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ABSTRACT

Implementation of a New Sigmoid Function in Backpropagation Neural Networks

by

Jeff Bonnell

This thesis presents the use of a new sigmoid activation function in backpropagation

artificial neural networks (ANNs). ANNs using conventional activation functions may

generalize poorly when trained on a set which includes quirky, mislabeled, unbalanced,

or otherwise complicated data. This new activation function is an attempt to improve

generalization and reduce overtraining on mislabeled or irrelevant data by restricting

training when inputs to the hidden neurons are sufficiently small. This activation

function includes a flattened, low-training region which grows or shrinks during back-

propagation to ensure a desired proportion of inputs inside the low-training region.

With a desired low-training proportion of 0, this activation function reduces to a stan-

dard sigmoidal curve. A network with the new activation function implemented in

the hidden layer is trained on benchmark data sets and compared with the standard

activation function in an attempt to improve area under the curve for the receiver

operating characteristic in biological and other classification tasks.
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1 BACKGROUND

Predictive modeling is a vital tool which finds applications in a wide range of

scientific, mathematical, and financial fields. Biologists may employ predictive mod-

els and graph theory to classify RNA structures [8]. Police and forensic scientists

take advantage of predictive models in fingerprint and face recognition software [2].

Meteorologists use predictive models to forecast weather, and market analysts use

predictive models to forecast trends in the stock market [27].

In predictive modeling, a number of techniques are used to find the relevant in-

formation in available data and to construct a model for the prediction of currently

unknown data. A variety of methods fall under the banner of predictive modeling.

Linear regression uses the available data to construct a least-squares regression line

as a model for predicting future data. Logistic regression can be used to predict the

probability of a future event by fitting data to a logistic curve. Decision trees are

another form of predictive model, using successive nodes to classify data as in a game

of “20 questions” [15]. More complicated types of predictive models include support

vector machines (SVMs) and artificial neural networks (ANNs). In a support vector

machine, data is projected into a higher-dimensional space, where the data categories

can be separated by a surface [6]. Future data is plotted into the same space, where

it can then be categorized. This thesis focuses on artificial neural networks, which

are highly non-linear forms of predictive models which are best suited to creating

predictions by learning from complex relationships between available data [5].
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1.1 Artificial Neural Networks

Artificial neural networks are suited to a variety of learning tasks, including classi-

fication, pattern recognition, and function approximation. We will be focusing solely

on tasks requiring binary classification. To this end, we will be employing a feed-

forward neural network called a multilayer perceptron (MLP)[9].

1.1.1 Network Inspiration and Structure

Artificial neural networks are a system of nodes called artificial neurons. Each

artificial neuron in the network is a model inspired by the behavior of real neurons in

the brain [9]. Natural neurons receive electrical signals through synapses, and when

these signals surpass a threshold, the neuron will activate and fire a signal of its own

[5]. Before considering a full neural network, we look at the behavior of a single

artificial neuron.

Figure 1: Artificial Neuron Diagram

An artificial neuron takes in a set of weighted inputs and applies an activation

function to their sum. In Figure 1 above, x refers to an input, w to a weight, and

b to a bias term. One of the most commonly used activation functions for artificial
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neurons is the logistic function

σ(x) =
1

1 + e−κx
. (1)

This function is a sigmoid, meaning that it is real-valued, differentiable, and strictly

increasing. From this point forward, for ease of explanation, we will assume the

parameter κ = 0. We now examine a graph of this activation function (Fig. 2).

Figure 2: Standard Logistic Activation Function

A sigmoid activation function like the above ensures that the neuron can take in

any real input and produce an output in the interval (0, 1). In a biological sense, this

could be interpreted as a probability function describing the chance that a neuron

fires in a given time interval.

Now we can examine the structure of a three-layer artificial neural network. In

the first layer, called the input layer, each neuron corresponds to one input to the

network. Each node in the input layer is connected to each node in the second, or
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hidden layer, by a variable synaptic weight. Then, each node in the hidden layer

is connected to each node in the third, or output layer by another variable synaptic

weight. We will only be considering networks with one node in the output layer. A

three-layer artificial neural network is displayed in Figure 3.

Figure 3: Three-Layer Artificial Neural Network

A neural network with m input nodes and 1 output node serves as a function with

m inputs and 1 output. In the problem of binary classification, the goal is to use a

set of m-dimensional training patterns with known outputs to train the network to

partition this m-dimensional space such that each point is associated with either a

positive or negative output. Once the space is partitioned, the network may be used

to predict the classification of unknown patterns.

We now look at the prediction function defined by a three-layer feed-forward

neural network using the standard logistic activation function. Given a pattern with

m inputs and n nodes in the hidden layer, the input to the kth hidden node will be

m∑
i=1

wikxi + b, (2)
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where xi is the ith input and wik is the weight between the ith input node and the

kth hidden node. The output from the kth hidden node is given by

hk = σ

(
m∑
i=1

wikxi + b

)
, (3)

where σ(x) is the activation function described in equation 1.

Next, we calculate the input to the output node, which is given by

n∑
k=1

αkhk, (4)

where hk is the output from the kth hidden node and αk is the weight from the

kth hidden node to the output node. The output node’s activation function is then

applied to this value, and the output is given as

y = σ

(
n∑
k=1

αkhk

)

= σ

(
n∑
k=1

αkσ

(
m∑
i=1

wikxi + b

))
. (5)

1.1.2 Training via Backpropagation

We now examine the backpropagation learning algorithm [5, 9, 16, 26]. When

presented with a set of m-dimensional input patterns p, where some pattern p is

given by p = (x1, x2, x3, . . . , xm), and the associated target output is t, we would like

to minimize the error between the neural network output and the target value. The

error is a function of the weights and is given by

E(w1,w2, . . . ,wn, α) =
1

2
(y − t)2, (6)
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where wk is the m-dimensional vector of weights between the inputs and the kth

hidden node, α is the vector of weights between the hidden nodes and the output,

and y is the output of the network. Because we want to minimize this error function,

we attempt to find weights which will give us

∂E

∂αk
= 0 (7)

and

∂E

∂wik
= 0 (8)

for all i and k. We will employ a pattern of gradient descent known as backpropagation

to find the appropriate weights.

At each step of our iterative process, we must calculate the gradient of the error

function E with respect to the weights by finding the partial derivative with respect

to each weight. We first find the partial derivatives for the α weights.

∂E

∂αk
=

∂
(
1
2
(y − t)2

)
∂αk

= (y − t) ∂y
∂αk

= (y − t)∂σ (
∑n

k=1 αkhk)

∂αk
(9)
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To continue, we need the derivative of the function σ(x). We have

σ(x) =
1

1 + e−x

dσ

dx
=

e−x

(1 + e−x)2

=
1 + e−x − 1

(1 + e−x)2

= σ(x)− 1

(1 + e−x)2

= σ(x)− (σ(x))2

= σ(x)(1− σ(x)). (10)

Using this derivative, we continue with

∂E

∂αk
= (y − t)∂σ (

∑n
k=1 αkhk)

∂αk

= (y − t)(y)(1− y)hk. (11)

This value will be used in the weight update process at the end of the current

iteration. Now we compute the gradient for the weights between input and hidden

nodes as
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∂E

∂wik
=

∂ 1
2
(y − t)2

∂xik

= (y − t) ∂y

∂wik

= (y − t)∂σ(
∑n

k=1 αkhk)

∂wik

= (y − t)(y)(1− y)
∂(
∑n

k=1 αkhk)

∂wik

= (y − t)(y)(1− y)αk
∂hk
∂wik

= (y − t)(y)(1− y)αk
∂σ(
∑m

i=1wikxi + b)

∂wik

= (y − t)(y)(1− y)αkhk(1− hk)
∂(
∑m

i=1wikxi + b)

∂wik

= (y − t)(y)(1− y)αkhk(1− hk)xi. (12)

In the process of stochastic backpropagation, after the gradient has been calculated

using the first pattern in the training set, each weight in the network is updated [16].

The α weights are updated according to

αk ← αk − ηδhk, (13)

where η is a parameter called the learning rate and

δ = (y − t)(y)(1− y)αk, (14)

as in equation (11). If a momentum parameter γ is included in the learning process,

the weight update is increased by γ∆(αk)j−1, where ∆(αk)j−1 is the size of the weight

update from the previous iteration.

The w weights are also updated according to

wik ← wik − ηρkxi, (15)
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where again η is the learning rate and

ρk = hk(1− hk)αkδ, (16)

with δ given in equation (14). Again, if a momentum factor γ is included in the

learning process, the weight update is increased by γ∆(wik)j−1, with ∆(wik)j−1 being

the size of the weight update from the previous iteration.

One weight update is done successively for each pattern in the training set, and

then the order of training patterns is randomized and the process continues to the

next iteration. One pass through all of the training patterns is called a training

epoch. Once training is complete, either due to some method of early stopping or the

conclusion of a set number of training epochs, the final weight values are saved and

can be used to calculate outputs for new patterns.

1.1.3 Difficulties with Artificial Neural Networks

ANNs have a number of strengths as a predictive modeling tool, chief among

which is their ability to act as a universal approximator. Cybenko proved in 1988

that a neural network with two hidden layers can approximate any function to within

any ε > 0 [26]. This was followed by Cybenko’s Theorem, which states that a feed-

forward network with a single hidden layer using a sigmoid activation function can

approximate any continuous function on a compact subset of Rn to any degree of

accuracy ε > 0 [4]. This result has since been extended for arbitrary, rather than

strictly the standard sigmoid, activation functions [3].

Training an ANN, however, is not always a simple task. Through the process of

gradient descent during backpropagation, it is possible for the network to converge

17



on local minima of the error function that are not the desired global minimum. The

use of simulated annealing, wherein the network is slightly perturbed as convergence

slows, is one suggested remedy to this problem [25]. Another serious difficulty is the

possibility of over-training on the set of training patterns [7, 11]. We would like to

train the network to recognize the general patterns in the set, rather than overfitting

every peculiarity of the data. The problem of overtraining can be serious when the

training patterns contain a large amount of noise, irrelevant factors, mislabeled data,

or other facets which do not correspond with the entire population of interest. In

such cases, though training may be successful on the data given, the ANN will often

fail to generalize well, causing poor performance on data outside the training set. It

is for this reason that we propose a new activation function which may reduce the

tendency to overtrain on problematic data sets.

1.2 Receiver Operating Characteristic

ANN performance in this thesis is evaluated using the area under the curve (AUC)

of the receiver operating characteristic (ROC). This is a common metric for the per-

formance of a predictive model under the task of binary classification, which is the

case for all classification tasks in this thesis [10, 20].

The ROC is a plot of the classifier’s sensitivity (true positive rate, given by TP
TP+FN

,

where TP = number of true positives and FN = number of false negatives) versus

(1 − specificity) (false positive rate, given by FP
FP+TN

, where FP = number of false

positives and TN = number of true negatives), for a particular classification thresh-

old. The ROC is plotted for each possible threshold in the range (0, 1), and the AUC

18



is calculated by estimating the integral via the trapezoidal method.

Figure 4: Example ROC Curve Including Optimal Threshold and AUC Value

A perfect classifier will display an AUC of 1.0 and purely random classifiers will

display an AUC around 0.5. A higher AUC value indicates stronger classification

performance. In Figure 4, the optimal threshold of 0.50 is given by the green dot.

Note that it is the threshold closest to the upper left corner of the plot. It corresponds

to a true positive rate of 1.00 and a false positive rate of 0.11.
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2 METHODS

2.1 Implementation of New Activation Function

First, we have used the Python programming language to program a backpropa-

gation artificial neural network with three layers as described above. The code may

be found in the appendix. In most ways, this is a standard backpropagation neural

network. It employs the method of gradient descent described above, including a term

for momentum and a form of annealing. The annealing is accomplished by checking

the change in the error term after a training epoch. If the change is below a speci-

fied value, each weight is perturbed by a small, normally distributed value centered

around 0. For the classification done in this thesis, the amount of annealing has been

kept small by universally setting the error threshold for annealing at 0.000002 and

setting the standard deviation of the annealing term as 1
5

of the learning rate. The

primary difference between this network and a standard neural network is found in

the activation function used for neurons in the hidden layer. Instead of the usual

hyperbolic tangent or logistic activation functions, we employ the function

f(x) = σ(x+ b) + σ(x− b)− 1, (17)

where

σ(x) =
1

1 + e−x
(18)

and b is a variable parameter. We notice that, when b = 0, we have

f(x) = 2σ(x)− 1, (19)
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which is just a rescaling of the standard logistic activation function from −1 to 1,

rather than from 0 to 1.

Next, we examine the graphs of the activation function for three different values

of the parameter b (Fig. 5).

Figure 5: Hidden Layer Activation Function for Differing Values of b

We can see that, for b = 0, the activation function is just a rescaling of the

standard logistic function. For larger values of the parameter, there is a “flattened”

region of the curve near x = 0. The smaller derivative in this range creates what we

hope to be a low-training region for small inputs to the hidden layer neurons.

The partial derivative of this activation function for the kth hidden neuron with

respect to some input weight wi must be computed in order to employ backpropaga-

tion training. First, let

ak =
n∑
i=1

wikxi (20)
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and

hk = f(ak). (21)

We begin with the following:

hk = f(ak)

= σ(ak + b) + σ(ak − b)− 1. (22)

We take the partial derivative with respect to wik and get

∂hk
∂wik

=
∂σ(ak + b)

∂wik
+
∂σ(ak − b)

∂wik

= [σ(ak + b)(1− σ(ak + b)) + σ(ak − b)(1− σ(ak − b))]xi. (23)

Now, using equation (17) and substituting 1 − σ(ak + b) = σ(ak − b) − hk and

1− σ(ak − b) = σ(ak + b)− hk, we have

∂hk
∂wik

= [σ(ak + b)(σ(ak − b)− hk) + σ(ak − b)(σ(ak + b)− hk)]xi

= [2σ(ak + b)σ(ak − b)− hk(σ(ak + b) + σ(ak − b))]xi. (24)

Finally, again referring to equation (17) and substituting σ(ak + b) + σ(ak − b) =

1 + hk, we have

∂hk
∂wik

= [2σ(ak + b)σ(ak − b)− hk(1 + hk)]xi. (25)
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2.2 First Method

In order to take advantage of the variable nature of this activation function, we

have attempted two new methods of training. In the first, new steps are added to the

standard backpropagation algorithm. The initial value of the parameter b is 0. During

the forward stage of each iteration, the output of each hidden neuron is recorded for

each training pattern. Then, the number of hidden layer outputs in a specified “lower-

training” range is recorded. In this network, we have used the range (−0.2, 0.2). Note

that this range should be centered around 0, because this corresponds to the flatter,

central portion of the activation function. The proportion of hidden layer outputs in

the given range for this training epoch is recorded and compared against a desired

range of proportions. If the current proportion is below this range, the value of the

parameter b is increased by 0.05 in an attempt to catch a higher proportion in the

low-training region. If the proportion is above the desired range and b > 0, the value

of b is decreased by 0.05. This process is repeated at each iteration, and the final

parameter value is saved along with the weights for use on test data.

2.3 Second Method

In order to perform the second method of training, we note that the parameter b

is a variable and can therefore be included in the process of gradient descent used in

backpropagation. First, we must calculate the partial derivative of the error function

E with respect to b,
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E =
1

2

(
σ(

n∑
k=1

αkhk)− t

)2

∂E

∂b
= (y − t)(y)(1− y)

(
n∑
k=1

αk
∂f

∂b

)
, (26)

where ∂f
∂b

is the partial derivative of the hidden layer activation function, which we

shall now calculate.

f(x) = σ(x+ b) + σ(x− b)− 1

∂f

∂b
= σ(x+ b)(1− σ(x+ b))− σ(x− b)(1− σ(x− b))

= σ(x+ b)(hk + σ(x− b))− σ(x− b)(hk + σ(x+ b))

= hk(σ(x+ b)− σ(x− b)). (27)

We return to our calculation of equation (26), substituting our derivative from

(27), and get

∂E

∂b
= (y − t)(y)(1− y)

(
n∑
k=1

αkhk

(
σ(

m∑
i=1

wikxi + b)− σ(
m∑
i=1

wikxi − b)

))
.(28)

If we perform standard gradient descent including this parameter, b quickly ap-

proaches 0, and the function reverts to the standard hidden layer activation. Because

our goal is to avoid overtraining, we instead move away from the minimum in terms

of b, adding the partial derivative instead of subtracting it. At each iteration, we

update b according to

b← b+ η
∂E

∂b
. (29)

Backpropagation otherwise occurs in the standard way.
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2.4 Comparison Between Networks

We have used three classification tasks to analyze the performance of our network.

We will first discuss The Insurance Company (TIC) benchmark for data mining [24].

This data set contains 85 descriptive parameters for a large sample of customers,

and our goal is to train our neural network to determine whether a given customer

will have a mobile home insurance policy. This classification task is both slow and

complicated, and we will compare our results with previous work to ensure that our

network performs at least reasonably well on difficult classification tasks. Our second

classification task involves artificial, generated data. We will be taking a classification

task equivalent to the binary inclusive OR operator, adding inputs of pure noise,

and intentionally mislabeling a small portion of the data [12]. The performance

of our neural network incorporating the new hidden layer activation function will

be compared with the performance of the same network with a standard activation

function. Our final task involves the classification of biological data. Here, we will be

classifying 3-phosphoglycerate kinase (3PGK) protein sequences from different phyla

into their respective kingdoms of life [18, 19]. For this task, we will be comparing the

performance of the new activation function against the performance of the standard

function, and we will also be comparing our results to available benchmarking data.

In order to compare network performance, we will be performing multiple classi-

fication trials and finding the receiver operating characteristic (ROC) for each trial.

We will then compare networks based on the area under the ROC curve (AUC).
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3 RESULTS AND DISCUSSION

3.1 First Method Experimental Results

3.1.1 The Insurance Company Benchmark

This data set was used in the Computational Intelligence and Learning Cluster

Challenge in 2000 [24]. The training set consists of a set of 5822 customer records,

each containing 85 customer attributes, including sociodemographic data and product

ownership statistics. The target variable was the binary classification of whether

the customer had a mobile home insurance policy. The evaluation data set was a

similarly formatted file containing data on the same attributes for a separate set of

4000 customers.

Due to the varied nature of the attributes, instead of working with the raw infor-

mation, the data for each descriptive attribute were first normalized according to the

formula

z =
x− x̄
sx

, (30)

where x̄ is the mean value for attribute x and sx is the sample standard deviation of

the data for attribute x.

Another problem with the data set is its unbalanced nature. Because only 348

of the 5822 customers in the training set have a mobile home insurance policy, the

network may overtrain on the negative portion of the training set. Therefore, in each

training run, all 348 members of the positive set are included in our training as well

as a simple random sample of 348 members of the negative set.

Two training methods were attempted. In the first, for each training run, a simple
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random sample of 150 customer records was taken from the training set to be used as a

validation set for early stopping of the training session. If the error of the validation

set increased for 50 consecutive training epochs, the training was stopped and the

weights of the network returned to their states corresponding to the epoch with the

minimum validation set error. In this method, 170 neurons were placed in the hidden

layer, the learning rate was set to 0.05, and the momentum factor was set to 0.1. Due

to the high number of neurons in the hidden layer, the proportion of hidden layer

outputs in the range (−0.2, 0.2) never fell below the desired proportion of 0.1 for any

training run. Therefore, the value of the parameter b in the hidden layer activation

function never rose above 0, and we consider only the standard activation function.

The AUC for the ROC was calculated for the training and evaluation sets following

each training run, and the results are summarized Table 1.

Table 1: AUC Results for Early Stopping on TIC Data

Number of Runs Training AUC Mean Eval. AUC Mean Eval. AUC St. Dev.

100 0.813417 0.700114 0.013174

These AUC values compare reasonably well with past neural network classifica-

tions on this data, and we can continue to the next training method [28]. For this

method, training was done in the same way as the previous method except for two

key differences. First, 50 neurons were used in the hidden layer. Second, no validation

set was used. Instead of early stopping, each training run consisted of 100 training

epochs. Again, the large number of hidden neurons results in an unchanging hidden

layer activation function, so we consider only the standard network.
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The AUC for the ROC was calculated for the training and evaluation sets following

each training session, and the results are summarized below in Table 2.

Table 2: AUC Results Following 100 Epochs on TIC Data

Number of Runs Training AUC Mean Eval. AUC Mean Eval. AUC St. Dev.

100 0.990502 0.660868 0.017270

These results are again comparable with those found in [28], wherein some similar

methods were used and a 95% CI of (0.588, 0.740) was found for the AUC of the

evaluation set ROC.

3.1.2 Modified Inclusive OR Operator

Now we look at training the neural network on a randomly generated data set

that mimics a modified version of the binary inclusive OR function [12]. Each pat-

tern in the training and evaluation data sets consists of four inputs and one output.

Each of the four inputs is generated using a normal distribution centered at 0 with

standard deviation 10 (N(0, 10)). The first two inputs are purely noise. If either of

the remaining two inputs is positive, then the pattern will be classified in the positive

set. If both are negative, then the pattern will be classified in the negative set. Then,

as an additional obstacle to learning, one important change is made. In the training

set, if exactly one of the third or fourth inputs for a given pattern is positive, the

pattern will be misclassified as negative with probability p = 0.10. This is done only

for the training set, and none of the evaluation set patterns are misclassified. The

classification rules for the training set are summarized Table 3 below.
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Table 3: Modified Binary Inclusive OR Classification (Training Set)

x1 x2 x3 x4 Classification

- - - - -
- - - + p(+)=.9,p(-)=.1
- - + - p(+)=.9,p(-)=.1
- + - - -
+ - - - -
- - + + +
- + - + p(+)=.9,p(-)=.1
+ - - + p(+)=.9,p(-)=.1
- + + - p(+)=.9,p(-)=.1
+ - + - p(+)=.9,p(-)=.1
+ + - - -
- + + + +
+ - + + +
+ + - + p(+)=.9,p(-)=.1
+ + + - p(+)=.9,p(-)=.1
+ + + + +

Because half of the input variables are purely noise and an average of 5% of the

training patterns are misclassified, this data provides an opportunity to compare the

performance of a network using the new activation function with the performance of

a standard network.

For each training run, a new set of 100 training and 100 evaluation patterns was

generated following the above rules. Each network was trained on the given training

set for 1000 epochs using a learning rate of 0.3 and a momentum factor of 0.1, with

4 neurons in the hidden layer. The desired range of proportions for hidden layer

outputs between −0.2 and 0.2 was (0.8, 0.12). 500 training runs were performed, and

the results are summarized in Table 4. AUC results for the modified network are
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listed as AUC1, and AUC results for the standard network are listed as AUC2.

Table 4: AUC Results For Training on Modified Inclusive OR Data

Mean Standard Deviation

AUC1 0.953136 0.040583
AUC2 0.943934 0.040025

AUC1 − AUC2 0.009203 0.044836

If we make the assumption that the AUC difference results given by the neural

networks are normally distributed, then we may perform a paired t-test for difference

in mean AUC between the two networks [13]. The test will be performed in SAS

version 9.2 using a 95% confidence level. The results are shown below in Table 5.

Table 5: Paired t-Test for Difference in Means on Binary OR Data

Mean Difference St. Dev. Sample Size t Statistic P (t > t∗) 95% CI for Mean Difference

0.009203 0.044836 500 t = 4.5895 P < 0.0001 (0.005263, 0.013142)

If we make the assumption of normality, we can conclude that there is a statis-

tically significant difference between the AUC results for a network using the new

activation function and one using the standard activation function, though the new

network does not always outperform the old one. We now have reason to examine

the change in performance on real data sets.

3.1.3 3-Phosphoglycerate Kinase Protein Sequences

We now turn to a problem of biological classification. We begin with 3-phosphoglycerate

kinase (3PGK) protein sequences for members of different phyla, and we wish to
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classify these members either inside or outside a particular kingdom [18, 19]. We

will focus on two phyla in particular: Proteobacteria, from the kingdom Bacteria,

and Euglenozoa, from the kingdom Eukaryota. We will also be considering three

distance measures to quantify the protein sequences: BLAST distance matrix [1],

Smith-Waterman [21, 23], and Local Alignment kernel [22]. These combinations re-

sult in six training sets, one for each phylum/distance measure combination, and the

corresponding six evaluation sets.

There are 70 members in each Proteobacteria training set, 61 members in each

Proteobacteria evaluation set, 82 members in each Euglenozoa training set, and 49

members in each Euglenozoa evaluation set. The Proteobacteria training sets include

43 positively classified members of the kingdom and 27 negatively classified mem-

bers outside the kingdom, and the Proteobacteria evaluation sets include 30 positive

members and 31 negative members. The Euglenozoa training sets include 38 posi-

tively classified members of the kingdom and 44 negatively classified members outside

the kingdom, and the Euglenozoa evaluation sets include 5 positive members and 44

negative members.

The data were compiled by taking each protein sequence in the training set and

computing the distance measure to each member of the training set, creating a matrix

of distance scores. The evaluation sets were created by finding the distance measure

from each member of the evaluation set to each member of the training set.

For each training set, the networks were set up with 2 neurons in the hidden layer

and trained for 500 epochs. A learning rate of 0.3 and a momentum factor of 0.1 were

used, and an ideal proportion of “low-training” hidden layer outputs was set to the
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range (0.08, 0.12). 200 training runs were done for each set, and the mean, standard

deviation, and 95% CI for the evaluation set AUC were calculated. We also compared

the AUC results to those listed as the benchmark value.

We will look first at the Proteobacteria data. The results after training for the

BLAST distance matrix set are shown below (Table 6).

Table 6: AUC Results Following 200 Runs on BLAST Proteobacteria Data

AUC Mean AUC St. Dev. 95% CI for Mean AUC

New Activation Function 0.917091 0.002216 (0.916782, 0.917400)
Standard Activation Function 0.915258 0.002216 (0.914949, 0.915567)

Benchmark AUC [19] 0.9022

Next, we look at the AUC results after training on the Smith-Waterman set (Table

7).

Table 7: AUC Results Following 200 Runs on SW Proteobacteria Data

AUC Mean AUC St. Dev. 95% CI for Mean AUC

New Activation Function 0.901118 0.001512 (0.900907, 0.901329)
Standard Activation Function 0.899199 0.001858 (0.898940, 0.899458)

Benchmark AUC [19] 0.8935

Next, we examine the results for the Local Alignment kernel set (Table 8).

Table 8: AUC Results Following 200 Runs on LA Proteobacteria Data

AUC Mean AUC St. Dev. 95% CI for Mean AUC

New Activation Function 0.902855 0.001370 (0.902664, 0.903046)
Standard Activation Function 0.902715 0.001470 (0.902510, 0.902920)

Benchmark AUC [19] 0.8957
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The networks both outperform the benchmark AUC value for each distance mea-

suring method. The network with the new activation function outperforms the old

network by a small but statistically significant margin for the BLAST and Smith-

Waterman sets, but there is not enough evidence to show a difference in performance

on the Local Alignment kernel set.

We now examine the Euglenozoa data, first looking at the BLAST distance mea-

sure in Table 9.

Table 9: AUC Results Following 200 Runs on BLAST Euglenozoa Data

AUC Mean AUC St. Dev. 95% CI for Mean AUC

New Activation Function 0.767568 0.013110 (0.765740, 0.769396)
Standard Activation Function 0.738886 0.017606 (0.736432, 0.741341)

Benchmark AUC [19] 0.8318

We move next to the Smith-Waterman distance measure, with results displayed

in Table 10.

Table 10: AUC Results Following 200 Runs on SW Euglenozoa Data

AUC Mean AUC St. Dev. 95% CI for Mean AUC

New Activation Function 0.773114 0.008522 (0.771925, 0.774302)
Standard Activation Function 0.773682 0.009256 (0.772391, 0.774972)

Benchmark AUC [19] 0.8045
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Finally, we look at the data using the Local Alignment kernel in Table 11.

Table 11: AUC Results Following 200 Runs on LA Euglenozoa Data

AUC Mean AUC St. Dev. 95% CI for Mean AUC

New Activation Function 0.790773 0.011697 (0.789142, 0.792404)
Standard Activation Function 0.796023 0.011891 (0.794365, 0.797681)

Benchmark AUC [19] 0.8182

The results for the Euglenozoa training sets are less encouraging than those for the

Proteobacteria sets. The networks both underperformed the benchmark AUC values

in every case. The new network outperformed the standard one on the BLAST data

set, but the standard network showed better performance on the LA data set. There

was not enough evidence to determine a difference in the performance of the two

networks on the SW data.
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3.2 Second Method Experimental Results

Using the second method, gradient ascent in terms of the parameter b, we inves-

tigate the 3PGK data sets. First, we examine a common graph of the error during

backpropagation using this method (Fig. 6).

Figure 6: Backpropagation Error and b-Value vs. Iteration Number

We note that, as b increases, the error stops approaching the global minimum,

begins to increase, and then falls into a local minimum larger than 0. The hope is

that such training forces the network to learn the “important” patterns in the data

while only undergoing small, perturbative training on the details.

We did 200 training runs of 500 epochs and 50 training runs of 5000 epochs on each

3PGK data set. A learning rate of 0.05 and a momentum of 0.1 were used, and only

one neuron was included in the hidden layer. With additional hidden layer neurons,

35



overtraining may persist despite the implementation of the new method. The initial

value for b was set to 0.5. Our results for the Proteobacteria data are listed in Table

12 along with benchmark results for ANN, SVM, and logistic regression. The highest

performing classification for each set is colored blue.

Table 12: Mean AUC Results Following for Proteobacteria Using 2nd Method.

Benchmarks from [19]

BLAST SW LA

95% CI, Method 2, 500 Iter. (0.962368, 0.962740) (0.953664, 0.954099) (0.948620, 0.949101)
95% CI, Method 2, 5000 Iter. (0.941544, 0.942006) (0.945393, 0.946113) (0.947197, 0.948717)
95% CI, Standard, 500 Iter. (0.915242, 0.915887) (0.899367, 0.899977) (0.902098, 0.902547)
95% CI, Standard, 5000 Iter. (0.916188, 0.917322) (0.900121, 0.901492) (0.902488, 0.903964)

Benchmark ANN 0.9022 0.8935 0.8957
Benchmark LogReg 0.9215 0.9172 0.9172
Benchmark SVM 0.9258 0.9204 0.9215

The second method gives significantly improved performance for each Proteobac-

teria data set, now beating even the logistic regression and SVM benchmarks. In each

case, the network performed better with 500, rather than 5000, training epochs.

We next look at the data for the Euglenozoa sets. Again, 200 runs of 500 epochs

and 50 runs of 5000 epochs were carried out, using a learning rate of 0.05, a momentum

of 0.1, an initial b value of 0.5, and one hidden layer neuron. The results are shown

in Table 13, with the best classification for each set listed in blue.
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Table 13: Mean AUC Results Following for Euglenozoa Using 2nd Method. Bench-

marks from [19]

BLAST SW LA

95% CI, Method 2, 500 Iter. (0.828056, 0.829626) (0.863856, 0.864371) 0.945455 *
95% CI, Method 2, 5000 Iter. (0.848539, 0.851098) 0.877273 * (0.928243, 0.929575)
95% CI, Standard, 500 Iter. (0.734328, 0.741763) (0.771511, 0.780534) (0.798451, 0.801685)
95% CI, Standard, 5000 Iter. (0.752322, 0.761315) (0.772611, 0.782844) (0.792371, 0.799811)

Benchmark ANN 0.8318 0.8045 0.8182
Benchmark LogReg 0.7909 0.8227 0.8545
Benchmark SVM 0.8318 0.8182 0.8182

In this case, the second method with 5000 epochs performed best for the BLAST

and Smith-Waterman data sets, while the second method with 500 epochs performed

best on the local alignment kernel data set. For each set, all of the benchmark values

were significantly beaten by either the short or long training sessions using the second

method. An asterisk (*) indicates an AUC value that was identical across all training

runs.

3.3 Discussion

When using the first method of an ideal low-training proportion, the new hidden

layer activation function appears to improve network performance on certain data

sets with noisy or possibly mislabeled data. However, this performance increase

is not consistent across different data sets, and this method is not suggested as a

universal replacement of the standard model. When using the second method of

gradient ascent, one sees a significant increase in performance in the classification of

3PGK data over the standard model, the first new method, and available benchmarks
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for three different classifiers. One area of possible further research is to determine

the characteristics of a data set that result in improved or decreased performance for

these new models.

There are many other strategies employed to reduce overtraining in the presence

of noisy, peculiar, or mislabeled data. These often include performing statistical

analysis on data and validation set performance to determine which factors or patterns

to exclude from training [7]. Future research could focus on comparison between

this new activation function and other methods of overtraining prevention, both in

terms of classification performance and computational requirement. In addition, the

combination of statistical analysis and this activation function may provide further

improved results.

Finally, improvements could be made on the algorithms used for updating the

activation function. In this research, for the first method, a desired proportion of

low-training data has been selected for classification problems based on testing and

educated speculation. Further work could pinpoint optimal values for low-training

data or implement a different algorithm altogether. One possibility would be the

determination of an optimal setting for the b parameter, possibly via validation sets,

followed by training on a static function. For the second method, gradient ascent was

performed along the partial derivative with respect to b. Future work could implement

various scaling factors to fine-tune this gradient ascent. The method could also be

generalized to overcome overtraining in networks with a larger hidden layer, as such

a method could expand the class of problems to which this method applies.
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APPENDIX

Python Code

import random

import math

import numpy

import matp lo t l i b . pyplot as p l t

random . seed ( )

de f rand (a , b ) :

r e turn (b−a )∗ random . random ( ) + a

# Def ine s our o r i g i n a l s igmoid func t i on :

de f s igmoid (x ) :

t ry :

y = math . exp(−x )

except Overf lowError :

r e turn 0 .

r e turn 1/(1+y)

# Def ine s the new sigmoid func t i on − goes from −1 to 1

de f newsig (x , b ) :

r e turn ( s igmoid (x+b)+sigmoid (x−b))−1.

# Can be used to normal ize a l i s t or array , i f needed

de f normal ize ( x ) :

xmean = numpy .mean(x )

xstd = numpy . std (x , ddof = 1)

f o r i in l en (x ) :

x [ i ] = (x [ i ]−xmean)/ xstd
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# Class d e f i n i n g the neura l network

c l a s s ANeuron :

de f i n i t ( s e l f , ni , nh , no ) :

# Number o f in , hidden , out nodes s e t

s e l f . n i = ni + 1 # + 1 f o r b i a s

s e l f . nh = nh

s e l f . no = no

# weights and a c t i v a t i o n s a c t i va t ed

s e l f . wi = numpy . z e r o s ( ( s e l f . ni , s e l f . nh ) )

s e l f . wo = numpy . z e r o s ( ( s e l f . nh , s e l f . no ) )

f o r i in xrange ( s e l f . n i ) :

f o r j in xrange ( s e l f . nh ) :

s e l f . wi [ i ] [ j ] = rand ( −0 .2 ,0 .2 )

f o r i in xrange ( s e l f . nh ) :

f o r j in xrange ( s e l f . no ) :

s e l f . wo [ i ] [ j ] = rand ( −0 .2 ,0 .2 )

s e l f . a i = numpy . z e r o s ( s e l f . n i )

s e l f . ao = numpy . z e r o s ( s e l f . no )

s e l f . ah = numpy . z e r o s ( s e l f . nh )

# This i s in case the i n i t i a l i z a t i o n weights are needed

s e l f . f i r s t s t a t e = [ s e l f . wi . copy ( ) , s e l f . wo . copy ( ) ]

# This d e f i n e s the propor t ion and e r r o r bound f o r the

# amount o f ” low−t r a i n i n g ” data .

s e l f . l ow t ra in p rop = 0 .1

s e l f . l ow t r a i n t o l = 0 .02

# The d e r i v a t i v e f o r the new ac t i v a t i o n func t i on .

# i s de f ined here
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de f newsigprime ( s e l f , x , b , k ) :

r e turn − s e l f . ah [ k ] ∗ ( s e l f . ah [ k ]+1)+2∗( s igmoid (x+b)∗ s igmoid (x−b ) )

# This method randomizes the weights and

# ac t i v a t i o n s f o r another t r a i n i n g s e s s i o n .

de f untra in ( s e l f ) :

f o r i in xrange ( s e l f . n i ) :

f o r j in xrange ( s e l f . nh ) :

s e l f . wi [ i ] [ j ] = rand ( −0 .2 ,0 .2 )

f o r i in xrange ( s e l f . nh ) :

f o r j in xrange ( s e l f . no ) :

s e l f . wo [ i ] [ j ] = rand ( −0 .2 ,0 .2 )

s e l f . a i = numpy . z e r o s ( s e l f . n i )

s e l f . ao = numpy . z e r o s ( s e l f . no )

s e l f . ah = numpy . z e r o s ( s e l f . nh )

s e l f . f i r s t s t a t e = [ s e l f . wi . copy ( ) , s e l f . wo . copy ( ) ]

# This methoid performs ROC ana ly s i s , f i nd i n g

# best th r e sho ld and AUC. Trans lated from Maple

# code . Note that i t cu r r en t l y only handles the

# case o f a network with a SINGLE output .

de f r o c a n a l y s i s ( s e l f , actua l , p r ed i c t ed ) :

po s va lue s = [ ]

neg va lue s = [ ]

f o r i in xrange ( l en ( ac tua l ) ) :

i f a c tua l [ i ] > 0 . 9 :

po s va lue s . append ( pr ed i c t ed [ i ] [ 0 ] )

e l s e :

neg va lue s . append ( pr ed i c t ed [ i ] [ 0 ] )

po s va lue s . s o r t ( )

po s va lue s . r e v e r s e ( )
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pos num = len ( po s va lue s )

neg va lue s . s o r t ( )

neg va lue s . r e v e r s e ( )

neg num = len ( neg va lue s )

th r e sh s = [ ]

f o r i in xrange ( l en ( p r ed i c t ed ) ) :

th r e sh s . append ( pr ed i c t ed [ i ] [ 0 ] )

th r e sh s = s e t ( th r e sh s )

th r e sh s = l i s t ( th r e sh s )

th r e sh s . s o r t ( )

r o c l i s t = [ [ 1 , 1 ] ]

b e s t t h r e sh = [ 2 , 0 , [ 1 , 1 ] ]

f o r thre sh in th r e sh s :

whi l e l en ( po s va lue s ) > 0 and pos va lue s [−1] <= thresh :

po s va lue s . pop ( )

whi l e l en ( neg va lue s ) > 0 and neg va lue s [−1] <= thresh :

neg va lue s . pop ( )

tmp = ( [ l en ( neg va lue s ) / f l o a t ( neg num ) ,

l en ( po s va lue s ) / f l o a t ( pos num ) ] )

d i s t ance = math . s q r t (tmp [ 0 ] ∗∗ 2 + (tmp[1]−1) ∗∗ 2)

i f d i s t anc e < be s t t h r e sh [ 0 ] :

b e s t t h r e sh = [ d i s tance , thresh , tmp ]

r o c l i s t . append (tmp)

auc va lue = 0 .

f o r i in xrange ( l en ( r o c l i s t )−1):

auc va lue += ( abs ( r o c l i s t [ i ] [ 0 ] − r o c l i s t [ i +1 ] [ 0 ] ) ∗

( r o c l i s t [ i ] [ 1 ] + r o c l i s t [ i + 1 ] [ 1 ] ) )

auc va lue = auc va lue / 2

re turn [ b e s t t h r e sh [ 1 ] , auc va lue ]
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# This i s the feed−forward method . Takes an array o f

# input p lus the de s i r ed b value .

de f forward ( s e l f , inputs , b ) :

# To catch wrong number o f inputs

i f l en ( inputs ) != s e l f . n i − 1 :

r a i s e ValueError , ’Wrong # of inputs ’

# Sets a c t i v a t i on s , f i r s t input l e f t as

# 1 f o r b i a s .

s e l f . a i = numpy . i n s e r t ( inputs , 0 , 1 . 0 )

s e l f . ao = numpy . z e r o s ( s e l f . no )

s e l f . ah = numpy . z e r o s ( s e l f . nh )

# input sums i s inputs to hidden nodes ,

# hidden sums i s inputs to output node

s e l f . input sums = numpy . z e r o s ( s e l f . nh )

s e l f . hidden sums = numpy . z e r o s ( s e l f . no )

# Ca l cu l a t e s hidden node input , i n i t i a l i z e s

# count o f hidden l ay e r a c t i v a t i o n s in each

# given range . These va lue s could be changed .

s e l f . input sums = numpy . dot ( s e l f . a i , s e l f . wi )

s e l f . ah count = [ 0 . , 0 . , 0 . , 0 . , 0 . ]

# Ca l cu l a t e s hidden ac t i v a t i on s , counts a c t i v a t i o n s

# f o r each range .

f o r i in range ( s e l f . nh ) :

s e l f . ah [ i ] = newsig ( s e l f . input sums [ i ] , b )

i f s e l f . ah [ i ] < −0.9:

s e l f . ah count [ 0 ] += 1 .

e l i f s e l f . ah [ i ] < −0.2:
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s e l f . ah count [ 1 ] += 1 .

e l i f s e l f . ah [ i ] < 0 . 2 :

s e l f . ah count [ 2 ] += 1 .

e l i f s e l f . ah [ i ] < 0 . 9 :

s e l f . ah count [ 3 ] += 1 .

e l s e :

s e l f . ah count [ 4 ] += 1 .

# Ca l cu l a t e s outer l a y e r input and then

# the network output .

s e l f . hidden sums = numpy . dot ( s e l f . ah , s e l f . wo)

f o r i in xrange ( l en ( s e l f . ao ) ) :

s e l f . ao [ i ] = sigmoid ( s e l f . hidden sums [ i ] )

# Returns output array

re turn s e l f . ao

de f backpropagate ( s e l f , patterns , N, l e a rn r a t e , momentum, va l pa t s = [ ] ,

b s e t = 0 , mod i f i ed s igmoid = True ) :

# N i s the number o f t r a i n i n g epochs , v a l pa t s should be a l i s t

# o f v a l i d a t i o n patterns , i f a v a l i d a t i o n s e t i s used f o r e a r l y

# stopping . b s e t i s the s t a r t i n g value f o r b in the

# modi f i ed s igmoid model , and modi f i ed s igmoid i s True /

# False based on whether the s igmoid w i l l change during

# t r a i n i n g .

# Patterns should be input as l i s t s where each

# l i s t entry i s [ [ inputs ] , [ outputs ] ]

annea l s td = l e a r n r a t e / 5 .

v a l i d a t i o n = False

num pats = len ( pat t e rns )
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num val pats = len ( va l pa t s )

s e l f . xpat = numpy . z e r o s ( ( num pats , s e l f . n i − 1) )

s e l f . ypat = numpy . z e r o s ( ( num pats , s e l f . no ) )

f o r i in range ( num pats ) :

s e l f . xpat [ i ] = pat t e rns [ i ] [ 0 ]

# outputs are re−s i z e d to range from 0.005 to .995

s e l f . ypat [ i ] = pat t e rns [ i ] [ 1 ]

s e l f . ypat [ i ] = 0 .99 ∗ s e l f . ypat [ i ] + 0 .01 ∗ 0 .5

r a n d l i s t = range ( l en ( pat t e rn s ) )

s e l f . v a l e r r o r s = numpy . z e r o s (N)

# This execute s i f us ing a va l i d a t i o n s e t

i f v a l pa t s != [ ] :

v a l i d a t i o n = True

s e l f . va l x = numpy . z e r o s ( ( num val pats , s e l f . n i − 1) )

s e l f . va l y = numpy . z e r o s ( ( num val pats , s e l f . no ) )

va l output = numpy . z e r o s ( ( num val pats , s e l f . no ) )

va l e r r o r m in = 0 .

s e l f . b e s t s t a t e = [ ]

s e l f . b e s t i t e r = 0

f o r i in range ( num val pats ) :

s e l f . va l x [ i ] = va l pa t s [ i ] [ 0 ]

s e l f . va l y [ i ] = va l pa t s [ i ] [ 1 ]

s e l f . va l y [ i ] = 0 .99 ∗ s e l f . va l y [ i ] + 0 .01 ∗ 0 .5

# Deltas are p a r t i a l d e r i v a t i v e values ,

# y product and h product are used

# during backpropagat ion c a l c s .

s e l f . d e l t a ou t = numpy . z e r o s ( ( s e l f . nh , s e l f . no ) )

s e l f . d e l t a i n = numpy . z e r o s ( ( s e l f . ni , s e l f . nh ) )

y product = numpy . z e r o s ( ( 1 , s e l f . no ) )

h product = numpy . z e r o s ( ( 1 , s e l f . nh ) )
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s e l f . e r r o r s = numpy . z e r o s (N)

# s e l f . b i s the i n f l e c t i o n po int f o r the s igmoid

s e l f . b = b s e t

s e l f . l a s t i t e r = 0

s e l f . b e s t i t e r = 0

s e l f . e a r l y s t opped = False

# matr i ce s are used to ( hope fu l l y ) speed up ca l c u l a t i o n s ,

# changexx are used to c a l c u l a t e change in weights ,

# used f o r momentum

s e l f . change wi = numpy . z e r o s ( ( s e l f . ni , s e l f . nh ) )

s e l f . change wo = numpy . z e r o s ( ( s e l f . nh , s e l f . no ) )

# This i n i t i a l i z e s matr i ce s f o r input and output

# weight annea l ing .

annea l i n = numpy . z e r o s ( ( s e l f . ni , s e l f . nh ) )

annea l out = numpy . z e r o s ( ( s e l f . nh , s e l f . no ) )

# This i n i t i a l i z e s propor t ion counts f o r the ranges

# o f hidden a c t i v a t i o n s . Can be used in graphing

# l a t e r to he lp v i s u a l i z e where the inputs are going .

s e l f . hdnpctlow = [ ]

s e l f . hdnpctmidlow =[ ]

s e l f . hdnpctmid = [ ]

s e l f . hdnpctmidhi = [ ]

s e l f . hdnpcthi = [ ]

s e l f . b l i s t = [ ]

# Backpropagation beg ins here . There i s a b i t o f ugly

# f i d d l i n g with matr i ce s . Could maybe be implemented in a

# f a s t e r way .

f o r i in xrange (N) :

s e l f . l a s t i t e r = i

s e l f . d e l t a i n = numpy . z e r o s ( ( s e l f . ni , s e l f . nh ) )

s e l f . d e l t a ou t = numpy . z e r o s ( ( s e l f . nh , s e l f . no ) )
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hdnlow = 0 .

hdnmidlow = 0 .

hdnmid = 0 .

hdnmidhi = 0 .

hdnhi = 0 .

s e l f . b l i s t . append ( s e l f . b )

f o r j in r a n d l i s t : #r a n d l i s t used to randomize pats

s e l f . forward ( s e l f . xpat [ j ] , s e l f . b )

hdnlow += s e l f . ah count [ 0 ]

hdnmidlow += s e l f . ah count [ 1 ]

hdnmid += s e l f . ah count [ 2 ]

hdnmidhi += s e l f . ah count [ 3 ]

hdnhi += s e l f . ah count [ 4 ]

bpa r t i a l = 0 .

f o r k in xrange ( s e l f . no ) :

y product [ 0 ] [ k ] = ( ( s e l f . ypat [ j ] [ k ] − s e l f . ao [ k ] ) ∗

s e l f . ao [ k ] ∗ (1 − s e l f . ao [ k ] ) )

s e l f . e r r o r s [ i ] += 0 .5 ∗ ( s e l f . ypat [ j ] [ k ] − s e l f . ao [ k ] ) ∗∗ 2

# Pa r t i a l with r e sp e c t to hidden −> output weights

# i s c a l c u l a t ed here .

s e l f . d e l t a ou t = numpy . dot ( s e l f . ah . reshape ( s e l f . nh , 1 ) ,

y product )

h product [ 0 ] = numpy . dot ( y product , s e l f . wo .T)

f o r k in xrange ( s e l f . nh ) :

h product [ 0 ] [ k ] = ( h product [ 0 ] [ k ] ∗

s e l f . newsigprime ( s e l f . input sums [ k ] ,

s e l f . b , k ) )

# Pa r t i a l with r e sp e c t to input −> hidden weights

# i s c a l c u l a t ed here .

f o r k in xrange ( s e l f . no ) :

f o r m in xrange ( s e l f . nh ) :
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bpa r t i a l += ( y product [ 0 ] [ k ] ∗ s e l f . wo [m] [ k ] ∗

s e l f . ah [m] ∗

( s igmoid ( s e l f . input sums [m] + s e l f . b ) −

s igmoid ( s e l f . input sums [m]− s e l f . b ) ) )

s e l f . d e l t a i n = numpy . dot ( s e l f . a i . reshape ( s e l f . ni , 1 ) ,

h product )

s e l f . change wi = ( l e a r n r a t e ∗ s e l f . d e l t a i n +

momentum ∗ s e l f . change wi )

s e l f . change wo = ( l e a r n r a t e ∗ s e l f . d e l t a ou t +

momentum ∗ s e l f . change wo )

s e l f . wi += s e l f . change wi

s e l f . wo += s e l f . change wo

s e l f . b −= ( l e a r n r a t e ∗ bpa r t i a l )

random . s h u f f l e ( r a n d l i s t )

# Proport ions o f hidden a c t i v a t i o n outputs in each range

# f i n a l l y c a l c u l a t ed here

s e l f . hdnpctlow . append ( hdnlow / ( s e l f . nh ∗ l en ( pat t e rns ) ) )

s e l f . hdnpctmidlow . append ( hdnmidlow / ( s e l f . nh ∗ l en ( pat t e rns ) ) )

s e l f . hdnpctmid . append (hdnmid / ( s e l f . nh ∗ l en ( pat t e rns ) ) )

s e l f . hdnpctmidhi . append ( hdnmidhi / ( s e l f . nh ∗ l en ( pat t e rns ) ) )

s e l f . hdnpcthi . append ( hdnhi / ( s e l f . nh ∗ l en ( pat t e rns ) ) )

# The f o l l ow i ng i s the a lgor i thm f o r e a r l y stopping .

# I f a minimum in va l i d a t i o n e r r o r i s reached and

# not lowered in the succeed ing 50 i t e r a t i o n s ,

# backpropagat ion i s stopped and the network r e tu rn s

# to i t s s t a t e at minimum va l i d a t i o n e r r o r .

i f v a l i d a t i o n :

f o r j in xrange ( num val pats ) :

va l output [ j ] = s e l f . forward ( s e l f . va l x [ j ] , s e l f . b )

f o r k in xrange ( s e l f . no ) :

s e l f . v a l e r r o r s [ i ] += 0 .5 ∗ ( s e l f . va l y [ j ] [ k ] −
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va l output [ j ] [ k ] ) ∗∗ 2

i f i == 0 or s e l f . v a l e r r o r s [ i ] <= va l e r r o r m in :

va l e r r o r m in = s e l f . v a l e r r o r s [ i ]

s top count = 0

temp save = [ s e l f . wi . copy ( ) , s e l f . wo . copy ( ) , s e l f . b , i ]

e l s e :

s top count += 1

i f s top count == 50 or i == N − 1 :

s e l f . wi = temp save [ 0 ]

s e l f . wo = temp save [ 1 ]

s e l f . b = temp save [ 2 ]

s e l f . b e s t i t e r = temp save [ 3 ]

s e l f . e a r l y s t opped = True

re turn None

# Occas iona l e r r o r s are pr in ted to help get a f e e l f o r

# network performance .

i f i%20==0:

p r i n t s e l f . e r r o r s [ i ]

# I f the modi f i ed network i s be ing used ,

# and low−t r a i n i n g propor t ion i s too low or too high ,

# the b value i s ad justed here .

# Low propor t ion = in c r e a s e b ,

# High proport ion = dec rea se b .

# The f o l l ow i ng i s commented out as i t p e r t a i n s only

# to the f i r s t method . The second method does not use i t .

# i f mod i f i ed s igmoid == True :

# i f s e l f . hdnpctmid [−1] < ( s e l f . l ow t ra in p rop −

# s e l f . l ow t r a i n t o l ) :

# s e l f . b += 0.05

# e l i f s e l f . hdnpctmid [−1] > ( s e l f . l ow t ra in p rop +

# s e l f . l ow t r a i n t o l ) :
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# s e l f . b = max( s e l f . b − 0 . 05 , 0 . )

# Annealing done every 20 th i t e r a t i o n .

# These va lue s could po s s i b l y use tweaking .

i f i%20==0 and i > 0 :

ann e a l t o l = s e l f . e r r o r s [ i ] / 10000 .

i f abs ( s e l f . e r r o r s [ i ] − s e l f . e r r o r s [ i −1]) < ann e a l t o l :

# annea l ing normally d i s t r i b u t e d around 0 ,

# s t dev = annea lS i z e

f o r j in xrange ( s e l f . n i ) :

f o r k in xrange ( s e l f . nh ) :

annea l i n [ j ] [ k ] = random . gauss (0 , annea l s td )

f o r m in xrange ( s e l f . no ) :

annea l out [ k ] [m] = random . gauss (0 , annea l s td )

# annea l ing s ca l ed by cur rent e r r o r s i z e

annea l i n = s e l f . e r r o r s [ i ] ∗ annea l i n

annea l out = s e l f . e r r o r s [ i ] ∗ annea l out

# change in weights updated w/ annea l ing

s e l f . wi += annea l i n

s e l f . wo += annea l out

p r i n t ’ Annealing now . ’

de f c r e a t epa t t e rn s ( s e l f , num pats , v a l i d a t i o n = False , num val pats = 0 ,

f r om f i l e = False , f i l ename = ’ ’ , s e p f i l e s = ’ noinput ’ ,

t r a i n f i l e = ’ ’ , t e s t f i l e = ’ ’ , type = ’ x3x4 ’ ) :

# This method gene ra t e s pat t e rns f o r the

# network . I f not from a f i l e , they w i l l be generated

# due to the ”modi f i ed i n c l u s i v e OR” ru l e s .

# Data f i l e s should have one pattern per row with outputs

# at the end o f the row . I f one f i l e i s used ,

# t r a i n i n g and eva lua t i on pat t e rns are s e l e c t e d

# at random . This was j u s t a convenience f o r me .
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t r a i n p a t s = [ ]

t e s t p a t s = [ ]

i f v a l i d a t i o n :

v a l pa t s = [ ]

i f num val pats == 0 :

num val pats = in t ( raw input ( ’Number o f s topping pats ? ’ ) )

i f f r om f i l e :

i f s e p f i l e s == ’ noinput ’ :

s e p f i l e s = s t r ( raw input ( ’ Train ing / t e s t i n g data in separa t e f i l e s ? ’ ) )

i f s e p f i l e s == ’ yes ’ :

i f t r a i n f i l e == ’ ’ :

t r a i n f i l e = s t r ( raw input ( ’ Train ing data from which f i l e ? ’ ) )

i f t e s t f i l e == ’ ’ :

t e s t f i l e = s t r ( raw input ( ’ Test ing data from which f i l e ? ’ ) )

f i l e 1 = open ( t r a i n f i l e )

f o r l i n e in f i l e 1 :

l i n e 2 = [ ]

l i n e 1 = map( f l o a t , l i n e . s p l i t ( ) )

i f l en ( l i n e 1 ) != ( s e l f . n i − 1) + s e l f . no :

r a i s e ValueError , ’ I n c o r r e c t # o f inputs / outputs ’

f o r i in xrange ( s e l f . no ) :

l i n e 2 . append ( l i n e 1 . pop ( ) )

l i n e 2 . r e v e r s e ( )

t r a i n p a t s . append ( [ l i n e1 , l i n e 2 ] )

i f v a l i d a t i o n :

random . s h u f f l e ( t r a i n p a t s )

f o r i in xrange ( num val pats ) :

v a l pa t s . append ( t r a i n p a t s . pop ( ) )

f i l e 1 . c l o s e ( )

f i l e 2 = open ( t e s t f i l e )

f o r l i n e in f i l e 2 :
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l i n e 2 = [ ]

l i n e 1 = map( f l o a t , l i n e . s p l i t ( ) )

i f l en ( l i n e 1 ) != ( s e l f . n i − 1) + s e l f . no :

r a i s e ValueError , ’ I n c o r r e c t # o f inputs / outputs ’

f o r i in xrange ( s e l f . no ) :

l i n e 2 . append ( l i n e 1 . pop ( ) )

l i n e 2 . r e v e r s e ( )

t e s t p a t s . append ( [ l i n e1 , l i n e 2 ] )

f i l e 2 . c l o s e ( )

e l s e :

f i l ename1 = f i l ename

i f f i l ename1 == ’ ’ :

f i l ename1 = s t r ( raw input ( ’Name o f data f i l e ? ’ ) )

a l l p a t s = [ ]

f i l e 1 = open ( f i l ename1 )

f o r l i n e in f i l e 1 :

l i n e 2 = [ ]

l i n e 1 = map( f l o a t , l i n e . s p l i t ( ) )

i f l en ( l i n e 1 ) != ( s e l f . n i − 1) + s e l f . no :

r a i s e ValueError , ’ I n c o r r e c t # o f inputs / outputs ’

f o r i in xrange ( s e l f . no ) :

l i n e 2 . append ( l i n e 1 . pop ( ) )

l i n e 2 . r e v e r s e ( )

a l l p a t s . append ( [ l i n e1 , l i n e 2 ] )

f i l e 1 . c l o s e ( )

i f v a l i d a t i o n :

random . s h u f f l e ( a l l p a t s )

f o r i in xrange ( num val pats ) :

v a l pa t s . append ( a l l p a t s . pop ( ) )

t r a i n p a t s = random . sample ( a l l p a t s , num pats )

t e s t p a t s = random . sample ( a l l p a t s , num pats )
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de l a l l p a t s

e l i f type == ’ x3x4 ’ :

f o r i in xrange ( num pats ) :

t r a i n p a t s . append ( [ [ ] , [ 0 . ] ] )

t e s t p a t s . append ( [ [ ] , [ 0 . ] ] )

f o r j in xrange ( s e l f . ni −1):

t r a i n p a t s [ i ] [ 0 ] . append ( random . gauss (0 , 10) )

t e s t p a t s [ i ] [ 0 ] . append ( random . gauss (0 , 10) )

i f min ( t r a i n p a t s [ i ] [ 0 ] [ 2 ] , t r a i n p a t s [ i ] [ 0 ] [ 3 ] ) > 0 :

t r a i n p a t s [ i ] [ 1 ] [ 0 ] = 1

e l i f max( t r a i n p a t s [ i ] [ 0 ] [ 2 ] , t r a i n p a t s [ i ] [ 0 ] [ 3 ] ) > 0 :

out rand = random . random ( )

# Mis labe l s , on average , 5% of data

i f out rand < 0 . 9 :

t r a i n p a t s [ i ] [ 1 ] [ 0 ] = 1 .

i f max( t e s t p a t s [ i ] [ 0 ] [ 2 ] , t e s t p a t s [ i ] [ 0 ] [ 3 ] ) > 0 :

t e s t p a t s [ i ] [ 1 ] [ 0 ] = 1 .

i f v a l i d a t i o n :

f o r i in xrange ( num val pats ) :

v a l pa t s . append ( [ [ ] , [ 0 ] ] )

f o r j in xrange ( s e l f . ni −1):

v a l pa t s [ i ] [ 0 ] . append ( random . gauss ( 0 , 10 ) )

i f min ( va l pa t s [ i ] [ 0 ] [ 2 ] , v a l pa t s [ i ] [ 0 ] [ 3 ] ) > 0 :

v a l pa t s [ i ] [ 1 ] [ 0 ] = 1 .

e l i f max( va l pa t s [ i ] [ 0 ] [ 2 ] , v a l pa t s [ i ] [ 0 ] [ 3 ] ) > 0 :

out rand = random . random ( )

i f out rand < 0 . 9 :

v a l pa t s [ i ] [ 1 ] [ 0 ] = 1 .

pats = [ t r a i n pa t s , t e s t p a t s ]

i f v a l i d a t i o n :

pats . append ( va l pa t s )

57



# The method re tu rn s [ t r a i n pa t s , t e s t p a t s ( , v a l i d a t i o n pa t s ) ]

r e turn pats

de f s amp l ed t r a i n s e t ( s e l f , pats , s e t cho i c e , random sample pos num ,

random sample neg num ) :

# This method randomly samples a s e t o f negat ive

# pat t e rns from the t r a i n i n g s e t . This was used

# f o r convenience whi l e studying TIC data .

a l l p o s p a t s = [ ]

pos pat s = [ ]

a l l n e g p a t s = [ ]

neg pats = [ ]

i f s e t c h o i c e == 0 :

sample pos = True

sample neg = False

e l i f s e t c h o i c e == 1 :

sample pos = False

sample neg = True

e l s e :

sample pos = True

sample neg = True

f o r pattern in pats :

i f pattern [ 1 ] [ 0 ] > 0 . 9 :

a l l p o s p a t s . append ( pattern )

e l s e :

a l l n e g p a t s . append ( pattern )

i f sample pos :

random . s h u f f l e ( a l l p o s p a t s )

e l s e :

random sample pos num = len ( a l l p o s p a t s )
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i f sample neg :

random . s h u f f l e ( a l l n e g p a t s )

e l s e :

random sample neg num = len ( a l l n e g p a t s )

f o r i in xrange ( random sample neg num ) :

neg pats . append ( a l l n e g p a t s . pop ( ) )

f o r i in xrange ( random sample pos num ) :

pos pat s . append ( a l l p o s p a t s . pop ( ) )

a l l p a t s = [ ]

f o r pattern in pos pat s :

a l l p a t s . append ( pattern )

f o r pattern in neg pats :

a l l p a t s . append ( pattern )

re turn a l l p a t s

de f m i s l abe l ( s e l f , pats , mislabeled num ) :

# This method randomly m i s l ab e l s a g iven number o f

# t r a i n i n g pat t e rns . I t i s des igned f o r pat t e rn s

# with only ONE output and a binary (0 , 1 ) c l a s s i f i c a t i o n .

mi s l abe l ed = random . sample ( xrange ( l en ( pats ) ) , mislabeled num )

f o r item in mi s l abe l ed :

pats [ item ] [ 1 ] [ 0 ] = 1 − pats [ item ] [ 1 ] [ 0 ]

r e turn pats

de f s t a t a n a l y s i s ( s e l f , num sess ions , num pats , va l i da t i on , f r om f i l e , N,

l e a rn r a t e , momentum, low tra in prop , l ow t r a i n t o l , b s e t ) :

# This method i s run by another program to

# generate AUC data and graphs f o r comparison with

# old s igmoid func t i on . User input i s very s p e c i f i c ,

# as i t was des igned f o r my per sona l use .

f i l ename1 = s t r ( raw input ( ’ Filename f o r new sigmoid data ? ’ ) )
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f i l ename2 = s t r ( raw input ( ’ Filename f o r o ld s igmoid data ? ’ ) )

f i l ename4 = s t r ( raw input ( ’ Filename f o r t e s t s e t output ? ’ ) )

f i g p r e f i x = s t r ( raw input ( ’ P r e f i x f o r e r r o r f i g u r e s ? ’ ) )

f i l e 1 = open ( f i l ename1 , ’ a ’ )

f i l e 1 . wr i t e ( ’New Sigmoid Data\nAUCTrain\tAUCTest\ t \ tF ina l Err .\ t ’ +

’ S ta r t i ng B\ tF ina l B\ t \tL . Rate\ t \tMomentum\ t ’ +

’ I t e r a t i o n s \n\n ’ )

f i l e 1 . c l o s e ( )

f i l e 2 = open ( f i l ename2 , ’ a ’ )

f i l e 2 . wr i t e ( ’ Old Sigmoid Data\nAUCTrain\tAUCTest\ t \ tF ina l Err .\ t ’ +

’ F ina l B\ t \tL . Rate\ t \tMomentum\ t I t e r a t i o n s \n\n ’ )

f i l e 2 . c l o s e ( )

f i l ename3 = ’ ’

t r a i n f i l e = ’ ’

t e s t f i l e = ’ ’

s e p f i l e s = ’ ’

num val pats = 0

i f v a l i d a t i o n :

num val pats = in t ( raw input ( ’How many va l i d a t i o n pat t e rns ? ’ ) )

random sample = False

random sample input = s t r ( raw input ( ’ Randomly sample pat t e rn s ? ’+

’Type yes or no . ’ ) )

m i s l abe l ed va lu e = False

m i s l abe l ed input = s t r ( raw input ( ’ Mi s l abe l t r a i n i n g pat t e rn s ? ’ +

’Type yes or no . ’ ) )

i f m i s l abe l ed input == ’ yes ’ :

m i s l abe l ed va lu e = True

mislabeled num = in t ( raw input ( ’ Mi s l abe l how many t r a i n i n g pat t e rns ? ’ ) )

i f random sample input == ’ yes ’ :

s e t c h o i c e = in t ( raw input ( ’ Type 0 to sample pos , 1 f o r neg , 2 f o r both . ’ ) )

random sample = True
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i f s e t c h o i c e == 0 :

random sample pos num = in t ( raw input ( ’ Pos random sample s i z e ? ’ ) )

random sample neg num = 0

e l i f s e t c h o i c e == 1 :

random sample neg num = in t ( raw input ( ’Neg Random sample s i z e ? ’ ) )

random sample pos num = 0

e l s e :

random sample pos num = in t ( raw input ( ’ Pos random sample s i z e ? ’ ) )

random sample neg num = in t ( raw input ( ’Neg Random sample s i z e ? ’ ) )

i f f r om f i l e :

s e p f i l e s = s t r ( raw input ( ’ Train ing / t e s t i n g data in separa t e ’ +

’ f i l e s ? Type yes or no . ’ ) )

i f s e p f i l e s == ’ yes ’ :

t r a i n f i l e = s t r ( raw input ( ’ Train ing data from which f i l e ? ’ ) )

t e s t f i l e = s t r ( raw input ( ’ Test ing data from which f i l e ? ’ ) )

e l s e :

f i l ename3 = s t r ( raw input ( ’ Read data from which f i l e ? ’ ) )

pats = [ ]

#s e l f . l ow t ra in p rop = low t ra in p rop

#s e l f . l ow t r a i n t o l = l ow t r a i n t o l

f o r i in range ( num sess ions ) :

s e l f . untra in ( )

pats master = s e l f . c r e a t epa t t e r n s ( num pats , va l i da t i on , num val pats ,

f r om f i l e , f i l ename3 , s e p f i l e s ,

t r a i n f i l e , t e s t f i l e )

pats = pats master [ : ]

v a l pa t s = [ ]

i f v a l i d a t i o n :

v a l pa t s = pats . pop ( )

s e l f . t e s t p a t s = pats . pop ( )

a l l t r a i n p a t s = pats . pop ( )
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t r a i n p a t s = a l l t r a i n p a t s

i f random sample :

t r a i n p a t s = s e l f . s amp l ed t r a i n s e t ( a l l t r a i n p a t s , s e t cho i c e ,

random sample pos num ,

random sample neg num )

i f m i s l ab e l ed va lu e :

t r a i n p a t s = s e l f . m i s l abe l ( a l l t r a i n p a t s , mislabeled num )

t r a i n a c t u a l = [ ]

t e s t a c t u a l = [ ]

t r a i n p r e d i c t = [ ]

t e s t p r e d i c t = [ ]

s e l f . untra in ( )

s e l f . backpropagate ( t r a i n pa t s , N, l e a rn r a t e , momentum, va l pat s ,

b set , True )

p l t . f i g u r e ( )

p l t . subp lot ( 2 , 1 , 1 )

p l t . p l o t ( xrange ( l en ( s e l f . e r r o r s ) ) , s e l f . e r r o r s , ’ r− ’ ,

xrange ( l en ( s e l f . v a l e r r o r s ) ) , s e l f . v a l e r r o r s , ’b− ’ ,

xrange ( l en ( s e l f . b l i s t ) ) , s e l f . b l i s t , ’ g− ’)

f ig name = (’%s ’ %f i g p r e f i x + ’ nsError ’ + ’ i t e r%s ’ %i +

’b%s ’ %b s e t + ’ . png ’ )

#p l t . s a v e f i g ( f igname )

p l t . subplot ( 2 , 1 , 2 )

p l t . p l o t ( xrange ( l en ( s e l f . e r r o r s ) ) , s e l f . e r r o r s , ’ r− ’ ,

xrange ( l en ( s e l f . v a l e r r o r s ) ) , s e l f . v a l e r r o r s , ’b− ’)

p l t . p l o t ( xrange ( l en ( s e l f . hdnpctlow ) ) , s e l f . hdnpctlow , c o l o r =’cyan ’ ,

l i n e s t y l e =’ s o l i d ’ )

p l t . p l o t ( xrange ( l en ( s e l f . hdnpctlow ) ) , s e l f . hdnpctmidlow ,

c o l o r =’green ’ , l i n e s t y l e =’ s o l i d ’ )

p l t . p l o t ( xrange ( l en ( s e l f . hdnpctlow ) ) , s e l f . hdnpctmid ,

c o l o r =’yel low ’ , l i n e s t y l e =’ s o l i d ’ )
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p l t . p l o t ( xrange ( l en ( s e l f . hdnpctlow ) ) , s e l f . hdnpctmidhi ,

c o l o r =’orange ’ , l i n e s t y l e =’ s o l i d ’ )

p l t . p l o t ( xrange ( l en ( s e l f . hdnpctlow ) ) , s e l f . hdnpcthi ,

c o l o r =’magenta ’ , l i n e s t y l e =’ s o l i d ’ )

p l t . yl im ( ( 0 , 1 ) )

#figname = ’%s ’ %f i g p r e f i x + ’ nsErrorShort ’ + ’ i t e r%s ’ %i + ’b%s ’ %k + ’ . png ’

p l t . s a v e f i g ( f ig name )

p l t . c l o s e ( )

f o r j in xrange ( l en ( t r a i n p a t s ) ) :

t r a i n p r e d i c t . append ( s e l f . forward ( t r a i n p a t s [ j ] [ 0 ] , s e l f . b ) )

t r a i n a c t u a l . append ( t r a i n p a t s [ j ] [ 1 ] [ 0 ] )

f i l e 4 = open ( f i l ename4 , ’ a ’ )

f o r j in xrange ( l en ( s e l f . t e s t p a t s ) ) :

t e s t p r e d i c t . append ( s e l f . forward ( s e l f . t e s t p a t s [ j ] [ 0 ] , s e l f . b ) )

f i l e 4 . wr i t e ( ’% f \ t ’ %( t e s t p r e d i c t [ j ] ) )

t e s t a c t u a l . append ( s e l f . t e s t p a t s [ j ] [ 1 ] [ 0 ] )

f i l e 4 . wr i t e ( ’\n ’ )

f i l e 4 . c l o s e ( )

t r a i n auc = s e l f . r o c a n a l y s i s ( t r a i n a c tua l , t r a i n p r e d i c t )

t e s t au c = s e l f . r o c a n a l y s i s ( t e s t a c t u a l , t e s t p r e d i c t )

i f v a l i d a t i o n :

s e l f . l a s t i t e r = s e l f . b e s t i t e r

l a s t e r r o r = s e l f . e r r o r s [ s e l f . l a s t i t e r ]

f i l e 1 = open ( f i l ename1 , ’ a ’ )

f i l e 1 . wr i t e ( ’% f \ t%f \ t%f \ t%f \ t%f \ t%f \ t%f \ t%i \n ’

%( t r a i n auc [ 1 ] , t e s t au c [ 1 ] , l a s t e r r o r , b set ,

s e l f . b , l e a r n r a t e , momentum, s e l f . l a s t i t e r + 1) )

f i l e 1 . c l o s e ( )

s e l f . untra in ( )

p r i n t i +1 , ’ newsig datase t ( s ) c o l l e c t e d ’

t r a i n a c t u a l = [ ]
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t e s t a c t u a l = [ ]

t r a i n p r e d i c t = [ ]

t e s t p r e d i c t = [ ]

s e l f . backpropagate ( t r a i n pa t s , N, l e a rn r a t e , momentum, va l pat s ,

0 . , Fa l se )

p l t . f i g u r e ( )

p l t . subp lot ( 2 , 1 , 1 )

p l t . p l o t ( xrange ( l en ( s e l f . e r r o r s ) ) , s e l f . e r r o r s , ’ r− ’ ,

xrange ( l en ( s e l f . v a l e r r o r s ) ) , s e l f . v a l e r r o r s , ’b− ’)

f ig name = ’%s ’ %f i g p r e f i x + ’ osError ’ + ’ i t e r%s ’ %i + ’ . png ’

#p l t . s a v e f i g ( f igname )

p l t . subplot ( 2 , 1 , 2 )

p l t . p l o t ( xrange ( l en ( s e l f . e r r o r s ) ) , s e l f . e r r o r s , ’ r− ’ ,

xrange ( l en ( s e l f . v a l e r r o r s ) ) , s e l f . v a l e r r o r s , ’ b− ’)

p l t . yl im ( ( 0 , 1 ) )

#figname = ’%s ’ %f i g p r e f i x + ’ osErrorShort ’ + ’ i t e r%s ’ %i + ’ . png ’

p l t . s a v e f i g ( f ig name )

p l t . c l o s e ( )

f o r j in xrange ( l en ( t r a i n p a t s ) ) :

t r a i n p r e d i c t . append ( s e l f . forward ( t r a i n p a t s [ j ] [ 0 ] , s e l f . b ) )

t r a i n a c t u a l . append ( t r a i n p a t s [ j ] [ 1 ] [ 0 ] )

f o r j in xrange ( l en ( s e l f . t e s t p a t s ) ) :

t e s t p r e d i c t . append ( s e l f . forward ( s e l f . t e s t p a t s [ j ] [ 0 ] , s e l f . b ) )

t e s t a c t u a l . append ( s e l f . t e s t p a t s [ j ] [ 1 ] [ 0 ] )

t r a i n auc = s e l f . r o c a n a l y s i s ( t r a i n a c tua l , t r a i n p r e d i c t )

t e s t au c = s e l f . r o c a n a l y s i s ( t e s t a c t u a l , t e s t p r e d i c t )

i f v a l i d a t i o n :

s e l f . l a s t i t e r = s e l f . b e s t i t e r

l a s t e r r o r = s e l f . e r r o r s [ s e l f . l a s t i t e r ]

f i l e 2 = open ( f i l ename2 , ’ a ’ )

f i l e 2 . wr i t e ( ’% f \ t%f \ t%f \ t%f \ t%f \ t%f \ t%i \n ’

64



%(t r a i n auc [ 1 ] , t e s t au c [ 1 ] , l a s t e r r o r , s e l f . b ,

l e a r n r a t e , momentum, s e l f . l a s t i t e r + 1) )

f i l e 2 . c l o s e ( )

s e l f . untra in ( )

p r i n t i +1 , ’ o l d s i g datase t ( s ) c o l l e c t e d ’
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