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ABSTRACT

A Consensus Model for Electroencephalogram Data Via the S-Transform

by

Andrew Young

A consensus model combines statistical methods with signal processing to create a

better picture of the family of related signals. In this thesis, we will consider 32 signals

produced by a single electroencephalogram (EEG) recording session. The consensus

model will be produced by using the S-Transform of the individual signals and then

normalized to unit energy. A bootstrapping process is used to produce a consensus

spectrum. This leads to the consensus model via the inverse S-Transform of the

consensus spectrum. The method will be applied to both a control and experimental

EEG to show how the results can be used in clinical settings to analyze experimental

outcomes.
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1 INTRODUCTION AND BACKGROUND

Tumors, strokes, amyotrophic lateral sclerosis, and other brain disorders have

an impact on a patient’s ability to function. The syndrome known as Locked-in

can occur from trauma, medication overdose, strokes, and other brain damage [7].

This condition prevents an awake patient from communicating. The degree of being

locked-in varies from only being able to blink the eyes to being totally locked-in where

the patient has total paralysis.

Computers and related technology such as letter boards are often used to facili-

tate communication. However, in order for a patient to communicate through a letter

board the patient must be able to acknowledge the correct letter [6]. A Locked-in

patient with no motor-sensory ability still has a response which is more subtle, in

the form of electrical impulses from the brain to the scalp [6]. These signals can be

measured and can be used to control letter selection in a Brain Computer Interface

(BCI).

Electroencephalography (EEG) is the study of electrical impulses from the scalp

[19]. The EEG harness used in this research has 32 electrodes. Each electrode takes

256 samples per second. These 256 samples are interpolated to make a signal via a

BCI [19]. A patient’s response corresponds to higher amplitude areas of interest in

the signal. The analysis of EEG to find the spikes in the amplitude can be approached

in many ways. For instance, it is a common practice to analyze signals via the Fourier

Transform [28], which is introduced later. This allows a psychologist to stack each

transformed time series in the EEG family and see in the signal where the spikes

in frequency are located. Currently, one approach to finding an overall pattern EEG
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signals uses a moving average, where a moving average is the average of the amplitude

of a signal at time n and the amplitude of the signal at the previous time, n−1, with

the P300 BCI [19]. An alternative to a moving average is a consensus model. This

technique was developed in genomics and proteomics for identifying ’hot spots’ in

DNA, RNA, and protein interactions [29]. In this thesis, we adapt the consensus

model technology to the analysis of EEG families and show that it is superior to

that of a moving average. Consensus modeling in genomics and proteomics is very

successful, and we show that the same techniques are applicable to EEG analysis via

the S-Transform.

1.1 Electroencephalography

Communication is vital in human interactions. A system for communication

is under development for individuals whose bodies have failed yet their minds are

sharp. Brain Computer Interface (BCI) is a way for humans to communicate through

their brain and computer [16]. There are two types of BCI, non-invasive and invasive.

Patients with ALS prefer non-invasive measures so BCI research has focused on that

direction. Patients prefer EEG to invasive methods for data collection [16].

An EEG signal generates an array of signals, one signal for each node in the

recording net. Figures 1 and 2 show two original signals from the N7SpllT family.

There are many techniques to analyze an array of signals. For instance, a Fourier

Transformation, which we introduce later, transforms signals from the time domain

to the frequency domain [28]. There is also the moving average used currently and

a generalization of the Fourier Transform known as the S-Transform, which is the

11
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Figure 2: Signal 2 from the N7SpllT Family
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focus of this project.

1.2 History Of Consensus Modeling In Genetics And Proteomics

The motivation for the use of a consensus model in EEG data is its success

in genomics and proteomics. The identification of protein coding regions, which are

exons in genes, is based on the presence of a period-3 characteristic that is only in

specific areas of DNA [26]. The period-3 component of a DNA molecule is well known

from the research of Trifonov and Sussman in 1980 where they observed the codon

structure involved in the translation of base sequences into amino acids [23]. How-

ever this periodicity occurs in other coding regions which makes identifying specific

coding regions challenging because these are prediction methods based on computer

generated nucleotide distributions [30]. These nucleotide distribution methods are

still being modified for efficiency and accuracy [30].

Each amino acid has a unique side chain which defines the chemical property of

the amino acid [29]. An amino acid sequence can be converted to a sequence {xk}Nk=1,

where each xj is a numerical amino acid descriptor derived from side chain unique-

ness. [8]. For example, Electron-Ion Interaction Potentials (EIIP) or graph theoretic

invariants can be analyzed in terms of periodicity to find the characteristic frequency

of a family of proteins [29]. The characteristic frequency of EIIP is determined in

terms of how much of the signal is in each band of frequencies over the range of

frequencies.

For example, each of the 96 PDZ domains can be represented as a sequence

of EIIP. Values are analyzed in the frequency domain and the magnitude of each
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frequency is recorded as a signal. Analyzing signal attributes versus the frequency is

a spectral representation. Figures 3 and 4 are spectral representations of two PDZ

Domains.

Taken individually, it is not clear what the characteristic frequency of PDZ

domains is. In contrast, figure 5 shows the characteristic frequency of the entire

family. This consensus model can subsequently be used to develop a digital filter

that identifies where in a protein sequence amino acids key to the protein function

can be found (i.e, the protein’s ‘hot spot’).

1.3 Signal Spaces

A vector space consists of a nonempty set of vectors V, a scalar field F, vector

addition in V, and scalar multiplication between elements of F and V [9]. The par-

ticular functional spaces that are applicable to psychology are Lp spaces. An Lp(R)

space for 1 ≤ p ≤ ∞ is defined to be the collection of functions f for which |f |p is

Lebesgue integrable on R [15]. The related sequence spaces, `p, are also important.

The spaces belonging to p = 1 and p = 2 are of most interest. The sequence space,

`1 for xn ∈ R is given by

`1 =

{
〈..., x0, x1, ..., xn, ...〉 |

∞∑
n=−∞

|xn|1 <∞

}
(1)

The space, `2, is given by

`2 =

{
〈..., x0, x1, ..., xn, ...〉 |

∞∑
n=−∞

|xn|2 <∞

}
(2)
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Figure 3: The Spectral Representation of a PDZ Domain

Figure 4: The Spectral Representation of a Different PDZ Domain

Figure 5: Consensus Spectrum of PDZ Domains
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The space of absolutely integrable functions is defined

L1 (R) =

{
f |

∫ ∞

−∞
|f |1 <∞

}
(3)

where f is measurable on R and the integral is the Lebesgue integral. The function

space L2 is

L2 (R) =

{
f |

∫ ∞

−∞
|f |2 <∞

}
(4)

where f is measurable on R and the square of the Lebesgue integral is finite.

Functional analysis is a branch of mathematical analysis, the core of which is

formed by the study of vector spaces endowed with some kind of limit-related struc-

ture (e.g. inner product, norm, topology, etc.) and the linear operators acting upon

these spaces and respecting these structures in a suitable sense. The historical roots

of functional analysis lie in the study of spaces of functions and the formulation of

properties of transformations of functions such as the Fourier transform as transfor-

mations defining continuous, unitary etc. operators between function spaces. This

point of view turned out to be particularly useful for the study of differential and

integral equations [1].

A norm ||·|| on a linear space X is a mapping into [0,∞) which for f, g ∈ X (or C

has the following properties:

• Triangle Inequality

||f + g|| ≤ ||f ||+ ||g|| (5)

16



• Positive Homogeneity

||αf || = |α| ||f || (6)

• Nonnegativity

||f || ≥ 0 and ||f || = 0 if and only if f = 0. (7)

If ||f || = 1, then f is a unit function. If ||f || 6= 1, then ~u = f
||f || is its direction vector

[15].

1.4 Signal Processing

Signal processing is an area of applied mathematics which manipulates and analyzes

signals. A continuous (analog) signal is defined on all of R [3]. For example, a

stopwatch with a second hand that has no ticks can span all the real numbers. A

stopwatch that counts discretely, or equivalently via integers is an example of a dis-

crete signal (digital). Discrete time series are digital signals. Once converted to a

digital signal operations on each discrete value can be performed. A filter is a linear

time invariant operator [22]. If x, h ∈ `1 then their convolution y = x ∗ h is defined

y(n) =
∑
k

h(k)x(n− k). (8)

Filter banks generally contain a combination of two filters. High pass filters are

moving differences [22]. The low frequencies of the signal are diminished or removed

with a high pass filter. For example, the wavelet high pass Haar filter of a signal

17



x ∈ `1 is given by

y(n) =
1

2
x(n)− 1

2
x(n− 1). (9)

Low pass filters, such as the Haar wavelet low pass filter

y(n) =
1

2
x(n) +

1

2
x(n− 1), (10)

are essentially moving averages. The Haar low pass averages the adjacent two com-

ponents of a signal as time increases [22]. The combination (10) and (11) define the

Haar Wavelet basis for L2(R) , and similarly, wavelet filters of discrete signals are a

combination of a high and lowpass filters along with upsampling and downsampling.

Multiresolution analysis uses a scaling function, φ(2jt−k), as a basis for a set of

continuous signals [22]. The wavelet, w(2jt− k), represents a wavelet basis signal at

scale i and level j and time location k. The combination of the scaling function and

the wavelet basis defines a multiresolution analysis that represents scale level j + 1

as a linear combination of basis elements at scale level j. Thus, wavelets are based

on scaling rather than on periodicity (frequency).

1.5 The Fourier Transform

Signal processing via the Fourier Transform assumes that continuous signals h are in

the intersection L1(R) ∩ L2(R). The Fourier Transform [21] of a signal is given by

[21]

H(f) = F [h(t)] =

∫ ∞

−∞
h(t)e−2πiftdt (11)

18



where f is the frequency domain variable in units of cycles per unit time, t. The

representation at a signal as a function of frequency is called a spectral representation

of the signal.

The inverse Fourier Transform is given by

h(t) = F−1[H(f)] =

∫ ∞

−∞
H(f)e2πiftdf (12)

It can be shown that if h ∈ L1(R) ∩ L2(R), then F [h(t)] is also in L1(R) ∩ L2(R).

Thus if h ∈ L1(R)∩L2(R) then F−1(F (h)) = h [21]. For some functions the Cauchy

Principal value of the Inverse Fourier transform may be necessary [12].

The Windowed or Short Time Fourier Transform (STFT) is defined as

STFT (τ, f) =

∫ ∞

−∞
h(t)w(t− τ)e−2πiftdt (13)

where w(t) is the Gaussian window,

w(t) = ke
−t2

2 (14)

for k constant. The STFT incorporates a combination of a sinusoid and a localized

time window. This produces time localized frequency representations.

If a continuous signal is sampled at a time interval T , then the samples form a

discrete signal of length N , where N is the number of samples. The analogue of the

Fourier Transform is the Discrete Fourier Transform defined

19



H {n/NT} =
1

N

N−1∑
k=0

h[kT ]e−2πinkT/NT (15)

where k = 0...N − 1. The inverse DFT is

h[kT ] =
N−1∑
n=o

H {n/NT} e2πinkT/NT . (16)

The limitation of the Fourier Transform is that although the spectral compo-

nents of the signal can be determined; there is no information about the time at

which these components exist. Moreover, the peaks in the power spectrum are in-

dependent of the phase of the signal, where a signal’s phase is its state relative to a

given coordinate system.

1.6 Wavelets

The Continuous Wavelet Transformation of a signal is a function,

Wh(τ, a) =

∫ ∞

−∞
h(t)w(t− τ, a)dt (17)

The Continuous Wavelet Transform (CWT) is a function of both time, t and scale a

for h ∈ L2(R) and w ∈ L2(R). The Gabor Transform is

Gg(τ, f) =

∫ ∞

−∞
g(t)e

−(t−τ)2

2σ2 e−iftdt (18)
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for σ >> 0. The Gabor kernel is

w(t) =
1√
2π
e
−t2

2 . (19)

This clearly relates to the Short-Time Fourier Transform.
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2 FOUNDATION OF CONSENSUS MODELING

Proteomics has established consensus modeling in the identification of protein

coding regions [8]. Signal processing methods such as the Fourier Transform play a

vital role in exploiting the period-3 component of DNA molecules. This foundation

leads to the application of a consensus model in EEG via a variation of the Fourier

transform known as the S-Transform.

2.1 Consensus Models In Proteomics

An overview of the key aspects of DNA provides a setting for this discussion.

A DNA molecule has a double helix structure [26]. The four nucleotides adenine,

thyomine, cytosine, and guanine denoted A, T, C, G respectively are each attached

to a sugar phosphate backbone. These nucleotides pair A with T, and C with G, which

are defined complementary. The upper strand of the DNA molecule is the forward

genomic sequence and the bottom strand has the complementary bases. Generally

one strand is active in protein synthesis.

DNA sequences can be divided into genes and intergenic spaces. Genes code

proteins and are composed with four bases [26]. Sequential regions of bases in a DNA

strand can be categorized into subregions called exons and introns. Protein-coding is

through exons. The codon region bases can be divided into three adjacent bases that

results in specific amino acids being put into place as a protein is synthesized. There

are 64 possible codons. Coding sequences are determined from reading the gene left

to right and defined by the codons in the exons [8]. The introns do not code proteins

since they are spliced out of the RNA as part of the splicing process that results in

22



a mature, coding mRNA. [26]. The mRNA carries the genetic code to the ribosome

which produces the protein coded by the gene.

A family of signals, sequences, residue chains where each signal is generated

by a process or related system of processes is a homological family [27]. A protein,

such as glucokinase, which can be expressed across several species, mutations to a

family of proteins, and multiple site recordings such as EEG are examples of signals

that, within themselves, each compose a homological family. A consensus model of

a homological family is a sequence of random variables (stochastic process) whose

expected value at any given time corresponds to the most likely occurring value in

the homological family at that given time [20].

The long range correlation in a homological family of DNA sequences provides

an opportunity to compare proteins with comparative statistical analysis of DNA.

The product of the Fourier Transform of a homological family of proteins is defined

as

P (n/NT ) = |X1 (n/NT )X2 (n/NT ) ... XM (n/NT )| . (20)

If a homological family of proteins has only one common function, then the power

spectrum, P ( n
NT

) has one significant peak. The product of Fourier Transforms is

defined as the consensus spectrum for the homological family of proteins. The peak

frequencies are specific to each function of the protein thus termed the characteristic

frequency.
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2.2 Application Of Consensus Modeling In Electroencephalography

The application of consensus modeling in EEG is based on the premise that

signals generated from individual electrodes represent a common phenomenon. The

goal is to find the instance in time at which the electrical stimulus is maximized.

However, to do so we often work in the frequency domain but working in the frequnecy

domain requires a transform of the time domain signal. The Fourier transform can

be used to transform EEG signals in the frequency domain.

Bootstrapping is a statistical technique in which a population is repeatedly

resampled, where each resampling is a sample with replacement, and then via a

bootstrap measure an empirical distribution is created [5]. A bootstrap technique

can be applied to a family of EEG signals. Technology is used in bootstrapping to

resample groups of signals where the probability of choosing any group of signals is the

same. This estimates the sampling distribution of signals. The sampling distribution

is used to make population inferences.

Bootstrapping prevents individual signals from eliminating population-wide fre-

quencies. For example, Figure 6 contains the frequency domain representation of five

signals, x̂1, x̂2, x̂3, x̂4, x̂5. In four out of the five sample signals, there is an impulse

at a frequency of 0.3. Without bootstrapping, as in the case with many genomic

applications, the consensus spectrum is given by

x̂σ =
5∏
i=1

x̂i. (21)

In our example, this implies the consensus model has a zero for a frequency of
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0.3. A bootstrapping process of sampling takes n number of groups of signals and

the sampling distribution would reflect that there is an impulse at a frequency of 0.3

three out of four times.

2.3 S-Transform And Its Properties

The S-Transform, developed by R.G. Stockwell [21], is defined as

S(µ, a, τ) =

∫ ∞

−∞

1

a
1
2

w
(t− τ

a

)
h(t)e−itµdt (22)

Here µ is the frequency variable in units of cycles per second, a is the dimensionless

scale variable, and τ is the time location (epoch) variables in seconds. To reduce the

S-Transform to a function of two variables, Stockwell defines the scale in terms of

frequency as 1

a
1
2

= |f |, µ = f. The S-Transform with scale in terms of frequency is

S(t, f) =

∫ ∞

−∞
|f |w

((
t− τ)|f |2

))
h(t)e−2πitfdt (23)

where w is a an offset Gaussian window. The S-Transform is a hybrid wavelet and

STFT method that estimates the local power and phase spectrum.

The inverse S-Transform is

h(t) =
1

2π

∫ ∞

−∞

( ∫ ∞

−∞
S(t, f)dt

)
e2πitfdf (24)
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2.4 Convolution Theorem And Its Foundational Role In Consensus Modeling

The Convolution Theorem is at the heart of Consensus Modeling because it

connects multiplication in the frequency domain with autonomous (i.e. shift invariant)

filters in the time domain [2]. That is, autonomous filters are defined by convolution

in the time domain and by the pointwise multiplication in the frequency domain.

Theorem 2.1. A Fourier transform of a product of signals, f and g, is the convolu-

tion of the Fourier transforms of the two signals.

F (f ∗ g) = F (f)F (g). (25)

Proof. This proof is reproduced from [2]. Consider f(t) and g(t) as signals that are

elements of L1(R) ∩ L2(R) and define their inverse Fourier Transforms as:

f(t) = F−1[F (ω)] =
1

2π

∫ ∞

−∞
F (ω)eiωtdω (26)

g(t) = F−1[G(ω)] =
1

2π

∫ ∞

−∞
G(ω)eiωtdω. (27)

By definition, their convolution is

f ∗ g ≡
∫ ∞

−∞
g(t)f(t− τ)dt (28)

=

∫ ∞

−∞
g(t)

[ ∫ ∞

−∞
F (ω)e2πiω(t−τ)dω

]
dt. (29)
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Since f, g are in L1(R) we can change the order of integration,

f ∗ g =

∫ ∞

−∞
F (ω)

[
g(t)e−2πiωtdt

]
e2πiωtdω (30)

=

∫ ∞

−∞
F (ω)G(ω)e2πiωtdω (31)

= F−1[F (ω)G(ω)](t) (32)

Since f and g are in L2(R) we can apply the Fourier Transform to both sides of the

equation.

F (f ∗ g) = F (f)F (g) (33)

That is, f, g ∈ L2(R) implies that f ∗ g is also in L1(R) ∩ L2(R).
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3 IMPLEMENTATION OF THE S-TRANSFORM FOR A CONSENSUS

MODEL OF ELECTROENCEPHALOGRAM SIGNALS

The implementation of the S-Transform for a Consensus Model of EEG signals

comes naturally with the idea of phase preservation. The goal of a consensus model

in the setting of EEG analysis is to reflect the instances in the time series where there

are coordinated frequencies.

3.1 Implementation

EEG signals are read into computers via a BCI in the form of a data file. To

process discrete signals, we use the discrete representations of the S-Transform and

Fourier Transform. The discrete S-Transform [21] of a time series h[kT ] is given by

(letting f → n
NT

and τ → jT ),

S
[
jT,

n

NT

]
=

N−1∑
m=0

H

[
m+ n

NT

]
e−2π2m2/n2

e2πimj/N (34)

where j,m, n = 0, 1, ..., N − 1. The discrete inverse S-Transform is performed by

computing the Discrete Fourier Transform

h[kT ] =
1

N

N−1∑
n=0

[
N−1∑
j=0

S
[ n

NT
, jT

]]
e2πink/N (35)

The Matlab implementation of the S-Transform written by R.G Stockwell queries

the user for a time series [21]. There are optional inputs we can use such as minimum

and maximum frequency, sampling rate, and frequency sampling rate. The output
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returned is a S-Transformed matrix of the input signal.

The algorithm for the input signals is a Matlab script and returns a consensus

model of a collection of EEG signals. The input is a family of EEG signals in a

tab-delimited format. The user enters a data file which is read into Matlab. Signals

are normalized to unit energy to isolate statistical error before the transformation

and bootstrapping. In the frequency domain, we use bootstrapping to produce 100

samples of eight signals randomly. This is the consensus data which we autocorrelate.

The S-Transform of the consensus signal is a matrix of time and frequencies. The

mesh plot and contour plot of the consensus displays the absolute amplitude at times

and frequencies.

The inverse S-Transform of the autocorrelated consensus data is a single signal,

the consensus model. The consensus spectrum can be used to define a convolution

filter that correlates the entire family to the consensus model.

3.2 Benchmarking And Testing

The test families used for benchmarking each consists of 32 signals for a duration

of 1 second sampled 256 times per second. Each signal is normalized to

−1 ≤ Amplitude ≤ 1.

Each test family is summarized in Appendix 2. The purpose of benchmarking and

testing is to verify the consensus of families of signals matches the designed outcome.

The tests of Pure Signal 1 and Pure Signal 2 have the same consensus models as
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their signals since every signal in each family is the same. These tests are primarily

for debugging purposes. Pure Signal 3 is a family of noisy signal frequency signals

and its consensus signal is a denoised representation of the family. To test if the

consensus model picks out varying chirps from 3 hertz to 7 hertz, we use mixed

signals. The consensus of mixed signal 1 smoothes the collection of signals. Mixed

Signal 2 produces a consensus which picks up the 3 hertz carrier and denoises the

signal. Consensus Tests 1,2,3, and 4 are carrier signals with random noise. Consensus

Test Consensus Test 14 is a family of signals with a 7 hertz carrier with 0.01 magnitude

random noise. The consensus of this family is shown in Figure 9. In consensus test

14, the first signal of the homological family in Figure 7 and the second signal in

Figure 8 is their consensus model, Figure 11.
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Figure 7: Signal 1 of Consensus Test 14

0 50 100 150 200 250 300
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Signal 2 of ConsensusTest14

amplitude

tim
e 

(m
se

cs
)

Figure 8: Signal 2 of Consensus Test 14
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Figure 9: Mesh plot for Consensus Test 14
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Figure 10: Contour plot for Consensus Test 14
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Figure 11: Consensus Signal for Consensus Test 14
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3.3 Justification Of A Consensus Through Convolution

The S-Transform,

Sh(τ, f) =

∫ ∞

−∞
h(t)

|f |√
2π
e−(τ−t)2f2/2e−2πiftdt (36)

can be viewed as a convolution of two functions. Reordering the terms yields

Sh(τ, f) =

∫ ∞

−∞
h(t)e−2πift |f |√

2π
e−(τ−t)2f2/2dt. (37)

Thus, if A = h(t)e−2πift and B = |f |√
sπ
e−(τ−t)2f2/2 then

Sh(τ, f) =

∫ ∞

−∞
A(t)B(τ − t)dt (38)

= (A ∗B)(τ) (39)

= F−1(F (A) ·F (B)) (40)

=

∫ ∞

−∞
F (A)(ω)F (B)(ω)e2πωτdω (41)

where

F (A) =

∫ ∞

−∞
h(t)e−2πifte−2πiωtdt (42)

=

∫ ∞

−∞
h(t)e−2πi(f+ω)tdt (43)

= H(ω + f) (44)
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where H = F (h) and

F (B) =

∫ ∞

−∞

|f |√
2π
e−2πifte−2πiωtdt (45)

= e−2π2ω2/f2

. (46)

Thus, the S-Transform is also given by

Sh(τ, f) =

∫ ∞

−∞
H(ω + f)e−2π2ω2/f2

e2πiωdω. (47)

Suppose now that h, k ∈ L1(R) ∩ L2(R). Then

Sh(τ, f) · Sk(τ, f) =

∫ ∞

−∞

∫ ∞

−∞
H(ω + f)K(ψ + f) • (48)

e−2π2ω2/f2

e2πiωτe−2π2ψ2/f2

e2πiψτdψdω (49)

=

∫ ∞

−∞

∫ ∞

−∞
H1(f, ω)K1(f, ψ)e2πi(ω+ψ)τdψdω (50)

where

H1(f, ω) = e−2π2ω2/f2

H(ω + f) (51)

K1(f, ψ) = e−2π2ψ2/f2

K(ψ + f) (52)

For two signals in the frequency domain, the multiplication will cancel out frequencies

that are different and reinforce the frequencies that the two signals have in common.
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To better illustrate, suppose that we use completing the square to write

H1(f, ω) = e
−2π2ω2

f2

∫ ∞

−∞
h(t)e−2πiωte−2πiftdt (53)

=

∫ ∞

−∞
h(t)e

−2π
(

ω2

f2 +ωti
)
dt (54)

=

∫ ∞

−∞
h(t)e

−2π

f2

(
ω2+ωtif2− t2f2

4
+ t2f2

4

)
e−2πiftdt (55)

=

∫ ∞

−∞
h(t)e

−2π

f2

(
ω+ tif2

2

)2

e
−2π

f2

(
t2f4

4

)
e−2πiftdt (56)

=

∫ ∞

−∞
h(t)e

−2π

f2

(
ω+ tif2

2

)2

e
−2πt2f2

4 e−2πiftdt (57)

=

∫ ∞

−∞
h(t)e

−2πt2f2

4 e
−2π

f2

(
ω+ tif2

2

)2

e−2πiftdt. (58)

Now there is a Gaussian modulated signal, h(t). This implies that H1(f)K1(f) will

Gaussian suppress frequencies that are not in common on each (t, t+∆t) time interval

like a Short Time Fourier Transform. Specifically, H1(f, ω), K1(f, ψ) is an integral of

2 couples h and k only when ω ≈ ψ. From this it is observed that the product of two

signals multiplied in the frequency domain is equivalent to the Fourier Transform of

the convolution of the two signals.

H1(f, ω)K1(f, ψ) = F (h1 ∗ k1) (59)

where h1 = h1(t, ω) and k1 = k1(t, φ). Thus

Sh(τ, f)Sk(τ, f) =

∫ ∞

−∞

∫ ∞

−∞
H1(f)K1(f)e2πi(ω+ψ)τdψdω (60)
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where H1(f, ω), K1(f, ψ) is a Fourier-like convolution in time (τ - variable) and also

localizes in the frequency domain via the product of the Gaussians.

3.4 Consequences For Psychology

Currently the analysis of EEG sessions incorporates the Fourier Transform. The

Fourier Transform can not indicate the time at which the higher frequencies occur.

Instead the signals’ dominant frequency overshadows the other frequencies. This

implies that the higher frequency occurs for the entirety of a signal with the Fourier

Transform.

The phase of the EEG Homological family is not suppressed by the S-Transform

and thus a consensus model based on the S-Transform indicates the time in which the

high frequencies occur. Dr. Eric Sellers of the ETSU Psychology department gave

us two families of signals, N7SpllT.dat and N7SpllNT.dat. We analyzed these signals

and produced consensus signals for each family in Figures 13-19. The consensus

model accurately locates the time in which the higher frequencies occur. This, in

turn, indicates the patient’s response.
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Figure 12: Signal 1 from the N7SpllT Family
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Figure 13: Signal 2 from the N7SpllT Family
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Figure 14: Mesh Plot for N7SPllT Family
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Figure 15: Consensus Signal of N7SpllT Family
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Figure 16: Signal 8 from the N7SpllNT Family
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Figure 17: Signal 19 from the N7SpllNT Family
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Figure 18: Mesh Plot for N7SPllNT Family
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Figure 19: Consensus Signal of N7SpllNT Family
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4 Conclusion And Future Directions

The techniques of consensus modeling applied to EEG data locates the time in

the signal when the higher frequencies occur. This enables a BCI to locate higher

frequencies of signals in a family of signals even if the magnitudes of these frequencies

are not large. The ETSU Psychology department gave us two new test families to

analyze, one of which have a known outcome and the other family is indeterminable

as of now. We will test these families with the consensus model via the S-Transform

to examine if otherwise non discript signals which are not able to be analyzed by

other means can be analyzed with the S-Transform..

The next step is to share this research with the Psychology and Mathematics

community through peer reviewed journal articles. Field Trip is a BCI Toolbox for

Matlab. We would like to include our implementation of the S-Transform in this

toolbox and other BCI systems.
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APPENDICES

Appendix A: Summary of Benchmarking Signal Family

Table 1: Test Families

Pure Signal 1 32 identical signals at 7 hertz
Pure Signal 2 32 identical signals exponentially-decaying

Signals at 7 hertz
Pure Signal 3 32 identical chirps at 16 hertz
Mixed Signal 1 32 identical signals varying from 3 hz to 7

hertz
Mixed Signal 2 32 identical signals with chirps, 3 hz followed

by 7 hertz
Consensus Test 1 32 different signals; 3 hertz carrier with 0.01

magnitude random noise
Consensus Test 2 32 different signals; 7 hertz carrier with 0.01

magnitude random noise
Consensus Test 3 32 different signals; 3 hertz carrier with 0.1

magnitude random noise
Consensus Test 4 32 different signals; 7 hertz carrier with 0.1

magnitude random noise
Consensus Test 5 32 different signals; 3 hertz fixed with ran-

dom < 3 hertz signal superimposed
Consensus Test 6 32 different signals; 7 hertz fixed with ran-

dom < 3 hertz signal superimposed
Consensus Test 7 32 different signals; 1 hertz fixed with ran-

dom > 1 hertz signal superimposed
Consensus Test 8 32 different signals; amplified 3 hertz fixed

with random > 3 hertz signal superimposed
Consensus Test 9 32 different signals; higher amplified 3 hertz

fixed with random > 3 hertz signal superim-
posed

Consensus Test 10 32 different signals; amplified 16 hertz fixed
with transient random frequency signal (5 -
30 hertz)

Consensus Test 11 32 different signals; amplified 8 hertz moving
with transient random frequency signal (5 -
30 hertz)
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Consensus Test 12 32 different signals; amplified 8 hertz moving
with transient random frequency signal (5 -
30 hertz) + pure 3 hertz (ex 1)

Consensus Test 13 32 different signals; amplified 8 hertz moving
with transient random frequency signal (5 -
30 hertz) + pure 3 hertz (ex 2)

Consensus Test 14 32 different signals; amplified 8 hertz mov-
ing with frequency based amplitude transient
random frequency signal (5 - 30 hertz) + pure
3 hertz (ex 2)
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Appendix B: Additional Test Images
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Figure 20: Signal 1 of Consensus Test 3

0 50 100 150 200 250 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
ST Consensus of’ConsensusTest3.dat

time

am
pli

tu
de

Figure 21: Consensus Signal of Consensus Test 3
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Figure 22: Signals 1 and 2 of Consensus Test 4
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Figure 23: Consensus Signal of Consensus Test 4
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Figure 24: Signals of Consensus Test 5
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Figure 25: Consensus Signal of Consensus Test 5
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Figure 26: Signals of Consensus Test 7
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Figure 27: Consensus Signal of Consensus Test 7
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Figure 28: Signals of Consensus Test 13
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Figure 29: Consensus Signal of Consensus Test 13
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Appendix C: MATLAB Code

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% steeg
% Returns a Consensus Model o f a c o l l e c t i o n o f time s e r i e s .
% Code by Andrew Young
%
%−−−−−−−Queued Inputs Needed−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% a c o l l e c t i o n o f t im e s e r i e s in dat format f o r a consensus model
% via the S−Transform
%
%−−−−−−−Outputs Returned−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% f i g u r e (1 ) montage o f s i g n a l s
%
% f i g u r e (2 ) consensus s i g n a l
%
% f i g u r e (3 ) contour p l o t o f transformed consensus s i g n a l
%
% f i g u r e (4 ) mesh p lo t o f transformed consensus s i g n a l
%
% con ’ f i l ename ’ array o f consensus
%
% con spec ’ f i l ename ’ array o f consensus spectrum
%

% This command prompts a user f o r dat f i l e . Once the dat f i l e i s
% s e l e c t e d t h i s r ou t in e imports the s i g n a l

[ f i l ename , pathname ] = u i g e t f i l e ( ’ ∗ . dat ’ , ’ Pick a dat− f i l e ’ )
i f i s e q u a l ( f i l ename , 0 ) | i s e q u a l ( pathname , 0 )

d i sp ( ’ User pre s sed cance l ’ )
e l s e

d i sp ( [ ’ User Se l e c t ed ’ , f u l l f i l e ( pathname , f i l ename ) ] )
end

X = load ( f i l ename ) ;

%normal ize the t ime s e r i e s c o l l e c t i o n by un i t energy
normbye (X) ;

%S−Transform
f o r i = 1 : s i z e (X, 1 ) ,
[ s t mat r i x ( c e i l ( s i z e (X, 2 ) / 2 ) ∗ ( i −1)+1: c e i l ( s i z e (X, 2 ) /2 )∗ i , : ) ,

s t t ime s ( i , : ) , s t f r e q u e n c i e s ( i , : ) ] = s t (X( i , : ) ) ;
end
%s i z e ( s t mat r i x ) = 4128 x257
%s i z e ( s t t ime s ) = 32 x 257
%s i z e ( s t f r e q u e n c i e s ) = 32 x 129
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%normal ize by un i t energy
matrix normbye2 ( s t mat r i x ) ;

%assignment o f random va r i a b l e s
nrands = 100 ;

%boots t rap o f s t ma t r i c e s
%Here we i t e r a t e through rows and columns o f s t mat r i x by random
%mul t i p l e s o f c e i l ( s i z e (X, 2 ) / 2 ) ) which i s the s i z e ( s t f r e q u en c i e s , 2 )
%to generate a boots t rap sampling o f the transformed s i g n a l s . The
%boots t rap method takes random groups o f 8 out o f 32 s t ma t r i c e s and
%compose the boots t rap sample .
f o r i = 1 : nrands ,

f o r j = 1 : s i z e (X, 2 ) ,
f o r p = 1 : 8 ,
randinds = randperm ( 3 2 ) ;
pp = randinds (p ) ;
ConsensusData ( s i z e ( s t f r e q u en c i e s , 2 ) ∗ ( i −1)+1: s i z e ( s t f r e q u en c i e s , 2 )∗ i , j )=

s t mat r i x ( s i z e ( s t f r e q u en c i e s , 2 ) ∗ ( pp−1)+1: s i z e ( s t f r e q u en c i e s , 2 )∗ pp , j ) ;
end

end
end

%mu l t i p l i c a t i o n o f each i , j entry o f boots t rap sample
%This loop takes each i , j from each sampled s t mat r i x and puts them in to
%a vector , then each vec to r i s mu l t i p l i e d through .
f o r f = 1 : s i z e ( s t f r e q u en c i e s , 2 ) ,

f o r t = 1 : s i z e ( s t t imes , 2 ) ,
f o r k = 1 : s i z e ( ConsensusData , 1 ) / s i z e ( s t f r e q u en c i e s , 2 ) ,

Y(k , t ) = ConsensusData ( s i z e ( s t f r e q u en c i e s , 2 ) ∗ ( k−1)+f , t ) ;
end
ConsensusData ( f , t ) = prod (Y(k , t ) , 1 ) ;

end
end

%mean o f mu l t i p l i e d i , j e n t r i e s
%In t h i s loop each i , j entry i s entered in to a vec to r and that
%vecto r i s averaged .
f o r f = 1 : s i z e ( s t f r e q u en c i e s , 2 ) ,

f o r t = 1 : s i z e ( s t t imes , 2 ) ,
f o r k = 1 : s i z e ( ConsensusData , 1 ) / s i z e ( s t f r e q u en c i e s , 2 ) ,

Y(k , t ) = ConsensusData ( s i z e ( s t f r e q u en c i e s , 2 ) ∗ ( k−1)+f , t ) ;
end
c on sp e c s t ( f , t ) = mean(Y(k , t ) , 1 ) ;

end
end

%inv e r s e s−trans form
Consensus = i n v e r s e s t ( c on sp e c s t ) ;

%p lo t o f Consensus
f i g u r e (2 )

p l o t ( Consensus )

56



t i t l e ( s t r c a t ( ’ST Consensus of ’ ’ ’ , f i l ename ) )
x l ab e l ( ’ time ’ )
y l ab e l ( ’ f requency ’ )

%s−trans form o f consensus
[ s t matr ix , s t t imes , s t f r e q u e n c i e s ] = s t ( Consensus ) ;

%countour p l o t o f transformed consensus
f i g u r e (3 )

contour f ( s t t imes , s t f r e q u en c i e s , abs ( s t mat r i x ) ) ;
t i t l e ( s t r c a t ( ’ Contour o f Consensus s−transformed , ’ , f i l ename ) )
x l ab e l ( ’ time ’ )
y l ab e l ( ’ f requency ’ )

%mesh p l o t o f consensus
f i g u r e (4 )

mesh ( s t t imes , s t f r e q u en c i e s , abs ( s t mat r i x ) ) ;
t i t l e ( s t r c a t ( ’Mesh o f Consensus s−transformed , ’ , f i l ename ) )
x l ab e l ( ’ time ’ )
y l ab e l ( ’ f requency ’ )

BB = abs ( s t mat r i x ) ;

u i save ( ’ Consensus ’ , s t r c a t ( ’ con ’ , f i l ename ) ) ;
u i save ( ’BB’ , s t r c a t ( ’ con spec ’ , f i l ename ) ) ;

%montage o f s i g n a l s
f i g u r e (1 )
montage (X) ;
t i t l e ( s t r c a t ( ’ Montage o f ’ , f i l ename ) )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% steegk8
% Returns a Consensus Model o f Krus iensk i ’ s 8 .
% (Fz , Cz , P3 , Pz , P4 , P07 , P08 ,Oz)
% Code by Andrew Young
%
%−−−−−−−Queued Inputs Needed−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% a c o l l e c t i o n o f t im e s e r i e s in dat format f o r a consensus model
% via the S−Transform
%
%−−−−−−−Outputs Returned−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% f i g u r e (1 ) montage o f s i g n a l s
%
% f i g u r e (2 ) consensus s i g n a l
%
% f i g u r e (3 ) contour p l o t o f transformed consensus s i g n a l
%
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% f i g u r e (4 ) mesh p lo t o f transformed consensus s i g n a l
%
% con ’ f i l ename ’ array o f consensus
%
% con spec ’ f i l ename ’ array o f consensus spectrum
%

% This command prompts a user f o r dat f i l e . Once the dat f i l e i s
% s e l e c t e d t h i s r ou t in e imports the s i g n a l

[ f i l ename , pathname ] = u i g e t f i l e ( ’ ∗ . dat ’ , ’ Pick a dat− f i l e ’ )
i f i s e q u a l ( f i l ename , 0 ) | i s e q u a l ( pathname , 0 )

d i sp ( ’ User pre s sed cance l ’ )
e l s e

d i sp ( [ ’ User Se l e c t ed ’ , f u l l f i l e ( pathname , f i l ename ) ] )
end

X = load ( f i l ename ) ;

%normal ize the t ime s e r i e s c o l l e c t i o n by un i t energy
normbye (X) ;

%pick out the s p e c i f i c k8 e l e c t r o d e s from the c o l l e c t i o n
k8 ( 1 , : ) = X( 2 , : ) ;
k8 ( 2 , : ) = X( 6 , : ) ;

f o r j = 3 : 8 ,
f o r i = 11 :16 ,

k8 ( j , : ) = X( i , : ) ;
end

end

%S−Transform
f o r i = 1 : s i z e ( k8 , 1 ) ,
[ s t mat r i x ( c e i l ( s i z e (X, 2 ) / 2 ) ∗ ( i −1)+1: c e i l ( s i z e (X, 2 ) /2 )∗ i , : ) ,

s t t ime s ( i , : ) , s t f r e q u e n c i e s ( i , : ) ] = s t ( k8 ( i , : ) ) ;
end
%s i z e ( s t mat r i x ) = 4128 x257
%s i z e ( s t t ime s ) = 32 x 257
%s i z e ( s t f r e q u e n c i e s ) = 32 x 129

%normal ize by un i t energy
matrix normbye2 ( s t mat r i x ) ;

%assignment o f random va r i a b l e s
nrands = 100 ;

%boots t rap o f s t ma t r i c e s
%Here we i t e r a t e through rows and columns o f s t mat r i x by random
%mul t i p l e s o f c e i l ( s i z e (X, 2 ) / 2 ) ) which i s the s i z e ( s t f r e q u en c i e s , 2 )
%to generate a boots t rap sampling o f the transformed s i g n a l s . The
%boots t rap method takes random groups o f 8 out o f 32 s t ma t r i c e s and
%compose the boots t rap sample .
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f o r i = 1 : nrands ,
f o r j = 1 : s i z e ( k8 , 2 ) ,
f o r p = 1 : 3 ,
randinds = randperm ( 8 ) ;
pp = randinds (p ) ;
ConsensusData ( s i z e ( s t f r e q u en c i e s , 2 ) ∗ ( i −1)+1: s i z e ( s t f r e q u en c i e s , 2 )∗ i , j )=

s t mat r i x ( s i z e ( s t f r e q u en c i e s , 2 ) ∗ ( pp−1)+1: s i z e ( s t f r e q u en c i e s , 2 )∗ pp , j ) ;
end

end
end

%mu l t i p l i c a t i o n o f each i , j entry o f boots t rap sample
%This loop takes each i , j from each sampled s t mat r i x and puts them in to
%a vector , then each vec to r i s mu l t i p l i e d through .
f o r f = 1 : s i z e ( s t f r e q u en c i e s , 2 ) ,

f o r t = 1 : s i z e ( s t t imes , 2 ) ,
f o r k = 1 : s i z e ( ConsensusData , 1 ) / s i z e ( s t f r e q u en c i e s , 2 ) ,

Y(k , t ) = ConsensusData ( s i z e ( s t f r e q u en c i e s , 2 ) ∗ ( k−1)+f , t ) ;
end
ConsensusData ( f , t ) = prod (Y(k , t ) , 1 ) ;

end
end

%mean o f mu l t i p l i e d i , j e n t r i e s
%In t h i s loop each i , j entry i s entered in to a vec to r and that
%vecto r i s averaged .
f o r f = 1 : s i z e ( s t f r e q u en c i e s , 2 ) ,

f o r t = 1 : s i z e ( s t t imes , 2 ) ,
f o r k = 1 : s i z e ( ConsensusData , 1 ) / s i z e ( s t f r e q u en c i e s , 2 ) ,

Y(k , t ) = ConsensusData ( s i z e ( s t f r e q u en c i e s , 2 ) ∗ ( k−1)+f , t ) ;
end
c on sp e c s t ( f , t ) = mean(Y(k , t ) , 1 ) ;

end
end

%inv e r s e s−trans form
Consensus = i n v e r s e s t ( c on sp e c s t ) ;

%p lo t o f Consensus
f i g u r e (2 )

p l o t ( Consensus )
t i t l e ( s t r c a t ( ’ Consensus o f ’ , f i l ename ) )
x l ab e l ( ’ time ’ )
y l ab e l ( ’ f requency ’ )

%s−trans form o f consensus
[ s t matr ix , s t t imes , s t f r e q u e n c i e s ] = s t ( Consensus ) ;

%countour p l o t o f transformed consensus
f i g u r e (3 )

contour f ( s t t imes , s t f r e q u en c i e s , abs ( s t mat r i x ) ) ;
t i t l e ( s t r c a t ( ’ Contour o f Consensus s−transformed ’ , f i l ename ) )
x l ab e l ( ’ time ’ )
y l ab e l ( ’ f requency ’ )

%mesh p l o t o f consensus
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f i g u r e (4 )
mesh ( s t t imes , s t f r e q u en c i e s , abs ( s t mat r i x ) ) ;

t i t l e ( s t r c a t ( ’Mesh o f Consensus s−transformed , ’ , f i l ename ) )
x l ab e l ( ’ time ’ )
y l ab e l ( ’ f requency ’ )

BB = abs ( s t mat r i x ) ;

u i save ( ’ Consensus ’ , s t r c a t ( ’ con ’ , f i l ename ) ) ;
u i save ( ’BB’ , s t r c a t ( ’ con spec ’ , f i l ename ) ) ;

%montage o f s i g n a l s
f i g u r e (1 )
montage (X) ;
t i t l e ( s t r c a t ( ’ Montage o f ’ , f i l ename ) )

func t i on [ X ] = matrix normbye2 ( X )
%matrix normbye . . . normal ize matrix by energy

f o r i = 1 : s i z e (X, 1 ) / c e i l ( ( s i z e (X, 2 ) / 2 ) ) ,

energy = sum(sum( abs (X( c e i l ( ( s i z e (X, 2 ) / 2 ) ) ∗ ( i −1)+1:129∗ i , : ) ) . ˆ 2 , 2 ) ) ;
X( c e i l ( ( s i z e (X, 2 ) / 2 ) ) ∗ ( i −1)+1:129∗ i , : )=

X( c e i l ( ( s i z e (X, 2 ) / 2 ) ) ∗ ( i −1)+1:129∗ i , : ) / energy ;

end

end

func t i on [ X ] = normbye ( X )
%normbye . . . normal ize by energy
% energy i s the sum the squared terms o f an array
% then d iv id e each term o f array by the energy

f o r i = 1 : s i z e (X, 1 ) ,
energy = sum( abs ( X( i , : ) ) . ˆ 2 , 2 ) ;

X( i , : ) = X( i , : ) / energy ;
end

end
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