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ABSTRACT

A Mathematical Model for Antibiotic Resistance in a Hospital Setting with a

Varying Population

by

Edward H. Snyder

Antibiotic-resistant bacteria (ARB) is causing increased health risk and cost to soci-

ety. Mathematical models have been developed to study the transmission of resistant

bacteria and the efficacy of preventive measures to slow its spread within a hospital

setting. The majority of these models have assumed a constant total hospital popu-

lation with the admission and discharge rates being equal throughout the duration.

But a typical hospital population varies from day to day and season to season. In this

thesis, we apply variable admission and discharge daily rates to existing deterministic

and stochastic models which examine the transmission of single and dual resistant

bacteria. We perform stability and equilibrium analyses as well as a sensitivity anal-

ysis on the resulting model.
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1 INTRODUCTION

The threat of Antibiotic-Resistant Bacteria (ARB) continues to grow. ARB is a

principal cause of nosocomial infection, that is, a hospital-acquired infection (HAI)

[1]. These hospital-acquired infections are a primary factor in increased medical

costs, increased lengths of stay(LOS), and higher mortality rates and suffering [7].

Some of the risk factors associated with the spread of ARB are antibiotic usage

in agriculture, poor hygiene both within and outside of the hospital, indiscriminate

antibiotic dosage regimens, and improperly managed isolation of patients with known

ARB-linked infections [1]. Also included in this list are the longer survival periods of

elderly patients and our increased life expectancy [1]. Compounding the problem is

that there have been lengthy lapses in the search for and development of new classes

of antibiotics [1, 21].

Mathematical models have been developed to simulate the spread of epidemics

of diseases such as dengue fever and hoof-and-mouth disease throughout different

regions of the world [2, 23]. Included among these are epidemics caused by ARB such

as methicillin-resistant staphylococcus aureus (MRSA). Due to it being extremely

resistant to the present classes of antibiotics, MRSA is extremely difficult to treat and

clear. Elevated ARB levels, mostly originating in hospital or nursing home settings,

have given rise to new models that at first investigated single resistance [3, 15, 18, 20,

24]. These models examined the effects of different types of dosage regimens and the

isolation of known ARB-infected patients in hospital settings. Bacteria resistant to a

single antibiotic may come into contact with another type of bacteria resistant to a

second antibiotic subsequently evolving into bacteria resistant to multiple antibiotics.
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This has led to a new generation of models such as Chow et al. [6], who studied the

efficacy of dosage protocols such as cycling versus mixing for multiple ARB isolation

procedures. Joyner et al. ([16] and those therein) followed suit with a study on the

effect of a new class of antibiotics to treat dual-resistant bacteria. Some of the previous

models were deterministic in nature which is an effective tool when simulating large

population dynamics. Other models incorporated stochastic processes which are well-

suited for small population dynamics [5]. The majority of papers published that

studied ARB in hospital settings assumed a constant population with admission and

discharge rates being the same [6, 16]. But in truth, hospital populations fluctuate

both daily and seasonally along with spikes that occur due to special holidays or

disasters [4, 9, 10]. We feel it is important to incorporate this phenomenon into the

model.

In this thesis, we seek to determine the effect that varying hospital admission and

discharge rates have on both single- and multiple- ARB levels. In chapter 2 we discuss

the variable admission and discharge rates that we used to replace the constant rate of

admission and discharge. These rates are based on empirical data and will replace the

constant rate of admission and discharge in the previous deterministic and stochastic

models developed by Joyner et al.,[5, 16]. In chapter 3 we develop a deterministic

model compartmentalized into five subpopulations based on bacteria type. In chapter

4, we develop a corresponding stochastic model. In chapter 5 we perform a sensitivity

analysis of the model results on selected parameter values. We then determine the

resistance-free equilibrium and stability of the model system in chapter 6. Finally,

we summarize the results in chapter 7.
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2 THE VARIABLE ADMISSION AND DISCHARGE RATES

As stated previously, the hospital population does not stay constant. Studies have

shown that fluctuation occurs naturally [4, 9, 12, 19, 22]. On average, the highest ad-

mission rates occur on Monday and Tuesday followed by a gradual decline during the

remainder of the week. The discharge rates follow a similar pattern with maximum

discharge rates occurring toward the end of the work week. This phenomenon results

in longer length of stay (LOS) for patients admitted over the weekend. Data from

recent studies describe the phenomena. A Greek study [4] demonstrated a daily and

seasonal flucuation that coincided with weather and holiday patterns. A Singapore

study [10] showed a periodic daily fluctuation.

For the simulations in this thesis, we focused on the admission and discharge

rates taken from a Toronto hospital study [22]. This 3-year study examined whether

the balance between daily hospital admissions and discharges affected the next-day

emergency department (ED) length of stay. The means of the daily admissions and

discharges are listed in table 1. We use the Poisson distribution with these daily

admission and discharge means to generate a potential yearlong pattern in daily

admissions and discharges. The Poisson distribution is a discrete probability distri-

bution and can be applied when the events can be counted in whole numbers over

a specified time interval. In our case, we are interested in the number of admissions

and discharges during a single day. Figures 1 and 2 contain compact boxplots of 500

trials of yearlong daily admissions, discharges and total changes, respectively. These

figures illustrate the variation in admissions, discharges and total hospital population

for the Toronto hospital. Assuming the movement of patients into and out of other
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hospitals is similar to the Toronto study, there could be a rather significant increase

or decrease in the patient population on a given day as seen in Figure 2. In the next

section, we explore how this variation might affect the antibiotic resistance found in

a hospital.

Table 1: Daily Admissions and Discharges

Description M T W Th F S S

Admissions 57.3 61.7 60.8 58.8 53.8 35.0 34.1
Discharges 49.3 53.6 56.4 58.4 67.0 43.2 33.8
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Figure 1: A yearlong series of boxplots of daily admission and discharge rates for 500

trials using the Poisson distribution with the means in Table 1
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Figure 2: A yearlong series of boxplots of daily changes for 500 trials using the Poisson

distribution with the means in Table 1
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3 THE DETERMINISTIC MODEL

The deterministic model in this paper is adapted from a model created by Joyner

et al., [16] that was concerned with not only resistance to either a particular drug 1 or

drug 2, but also resistance to both drugs. We classify the members of the community

and the hospital patients with regard to type of bacterial colonization. We assume

the five bacterial classifications to be people colonized with bacteria that is sensitive

to both drugs 1 and 2, resistant to either of the two drugs, resistant to both drugs 1

and 2, and those uncolonized by any form of bacteria. A person classified as sensis-

tive is infected with bacteria that can be treated with either drug. A person infected

with bacteria resistant to either drug 1 or drug 2 can be treated and cleared with

the other drug. A person infected with dual-resistant bacteria cannot be cleared with

either drug. Within the hospital, we let the state variables, S, R1, R2, R12, and X

represent the number of hospital patients in each bacterial classification, respectively.

N will represent the total patient population. For example, R1 represents the number

of patients infected with bacteria resistant to drug 1 and X represents the number of

patients uncolonized.

We let the parameter, mS, represent the proportion of admissions that are col-

onized with bacteria sensitive to both drugs, m1 and m2 represent the proportion

of admissions that are colonized with bacteria resistant to either drug 1 or drug 2,

respectively, m12 represent that proportion of admissions that are colonized with bac-

teria resistant to both drugs and mX represent the proportion of admissions that are

uncolonized. We let λ = λ(t) represent the daily number of admissions and µ = µ(t)

represent the daily number of discharges as discussed in the preceding section. As
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mentioned in the previous section (and depicted in figure 2), there could be a signifi-

cant variation in the hospital population. However, hospitals have a limited capacity

which must be considered when simulating admissions and discharges. Note that in

the event that the total hospital population increases to 105% of the capacity due

to a patient overflow, since this often happens in a hospital, we arbitrarily assign

λ=0 for that day, in effect having patients leave without being admitted. Therefore,

λmS represents the total number of admissions colonized with bacteria sensitive to

both drugs and µ S
N

will represent the total number of patients with sensitive bacteria

discharged from the hospital.

We let γ represent the rate of bacterial clearance due to the body’s immune system

response which we assume to be a constant for all patients. We assume that there

is no discrimination concerning the dosage administration. All patients are equally

likely to be given drug 1 or drug 2. The rates of clearance are represented by param-

eters τ1 and τ2. Patients colonized with a sensitive strain can be cleared using either

drug 1 or drug 2. A patient colonized with bacteria resistant to drug 1 can be cleared

with drug 2 and vice versa. A patient colonized with a dual-resistant strain is unaf-

fected by either drug and thus can be cleared only by an immune system response.

We assume that a patient can be colonized by only one strain at any given time and

that there is no secondary colonization. We also assume that patient-hospital staff

contacts are equally likely and therefore a patient is equally likely to become col-

onized with a particular bacterial strain-sensitive, singly-resistant or dual-resistant.

We assign β to be the number of effective contacts by a patient per day. One more

factor for consideration is that the evolution of antibiotic resistance comes with a cost
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[17]. A cell mutation that successfully counters a specific antibiotic attack mechanism

also weakens certain cell defense mechanisms against the human immune system and

other non-mutated bacteria. Microbiologists call this phenomenon fitness cost [17].

Mutated resistant bacteria have less ability to reproduce and defend themselves and

thus a higher fitness cost. So, in the absence of an antibiotic, sensitive bacteria will

dominate. We also assume that a greater degree of mutation must occur for dual re-

sistant bacteria to develop and so the fitness cost for dual ARB is higher than that of

single ARB. We assign the parameters c1, c2, and c12 to the R1, R2, and R12 popu-

lations, respectively. Figure 3 shows the possible transistions into and out of hospital

subpopulations. Table 2 summarizes the different compartments or subpopulations.

We describe the parameters in table 3. The values assigned to the parameters for the

simulations are also listed in table 3. The ODE system that describes the compart-

mental model depicted by figure 3 is given in equation (1).

Figure 4 contains solution plots of system 1 where λ(t) and µ(t) are calculated two

different ways. The bold plot is the result of using λ(t) and µ(t) that are calculated by

first taking random draws from a Poisson distribution with daily means given in table

1 for a year long variation in hospital population. This is performed for 500 different

trials to find an average yearly variation. This mean is essentially a slight variation

about the means from table 1. Given that there could be significant variation about

the means, we include three other solution plots which are generated where λ(t) and

µ(t) are Poisson-distributed values of the original admission and discharge averages

taken from the Toronto study. These figures give a more accurate depiction of what

might happen in a single hospital during the course of a year.
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Figure 3: Schematic showing the compartment to compartment transitions and rates

Table 2: List of State Variables

Variable Description

S number of patients colonized with sensitive bacteria
R1 number of patients colonized with bacteria resistant to drug 1
R2 number of patients colonized with bacteria resistant to drug 2
R12 number of patients colonized with bacteria resistant to drugs 1 and 2
X number of patients uncolonized

16



Table 3: List of Parameters

Parameter Description Units Assigned Values

β Number of effective contacts 1/day 1
per day

γ Clearance rate due to immune 1/day 0.03
system response

mS Proportion of community colonized dimensionless 0.7
with sensitive bacteria

m1 Proportion of community colonized dimensionless .05
with bacteria resistant to drug 1

m2 Proportion of community colonized dimensionless .05
with bacteria resistant to drug 2

m12 Proportion of community colonized dimensionless .04
with bacteria resistant to drugs 1 & 2

mX Proportion of community uncolonized dimensionless .16
τ1 Per capita treatment rate of drug 1 1/day .39
τ2 Per capita treatment rate of drug 2 1/day .39
c1 Fitness cost of bacteria dimensionless .05

resistant to drug 1
c2 Fitness cost of bacteria dimensionless .05

resistant to drug 2
c12 Fitness cost of bacteria dimensionless .15

resistant to drugs 1 and 2
λ Daily Admission Patients/day Varies
µ Daily Admission Patients/day Varies

dS

dt
= λ(t)ms − µ(t)S(t)/N(t)− (τ1 + τ2 + γ)S(t) + βS(t)X(t)/N(t) (1)

dR1

dt
= λ(t)m1 − µ(t)R1(t)/N(t)− (τ2 + γ)R1(t) + β(1− c1)R1(t)X(t)/N(t)

dR2

dt
= λ(t)m2 − µ(t)R2(t)/N(t)− (τ1 + γ)R2(t) + β(1− c2)R2(t)X(t)/N(t)

dR12

dt
= λ(t)m12 − µ(t)R12(t)/N(t)− γR12(t) + β(1− c12)R12(t)X(t)/N(t)

dX

dt
= λ(t)mx − µ(t)X(t)/N(t) + (τ1 + τ2 + γ)S(t) + (τ2 + γ)R1(t) + (τ1 + γ)R2(t)

+ γR12(t)−
β

N(t)
X(t)(S(t) +R1(t)(1− c1) +R2(t)(1− c2) +R12(t)(1− c12))
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Figure 4: Deterministic simulations of system 1 using parameter values in Table 3:

The bold plot is a realization where λ and µ were generated using Poisson-distributed

means of 500 trials generated using the Toronto data and the other 3 plots are 3

realizations for yearly variations generated using the Poisson distribution applied

directly to the empirical means from the Toronto study.

We see from figure 4 that the different bacterial populations rise and fall as the

patient population changes. But we note for two of the simulations that in a matter

of weeks the dual-resistant strain, and so the total resistance, increases dramatically

then lessens during midyear only to increase again. We also compare the variation in

the proportion of the hospital colonized with dual resistance in Figure 5. The average
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yearly total proportions colonized with some type of resistance are 71.5%, 73.3% and

73.5% for the three individual year realizations.
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Figure 5: The proportion of the hospital colonized with resistant bacteria.
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4 THE STOCHASTIC MODEL

A deterministic model is an effective tool when performing analyses of dynamical

systems involving large populations, but over half of all hospitals in the United States

have bed capacities under 200 units [11]. The fluctuations that are inherently part of

smaller population dynamical systems are more accurately modeled using a stochastic

model. To derive the stochastic model, we consider a continuous time Markov chain

(CTMC) with state space Z6. We consider an event to be the transition of a single

patient from one bacterial category to another or a patient being admitted or dis-

charged. The probability of such an event only depends on the state at the previous

time, (the memorylessness property). We define the probability that S increases by

one person while X decreases by one person below. The eighteen probabilities of all

possible one-person changes are listed in 7. The possible transitions and probabilities

are summarized in table 4.

Prob{S(t+ dt) = i+ 1, R1(t+ dt) = j, R2(t+ dt) = k,R12(t+ dt) = m, (2)

X(t+ dt) = n− 1, N(t+ dt) = q|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = βSX/Ndt+ o(dt).

We let ∆t represent the length of time for a single event to occur. At time t, let

X(t) = {S(t), R1(t), R2(t), R12(t), X(t)} = x, then state x jumps to state x + vj in

time ∆t with probability ζj(x)∆t + o(∆t), i.e., Prob{X(t + ∆t) = x + vj|X(t) =

x} = ζj(x)∆t + o(∆t), j = 1, 2, . . . , l,x = (S,R1, R2, R12, X,N)T ∈ Z6. Here vj
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is the transition vector, ζj is the transition rate for reaction j and l denotes the

number of transitions. Equations (16) through (33) define the transition probabilities.

Table 4 summarizes the transition probabilities. Simulations are given using the

Gillespie Stochastic Simulation Algorithm outlined in table 5. We note that the

simulations given use the “mean” rates for admissions and discharges. Varying the

rates of admission and discharge, as we did in Figure 4, there will be even more

variation in the resistance.

Table 4: Transition Probabilities

Transition Description Probability
[∆S,∆R1,∆R2,∆R12,∆X,∆N ]

[1, 0, 0, 0,−1, 0] S ↑ X ↓ βSX/N∆t+ o∆t
[−1, 0, 0, 0, 1, 0] S ↓ X ↑ S(γ + τ1 + τ2)∆t+ o(∆t)
[0, 1, 0, 0,−1, 0] R1 ↑ X ↓ β(1− c1)R1X/N∆t+ o(∆t)
[0,−1, 0, 0, 1, 0] R1 ↓ X ↑ R1(γ + τ2)∆t+ o(∆t)
[0, 0, 1, 0,−1, 0] R2 ↑ X ↓ β(1− c2)R2X/N∆t+ o(∆t)
[0, 0,−1, 0, 1, 0] R2 ↓ X ↑ R2(γ + τ1)∆t+ o(∆t)
[0, 0, 0, 1,−1, 0] R12 ↑ X ↓ β(1− c12)R12X/N∆t+ o(∆t)
[0, 0, 0,−1, 1, 0] R12 ↓ X ↑ R12γ∆t+ o(∆t)
[1, 0, 0, 0, 0, 1] S ↑ λmS∆t+ o(∆t)

[−1, 0, 0, 0, 0,−1] S ↓ µS/N∆t+ o(∆t)
[0, 1, 0, 0, 0, 1] R1 ↑ λm1∆t+ o(∆t)

[0,−1, 0, 0, 0,−1] R1 ↓ µR1/N∆t+ o(∆t)
[0, 0, 1, 0, 0, 1] R2 ↑ λm2∆t+ o(∆t)

[0, 0,−1, 0, 0,−1] R2 ↓ µR2/N∆t+ o(∆t)
[0, 0, 0, 1, 0, 1] R12 ↑ λm12∆t+ o(∆t)

[0, 0, 0,−1, 0,−1] R12 ↓ µR12/N∆t+ o(∆t)
[0, 0, 0, 0, 1, 1] X ↑ λmX∆t+ o(∆t)

[0, 0, 0, 0,−1,−1] X ↓ µX/N∆t+ o(∆t)
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Table 5: The Gillespie Algorithm

1. Initialize the system state
2. Determine the transition rates from one

compartment to another
3. Calculate the sum of all transition rates
4. Monte Carlo steps to determine the time to

and type of transition
5. Calculate the transition and update the time
6. Iterate until the time is expired.
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Figure 6: Stochastic Model: 3 realizations of the distribution of patient population

categorized by type of antibiotic resistance along with the deterministic model

Since the hospital at which the Toronto study was performed has a bed ca-

pacity of over five hundred beds, we scale our empirical data to one-fifth the size and
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regenerate realizations following the process previously described. Table 6 contains

our new admission and discharge data and figure 7 shows the realizations for a smaller

capacity hospital.

Table 6: Scaled Daily Admissions and Discharges

Description M T W Th F S S

Admissions 11.5 12.3 12.2 11.8 10.8 7.0 6.8
Discharges 9.9 10.7 11.3 11.7 13.4 8.6 6.8
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Figure 7: Stochastic Model: 3 realizations of the distribution of patient population

categorized by type of resistance in a smaller hospital

We notice that, as with the deterministic model, the dual-resistant strain increases

rapidly at the onset and appears to maintain this level although in one of the three

small hospital realizations it does drop to a level only slightly above the single re-

sistance strains. There is also a large variation in the behavior of the resistance as

opposed to the deterministic model 4. In a small hospital, variation from the expected

trend is likely.
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5 EQUILIBRIUM AND STABILITY

In this model, we are concerned with a resistance-free equilibrium which we desig-

nate as RFE. The resistance-free state is {S,R1, R2, R12, X,N} = {S(t), 0, 0, 0, X(t), N(t)}.

We note that with our varying population, a zero resistance level within the hos-

pital implies that the proportions of the general population entering the hospital,

m1, m2, or m12 must equal zero. This can be seen by examining the requirements

for a resistance-free state further. In a resistance-free state N(t) = S(t) + X(t).

Therefore

dN

dt
=
dS

dt
+
dX

dt
(3)

= λms − µ
S

N
− (τ1 + τ2 + γ)S +

βSX

N

+ λmx − µ
X

N
+ (τ1 + τ2 + γ)S − βSX

N

using the system in equation 1 with R1 = R2 = R12 = 0. Therefore

dN

dt
= λ(ms +mx)− µ

(
S +X

N

)
(4)

= λ(ms +mx)− µ

However

dN

dt
= λ(ms +m+ x+m1 +m2 +m12)− µ

which implies that m1, m2, and m12 should all equal zero in the resistance free state.

The variability in the hospital population causes the equilibrium to be time-dependent.

The demographic equation for the dynamics of the total population is given by:
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N ′ = λ − µ where λ and µ are in units of individuals per day. Letting r represent

λ−µ
N

with units 1/day we have N ′ = rN which has the general solution N = N0e
rt.

Depending on the value of r, we have either exponential growth, decay or stability.

We base our equilibrium and stability analysis on work by Hadeler [13], who

determined that the time-dependent solutions of a resistance-free system are stable

(unstable) if the corresponding steady-state exponential solutions of the equivalent

normalized system is stable (unstable). We first normalize the state variables with

respect to the total population, N. Then we determine the normalized system of differ-

ential equations with respect to time. We set s = S/N, r1 = R1/N, r2 = R2/N, r12 =

R12/N, x = X/N, λ̃ = λ/N, and µ̃ = µ/N .

{S,R1, R2, R12, X, λ, µ} normalized as−−−−−−−−−−→{s, r1, r2, r12, x, λ̃, µ̃}

Therefore, s+ r1 + r2 + r12 +x = 1. So our six state variables, {S,R1, R2, R12, X,N},

are now reduced to 5 state variables, {s, r1, r2, r12, x}. Next we derive the equations

for the derivatives of the normalized variables. We determine s′:

s =
S

N
(5)

s′ =
NS ′ −N ′S

N2

=
S ′

N
− N ′

N
· S
N

=
λms − µ S

N
− (τ1 + τ2 + γ)S + β SX

N

N
− λ− µ

N
· S
N

s′ = λ̃(ms − s)− (τ1 + τ2 + γ)s+ βsx
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We can derive the other normalized ODE’s in similar fashion to obtain the equivalent

non-homogeneous system in equation (6):

s′ = λ̃(ms − s)− (τ1 + τ2 + γ)s+ βsx (6)

r′1 = λ̃(m1 − r1)− (τ2 + γ)r1 + β(1− c1)r1x

r′2 = λ̃(m2 − r2)− (τ1 + γ)r2 + β(1− c2)r2x

r′12 = λ̃(m12 − r12)− γr12 + β(1− c12)r12x

x′ = λ̃(mx − x)− βx(s+ (1− c1)r1 + (1− c2)r2 + (1− c12)r12)

+ (τ1 + τ2 + γ)s+ (τ2 + γ)r1 + (τ1 + γ)r2 + γr12.

We now can determine the equilibrium and stability of this normalized system.

To do this we first note that the resistance-free equilibrium is {s∗, 0, 0, 0, x∗} where

x∗ = 1 − s∗. We evaluate s′ at the RFE and set the expression equal to zero to

determine the value at the equilibrium of s∗ in terms of the parameters. We obtain

s∗ =
β − τ1 − τ2 − γ − λ̃+

√
(β − τ1 − τ2 − γ − λ̃)2 + 4βλ̃ms

2β
. (7)

To analyze the stability of this equilibrium we follow the next generation approach

outlined by P. van den Driessche and J. Watmough [8]. We reorganize the reduced

ODE system, listing the ODEs pertaining to the resistant proportion variables first.

The reorganized, normalized system is given by equation (8).
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r′1 = λ̃(m1 − r1)− (τ2 + γ)r1 + β(1− c1)r1x (8)

r′2 = λ̃(m2 − r2)− (τ1 + γ)r2 + β(1− c2)r2x

r′12 = λ̃(m12 − r12)− γr12 + β(1− c12)r12x

s′ = λ̃(ms − s)− (τ1 + τ2 + γ)s+ βsx

x′ = λ̃(mx − x) + βx(s+ (1− c1)r1 + (1− c2)r2 + (1− c12)r12)

+ (τ1 + τ2 + γ)s+ (τ2 + γ)r1 + (τ1 + γ)r2 + γr12.

Since s + r1 + r2 + r12 + x = 1 in the normalized system, we may eliminate x′ from

consideration and thus the reduced system is

r′1 = λ̃(m1 − r1)− (τ2 + γ)r1 + β(1− c1)r1x (9)

r′2 = λ̃(m2 − r2)− (τ1 + γ)r2 + β(1− c2)r2x

r′12 = λ̃(m12 − r12)− γr12 + β(1− c12)r12x

s′ = λ̃(ms − s)− (τ1 + τ2 + γ)s+ βsx

where x = 1 − (s + r1 + r2 + r12). We linearize about the RFE by determining

the Jacobian of our reduced system and evaluating this matrix at s∗. The Jacobian

matrix is

Jac =


J11 0 0 −β(1− c1)r1
0 J22 0 −β(1− c2)r2
0 0 J33 −β(1− c12r12
−βs −βs −βs J44
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where

J11 = −(λ̃+ τ2 + γ) + β(1− c1)(1− s∗) (10)

J22 = −(λ̃+ τ1 + γ) + β(1− c2)(1− s∗)

J33 = −(λ̃+ γ) + β(1− c12)(1− s∗)

J44 = −λ̃− (τ1 + τ2 + γ) + β(x− s).

Using the next generation approach, we need to only focus on the portion of the

Jacobian which pertains to the resistant population, i.e., the upper 3x3 matrix of Jac.

We then separate the Jii’s, the diagonal elements of the Jacobian, into rates of new

colonizations (given in blue) and other transitions (given in red) represented by Fii

and Vii, respectively, forming two new matrices given by equations (11) and (12). We

let

F =

 F11 0 0
0 F22 0
0 0 F33

 (11)

where

F11 = β(1− c1)(1− s∗)

F22 = β(1− c2)(1− s∗)

F33 = β(1− c12)(1− s∗).

and

V =

 V11 0 0
0 V22 0
0 0 V33

 (12)
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where

V11 = λ̃+ τ2 + γ

V22 = λ̃+ τ1 + γ

V33 = λ̃+ γ.

The next generation matrix is the square matrix, G = FV −1 , in which the ijth

element of G, gij, is the expected number of secondary transistions of type i caused

by a single infected individual of type j.

FV −1 =


β(1−c1)(1−s∗)

λ̃+τ2+γ
0 0

0 β(1−c2)(1−s∗)
λ̃+τ1+γ

0

0 0 β(1−c12)(1−s∗)
λ̃+γ

 .
We let Rs denote the spectral radius of FV −1 (the maximum of the eigenvalues of

the matrix). In other words

Rs = max

{
β(1− c1)(1− s∗)

λ̃+ τ2 + γ
,
β(1− c2)(1− s∗)

λ̃+ τ1 + γ
,
β(1− c12)(1− s∗)

λ̃+ γ

}
. (13)

Using results from Van den Driessche et al.[8], we have the following theorem con-

cerning our normalized system:

Theorem 5.1 The resistant-free equilibrium for the normalized model, RFE = (s∗, 0, 0, 0, x∗),

is locally asymptotically stable if and only if Rs < 1 where Rs is defined by equation

(13) and s∗ is given by (7).

Based on theory developed by Hadeler [13], we have the following theorem concerning

our original system.
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Theorem 5.2 The resistant-free state for the model given by equation (1),

RFE = (S(t), 0, 0, 0, X(t), N(t)), is locally asymptotically stable if and only if Rs < 1

where Rs is defined by equation (13) and s∗ is given by (7).
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6 SENSITIVITY ANALYSIS

The objective of this paper is to determine the effect that a fluctuating hospital

population has on the resistance within a hospital. Performing a sensitivity analysis

of the model with regard to changes in the parameters will provide information about

the degree to which the results of this model will be affected by increases or decreases

in the parameter values. State variables’ high sensitivity to parameter changes, ne-

cessitates the exploration of the effects of the parameter changes on the resultant

variables within the model. We also need accurate estimations of these parameters

to achieve a higher degree of precision in our findings. Through the process of sensi-

tivity analysis we gain an understanding of which variables and processes may work

to change the level of resistance within the hospital.

We utilize the traditional sensitivity analysis [14] by deriving ∂x
∂qj

for each state

variable x = [S,R1, R2, R12, X,N ] and each parameter qj in the system (except the

fitness cost parameters) where

q = [β, γ,ms,m1,m2,m12,mx, τ1, τ2, λ, µ]

represents the possible parameter values for our model. We first determine the partials

of the system ODE’s with respect to our selected parameters. The full ODE system

consisting of 60 equations is listed in 7. We then calculate a relative ranking of the

parameters to ascertain which parameter impacts the state variables most by using
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the modified L2 norm

∥∥∥∥ ∂x∂qj
∥∥∥∥
2

=
1

maxx

[
1

tf − t0

∫ tf

t0

(
∂x

∂qj
qj

)2

dt

]1/2
(14)

that normalizes the sensitivity values by eliminating the units. We determine the

sensitivity of the hospital’s total resistance R = R1 +R2 +R12 using the formula

∥∥∥∥ ∂R∂qj
∥∥∥∥
2

=
1

maxR

[
1

tf − t0

∫ tf

t0

(
∂R

∂qj
qj

)2

dt

]1/2
(15)

=
1

maxR

[
1

tf − t0

∫ tf

t0

((
∂R1

∂qj
+
∂R2

∂qj
+
∂R12

∂qj

)
qj

)2

dt

]1/2
.

Since our intent in this paper is to refine previous compartmental models which

assumed a fixed population, we examine side by side results of the analyses of two

similar models that differ only in the assumption that the hospital has a fixed or

varying population. To obtain parameters for a fixed population, we determine the

means of the seven admission rates and of the seven discharge rates in the Toronto

data. We then assign this average to λ and µ for our model. Figure 8 shows the overall

results and the more pronounced impact that β, the per capital primary transmission

rate, has on the levels of the dual-resistance and total overall resistance within a

hospital. The two models are very similar with regard to the degree in which the

remainder of the investigated parameters affect the levels of the sensitive and singly-

resistant strains of bacteria. In the case of dual and total resistance, we see that in

the constant population model, the daily change, λ = µ, has a rather large effect,

outweighing all other parameters on these two levels, but if the population varies, the
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primary transmission rate of bacteria, β, has an even greater effect than the admission

or discharge rates.
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Figure 8: The figure on the left shows the relative sensitivity to the parameters if

the hospital has a fixed population and the figure on the right shows the relative

sensitivity to the parameters if the hospital population varies.
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7 CONCLUSION

By accounting for varying patient levels, we have created a more accurate math-

ematical model of the transmission of antibiotic-resistant bacteria within a hospital

setting. We created both deterministic and stochastic models for a large hospital and

also a stochastic model for a smaller hospital. Our stability analysis indicated that in

order to obtain a resistance-free environment, one must restrict (or effectively isolate)

those patients admitted with resistant bacteria. Only then can one implement appro-

priate hygeine practices and dosage practices to reach a resistance-free environment.

Through a sensitivity analysis we determined that the effective transmission rate, β,

has an even greater effect than previous constant population models detected. Since

the effective transmission rate can be more easily regulated by hygiene practices and

hospital protocols more than the other parameters, this fact should be noted. We also

note that the effect of β increased when considering a constant population versus a

varying population. This seems to indicate that the varying population actually aids

in reducing resistance in a hospital and the primary mechanism for reducing resistance

is indeed hygiene practices as indicate by the term β. Nonetheless, admittance and

discharge practices still play an important role in the increase/decrease of bacterial

resistance in a hospital. These varying population models can also be implemented in

researching how best to structure other means of resistance reduction such as dosage

regimen and isolation.
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APPENDICES

Appendix A:

TRANSITION PROBABILITIES

Prob{S(t+ dt) = i+ 1, R1(t+ dt) = j, R2(t+ dt) = k,R12(t+ dt) = m, (16)

X(t+ dt) = n− 1, N(t+ dt) = q|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = βSX/Ndt+ o(dt).

P rob{S(t+ dt) = i− 1, R1(t+ dt) = j, R2(t+ dt) = k,R12(t+ dt) = m, (17)

X(t+ dt) = n+ 1, N(t+ dt) = q|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = S(γ + τ1 + τ2)dt+ o(dt).

P rob{S(t+ dt) = i, R1(t+ dt) = j + 1, R2(t+ dt) = k,R12(t+ dt) = m, (18)

X(t+ dt) = n− 1, N(t+ dt) = q|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = β(1− c1)R1X/Ndt+ o(dt).

P rob{S(t+ dt) = i, R1(t+ dt) = j − 1, R2(t+ dt) = k,R12(t+ dt) = m, (19)

X(t+ dt) = n+ 1, N(t+ dt) = q|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = R1(γ + τ2)dt+ o(dt).

P rob{S(t+ dt) = i, R1(t+ dt) = j, R2(t+ dt) = k + 1, R12(t+ dt) = m, (20)

X(t+ dt) = n− 1, N(t+ dt) = q|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = β(1− c2)R2X/Ndt+ o(dt).
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Prob{S(t+ dt) = i, R1(t+ dt) = j, R2(t+ dt) = k − 1, R12(t+ dt) = m, (21)

X(t+ dt) = n+ 1, N(t+ dt) = q|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = R2(γ + τ1)dt+ o(dt).

P rob{S(t+ dt) = i, R1(t+ dt) = j, R2(t+ dt) = k,R12(t+ dt) = m+ 1, (22)

X(t+ dt) = n− 1, N(t+ dt) = q|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = β(1− c12)R12X/Ndt+ o(dt).

P rob{S(t+ dt) = i, R1(t+ dt) = j, R2(t+ dt) = k,R12(t+ dt) = m− 1, (23)

X(t+ dt) = n+ 1, N(t+ dt) = q|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = γR12dt+ o(dt).

P rob{S(t+ dt) = i+ 1, R1(t+ dt) = j, R2(t+ dt) = k,R12(t+ dt) = m, (24)

X(t+ dt) = n,N(t+ dt) = q + 1|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = λmSdt+ o(dt).

P rob{S(t+ dt) = i− 1, R1(t+ dt) = j, R2(t+ dt) = k,R12(t+ dt) = m, (25)

X(t+ dt) = n,N(t+ dt) = q − 1|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = µS/Ndt+ o(dt).

P rob{S(t+ dt) = i, R1(t+ dt) = j + 1, R2(t+ dt) = k,R12(t+ dt) = m, (26)

X(t+ dt) = n,N(t+ dt) = q + 1|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = λm1dt+ o(dt).
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Prob{S(t+ dt) = i, R1(t+ dt) = j − 1, R2(t+ dt) = k,R12(t+ dt) = m, (27)

X(t+ dt) = n,N(t+ dt) = q − 1|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = µR1/Ndt+ o(dt).

P rob{S(t+ dt) = i, R1(t+ dt) = j, R2(t+ dt) = k + 1, R12(t+ dt) = m, (28)

X(t+ dt) = n,N(t+ dt) = q + 1|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = λm2dt+ o(dt).

P rob{S(t+ dt) = i, R1(t+ dt) = j, R2(t+ dt) = k − 1, R12(t+ dt) = m, (29)

X(t+ dt) = n,N(t+ dt) = q − 1|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = µR2/Ndt+ o(dt).

P rob{S(t+ dt) = i, R1(t+ dt) = j, R2(t+ dt) = k,R12(t+ dt) = m+ 1, (30)

X(t+ dt) = n,N(t+ dt) = q + 1|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = λm12dt+ o(dt).

P rob{S(t+ dt) = i, R1(t+ dt) = j, R2(t+ dt) = k,R12(t+ dt) = m− 1, (31)

X(t+ dt) = n,N(t+ dt) = q − 1|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = µR12/Ndt+ o(dt).

P rob{S(t+ dt) = i, R1(t+ dt) = j, R2(t+ dt) = k,R12(t+ dt) = m, (32)

X(t+ dt) = n+ 1, N(t+ dt) = q + 1|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = λmXdt+ o(dt).
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Prob{S(t+ dt) = i, R1(t+ dt) = j, R2(t+ dt) = k,R12(t+ dt) = m, (33)

X(t+ dt) = n− 1, N(t+ dt) = q − 1|S(t) = i, R1(t) = j, R2(t) = k,

R12 = m,X(t) = n,N(t) = q} = µX/Ndt+ o(dt).
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Appendix B:

ODE SYSTEM FOR SENSITIVITIES

We let Q = S + (1− c1)R1 + (1− c2)R2 + (1− c12)R12 and the partials of Q are:

∂Q

∂β
=
∂S

∂β
+ (1− c1)

∂R1

∂β
+ (1− c2)

∂R2

∂β
+ (1− c12)

∂R12

∂β
(34)

∂Q

∂τ1
=
∂S

∂τ1
+ (1− c1)

∂R1

∂τ1
+ (1− c2)

∂R2

∂τ1
+ (1− c12)

∂R12

∂τ1
(35)

∂Q

∂τ2
=
∂S

∂τ2
+ (1− c1)

∂R1

∂τ2
+ (1− c2)

∂R2

∂τ2
+ (1− c12)

∂R12

∂τ2
(36)

∂Q

∂γ
=
∂S

∂γ
+ (1− c1)

∂R1

∂γ
+ (1− c2)

∂R2

∂γ
+ (1− c12)

∂R12

∂γ
(37)

∂Q

∂ms
=

∂S

∂ms
+ (1− c1)

∂R1

∂ms
+ (1− c2)

∂R2

∂ms
+ (1− c12)

∂R12

∂ms
(38)

∂Q

∂m1
=

∂S

∂m1
+ (1− c1)

∂R1

∂m1
+ (1− c2)

∂R2

∂m1
+ (1− c12)

∂R12

∂m1
(39)

∂Q

∂m2
=

∂S

∂m2
+ (1− c1)

∂R1

∂m2
+ (1− c2)

∂R2

∂m2
+ (1− c12)

∂R12

∂m2
(40)

∂Q

∂m12
=

∂S

∂m12
+ (1− c1)

∂R1

∂m12
+ (1− c2)

∂R2

∂m12
+ (1− c12)

∂R12

∂m12
(41)

∂Q

∂mx
=

∂S

∂mx
+ (1− c1)

∂R1

∂mx
+ (1− c2)

∂R2

∂mx
+ (1− c12)

∂R12

∂mx
(42)

∂Q

∂λ
=
∂S

∂λ
+ (1− c1)

∂R1

∂λ
+ (1− c2)

∂R2

∂λ
+ (1− c12)

∂R12

∂λ
(43)

∂Q

∂µ
=
∂S

∂µ
+ (1− c1)

∂R1

∂µ
+ (1− c2)

∂R2

∂µ
+ (1− c12)

∂R12

∂µ
(44)
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The partials of the state variables are:

d

dt

∂S

∂β
=
−µ
(
dS
dβN − S

dN
dβ

)
N2

− (τ1 + τ2 + γ)
∂S

∂β
(45)

+
XSN + β

(
X ∂S

∂β + S ∂X∂β

)
N − βSX ∂N

∂β

N2

d

dt

∂R1

∂β
=
−µ
(
∂R1
∂β N −

∂N
∂β R1

)
N2

− (τ2 + γ)
∂R1

∂β
(46)

+ (1− c1)
XR1N + β

(
X ∂R1

∂β +R1
∂X
∂β

)
N − βR1X

∂N
∂β

N2

d

dt

∂R2

∂β
=
−µ
(
∂R2
∂β N −

∂N
∂β R2

)
N2

− (τ1 + γ)
dR2

dβ
(47)

+ (1− c2)
XR2N + β

(
X ∂R2

∂β +R2
∂X
∂β

)
N − βR2X

∂N
∂β

N2

d

dt

∂R12

∂β
=
−µ
(
∂R12
∂β N − ∂N

∂β R12

)
N2

− γ ∂R12

∂β
(48)

+ (1− c12)
XR12N + β

(
X ∂R12

∂β +R12
∂X
∂β

)
N − βR12X

∂N
∂β

N2

d

dt

∂X

∂β
=
−µ
(
∂X
∂β N −

∂N
∂β X

)
N2

−
XQ+ β

(
∂X
∂β Q+ ∂Q

∂β

)
N − ∂N

∂β βXQ

N2
(49)

+ (τ1 + τ2 + γ)
∂S

∂β
+ (τ2 + γ)

∂R1

∂β
+ (τ1 + γ)

∂R2

∂β
+ γ

∂R12

∂β

d

dt

∂S

∂τ1
=
−µ
(
∂S
∂τ1
N − S ∂N∂τ1

)
N2

− S − (τ1 + τ2 + γ)
∂S

∂τ1

+ β

(
S ∂X∂τ1 + ∂S

∂τ1
X
)
N − SX ∂N

∂τ1

N2

d

dt

∂R1

∂τ1
=
−µ
(
∂R1
∂τ1

N −R1
∂N
∂τ1

)
N2

− (τ2 + γ)
∂R1

∂τ1
(50)

+ β(1− c1)

(
∂X
∂τ1
R1 +

∂R1
∂τ1

X
)
N −R1X

∂N
∂τ1

N2

(51)
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d

dt

∂R2

∂τ1
=
−µ
(
∂R2
∂τ1

N −R2
∂N
∂τ1

)
N2

− (τ1 + γ)
∂R2

∂τ1
−R2 (52)

+ β(1− c2)

(
∂X
∂τ1
R2 +

∂R2
∂τ1

X
)
N −R2X

∂N
∂τ1

N2

d

dt

∂R12

∂τ1
=
−µ
(
∂R12
∂τ1

N −R12
∂N
∂τ1

)
N2

− γ ∂R12

∂τ1
(53)

+ β(1− c12)

(
∂X
∂τ1
R12 +

∂R12
∂τ1

X
)
N −R12X

∂N
∂τ1

N2

d

dt

∂X

∂τ1
=
−µ
(
∂X
∂τ1
N −X ∂N

∂τ1

)
N2

− β

(
Q ∂X
∂τ1

+X ∂Q
∂τ1

)
N −QX ∂N

∂τ1

N2

+ S + (τ1 + τ2 + γ)
∂S

∂τ1
+ (τ2 + γ)

∂R1

∂τ1
+R2 + (τ1 + γ)

∂R2

∂τ1
+ γ

∂R12

∂τ1

d

dt

∂S

∂τ2
=
−µ
(
∂S
∂τ2
N − S ∂N∂τ2

)
N2

− S − (τ1 + τ2 + γ)
∂S

∂τ2

+ β

(
S ∂X∂τ2 + ∂S

∂τ2
X
)
N − SX ∂N

∂τ2

N2

d

dt

∂R1

∂τ2
=
−µ
(
∂R1
∂τ2

N −R1
∂N
∂τ2

)
N2

−R1 − (τ2 + γ)
∂R1

∂τ2
(54)

+ β(1− c1)

(
R1

∂X
∂τ2

+ ∂R1
∂τ2

X
)
N −R1X

∂N
∂τ2

N2

d

dt

∂R2

∂τ2
=
−µ
(
∂R2
∂τ2

N −R2
∂N
∂τ2

)
N2

− (τ1 + γ)
∂R2

∂τ2
(55)

+ β(1− c2)

(
R2

∂X
∂τ2

+ ∂R2
∂τ2

X
)
N −R2X

∂N
∂τ2

N2

d

dt

∂R12

∂τ2
=
−µ
(
∂R12
∂τ2

N −R12
∂N
∂τ2

)
N2

− γ dR12

dτ2
(56)

+ β(1− c12)

(
R12

∂X
∂τ2

+ ∂R12
∂τ2

X
)
N −R12X

∂N
∂τ2

N2

d

dt

∂X

∂τ2
= −µ

∂X
∂τ2
N −X ∂N

∂τ2

N2
− β

(
∂X
∂τ2
Q+ ∂Q

∂τ2
X
)
N −QX ∂N

∂τ2

N2
(57)

+ S +R1 + (τ1 + τ2 + γ)
∂S

∂τ2
+ (τ2 + γ)

∂R1

∂τ2
+ (τ1 + γ)

∂R2

∂τ2
+ γ

∂R12

∂τ2
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d

dt

∂S

∂γ
= −µ

∂S
∂γN −

∂N
∂γ S

N2
− (τ1 + τ2)

∂S

∂γ
− S (58)

+ β

(
∂S
∂γX + ∂X

∂γ S
)
N − SX ∂N

∂γ

N2

d

dt

∂R1

∂γ
= −µ

∂R1
∂γ N −

∂N
∂γ R1

N2
− τ2

∂R1

∂γ
−
(
R1 + γ

∂R1

∂γ

)
(59)

+ β(1− c1)

(
∂R1
∂γ X + ∂X

∂γ R1

)
N −R1X

∂N
∂γ

N2

d

dt

∂R2

∂γ
= −µ

∂R2
∂γ N −

∂N
∂γ R2

N2
− τ1

∂R2

∂γ
−
(
R2 + γ

∂R2

∂γ

)
(60)

+ β(1− c2)

(
∂R2
∂γ X + ∂X

∂γ R2

)
N −R2X

∂N
∂γ

N2

d

dt

∂R12

∂γ
= −µ

∂R12
∂γ N − ∂N

∂γ R12

N2
−
(
R12 + γ

∂R12

∂γ

)
(61)

+ β(1− c12)

(
∂R12
∂γ X + ∂X

∂γ R12

)
N −R12X

∂N
∂γ

N2

d

dt

∂X

∂γ
= −µ

∂X
∂γ N −

∂N
∂γ X

N2
− β

(
∂X
∂γ Q+ ∂Q

∂γX
)
N −QX ∂N

∂γ

N2
(62)

+ S +R1 +R2 +R12 + (τ1 + τ2 + γ)
∂S

∂γ
+ (τ2 + γ)

∂R1

∂γ

+ (τ1 + γ)
∂R2

∂γ
+ γ

∂R12

∂γ

d

dt

∂S

∂ms
= λ− µ

∂S
∂ms

N − ∂N
∂ms

S

N2
− (τ1 + τ2 + γ)

∂S

∂ms

+ β

(
∂S
∂ms

X + ∂X
∂ms

S
)
N − SX ∂N

∂ms

N2

d

dt

∂R1

∂ms
= −µ

∂R1
∂ms

N − ∂N
∂ms

R1

N2
− (τ2 + γ)

∂R1

∂ms
(63)

+ β(1− c1)

(
∂R1
∂ms

X + ∂X
∂ms

R1

)
N −R1X

∂N
∂ms

N2

d

dt

∂R2

∂ms
= −µ

∂R2
∂ms

N − ∂N
∂ms

R2

N2
− (τ1 + γ)

∂R2

∂ms
(64)

+ β(1− c2)

(
∂R2
∂ms

X + ∂X
∂ms

R2

)
N −R2X

∂N
∂ms

N2

(65)
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d

dt

∂R12

∂ms
= −µ

∂R12
∂ms

N − ∂N
∂ms

R12

N2
− γ ∂R12

∂ms
(66)

+ β(1− c12)

(
∂R12
∂ms

X + ∂X
∂ms

R12

)
N −R12X

∂N
∂ms

N2

d

dt

∂X

∂ms
= −µ

∂X
∂ms

N − ∂N
∂ms

X

N2
− β

(
∂X
∂ms

Q+ ∂Q
∂ms

X
)
N −QX ∂N

∂ms

N2
(67)

+ (τ1 + τ2 + γ)
∂S

∂ms
+ (τ2 + γ)

∂R1

∂ms
+ (τ1 + γ)

∂R2

∂ms
+ γ

∂R12

∂ms

d

dt

∂S

∂m1
= −µ

∂S
∂m1

N − ∂N
∂m1

S

N2
− (τ1 + τ2 + γ)

∂S

∂m1

+ β

(
∂S
∂m1

X + ∂X
∂m1

S
)
N − SX ∂N

∂m1

N2

d

dt

∂R1

∂m1
= λ− µ

∂R1
∂m1

N − ∂N
∂m1

R1

N2
− (τ2 + γ)

∂R1

∂m1
(68)

+ β(1− c1)

(
∂R1
∂m1

X + ∂X
∂m1

R1

)
N −R1X

∂N
∂m1

N2

d

dt

∂R2

∂m1
= −µ

∂R2
∂m1

N − ∂N
∂m1

R2

N2
− (τ1 + γ)

∂R2

∂m1
(69)

+ β(1− c2)

(
∂R2
∂m1

X + ∂X
∂m1

R2

)
N −R2X

∂N
∂m1

N2

d

dt

∂R12

∂m1
= −µ

∂R12
∂m1

N − ∂N
∂m1

R12

N2
− γ ∂R12

∂m1
(70)

+ β(1− c12)

(
∂R12
∂m1

X + ∂X
∂m1

R12

)
N −R12X

∂N
∂m1

N2

d

dt

∂X

∂m1
= −µ

∂X
∂m1

N − ∂N
∂m1

X

N2
− β

(
∂X
∂m1

Q+ ∂Q
∂m1

X
)
N −QX ∂N

∂m1

N2
(71)

+ (τ1 + τ2 + γ)
∂S

∂m1
+ (τ2 + γ)

∂R1

∂m1
+ (τ1 + γ)

∂R2

∂m1
+ γ

∂R12

∂m1

d

dt

∂S

∂m2
= −µ

∂S
∂m2

N − ∂N
∂m2

S

N2
− (τ1 + τ2 + γ)

∂S

∂m2

+ β

(
∂S
∂m2

X + ∂X
∂m2

S
)
N − SX ∂N

∂m2

N2

(72)
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d

dt

∂R1

∂m2
= −µ

∂R1
∂m2

N − ∂N
∂m2

R1

N2
− (τ2 + γ)

∂R1

∂m2
(73)

+ β(1− c1)

(
∂R1
∂m2

X + ∂X
∂m2

R1

)
N −R1X

∂N
∂m2

N2

d

dt

∂R2

∂m2
= λ− µ

∂R2
∂m2

N − ∂N
∂m2

R2

N2
− (τ1 + γ)

∂R2

∂m2
(74)

+ β(1− c2)

(
∂R2
∂m2

X + ∂X
∂m2

R2

)
N −R2X

∂N
∂m2

N2

d

dt

∂R12

∂m2
= −µ

∂R12
∂m2

N − ∂N
∂m2

R12

N2
− γ ∂R12

∂m2
(75)

+ β(1− c12)

(
∂R12
∂m2

X + ∂X
∂m2

R12

)
N −R12X

∂N
∂m2

N2

d

dt

∂X

∂m2
= −µ

∂X
∂m2

N − ∂N
∂m2

X

N2
− β

(
∂X
∂m2

Q+ ∂Q
∂m2

X
)
N −QX ∂N

∂m2

N2
(76)

+ (τ1 + τ2 + γ)
∂S

∂m2
+ (τ2 + γ)

∂R1

∂m2
+ (τ1 + γ)

∂R2

∂m2
+ γ

∂R12

∂m2

d

dt

∂S

∂m12
= −µ

∂S
∂m12

N − ∂N
∂m12

S

N2
− (τ1 + τ2 + γ)

∂S

∂m12

+ β

(
∂S
∂m12

X + ∂X
∂m12

S
)
N − SX ∂N

∂m12

N2

d

dt

∂R1

∂m12
= −µ

∂R1
∂m12

N − ∂N
∂m12

R1

N2
− (τ2 + γ)

∂R1

∂m12
(77)

+ β(1− c1)

(
∂R1
∂m12

X + ∂X
∂m12

R1

)
N −R1X

∂N
∂m12

N2

d

dt

∂R2

∂m12
= −µ

∂R2
∂m12

N − ∂N
∂m12

R2

N2
− (τ1 + γ)

∂R2

∂m12
(78)

+ β(1− c2)

(
∂R2
∂m12

X + ∂X
∂m12

R2

)
N −R2X

∂N
∂m12

N2

d

dt

∂R12

∂m12
= λ− µ

∂R12
∂m12

N − ∂N
∂m12

R12

N2
− γ ∂R12

∂m12
(79)

+ β(1− c12)

(
∂R12
∂m12

X + ∂X
∂m12

R12

)
N −R12X

∂N
∂m12

N2

(80)
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d

dt

∂X

∂m12
= −µ

∂X
∂m12

N − ∂N
∂m12

X

N2
− β

(
∂X
∂m12

Q+ ∂Q
∂m12

X
)
N −QX ∂N

∂m12

N2
(81)

+ (τ1 + τ2 + γ)
∂S

∂m12
+ (τ2 + γ)

∂R1

∂m12
+ (τ1 + γ)

∂R2

∂m12
+ γ

∂R12

∂m12

d

dt

∂S

∂mx
= −µ

∂S
∂mx

N − ∂N
∂mx

S

N2
− (τ1 + τ2 + γ)

∂S

∂mx

+ β

(
∂S
∂mx

X + ∂X
∂mx

S
)
N − SX ∂N

∂mx

N2

d

dt

∂R1

∂mx
= −µ

∂R1
∂mx

N − ∂N
∂mx

R1

N2
− (τ2 + γ)

∂R1

∂mx
(82)

+ β(1− c1)

(
∂R1
∂mx

X + ∂X
∂mx

R1

)
N −R1X

∂N
∂mx

N2

d

dt

∂R2

∂mx
= −µ

∂R2
∂mx

N − ∂N
∂mx

R2

N2
− (τ1 + γ)

∂R2

∂mx
(83)

+ β(1− c2)

(
∂R2
∂mx

X + ∂X
∂mx

R2

)
N −R2X

∂N
∂mx

N2

d

dt

∂R12

∂mx
= −µ

∂R12
∂mx

N − ∂N
∂mx

R12

N2
− γ ∂R12

∂mx
(84)

+ β(1− c12)

(
∂R12
∂mx

X + ∂X
∂mx

R12

)
N −R12X

∂N
∂mx

N2

d

dt

∂X

∂mx
= λ− µ

∂X
∂mx

N − ∂N
∂mx

X

N2
− β

(
∂X
∂mx

Q+ ∂Q
∂mx

X
)
N −QX ∂N

∂mx

N2
(85)

+ (τ1 + τ2 + γ)
∂S

∂mx
+ (τ2 + γ)

∂R1

∂mx
+ (τ1 + γ)

∂R2

∂mx
+ γ

∂R12

∂mx

d

dt

∂S

∂λ
= ms − µ

∂S
∂λN −

∂N
∂λ S

N2
− (τ1 + τ2 + γ)

∂S

∂λ

+ β

(
∂S
∂λX + ∂X

∂λ S
)
N − SX ∂N

∂λ

N2

d

dt

∂R1

∂λ
= m1 − µ

∂R1
∂λ N −

∂N
∂λ R1

N2
− (τ2 + γ)

∂R1

∂λ
(86)

+ β(1− c1)

(
∂R1
∂λ X + ∂X

∂λ R1

)
N −R1X

∂N
∂λ

N2

(87)
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d

dt

∂R2

∂λ
= m2 − µ

∂R2
∂λ N −

∂N
∂λ R2

N2
− (τ1 + γ)

∂R2

∂λ
(88)

+ β(1− c2)

(
∂R2
∂λ X + ∂X

∂λ R2

)
N −R2X

∂N
∂λ

N2

d

dt

∂R12

∂λ
= m12 − µ

∂R12
∂λ N − ∂N

∂λ R12

N2
− γ ∂R12

∂λ
(89)

+ β(1− c12)

(
∂R12
∂λ X + ∂X

∂λ R12

)
N −R12X

∂N
∂λ

N2

d

dt

∂X

∂λ
= mx − µ

∂X
∂λN −

∂N
∂λX

N2
− β

(
∂X
∂λQ+ ∂Q

∂λX
)
N −QX ∂N

∂λ

N2
(90)

+ (τ1 + τ2 + γ)
∂S

∂λ
+ (τ2 + γ)

∂R1

∂λ
+ (τ1 + γ)

∂R2

∂λ
+ γ

∂R12

∂λ

d

dt

∂S

∂µ
= −

(
S

N
+ µ

∂S
∂µN −

∂N
∂µ S

N2

)
− (τ1 + τ2 + γ)

∂S

∂µ

+ β

(
∂S
∂µX + ∂X

∂µ S
)
N − ∂N

∂µ SX

N2

d

dt

∂R1

∂µ
= −R1

N
− µ

∂R1
∂µ N −

∂N
∂µR1

N2
− (τ2 + γ)

∂R1

∂µ
(91)

+ β(1− c1)

(
∂R1
∂µ X + ∂X

∂µR1

)
N − ∂N

∂µR1X

N2

d

dt

∂R2

∂µ
= −R2

N
− µ

∂R2
∂µ N −

∂N
∂µR2

N2
− (τ1 + γ)

∂R2

∂µ
(92)

+ β(1− c2)

(
∂R2
∂µ X + ∂X

∂µR2

)
N − ∂N

∂µR2X

N2

d

dt

∂R12

∂µ
= −R12

N
− µ

∂R12
∂µ N − ∂N

∂µR12

N2
− γ ∂R12

∂µ
(93)

+ β(1− c12)

(
∂R12
∂µ X + ∂X

∂µR12

)
N − ∂N

∂µR12X

N2

d

dt

∂X

∂µ
= −X

N
− µ

∂X
∂µN −

∂N
∂µX

N2
− β

(
∂X
∂µQ+ ∂Q

∂µX
)
N − ∂N

∂µQX

N2
(94)

+ (τ1 + τ2 + γ)
∂S

∂µ
+ (τ2 + γ)

∂R1

∂µ
(τ1 + γ)

∂R2

∂µ
+ γ

∂R12

∂µ
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