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ABSTRACT

Mathematical Modeling, Simulation, and Time Series Analysis of Seasonal

Epidemics

by

Eric Numfor

Seasonal and non-seasonal Susceptible-Exposed-Infective-Recovered-Susceptible

(SEIRS) models are formulated and analyzed. It is proved that the disease-free steady

state of the non-seasonal model is locally asymptotically stable if Rv < 1, and disease

invades if Rv > 1. For the seasonal SEIRS model, it is shown that the disease-free

periodic solution is locally asymptotically stable when Rv < 1, and I(t) is persis-

tent with sustained oscillations when Rv > 1. Numerical simulations indicate that

the orbit representing I(t) decays when Rv < 1 < Rv. The seasonal SEIRS model

with routine and pulse vaccination is simulated, and results depict an unsustained

decrease in the maximum of prevalence of infectives upon the introduction of rou-

tine vaccination and a sustained decrease as pulse vaccination is introduced in the

population.

Mortality data of pneumonia and influenza is collected and analyzed. A decom-

position of the data is analyzed, trend and seasonality effects ascertained, and a

forecasting strategy proposed.
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1 INTRODUCTION

Seasonal infections of humans range from childhood diseases, such as measles,

chickenpox and diphtheria, acute diseases caused by the the bacteria Carynebac-

terium dipththeriae, to more faecal-oral infections such as cholera and rotaviruses,

and vector-borne diseases including malaria [35]. Some of the causes of seasonality

include [35]: the ability for the pathogen to survive outside the host, which depends on

the temperature, humidity and exposure to sunlight; host immune function; the abun-

dance of vectors and non-human hosts. The congregation of children during school

terms has been demonstrated to influence annual variations in weekly incidence of a

seasonal disease such as measles [32].

Although in 1760, Daniel Bernoulli formulated and solved a model for smallpox

in order to evaluate the effectiveness of variolation of healthy people with the small-

pox virus, deterministic epidemiological modeling seems to have started in the 20th

century [37]. In 1906, Hamer [36] formulated and analyzed a discrete time model

in an attempt to understand the recurrence of the outbreak of measles. Hamer’s

model may have been the first to assume the incidence (number of new cases per

unit time) depends on the product of the densities of the susceptibles (individuals

who can become infected) and infectives (infected individuals capable of transmit-

ting the infection onto others). Ross [51] on the other hand, was interested in the

incidence and control of malaria, so he developed differential equation models for

malaria as a host-vector disease in 1911 [37]. Other deterministic epidemiological

models were then developed in papers by Ross [51], Ross and Hudson [52], and Mar-

tini and Lotka [8, 19, 20]. In 1927, Kermack and McKendrick [40] published papers

12



on epidemic models and obtained the threshold result that the density of suscepti-

bles must exceed a critical value in order for an epidemic outbreak to occur [8, 40].

Mathematical modeling seems to have grown in the middle of the 20th century with

recent models involving aspects such as passive immunity, gradual loss of vaccine

[3] and disease-acquired immunity, stages of infection, vertical transmission, disease

vectors, vaccination, quarantine, social and sexual mixing groups and age structure

[1, 2, 4, 11, 37].

The study of disease occurrence is called epidemiology, and an epidemic is an un-

usually large, but short-term outbreak of a disease [37]. A disease is called endemic if

it persists in the population [37]. Emerging and reemerging diseases, such as influenza

and pneumonia, have led to a revived interest in infectious diseases. The spread of

infectious disease involves not only disease-related factors such as infectious agent,

mode of transmission, latent period, infectious period, susceptibility and resistance,

but also social, cultural, demographic, economic and geographic factors [37]. The

model formulation process that we carry out in this thesis clarifies assumptions, vari-

ables and parameters, and the models provide conceptual results such as thresholds,

basic reproduction number, transmissibility number and contact numbers [37]. Math-

ematical models and computer simulations are useful experimental tools for building

and testing theories, assessing quantitative conjectures, answering specific questions

and determining sensitivities to changes in parameter values. Mathematical model-

ing of seasonal epidemics can contribute to the design and analysis of epidemiological

surveys, suggest crucial data to be collected, identify trends, make general forecasts

and estimate uncertainty in forecasts [37].

13



In this thesis, we study seasonal epidemics, where we consider a general susceptible-

exposed-infectious-recovered-susceptible (SEIRS) compartmental model. In this model,

we assume forms for the transmission rate to have a non-seasonal SEIRS model, when

the transmission rate is constant and a seasonal SEIRS model for a sinusoidal trans-

mission rate. We assume that the transmission rate is

β(t) = β0(1 + β1 cos(2πt)),

where β0 is the baseline level of transmission, and β1 is the strength of seasonal-

ity. When β1 ≡ 0, the SEIRS model reduces to a non-seasonal model, while for

β1 ∈ (0, 1), it reduces to a seasonal model. We incorporate pulse vaccination in these

models and propose a strategy for disease control. In Chapter two, we derive and an-

alyze seasonal and non-seasonal SEIRS models, and determine the basic reproduction

number, steady states and stability analysis of the steady states. In Chapter three, we

present numerical simulations and compare with the qualitative results from Chap-

ter two. In Chapter four, we carry out a time series analysis of seasonal mortality

data for influenza and pneumonia obtained from the Centers for Disease Control and

Prevention (C.D.C.), by presenting some time series plots, periodogram, cumulative

periodogram, decomposition plots, and carry out some forecasting strategy of time

series data sets. In the last chapter, we make some concluding remarks.
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2 MODEL AND ANALYSIS

The model we formulate here is an SEIRS model, where the population is di-

vided into compartments containing susceptible, exposed, infectious and recovered

individuals [7, 30, 37, 45, 47]. Compartments with labels S, E, I, R are used for

epidemiological classes as shown in Figure 1. The class S is the class of suscepti-

ble individuals; that is, those who can become infected. When there is an adequate

contact of a susceptible with an infective so that transmission occurs, the susceptible

enters the exposed class E of those in the latent period, who are infected but not

yet infectious. At the end of the latent period, the individual enters the class I of

infectives, who are capable of transmitting the infection (that is, infectious). At the

end of the infectious period, the individual enters the recovered class R. At time t,

there are S(t) susceptible, E(t) exposed, I(t) infectious and R(t) recovered individ-

uals in the population of constant size, N . The model assumes that all new-borns

are susceptible (that is, no vertical transmission) to the infection and are recruited

at rate µN . The susceptibles are exposed to the infection once in contact with an

infectious individual. The exposed become infected at rate κE and the infectious in-

dividuals recover from the infection at rate γI. Recovered individuals who lose their

immunity are recruited into the susceptible class at rate δR and the mortality rate

for individuals in the different compartments is µ > 0. This leads to Figure 1 that

represents the transmission rate between classes of susceptible, exposed, infectious

and recovered individuals in the population:

15



Figure 1: Schematic Diagram for SEIRS Model

From the compartmental diagram above, we have the following system of nonlin-

ear ordinary differential equations that describe the spread of the infection in the

population:

dS

dt
= µN + δR(t)− β(t)S(t)I(t)

N
− µS(t)

dE

dt
=

β(t)S(t)I(t)

N
− (κ+ µ)E(t)

dI

dt
= κE(t)− (γ + µ)I(t) (1)

dR

dt
= γI(t)− (δ + µ)R(t),

together with the following initial conditions:

S(t0) = S0, E(t0) = E0, I(t0) = I0, R(t0) = N − S0 − E0 − I0. (2)

The parameters used in our model are defined as follows:

16



β denotes the transmission rate per of time,

γ denotes the per capita recovery rate per unit of time,

δ denotes the per capita rate of loss of immunity per unit of time,

κ denotes the per capita rate of active infection per unit of time,

µ denotes the per capita mortality rate per unit of time.

From the model, the rate of change of the total population with respect to time, dN
dt

is zero, thus the population at any time t is constant.

2.1 The Non-Seasonal SEIRS Model Without Vaccination

If the transmission rate β(t) ≡ β0, where β0 is constant, then the system of nonlinear

ordinary differential equations (1) is autonomous [7], and is called the non-seasonal

deterministic SEIRS model. Thus system (1) becomes:

dS

dt
= µN + δR(t)− β0S(t)I(t)

N
− µS(t)

dE

dt
=

β0S(t)I(t)

N
− (κ+ µ)E(t)

dI

dt
= κE(t)− (γ + µ)I(t) (3)

dR

dt
= γI(t)− (δ + µ)R(t),

together with initial conditions defined in equation (2).

2.1.1 The Basic Reproduction Number R0

The basic reproduction number, R0, is a key concept in epidemiology, and one of

the foremost and most valuable ideas that mathematical thinking brought to epidemic

17



theory [25, 26]. The basic reproduction number was originally developed for the

study of demographics (Sharp and Lotka 1911 [55], Dublin and Lotka 1925 [24])

but was independently studied for vector-borne diseases such as malaria (Ross 1911

[51], MacDonald 1952 [46]) and directly transmitted human infections (Kermack and

McKendrick 1927 [40]). It is now widely used for the study of infectious diseases.

The basic reproduction number, R0, for a non-seasonal infection is defined as the

number of secondary infections that result from the introduction of a single infectious

individual into a completely susceptible population during its entire period of infec-

tiousness [11, 15, 14, 23, 26, 27, 30, 45]. The basic reproduction number provides an

invasion criterion for the initial spread of the infection in a susceptible population.

Also, it measures the transmissibility of a pathogen and determines the magnitude

of public health intervention necessary to control epidemics [14]. If R0 < 1, then on

the average, an infected individual produces less than one new infected individual

over the course of its infectious period, and the infection cannot spread [23]. On the

other hand, if R0 > 1, then each infected individual produces, on the average, more

than one new infection, and the disease can invade the population. When R0 = 1, a

transcritical bifurcation occurs [11]; that is, asymptotic local stability is transferred

from the infectious-free state to the new (emerging) endemic state.

One way of calculating the basic reproduction number, R0, is by the next gen-

eration operator approach [11, 23, 26, 27]. A rich history in the literature addresses

the derivation of R0, or equivalent threshold parameter when more than one class of

infectives is involved. The next generation method, introduced by Diekmann et al.

[18], is a generation method of deriving R0 in such cases, encompassing any situation

18



in which the population is divided into discrete, disjoint classes of the form [11]:

dX

dt
= f(X, Y, Z)

dY

dt
= g(X, Y, Z)

dZ

dt
= h(X, Y, Z),

where X ∈ <u, Y ∈ <v, Z ∈ <w and h(X, 0, 0) = 0. Here, the components of

X denote the number of susceptibles, recovered, and other classes of non-infected

individuals. The components of Y denote the number of infected individuals who

do not transmit the disease (such as the latent and non-infectious stages), and the

components of Z represent the number of infected individuals capable of transmitting

the disease (such as the infectious and non-quarantined individuals) [43]. We let

(X∗, 0, 0) ∈ <u+v+w denotes the disease-free equilibrium. That is,

f(X∗, 0, 0) = g(X∗, 0, 0) = h(X∗, 0, 0) = 0,

and assume that the equation g(X∗, Y, Z) = 0 implicity defines the function Y =

g̃(X∗, Y ), and

A = DZh(X∗, g̃(X∗, 0), 0).

Further, we assume that A can be written in the form A = M −D, where the matrix

M = (mij) ≥ 0 and D is a diagonal matrix. Thus, the basic reproduction number is

defined as the spectral radius (dominant eigenvalue) of the matrix MD−1; that is,

R0 = ρ(MD−1),

where the resolvent of any matrix A is ρ(A) = max{|λ|, λ ∈ sp(A)}, the spectrum

of A is sp(A) = {λi, i = 1, 2, ...n} and λi is an eigenvalue of A [17]. By the next
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generation approach, we have the following basic reproduction number for system

(3):

R0 = β0
κ

µ+ κ

1

µ+ γ
. (4)

The basic reproduction number (4) is the product of the constant transmission rate,

β0, per unit time t, the average infectious period adjusted for population growth,

1
(µ+γ)

, and the fraction κ
(µ+κ)

of the exposed individuals surviving the exposed class,

E [10, 37]. Thus, R0 is suitably expressed as the average of the number of secondary

infections that result from the introduction of an infectious individual in a susceptible

population during its entire period of infectiousness.

2.1.2 Existence of Steady States

We eliminate one of the state variables by setting R(t) = N − S(t)− E(t)− I(t), to

have the following 3-dimensional system:

dS

dt
= (µ+ δ)N − β0S(t)I(t)

N
− (µ+ δ)S(t)− δE(t)− δI(t)

dE

dt
=

β0S(t)I(t)

N
− (κ+ µ)E(t) (5)

dI

dt
= κE(t)− (γ + µ)I(t)

The steady states of system (5) are obtained by setting dS
dt

= dE
dt

= dI
dt

= 0. This

yields the disease-free equilibrium (S0, E0, I0) = (N, 0, 0) and the endemic equilibrium

(S,E, I), where
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S =
N

R0

,

E =
N(µ+ γ)(µ+ δ)

R0(κ+ δ(µ+ γ) + δκ)
(R0 − 1) , (6)

I0 =
Nκ(µ+ δ)

R0(κ+ δ(µ+ γ) + δκ)
(R0 − 1) .

The endemic equilibrium point exists when R0 > 1 and is unrealistic when R0 < 1,

because E < 0 and I < 0. When R0 = 1, the endemic equilibrium reduces to the

disease-free equilibrium.

2.1.3 Linear Stability Analysis

The stability analysis of the disease-free and endemic equilibria are governed by

the eigenvalues of the Jacobian matrix of system (5), evaluated at these points. For

stability, we require that Re(λ) < 0, where λ is an eigenvalue of the linearized system

evaluated at the respective steady states [47].

Theorem 2.1 The disease-free equilibrium (S0, E0, I0), is locally asymptotically sta-

ble when R0 < 1. Moreover, the endemic equilibrium (S,E, I), is locally asymptoti-

cally stable when R0 > 1.

Proof: The stability of the disease-free and endemic equilibria are determined by the

following Jacobian matrix of system (5):
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A =

 β0I
N
− (µ+ δ) −δ β0S

N
− δ

β0I
N

−(µ+ κ) β0S
N

0 κ −(µ+ γ)

 . (7)

At the disease-free equilibrium (N, 0, 0), the equation |A − λI| = 0 yields a third

degree polynommial in λ of the form:

P (λ) = λ3 + a1λ
2 + a2λ+ a3, (8)

where ai = ai(R0) is given by

a1(R0) = 3µ+ κ+ γ + δ,

a2(R0) = (µ+ δ)(2µ+ κ+ δ) + (µ+ κ)(µ+ γ)(1−R0),

a3(R0) = (µ+ κ)(µ+ γ)(µ+ δ)(1−R0).

By the Routh-Hurwitz condition [47], we require that a3 > 0, D1 = a1 > 0 and

D2 = a1a2 − a3 > 0, for the eigenvalues (that is, roots of (8)) to have negative real

parts. Thus,

a3 = (µ+ κ)(µ+ γ)(µ+ δ)(1−R0),

D1 = 3µ+ κ+ γ + δ,

D2 = (2µ+ κ+ γ)(µ+ κ)(µ+ γ)(1−R0)

+(3µ+ κ+ γ + δ)(2µ+ κ+ δ)(µ+ δ).

The parameter D1 > 0, while a3 and D2 are positive if R0 < 1. Thus, when R0 < 1,

the Routh-Hurwitz conditions are satisfied and the eigenvalues have negative real
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parts, and the disease-free equilibrium is locally asymptotically stable. Hence, the

disease gradually disappears from the population. When R0 > 1, the disease persist

in the population (there exists a non-zero endemic equilibrium). At the endemic

equilibrium point, the equation |A− λI| = 0 yields the cubic polynomial

Q(λ) = λ3 + b1λ
2 + b2λ+ b3, (9)

where bi = bi(R0) is given by:

b1(R0) = 2µ+ κ+ γ +

(
(µ+ κ)(µ+ γ)(µ+ δ)

κ+ δ(µ+ γ) + δκ

)
(R0 − 1),

b2(R0) = (µ+ δ)(2µ+ κ+ γ + δ)(µ+ κ)

(
(µ+ κ)(µ+ γ)(µ+ δ)

κ+ δ(µ+ γ) + δκ

)
(R0 − 1), (10)

b3(R0) = (δ(µ+ γ) + (µ+ κ)(µ+ γ)(µ+ δ) + δκ)

(
(µ+ κ)(µ+ γ)(µ+ δ)

κ+ δ(µ+ γ) + δκ

)
(R0 − 1).

As above, we determine expressions for D1 and D2 = b1b2 − b3. Notice that D1 = b1

given in (10) above. So, we only determine an expression for D2. Now,

D2 = ((µ+ κ)(2µ+ κ+ γ) + (µ+ γ)2 + δµ)

(
(µ+ κ)(µ+ γ)(µ+ δ)(R0 − 1)

κ+ δ(µ+ γ) + δκ

)
+(2µ+ κ+ γ + δ)

(
(µ+ κ)(µ+ γ)(µ+ δ)(R0 − 1)

κ+ δ(µ+ γ) + δκ

)2

. (11)

If R0 > 1, the parameter b3 given in equation (10) is positive, and D1 and D2 are

also positive. Thus, when R0 > 1, the Routh-Hurwitz conditions are again satisfied.

Thus all eigenvalues obtained from equation (9) have negative real parts. Hence, the

endemic equilibrium is locally asymptotically stable when R0 > 1. �

2.2 SEIRS Non-Seasonal Model With Vaccination

The study of vaccination in the transmission of infectious diseases has been of

intense theoretical analysis [38, 49, 53]. Routine vaccination of a fraction of the pop-

23



ulation at or soon after birth increases the mean age at infection in a homogeneous

population, and thus increases the natural period of the non-seasonal endemic dy-

namics [35]. Pulse vaccination, on the other hand, is an articulate strategy for the

elimination of infectious diseases, such as measles and polio [35]. It consists of peri-

odical repetitions of impulsive vaccinations in the population, on all the age groups.

This kind of vaccination is called pulse since all the vaccine doses are applied in a

very short time with respect to the dynamics of the target disease [22]. Here, we

model pulse vaccination as a transfer of vaccinated individuals from the susceptible

class directly to the recovered class, at rate ξS. In the recovered class, individuals

either die at rate µR or become susceptible to the infection at rate δR. This leads to

Figure 2 that represents the transmission rate between classes of susceptible, exposed,

infectious and recovered individuals in the population:

Figure 2: Schematic Diagram for SEIRS Model with Pulse Vaccination

As in Figure 1, we obtain the following system of ordinary differential equations from
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Figure 2.

dS

dt
= µN + δR(t)− β0S(t)I(t)

N
− (µ+ ξ)S(t)

dE

dt
=

β0S(t)I(t)

N
− (κ+ µ)E(t)

dI

dt
= κE(t)− (γ + µ)I(t) (12)

dR

dt
= γI(t) + ξS(t)− (δ + µ)R(t),

with initial conditions defined in equation (2). Assuming ξ(t) ≡ ξ0 constant and

applying the next generation operator approach, we have the vaccination basic repro-

duction number Rv, as follows:

Rv =
β0κ(µ+ δ)

(µ+ κ)(µ+ γ)(µ+ δ + ξ0)
. (13)

The basic reproduction number Rv, reduces to the basic reproduction number Rv,

given in equation (4) if ξ0 = 0. Now, we eliminate one of the state variables in equation

(12) by setting R(t) = N − S(t) − E(t) − I(t). This leads to the following system

of nonlinear ordinary differential equations describing the spread of an epidemic in a

population with routine vaccination:

dS

dt
= (µ+ δ)N − β0S(t)I(t)

N
− (µ+ δ + ξ)S(t)− δE(t)− δI(t)

dE

dt
=

β0S(t)I(t)

N
− (κ+ µ)E(t) (14)

dI

dt
= κE(t)− (γ + µ)I(t)

Deriving analogous results to those obtained in Section 2.1.2, we have the disease-free
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equilibrium

(S0, E0, I0) =

(
N(µ+ δ)

µ+ δ + ξ
, 0, 0

)
, (15)

and the endemic equilibrium (S,E, I), where

S =
N(µ+ δ)

(µ+ δ + ξ)Rv

, (16)

E =

(
N(µ+ κ)(µ+ γ)2(µ+ δ + ξ)

κ(κ(µ+ κ)(µ+ γ) + δ(µ+ γ) + δκ)

)
(Rv − 1) , (17)

I =

(
N(µ+ κ)(µ+ γ)(µ+ δ + ξ)

κ(µ+ κ)(µ+ γ) + δ(µ+ γ) + δκ

)
(Rv − 1) . (18)

Theorem 2.2 The disease-free equilibrium (S0, E0, I0), is locally asymptotically sta-

ble when Rv < 1. Moreover, the endemic equilibrium (S,E, I), is locally asymptoti-

cally stable when Rv > 1.

Proof: The stability of equilibria is determined by the Jacobian matrix

B =

 β0I
N
− (µ+ δ + ξ) −δ β0S

N
− δ

β0I
N

−(µ+ κ) β0S
N

0 κ −(µ+ γ)

 . (19)

At the disease-free steady state (15), |B − λI| = 0 yields the following third degree

polynomial in λ:

F (λ) = λ3 + c1λ
2 + c2λ+ c3, (20)

where ci = ci(Rv) is given by

c1(Rv) = 3µ+ κ+ γ + δ + ξ,

c2(Rv) = (µ+ δ + ξ)(2µ+ κ+ δ) + (µ+ κ)(µ+ γ)(1−Rv),

c3(Rv) = (µ+ κ)(µ+ γ)(µ+ δ + ξ)(1−Rv).
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Now, the coefficient c3 > 0 if Rv < 1 and D1 = c1 > 0, with

D2 = c1c2 − c3

= (3µ+ κ+ γ + δ + ξ)(µ+ δ + ξ)(2µ+ κ+ γ) + (µ+ κ)(µ+ γ)(1−Rv)

−(µ+ κ)(µ+ γ)(µ+ δ + ξ)(1−Rv)

= (µ+ δ + ξ)((µ+ κ)(µ+ γ) + (2µ+ κ+ γ)(2µ+ κ+ δ + ξ) + (µ+ γ)2)

+(µ+ κ)(µ+ γ)(2µ+ κ+ γ)(1−Rv).

The parameter D2 > 0 if Rv < 1. Thus, the Routh Hurwitz conditions are satisfied

and hence the disease-free equilibrium is locally asymptotically stable when Rv < 1.

At the endemic equilibrium, |B − λI| = 0 leads to the polynomial

G(λ) = λ3 + d1λ
2 + d2λ+ d3, (21)

where di = di(Rv) is given by

d1(Rv) = 3µ+ κ+ γ + δ + ξ +
β0(µ+ κ)(µ+ γ)(µ+ δ + ξ)(Rv − 1)

κ(µ+ κ)(µ+ γ) + δ(µ+ γ) + δκ
,

d2(Rv) = (µ+ δ + ξ)(2µ+ κ+ γ)

+
β0(2µ+ κ+ γ + 1)(µ+ κ)(µ+ γ)(µ+ δ + ξ)(Rv − 1)

κ(µ+ κ)(µ+ γ) + δ(µ+ γ) + δκ
,

d3(Rv) = β0(δ(µ+ γ) + (µ+ κ)(µ+ γ) + δγ)

(
(µ+ κ)(µ+ γ)(µ+ δ + ξ)(Rv − 1)

κ(µ+ κ)(µ+ γ) + δ(µ+ γ) + δκ

)
.

The coefficients of the characteristic polynomial (21) are positive if Rv > 1. Thus,
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when Rv > 1, d3 > 0, D1 = d1 > 0 and

D2 = d1d2 − d3

= s+ (2µ+ κ+ γ + 1)

(
β0(µ+ κ)(µ+ γ)2(µ+ δ + ξ)

κ(µ+ κ)(µ+ γ) + δ(µ+ γ) + δκ
(Rv − 1)

)2

+(u+ v + w)

(
β0(µ+ κ)(µ+ γ)2(µ+ δ + ξ)

κ(µ+ κ)(µ+ γ) + δ(µ+ γ) + δκ

)
(Rv − 1) > 0,

where

s = (3µ+ κ+ δ + γ + ξ)(µ+ δ + ξ)(2µ+ κ+ γ) > 0,

u = 2µ+ δ + γ + ξ > 0,

v = (2µ+ κ+ γ)(3µ+ δ + γ + 2ξ) > 0,

w = (µ+ κ)(µ+ γ + 1) + δκ > 0.

Thus, the endemic equilibrium is locally asymptotically stable when Rv > 1. �

2.3 The Seasonal SEIRS Model Without Vaccination

For mathematical convenience, seasonal transmissions are often assumed to be

sinusoidal [35], such that the transmission parameter is a time dependent function

defined by

β(t) = β0(1 + β1 cos(2πt)), (22)

where β0 is the baseline level of transmission and β1 is the amplitude of seasonal vari-

ation or the strength of seasonality (seasonal forcing) [35]. In Figure 3, the baseline

transmission is β0 = 4 and amplitude of seasonality is β1 = 0.0283. The graph of β(t)

depicts a periodic curve with period 1 and amplitude β0β1.
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Figure 3: Sinusoidal Transmission Rate Against Time t

Thus, the seasonal SEIRS model corresponding to the non-seasonal model (3) is:

dS

dt
= µN + δR(t)− β(t)S(t)I(t)

N
− µS(t)

dE

dt
=

β(t)S(t)I(t)

N
− (κ+ µ)E(t)

dI

dt
= κE(t)− (γ + µ)I(t) (23)

dR

dt
= γI(t)− (δ + µ)R(t),

where β(t) = β0(1+β1 cos(2πt)), 0 < β1 < 1, with initial conditions given in equation

(2).

2.3.1 The Transmissibility Number R0

The transmissibility number for seasonal epidemics is interpreted differently from

the basic reproduction number for a non-seasonal epidemics. The basic reproduction
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number for a non-seasonal epidemic represents the number of secondary infections

that result from the introduction of a single infectious individual in an entirely sus-

ceptible population. This interpretation is not possible for a seasonal epidemics, since

the number of secondary infections will depend on the time of the year that the infec-

tious individual is introduced into the population. Thus, the transmissibility number,

R0, for a seasonal epidemic is defined as the average number of secondary cases aris-

ing from the introduction of a single infectious person into a completely susceptible

population at a random time of the year [35]. Thus, deriving an expression for R0

that has a similar interpretation to R0 requires averaging over all possible times of

the year that an infection may be introduced [35]. As in equation (5), we eliminate

one of the state variables in equation (23) to have the following system of ordinary

differential equations:

dS

dt
= (µ+ δ)N − β(t)S(t)I(t)

N
− (µ+ δ)S(t)− δE(t)− δI(t)

dE

dt
=

β(t)S(t)I(t)

N
− (κ+ µ)E(t)

dI

dt
= κE(t)− (γ + µ)I(t), (24)

where β(t) = β0(1 + β1 cos(2πt)), 0 < β1 < 1. By linearizing system (24) near the

disease-free steady state (N, 0, 0), we have:

dE

dt
= β(t)I − (µ+ κ)E (25)

dI

dt
= κE − (µ+ γ)I

The transmissibility number R0 is defined through the spectral radius of a linear

integral operator on a space of periodic functions as proposed by Bacaer [5]. In this
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case, we let t ∈ < and x ≥ 0, so that the operator K(t, x) = Kij(t, x) is an epidemic

model with two infected classes, (I1, I2) = (E, I). Here, the coefficient Kij(t, x) in

row i, column j represents the expected number of individuals in compartment Ii

that one individual in compartment Ij generates at the beginning of an epidemic per

unit time at time t if it has been in compartment Ij for x units of time. This yields

K(t, x) =

(
k11 k12
k21 k22

)
=

(
0 β(t)e−(µ+γ)x

κe−(µ+κ)x 0

)
Thus, the integral operator Gj is defined by

Gj =

(∫ ∞
0

g1e
−2πjixdx

)
...

(∫ ∞
0

gne
−2πjixdx

)
,

where gj is defined by gj = aje
−bjx for 1 ≤ j ≤ n. This yields

Gj =

(∫ ∞
0

β0e
−(µ+γ)xe−2πjixdx

)(∫ ∞
0

κe−(µ+κ)xe−2πjixdx

)
=

β0κ

(µ+ κ+ 2πij)(µ+ γ + 2πij)
,

so that

G0 =
β0κ

(µ+ κ)(µ+ γ)
,

G1 =
β0κ

(µ+ κ+ 2πi)(µ+ γ + 2πi)
.

Thus, as proposed by Bacaer (2007), the transmissibility number R0 is determined

from [5, 6] as:

R0 = G0 +
β2
1

2
Re

(
G0G1

G0 −G1

)
,

where Re(.) is the real part of (.). We thus obtain
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R0 =
β0κ

(µ+ κ)(µ+ γ)
+
β2
1

2
Re


(

β0κ
(µ+κ)(µ+γ)

)(
1

(µ+κ+2πi)(µ+γ+2πi)

)
(

1
(µ+κ)(µ+γ)

)
−
(

1
(µ+κ+2πi)(µ+γ+2πi)

)
 ,

which yields the transmissibility number for the seasonal model as [5, 61]

R0 =
β0κ

(µ+ κ)(µ+ γ)

[
1− (µ+ κ)(µ+ γ)

4π2 + (2µ+ κ+ γ)2
β2
1

2

]
. (26)

The first term in (26) is the basic reproduction number for the non-seasonal model

(3), obtained when β1 = 0. From (26), we notice that

4π2 + (2µ+ κ+ γ)2 = 4π2 + ((µ+ κ) + (µ+ γ))2 > (µ+ κ)(µ+ γ), so that

(µ+ κ)(µ+ γ)

4π2 + (2µ+ κ+ γ)2
β2
1

2
<
β2
1

2
< 1.

Thus, the size ofR0 is reduced compared toR0 when the transmission rate is constant,

and this makes it slightly difficult for the parasite to invade the population with such

fluctuations in β(t) [5]. Unlike in a non-seasonal epidemic where the conditionR0 < 1

indicates that the infection dies out of the population, in a seasonal epidemic, the

condition R0 < 1 is not sufficient to prevent an outbreak, since chains of transmission

can be established during high seasons, but it is necessary and sufficient for long-term

disease eradication [35].

2.4 SEIRS Seasonal Model With Vaccination

Customary to the non-seasonal SEIRS model with routine vaccination, we notice

that the system of equations for the non-seasonal model for which the transmission

rate is a time dependent function defined by β(t) = β0(1 + β1 cos(2πt)), β1 ∈ (0, 1)

is called the seasonal SEIRS model with pulse vaccinations. In the derivation of the
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seasonal model with pulse vaccination, we partition the susceptible class into the

vaccinated and unvaccinated individuals, denoted S̃v and S̃ respectively. In this case,

the total population is given by N = S̃v(t) + S̃(t) + E(t) + I(t) + R(t), with the

susceptibles given by S(t) = S̃v(t) + S̃(t). This leads to the following model that

describes the spread of a seasonal infection with pulse vaccination.

dS

dt
= µN + δR(t)− β(t)S(t)I(t)

N
− (µ+ ξ0)S(t)

dE

dt
=

β(t)S(t)I(t)

N
− (κ+ µ)E(t)

dI

dt
= κE(t)− (γ + µ)I(t) (27)

dR

dt
= γI(t) + ξ0S(t)− (δ + µ)R(t),

where β(t) = β0(1 + β1cos(2πt)), with β1 ∈ (0, 1). Since the total population is

N = S̃v(t) + S̃(t) + E(t) + I(t) + R(t), we have S̃
N

= 1 −
(
S̃v(t)
N

+ E(t)
N

+ I(t)
N

+ R(t)
N

)
,

so that the fraction, Q(τ), of the population that remains unvaccinated at time τ is

Q(τ) = 1−

(
S̃v(τ) + E(τ) + I(τ) +R(τ)

N

)
. (28)

Since the transmissibility number, Rv, of a seasonal model is interpreted as the average

number of secondary cases arising from the introduction of a single infected person

into a completely susceptible population at a random time of the year, we define Rv

for system (27) as:

Rv(t) =
κ(µ+ δ)

(µ+ κ)(µ+ γ)(µ+ δ + ξ0)

∫ t

t0

β(τ)Q(τ)dτ, (29)
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where β(τ) and Q(τ) are defined in equations (24) and (28), respectively. Since the

fraction of the unvaccinated individuals, Q(τ) depends on the solutions, S, E, I and

R, obtained from system (27) numerically, we determine Rv(t) numerically. Using

a MATLAB built-in function trapz, that implements quadrature rule [29] and repre-

senting a plot of the solution, we obtain Figure 5 below, which depicts a sinusoidal

transmissibility number for any given time t. The transmissibility number, Rv(t) at

time t years, is thus obtained as the average of the transmissibility numbers from t0

to t during which the infection may have been introduced.

Figure 4: Relationship Between the Transmission Rate and the Transmissibility Num-

ber, Rv

In Figure 4, a decrease in the transmission rate results in a decrease in the trans-

missibility number and an increase in the transmission rate results in an increase in

the transmissibility number. Thus, the sum of the transmissibility numbers from time

t0 years to any given time of the year gives the number of secondary cases that result
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from the introduction of a single infectious individual into a completely susceptible

population at that given time of the year. The sum of the transmissibility number is

below unity at all times. This suggests that the form of the transmissibility number

(26) proposed by Grassly and Fraser [35] is not a good representation of the transmis-

sibility number for our model. Thus, we assume that ξ(t) = ξ0 and linearize system

(27) about the disease-free steady state
(
N(µ+δ)
µ+δ+ξ0

, 0, 0
)

, to have [6]

dE

dt
=

β(t)(µ+ δ)

µ+ δ + ξ0
I(t)− (µ+ κ)E(t)

dI

dt
= κE(t)− (µ+ γ)I(t),

so that the transmissibility number is

Rv =
β0κ(µ+ δ)

(µ+ κ)(µ+ γ)(µ+ δ + ξ0)
+
β2
1

2
Re


(

β0κ
(µ+κ)(µ+γ)(µ+δ+ξ0)

)(
1

(µ+κ+2πi)(µ+γ+2πi)

)
(

1
(µ+κ)(µ+γ)

)
−
(

1
(µ+κ+2πi)(µ+γ+2πi)

)


=
β0κ(µ+ δ)

(µ+ κ)(µ+ γ)(µ+ δ + ξ0)

[
1− (µ+ κ)(µ+ γ)

4π2 + (2µ+ κ+ γ)2
β2
1

2

]
. (30)

2.4.1 Sensitivity Analysis

Sensitivity analysis is used to determine how sensitive a model is to variations

in the value of the parameters of the model and to changes in the structure of the

model. Here, we ascertain how sensitive a state variable is with respect to any given

parameter. First, we study the sensitivity of the transmissibility number with respect

to the vaccination parameter, by finding the partial derivative of Rv with respect to

ξ0. This yields:
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∂Rv

∂ξ0
= −

(
β0κ(µ+ δ)

(µ+ κ)(µ+ γ)(µ+ δ + ξ0)2

)(
1− (µ+ κ)(µ+ γ)

4π2 + (2µ+ κ+ γ)2
β2
1

2

)
= − Rv(ξ0)

µ+ δ + ξ0
< 0,

since Rv(ξ0) > 0, ξ0 ≥ 0, and the parameters µ and ξ are positive. The negative

rate of change of the transmissibility number with respect to the vaccination rate,

indicates that Rv is decreasing with respect to the parameter ξ0.

We now ascertain the sensitivity analysis of I(t) with respect to the vaccination

parameter ξ0, by analyzing the equations:

∂X

∂t
= f(X(t, θ), θ)

d

dt

∂X

∂θ
=

∂f

∂X

∂X

∂θ
+
∂f

∂θ
,

where θ = (β0, β1, µ, κ, γ, δ, ξ0, N) and X = (S,E, I, R). From these equations, we

solve for ∂X
∂θ

and ascertain how sensitive, I ∈ X is with respect to ξ0 ∈ θ, as depicted

in the Figure 5.
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Figure 5: Sensitivity of I(t) with Respect to ξ(t) when β0 = 370, β1 = 0.0283, µ =

0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0.005 and t = 1 : 1
52

: 100

In Figure 5, the rate of change of I(t) with respect to ξ0 is negative from time

[95, 95.3] and [95.9, 96] years. This suggests that the population of the infectives

decreases with respect to the vaccination parameter ξ0 in these intervals.
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3 NUMERICAL SIMULATIONS

Programs (or codes) were written in MATLAB to simulate the non-seasonal and

seasonal models given in systems (3), (23) and (27) and results verified using detailed

outputs from a number of runs. For the numerical procedure, we selected parameters

values for the parameters used in systems (3), (23) and (27). We have the following

interpretation for each parameter used: For the sake of numerical illustration, we

chose N = 1 × 106 humans in the population, µ = 0.0133 corresponds to the death

rate per year, γ = 104.2857 corresponds to the per capita recovery rate of individuals

per year, δ = 0.2 is the per capita rate of loss of immunity per year, and κ = 182.5

rate of infection per week. The table below summarizes the general parameter values,

units used and references but, in the context of our work, we have converted these

values to weekly values, since the data obtained from the Centers for Disease Control

and Prevention are weekly reports of pneumonia and influenza mortality, analyzed in

Chapter 4.

Table 1: Parameter Baseline Values for the Seasonal and Non-Seasonal Models

Parameters Definition Baseline value Unit Source
N Total population size 106 people −
δ−1 Average duration of immunity 5 years [28]
γ−1 Mean infectious period 3.50 days [14]
µ−1 Mean life expectancy 75.00 years [12]
κ−1 Average latency period 2.00 days [14]
β0 Baseline level of transmission − years−1 −
β1 Coefficient of seasonality strength (0, 1) dimensionless −
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For the non-seasonal model with vaccination, and Rv = β0κ(µ+δ)
(µ+κ)(µ+γ)(µ+δ+ξ0)

, numerical

simulations reveal that orbits converge to the disease-free state (S0, E0, I0, R0) =(
N(µ+δ)
µ+δ+ξ

, 0, 0, Nξ0
µ+δ+ξ0

)
when Rv < 1, as indicated in Figures 6 and 7. This confirms

the local asymptotic stability result obtained qualitatively. In Figure 6, we simulated

system (12) for a time span of 100 years at weekly intervals.

Figure 6: Infectious and Exposed Against Time for SEIRS Non-Seasonal Model when

Rv < 1, N = 106, β0 = 80, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, ξ0 = 0.005

and t = 1 : 1
52

: 100
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Figure 7: Stable Disease-Free Steady State Plot for Susceptible and Recovered In-

dividuals Against Time when Rv < 1, N = 106, β0 = 80, µ = 0.0133, δ = 0.2,

κ = 182.5, γ = 104.2857, ξ0 = 0.005 and t = 0 : 1
52

: 100

When the basic reproduction number is above unity, plots of the susceptible,

exposed, infectious and recovered against time indicate that the orbits converge to

the endemic equilibrium as represented in Figures 8 and 9. Thus, when Rv > 1, the

disease-free state becomes unstable and there exists a non-zero endemic equilibrium

which is locally asymptotically stable. Hence, the results obtained numerically are

congruent to the qualitative results obtained in Theorem 2.2.

With fixed parameters defined in Figure 10, Rv < Rv < 1. Thus, by Theorems

2.1 and 2.2, the disease-free periodic solution (S0, E0, I0, R0) =
(
N(µ+δ)
µ+δ+ξ0

, 0, 0, Nξ0
µ+δ+ξ0

)
is locally asymptotically stable and the disease becomes extinct [44, 61, 62, 63].

Also, with fixed parameters defined in Figure 11, Rv > Rv > 1. Thus, the population

of the infectives proliferates and the disease persists [38].

40



Figure 8: Susceptibles and Recovered Against Time whenRv > 1, N = 106, β0 = 370,

µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, ξ0 = 0.005 and t = 0 : 1
52

: 100

Figure 9: Exposed and Infectious Against Time when Rv < 1, N = 106, β0 = 370,

µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, ξ0 = 0.005 and t = 0 : 1
52

: 100
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Figure 10: Infectious Individuals Against Time for SEIRS Seasonal Model when N =

106, β0 = 250, β1 = 0.6, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14,

ξ0 = 0.5, Rv = 0.6870 < 1, Rv = 0.7168 < 1(β1 = 0) and t = 1 : 1
52

: 100

Figure 11: Infectious Individuals Against Time for SEIRS Seasonal Model when N =

106, β0 = 250, β1 = 0.0283, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14,

ξ0 = 0.005, Rv = 2.3417 > 1, Rv = 2.4657 > 1 and t = 1 : 1
52

: 100
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Figure 12: Infectious Individuals Against Time for SEIRS Seasonal Model when N =

106, β0 = 350, β1 = 0.6, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14,

ξ0 = 0.5, Rv = 0.9617 < 1, Rv = 1.0035 > 1 and t = 1 : 1
52

: 100

With fixed parameters defined in Figure 12, Rv ' 0.9617 < 1. Thus, by Theorems

2.1 and 2.2, the disease-free periodic solution (S0, E0, I0, R0) =
(
N(µ+δ)
µ+δ+ξ0

, 0, 0, Nξ0
µ+δ+ξ0

)
is locally asymptotically stable and the disease dies out. Moreover, if β1 = 0, the the

basic reproduction of the autonomous system Rv ' 1.0035 > 1, and we would expect

that the disease persists. This suggests that the eradication policy on the basis of

the basic reproduction number, Rv, of the autonomous system may overestimate the

infectious risk in a scenario where the disease portrays seasonal behavior [61].
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We now assume a form for the vaccination parameter ξ(t), where ξ(t) is nonzero

during periods where the sensitivity depicted in Figure 5 is negative and zero other-

wise. Thus, ξ(t) is defined as a stepwise constant function of the form given in Figure

13

Figure 13: Plots of ξ(t) and I(t) with Respect to ξ(t) when β0 = 370, β1 = 0.0283,

µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0.005 and t = 1 : 1
52

:

100

We study routine vaccination by assuming that, ξ(t) takes the form

ξ(t) =

{
ξ0, t ≤ τ
ξ1, t > τ

(31)

In Figure 14, the blue curve represents the population of the infectives without vac-

cination and the green curve represents the population of the infectious individuals

when routine vaccination of the form (31) is administered. Prevalence of infection

over time for a seasonal SEIRS model where the introduction of routine vaccination
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at time 90 years results in a decrease in the maximum of prevalence of the infectious

individuals in the population, but this decrease is unsustained.

Figure 14: Routine Vaccination from 90−92 of the form (31) when N = 106, β0 = 250,

β1 = 0.0283, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0, ξ1 = 0.5

and t = 1 : 1
52

: 100

Thus, we choose another form for the vaccination parameter that takes into account

pulse vaccination, namely,

ξ(t) =


ξ0, t ≤ τ1
ξ1, τ1 < t ≤ τ2
ξ0, τ2 < t ≤ τ3
ξ1, τ3 < t ≤ τ4
ξ0, τ4 < t ≤ τ5.

(32)

This yields the simulations in Figures 15 − 18, together with a specific form of ξ(t)

for each figure.
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ξ(t) =



ξ0, t ≤ 90
ξ1, 90 < t ≤ 90.2
ξ0, 90.2 < t ≤ 90.9
ξ1, 90.9 < t ≤ 91
ξ0, 91 < t ≤ 92
ξ1, 92 < t ≤ 92.2
ξ0, 92.2 < t ≤ 92.9
ξ1, 92.9 < t ≤ 93
ξ0, 93 < t ≤ 100

Figure 15: One Year on, One Year off, One Year on and off Onwards Pulse Vaccination

from 90 − 92 Years of the form (32) when N = 1000000, β0 = 250, β1 = 0.0283,

µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0, ξ1 = 0.5 and

t = 1 : 1
52

: 100
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ξ(t) =



ξ0, t ≤ 90
ξ1, 90 < t ≤ 90.2
ξ0, 90.2 < t ≤ 90.9
ξ1, 90.9 < t ≤ 91
ξ0, 91 < t ≤ 93
ξ1, 93 < t ≤ 93.2
ξ0, 93.2 < t ≤ 93.9
ξ1, 93.9 < t ≤ 94
ξ0, 94 < t ≤ 100

Figure 16: One Year on, Two Years off, One Year on and off Onwards Pulse Vaccina-

tion from 90− 94 Years when N = 106, β0 = 250, β1 = 0.0283, µ = 0.0133, δ = 0.2,

κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0, ξ1 = 0.5 and t = 1 : 1
52

: 100
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ξ(t) =



ξ0, t ≤ 90
ξ1, 90 < t ≤ 90.2
ξ0, 90.2 < t ≤ 90.9
ξ1, 90.9 < t ≤ 91
ξ0, 91 < t ≤ 92
ξ1, 92 < t ≤ 92.2
ξ0, 92.2 < t ≤ 92.9
ξ1, 92.9 < t ≤ 93
..., ...
ξ0, 99 < t ≤ 100

Figure 17: Every Other Year Pulse Vaccination from 90− 100 Years when N = 106,

β0 = 250, β1 = 0.0283, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14,

ξ0 = 0, ξ1 = 0.5 and t = 1 : 1
52

: 100
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ξ(t) =



ξ0, t ≤ 90
ξ1, 90 < t ≤ 90.2
ξ0, 90.2 < t ≤ 90.9
ξ1, 90.9 < t ≤ 91
ξ1, 91 < t ≤ 91.2
ξ0, 91.2 < t ≤ 91.9
ξ1, 92.9 < t ≤ 93
..., ...
ξ1, 99.9 < t ≤ 100

Figure 18: Every Year Pulse Vaccination from 90−100 Years when N = 106, β0 = 250,

β1 = 0.0283, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0, ξ1 = 0.5

and t = 1 : 1
52

: 100

Figure 15 depicts one year on, one year off, one year on and off onwards pulse vac-

cination, with the administration of the vaccine during the time intervals [90, 90.2],

[90.9, 91], [92, 92.2], and [92.9, 93]. This leads to a decrease in the maximum of preva-

lence of the infectives at time 90 − 93 years and the maximum peaks above the

maximum for the unvaccinated infectives at time 93 − 95 years. This may be ac-
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counted for from the fact that, once the vaccine is administered, the infective class

shrinks and other classes stretch, since the total population is constant, so that once

the epidemic hits, it has an adverse effect on the population of the infectives. With

a pulse vaccination strategy analogous to Figure 15, but with one year on, two years

off, one year on and off onwards, the maximum of prevalence of the infectives is low-

ered upon the introduction of the vaccine at times t = 90 years, which increases in

the interval [91, 92] and peaks in [92, 93] as depicted in Figure 16. The trend in the

maximum of prevalence is repeated in the interval [93, 95], but with an adverse effect

on the population of the infectious individuals during the subsequent years. Finally,

the introduction of annual pulse vaccination from time t = 90 years to t = 100 years

results in the transition from annual epidemics to biennial epidemics in the interval

[90, 96] years and triennial epidemics in the time interval [96, 98] years, which is a

typical artifact of the seasonal model.

Finally, we propose the following form for the parameter ξ(t) that takes into

consideration an increase in the coverage of the vaccine:

ξ(t) =



ξ0, t ≤ τ1
ξ1, τ1 < t ≤ τ2
ξ0, τ2 < t ≤ τ3
ξ1, τ3 < t ≤ τ4
ξ2, τ4 < t ≤ τ5
ξ0, τ5 < t ≤ τ6
ξ2, τ6 < t ≤ τ7
ξ3, τ7 < t ≤ τ8
ξ4, τ8 < t ≤ τ9
..., ...,

(33)

where ξ0 < ξ1 < ξ2 < ξ3 < ξ4.

For the seasonal model with pulse vaccination in which there is a gradual increase in

50



the coverage of vaccination of the form (33), we obtain the simulations depicted in

Figures 19 and 20, together with specific forms of ξ(t).

ξ(t) =



ξ0, t ≤ 90
ξ1, 90 < t ≤ 90.2
ξ0, 90.2 < t ≤ 90.9
ξ1, 90.9 < t ≤ 91
ξ2, 91 < t ≤ 91.2
ξ0, 91.2 < t ≤ 91.9
ξ2, 91.9 < t ≤ 92
ξ3, 92 < t ≤ 92.2
ξ0, 92.2 < t ≤ 92.9
ξ3, 92.9 < t ≤ 93,

Figure 19: Every Year Pulse Vaccination from 90−100 Years when N = 106, β0 = 250,

β1 = 0.0283, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0, ξ1 = 0.5,

ξ2 = 0.7, ξ3 = 0.75, ξ4 = 0.8, ξ5 = 0.85, ξ6 = 0.9, ξ7 = 0.91, ξ8 = 0.92, ξ9 = 0.93,

ξ10 = 0.95 and t = 1 : 1
52

: 100
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ξ(t) =



ξ0, t ≤ 90
ξ1, 90 < t ≤ 90.2
ξ0, 90.2 < t ≤ 90.9
ξ1, 90.9 < t ≤ 91
ξ2, 91 < t ≤ 91.2
ξ0, 91.2 < t ≤ 91.9
ξ2, 91.9 < t ≤ 92
ξ3, 92 < t ≤ 100,

Figure 20: Every Year Pulse Vaccination from 90−100 Years when N = 106, β0 = 250,

β1 = 0.0283, µ = 0.0133, δ = 0.2, κ = 182.5, γ = 104.2857, π = 3.14, ξ0 = 0, ξ1 = 0.1,

ξ2 = 0.2, ξ3 = 0.3, ξ4 = 0.4 and t = 1 : 1
52

: 100

In Figure 19, we have articulated annual pulse vaccination from time t = 90 years

to t = 100 years with an increasing coverage of the vaccine. The maxima and minima

of prevalence of the infectives is lowered to an order of magnitude, and we reckon this

an articulate strategy for controlling the epidemic. For a vaccination strategy that

articulates an increasing vaccine coverage from 90− 92 years, and a constant vaccine

coverage from 92− 100 years, we notice an appreciable decrease in the maximum of
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prevalence of the infectives as depicted in Figure 20.
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4 TIME SERIES ANALYSIS OF SEASONAL DATA

The seasonal data we present in this chapter are final totals of weekly mortal-

ity data of influenza and pneumonia in the United States from 1993-2010. These

statistics are collected and compiled from reports sent by state health departments

and territories to the National Notifiable Diseases Surveillance System (N.N.D.S.S.),

which is operated by the Centers for Disease Control and Prevention (C.D.C.) in

collaboration with the Council of State and Territorial Epidemiologists (C.S.T.E.)

[13].

4.1 Plots, Trends, Seasonal Variations, and Periodogram

The time series of seasonal data are analyzed to understand the past and predict

the future, enabling epidemiologists to make proper decisions on the variation of

seasonal infections [16]. The time series data we analyze in this chapter consists of

monthly observations of the morbidity and mortality weekly report of pneumonia

and influenza obtained from the Centers for Disease Control and prevention (C.D.C.)

from 1993-2010 [13]. In this chapter, we explore the use of graphical methods for the

purpose of better understanding the underlying variation within and between time

series data. One of the most important steps in a preliminary time series analysis

is to plot the data. Thus, a plot of the mortality data of pneumonia and influenza

against time is displayed in the Figure 21.

Figure 21 depicts mortality trends (a systematic change in time series that does

not appear to be periodic) and seasonal variations (a repeating pattern within each

year) for pneumonia and influenza from 1993-2010. We notice that there is a high
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Figure 21: Seasonal Data of Pneumonia and Influenza

mortality for pneumonia and influenza during the months of December-February and

low mortality from May-August. This may be accounted for from the fact that,

from December-February in the United States, the atmospheric temperature is at

its minimum and thus serves as an ideal breeding ground for multiplication of the

parasite [9].

A useful tool for describing the time series data set above is by means of a pe-

riodogram, where the basic idea is that sinusoids of low frequency are smooth in

appearance whereas sinusoids of high frequency are very wiggy [57]. Figure 22 por-

trays a strong sinusoidal signal for a frequency of 12.1176470588235, for example, as

evident by the peak in the periodogram at this frequency.
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Figure 22: Periodogram of Seasonal Data of Pneumonia and Influenza

4.2 Decomposition

A common approach to time series is to consider them as a mixture of several com-

ponents and decompose the data into trend, seasonality, and an irregular or random

effect. It is of paramount importance to identify the trend and seasonal components,

and deplete them from the time series when modeling relations between time series.

When this is not done, highly seasonal series can appear to be related purely because

of their seasonality rather than because of any real relationship. Time series decompo-

sition methods allow an assessment of the strength of the seasonal component in each

of the mortality variables. After identification, the seasonal component is removed

and the resultant seasonally adjusted series is used in subsequent analysis. Thus,

extracting the seasonal component allows a clearer picture of other characteristics of

the data [9].
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Figure 23: Decomposition of Seasonal Data of Pneumonia and Influenza

For an additive decomposition approach, we assume that

Yt = Tt + St +Rt,

where Yt denotes the time series of interest (or observed series), Tt denotes the trend

component, St denotes the seasonal component and Rt denotes the remainder or

irregular component. The seasonally adjusted series, Y ∗t is computed simply by sub-

tracting the estimated seasonal component, S∗t , from the original series [9, 16], which

yields:

Y ∗t = Yt − S∗t .

A seasonal-trend decomposition consists of a sequence of applications of the loess

smoother to provide robust estimates of the components Tt, St and Rt from Yt. The

Seasonal-Trend decomposition method involves an iterative algorithm to progressively

refine and improve estimates of trend and seasonal components [9]. With this, we

construct a decomposition plot, given in Figure 24, which normally consists of four

57



panels: the original series, the trend component, the seasonal component and the

irregular (or random) component. The panels are arranged vertically so that time

is a common horizontal axis for all panels. The trend component consists of the

underlying long-term aperiodic [9] rises and/or falls in the level of the series over time.

The seasonal component is a pattern that is recurrent over time and the irregular

component is the remaining pattern in the series not attributed to trend or seasonality.

Both trend and seasonality are potential confounding variables in any analysis, so

their identification and removal are vital [9].

Figure 24: Additive Decomposition of Seasonal Data of Pneumonia and Influenza

The seasonal effect and irregular components are the same for a general decompo-

sition and the additive decomposition approach but the trend for the general decom-

position is non informative as it is represented by a polynomial, given in the second

panel of Figure 23. In the additive decomposition, the mortality trend is high within

the months of December and January in 2000, 2004, 2005 and 2009, approximately.
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If the seasonal effect tends to increase as the trend increases, a multiplicative

model may be more appropriate [16], where we have

Yt = TtSt +Rt.

This approach leads to Figure 25:

Figure 25: Multiplicative Decomposition of Seasonal Data of Pneumonia and In-

fluenza

There is no visual difference in the trend and seasonal components of the additive

and multiplicative decomposition models. So, we estimate the trend T (t) at time t,

by calculating a moving average centered at Y (t) from the formula [16]

Ŷt =
1
2
Yt−6 + Yt−5 + ...+ Yt+5 + Yt+6

12
,

where t = 7, 6, ..., n − 6. A moving average is an average of a specified number of

time series values around each value in the time series, with the exception of the first

few and last few terms. The length of the moving average is chosen to average twelve

consecutive months, but there is a slight snag, since this average corresponds to a
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time t = 6.5, between June and July as we start at January (t = 1) and average up

to December (t = 12). The estimation of seasonal effects requires moving averages

at integer times, which is achieved by averaging the average of January (t = 1) up to

December (t = 12) and the average of February (t = 2) up to January (t = 13) [16].

Since in Figure 25, the seasonal effect does not increase as the trends increases, the

multiplicative decomposition model is not suitable for the decomposition.

A number of time series decomposition methods are available, one of which is

the classical decomposition. Classical decomposition is a relatively simple method,

but has several disadvantages, including bias problems near the ends of the series

and an inability to allow a smoothly varying seasonal component [9]. To overcome

these difficulties we adopt the Seasonal-Trend decomposition procedure based on loess

smoothing to have the Loess plot for the seasonal data of pneumonia and influenza

from 1993-2010 [13] given in Figure 26 [57]. In Figure 26, we have separated the

smooth curve estimated in Figure 21 into two components due to trend and seasonal-

ity, so that the seasonal component in the third panel of the Loess plot captures the

drop in summer and increase in winter of pneumonia and influenza mortality (as a

result of high and low temperatures, respectively). The bottom panel displays what

remains when the trend and seasonal components are removed from the mortality

data. This gives a way of determining unusual periods of the year without confusing

which occurs as a result of seasonality. Also, the trend increases with decreasing

seasonal effect. Thus, the Loess smoother is not apt for the decomposition.
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Figure 26: Loess Plot of Seasonal Data of Pneumonia and Influenza Mortality

4.3 Correlation

We deseasonalize the time series and remove the trends since these trends and

seasonal effects have been identified. This leaves the random component, which is

not necessarily well modeled by in dependent random variables, in which consecutive

random variables may be correlated [16].

The following definitions will be useful: the expected value, E, commonly called

expectation of a variable X or a function of a variable, is its mean value in the

population, given by µ = E(X) =
∑
xP (X = x), and E(X − µ)2 is the mean of the

squared deviations, commonly called the variance. The square root of the variance is

known as the standard deviation. If there are two variables X and Y , the variance

may be generalized to the covariance, σXY , defined by

σXY = E[(X − µX)(Y − µY )],
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which measures a linear association between the variables. For n data values, the

covariance becomes:

Cov(X, Y ) =
1

n− 1

∑
E[(Xi −X)(Yi − Y )],

with the population and sample correlation defined by

ρ(X, Y ) =
σ(X, Y )

σXσY
,

and Cor(X, Y ) = Cov(X,Y )
sd(X)sd(Y )

. Autocorrelation is the correlation of a variable with itself

at different times, xi and xi+k. A correlogram or autocorrelation plot is a plot of the

sample autocorrelations against lags and is useful for ascertaining the randomness in

a data set, where a lag is the number of time steps between the variable. If the data

set is random, then such correlogram should be near zero for all time lags, else one

or more of the autocorrelations will be significantly non-zero. A time series model

is second-order-stationary if the correlation between variables depend only on the

number of time steps separating them. If the time series is second-order-stationary,

we define the autocovariance function by

γk = E[(xt − µ)(xt+k − µ)].

The ACF or lag k autocorrelation function is defined by

ρk =
γk
σ2
.

In Figure 27, the ACF (which returns the correlogram or sets its argument to

obtain autocovariance function) of the residuals are not strictly iid random normal

variables, but have some seasonal effect on it. The correlation at lags 0.0, 0.1 and
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Figure 27: Correlogram of Seasonal Data of Pneumonia and Influenza Mortality

0.2 are significant, indicating the residuals are not independent, but related to the

previous residual. The correlations at lags 0.3, 0.4, 0.5, 0.6, 0.7 are significant and

negative, which are probably caused by seasonal change.

4.4 Forecasting

In forecasting the mortality of pneumonia and influenza, the following definition

shall be useful: The sum of squared one-step-ahead prediction errors, SS1PE, is

SS1PE =
n∑
t=2

e2t ,

where the one-step-ahead prediction errors, et, are given by

et = xt − x̂t|t−1.

Time-series can be represented as a curve that evolves over time. Forecasting

the time-series entails an extension of historical values into the future where the
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measurements are not available. In the exploration of time series of mortality data,

we use a following multiplicative Holt-Winter’s model.

an = α1

(
xn
sn−p

)
+ (1− α1)(an−1 + bn−1)

bn = β1(an − an−1) + (1− β1)bn−1

sn = γ1

(
xn
an

)
+ (1− γ1)sn−p,

where an, bn and sn are the estimated level, slope and seasonal effect at time n

respectively, xn is an observation and α1, β1 and γ1 are smoothing parameters. For

the multiplicative Holt-Winter’s model with α = β = γ = 0.2 [16], a plot of the

filtered values along with the observed data is given in Figure 28, and the sum of

squared one-step-ahead prediction errors, SS1PE, is 557.4331.
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Figure 28: Filtered and Observed Multiplicative Holt-Winter’s Fit for Seasonal Data

of Pneumonia and Influenza with Specified Smoothing Parameter Values

Using the R Holt-Winter function without giving specific parameters, results in

the optimized Holt-Winter model have a slightly better fit than the previous one,

and SS1PE reduced to SS1PE= 517.4873. Since fit in Figure 29 is better and the

SS1PE is smaller for the optimized Holt-Winter, we use R Holt-Winter function in

our subsequent analysis.
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Figure 29: Filtered and Observed Multiplicative Holt-Winter’s Fit for Seasonal Data

of Pneumonia and Influenza

Figure 30: Multiplicative Holt-Winter’s Decomposition of Seasonal Data of Pneumo-

nia and Influenza
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Figure 31: Multiplicative Holt-Winter’s Forecasts for Seasonal Data of Pneumonia

and Influenza

Figure 30 depicts a multiplicative Holt-Winter decomposition method with SS1PE

value of 517.4873 and parameter values of α = 0.03585968, β = 0, and γ = 0.1269991.

The value of β = 0 is an indication that there is no trend as evident by the horizontal

line in the third panel of Figure 30.

The forecast in Figure 31 is true only when the trend of the pneumonia and

influenza mortality continues as the previous years (that is, no measured deaths occur

that could change the mortality rate from 2010-2015). Forecasts cannot be used for

a long time ahead, since errors will accumulate and may perturb the trend. The

five-year forecast predicts a decrease in the mortality rate as illustrated in Figure 30.
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An additive Holt-Winter’s model is defined by the follwing equations:

at = α1(xt − st−p) + (1− α1)(at−1 + bt−1)

bt = β1(at − at−1) + (1− β1)bt−1

st = γ1(xt − at) + (1− γ1)st−p,

where at, bt and st are the estimated level, slope and seasonal effect at time t re-

spectively, and α1, β1 and γ1 are smoothing parameters. The additive Holt-Winter’s

decomposition is depicted in Figure 32. We notice that the mortality data has an

obvious trend and strong seasonal effect, and the trend+seasonal plot in Figure 33

has a better fit for the additive model. So, the additive Holt-Winter’s model is

most appropriate for decomposition and we let the Holt-Winter’s function ascertain

the optimal parameters automatically. The result shows that SS1PE = 515.0608,

α = 0.05679602, β = 0.00148517, and γ = 0.1277516. Since the SS1PE values is

smaller for the additive Holt-Winter’s model than for the multiplicative model, and

the parameters α, β and γ are all non-zeroes, we conclude that this method is model

suitable for our decomposition.
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Figure 32: Additive Holt-Winter’s Decomposition of Seasonal Data of Pneumonia

and Influenza

Figure 33: Filtered and Observed Additive Holt-Winter’s Fit for Seasonal Data of

Pneumonia and Influenza
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Figure 34: Additive Holt-Winter’s Forecasts for Seasonal Data of Pneumonia and

Influenza

The additive Holt-Winter’s forecast in Figure 34 predicts a decrease in mortality

of pneumonia and influenza in the United States from 2011− 2015. The forecast was

based on the decrease in mortality from 2005− 2010.
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5 CONCLUSION

We began the study by making some assumptions underlying a susceptible-

exposed-infectious-recovered-susceptible (SEIRS) model, and proceeded to derive an

SEIRS model for the dynamics and transmission of seasonal infections in a constant

population. Furthermore, we assumed forms for the transmission rate and derived

non-seasonal (constant transmission rate) and seasonal (sinusoidal transmission rate)

models. For the non-seasonal model, we determined the basic reproduction number

R0, using the next generation operator approach, and examined conditions for the

existence of realistic steady states. We proved, by using the principle of linearized

stability and Routh Hurwitz conditions [47], that the stability of the disease-free and

endemic equilibria are controlled by one threshold parameter; namely, the basic re-

production ratio, R0. We showed that the disease-free equilibrium always exists and

is locally and asymptotically stable if R0 < 1 and unstable if R0 > 1. If R0 > 1,

we showed that there exists an endemic equilibrium which is locally and asymptoti-

cally stable. Deriving and examining a non-seasonal SEIRS model with vaccination,

we obtained analogous results. We showed that the disease-free equilibrium always

exists and is locally and asymptotically stable if Rv < 1 and unstable if Rv > 1,

where Rv is the basic reproduction number of the non-seasonal model with vacci-

nation. If Rv > 1, we showed that there exists an endemic equilibrium which is

locally and asymptotically stable. Numerical simulations for the SEIRS non-seasonal

model with vaccination indicate that orbits for the exposed and infectious individu-

als decay whereas the orbits for the susceptible and recovered or temporary immune

individuals are sustained whenever Rv < 1. When Rv > 1, orbits for the susceptible,
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exposed, infectious and recovered individuals are sustained after a transient state, and

hence the disease persists in the population. These numerical results are congruent

to qualitative results obtained.

For the seasonal model with and without vaccination, we determined the trans-

missibility numbers, Rv and Rv, respectively, through the spectral radius of a linear

integral operator on a space of periodic functions. We showed with numerical solutions

that when Rv < Rv < 1, the disease-free periodic solution is locally asymptotically

stable and hence, the disease dies out. Moreover, when Rv > Rv > 1, the infectives

proliferate in the population and hence, the disease persists. Numerical solutions

indicate that when Rv < 1 < Rv, the infectives become extinct. This suggests that

the eradication policy on the basis of the basic reproduction number, Rv, of the au-

tonomous system may overestimate the infectious risk in a scenario where the disease

portrays seasonal behavior [61].

We carried out numerical experiments on the seasonal model with vaccination by

assuming the vaccination parameter is a stepwise defined function which was moti-

vated by a sensitivity analysis. This analysis revealed that during certain intervals

within one period, an increase in the vaccination parameter would lead to a decrease

in the population of the infectious individuals. We defined the time dependent vac-

cination parameter so that routine and pulse vaccinations are incorporated into our

model. The prevalence of infection over time after the introduction of routine vac-

cination at time 90 years, results in an unsustained decrease in the maximum of

prevalence of the infectious individuals. Annual pulse vaccination from time t = 90

to t = 100 years, results in the transition from annual to biennial epidemics during
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certain periods and triennial epidemics during others. On the other hand, we in-

corporated pulse vaccination with an increasing coverage of the vaccine that depicts

a decrease in the extrema of prevalence of the infectious individuals by an order of

magnitude.

We used some graphical methods for time series analysis of seasonal data of pneu-

monia and influenza. We applied the time series plot of mortality data, periodogram,

and decomposition plots to enable a visual assessment of long-term trend, season-

ality and irregularity in time series data of pneumonia and influenza for 1993-2010

in the United States. We carried out an additive and a multiplicative Holt-Winter’s

decomposition of mortality data of pneumonia and influenza and noticed that the

additive approach was apt for our data since it had a smaller sum of squared one-

step-ahead prediction error (SS1PE). A forecasting procedure based on the additive

Holt-Winter’s model predicts a decrease in the peaks of mortality from 2011-2015 in

the United States.

Some aspects of the model such as the analysis of the seasonal model with vaccina-

tion for Rv < 1 < Rv, and the relationship between the seasonal model and seasonal

data have not been examined closely. These and others are subjects for future work.
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