
0.003232111 30.77138974 0.002155353 52.54609971 
0.00327414 31.44943702 0.002116102 53.22349845 
0.003090514 32.24229563 0.002078261 53.9010686 
0.002961381 33.03521242 0.002051453 54.57863045 
0.002909914 33.6385676 0.002019699 55.25641133 
0.002810834 34.37981749 0.002055512 55.93422796 
0.002774454 35.05768146 0.002006351 56.61204384 
0.002610172 35.79888361 0.001961941 57.29000004 
0.002611024 36.47702988 0.001919921 57.96788874 
0.002582243 37.15514422 0.001913022 58.64582656 
0.002639329 37.83319902 0.001895585 59.32387908 
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Table B.2 (cont.) 

3000 psi, 40°C (NMP): CO2 3000 psi, 40°C (NMP): CO2 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
Relative 

Pressure (P/P0) 
Quantity Absorbed 

(mmol/g) 
0.00195104 60.0019765 0.000668361 81.70468757 
0.001941632 60.67996595 0.000711779 82.38229776 
0.001924752 61.35818404 0.000678064 83.05984316 
0.001937803 62.03619311 0.000634589 83.73744419 
0.002005009 62.71430378 0.00059677 84.41492029 
0.002675969 63.39186143 0.000558601 85.09247708 
0.002522292 64.06951084 0.000522824 85.76991044 
0.002496147 64.74724797 0.000547675 86.44725462 
0.002349001 65.42507508 0.00051586 87.12452789 
0.002220152 66.10317422 0.000480096 87.80188434 
0.002108323 66.78141749 0.000452557 88.47912584 
0.001946706 67.45954186 0.000430784 89.15660919 
0.00178193 68.13784261 0.000413708 89.83389917 
0.001636702 68.81607988 0.000458396 90.51094548 
0.001600697 69.49433216 0.000427615 91.18803183 
0.001474791 70.1727666 0.000405589 91.86520435 
0.001366627 70.85115704 0.000389233 92.54239126 
0.00127173 71.52967992 0.000378705 93.21938976 
0.001189651 72.20837887 0.000405377 93.89627782 
0.00112148 72.88695935 0.000727653 94.57254172 
0.001138956 73.56558054 0.002110931 95.24551155 
0.00106724 74.24422659 0.008695085 95.9026475 
0.001002879 74.92274204 0.058471727 96.74742798 
0.00094802 75.60129819 0.131400039 97.00054863 
0.000899718 76.28006836 0.190325644 96.9770901 
0.000856424 76.95853027 0.276076011 97.068927 
0.000818613 77.63687494 0.412673704 99.09029499 
0.000849091 78.31509989 0.764144777 100.0616416 
0.000800335 78.99302215 0.89414135 100.3565492 
0.000758634 79.67113775 1.49831055 99.68340406 
0.000722114 80.34907394     
0.000701881 81.02683088     
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Appendix C. AFM section analysis 
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C.1 Section analysis of the treated flakes at 60°C and 3000 psi 
 
 

                                    

 
 

Figure C.1 Horizontal (a) and vertical section analysis (b) of the flake 1.2 of Figure 4.51 
(60°C, 3000 psi). The image was constructed at a 5.00 µm scan size, a 1.387 Hz scan 
rate, 512 numbers per line, and a 500.0 nm data scale. 

a 

b 



140 
 

                            

 
 

Figure C.2 Horizontal (a) and vertical section analysis (b) of the flake 1.3 of Figure 4.51 
(60°C, 3000 psi). The image was constructed at a 5.00 µm scan size, a 1.387 Hz scan 
rate, 512 numbers per line, and a 500.0 nm data scale. 

a 

b 
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C.2 Section analysis of the treated flakes at 60°C and 2500 psi 
 

                                 
                                  

Figure C.3 Horizontal (a) and vertical section analysis (b) of the flake 2.2 (60°C, 2500 
psi). The image was constructed at a 50.00 µm scan size, a 0.1001 Hz scan rate, 512 
numbers per line, and a 500.0 nm data scale. 

a 

b 
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Figure C.4 Horizontal (a) and vertical section analysis (b) of the flake 2.4 of Figure 4.53 
(60°C, 2500 psi). The image was constructed at a 5.00 µm scan size, a 1.387 Hz scan 
rate, 512 numbers per line, and a 500.0 nm data scale. 

a 

b 
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Figure C.5 Horizontal (a) and vertical section analysis (b) of the flake 2.6 of (60°C, 2500 
psi). The image was constructed at a 5.00 µm scan size, a 1.387 Hz scan rate, 512 
numbers per line, and a 500.0 nm data scale. 

a 

b 
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Figure C.6 Horizontal (a) and vertical section analysis (b) of the flake 2.8 of (60°C, 2500 
psi). The image was constructed at a 5.00 µm scan size, a 1.001 Hz scan rate, 512 
numbers per line, and a 200.0 nm data scale. 

a 

b 
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Figure C.7 Horizontal (a) and vertical section analysis (b) of the flake 2.9 (60°C, 2500 
psi. The image was constructed at a 5.00 µm scan size, a 1.001 Hz scan rate, 512 
numbers per line, and a 150.0 nm data scale. 

a 

b 
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Figure C.8 Horizontal (a) and vertical section analysis (b) of the flake 2.13 (60°C, 2500 
psi). The image was constructed at a 1.00 µm scan size, a 1.001 Hz scan rate, 512 
numbers per line, and a 50.0 nm data scale. 

a 

b 
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Figure C.9 Horizontal (a) and vertical section analysis (b) of the flake 2.14 (60°C, 2500 
psi). The image was constructed at a 1.00 µm scan size, a 1.001 Hz scan rate, 512 
numbers per line, and a 50.0 nm data scale. 

a 

b 



148 
 

D.3 Section analysis of the treated flakes at 60°C and 2000 psi 
 

                                        

                                         
 

Figure C.10 Vertical section analysis of the flake 3.1 (a) and 3.2 (b) (60°C, 2000 psi). 
The image was constructed at a 50.00 µm scan size, a 0.1001 Hz scan rate, 512 numbers 
per line, and a 500.0 nm data scale. 

a 

b 
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Figure C.11 Horizontal (a) and vertical section analysis (b) of the flake 3.3 (60°C, 2000 
psi). The image was constructed at a 5.00 µm scan size, a 1.001 Hz scan rate, 512 
numbers per line, and a 500.0 nm data scale. 

a 

b 
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Figure C.12 Horizontal (a) and vertical section analysis (b) of the flake 3.8 (60°C, 2000 
psi). The image was constructed at a 5.00 µm scan size, a 1.387 Hz scan rate, 512 
numbers per line, and a 500.0 nm data scale. 

a 

b 
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Figure C.13 Horizontal (a) and vertical section analysis (b) of the flake 3.9 (60°C, 2000 
psi). The image was constructed at a 5.00 µm scan size, a 1.387 Hz scan rate, 512 
numbers per line, and a 500.0 nm data scale. 

a 

b 
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Figure C.14 Horizontal (a) and vertical section analysis (b) of the flake 3.11 (60°C, 2000 
psi). The image was constructed at a 5.00 µm scan size, a 1.001 Hz scan rate, 512 
numbers per line, and a 50.0 nm data scale. 

a 

b 
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Figure C.15 Horizontal (a) and vertical section analysis (b) of the flake 3.12 of Figure 
4.55 (60°C, 2000 psi). The image was constructed at a 1.00 µm scan size, a 1.001 Hz 
scan rate, 512 numbers per line, and a 50.0 nm data scale. 

a 

b 
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