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ABSTRACT

Methods for the Analysis of Developmental Respiration Patterns

by

Justin Peyton

This thesis looks at the problem of developmental respiration in Sarcophaga cras-

sipalpis Macquart from the biological and instrumental points of view and adapts

mathematical and statistical tools in order to analyze the data gathered. The bi-

ological motivation and current state of research is given as well as instrumental

considerations and problems in the measurement of carbon dioxide production. A

wide set of mathematical and statistical tools are used to analyze the time series

produced in the laboratory. The objective is to assemble a methodology for the pro-

duction and analysis of data that can be used in further developmental respiration

research.
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1 INTRODUCTION

This thesis looks at the problem of developmental respiration in Sarcophaga cras-

sipalpis Macquart from the biological and instrumental points of view and adapts

mathematical and statistical tools in order to analyze the data gathered. The bi-

ological motivation and current state of research is given as well as instrumental

considerations and problems in the measurement of carbon dioxide production. A

wide set of mathematical and statistical tools were used to analyze the time series

produced in the laboratory. The objective was to assemble a methodology for the

production and analysis of data that can be used in further developmental respiration

research.

Chapter 2, which is devoted to developmental respiration, gives a brief introduc-

tion to the life cycle of the model species S. crassipalpis, with emphasis on the larval

to pupal development. An overview of insect respiratory measurement and research

is covered as well as the basic biological goals motivating the project.

Chapter 3 covers the instrumental concerns and considerations of the project.

The basic idea behind how certain kinds of respirometry systems differ is discussed.

The materials and methods of the data collection are covered as well a few technical

problems encountered including flow rate control and caustic chemical handling.

The development of mathematical tools for the segmentation of the time series

produced in the laboratory is covered in Chapter 4. Tools were developed in order to

detect changes in the trend, variability, and periodicity. Many of the tools developed

come in the form of programs written in Maple and are included in Appendix B.

Special consideration was given to negative control data to ensure that the measure-
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ments and change points described were not instrumental artifacts. The conversion

from data produced in the laboratory to the dataset that was actually analyzed is

also discussed.

The final chapter presents the results when the tools developed in Chapter 4

are applied to the experimental data. Biological implications of this thesis are also

examined.
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2 DEVELOPMENTAL RESPIRATION

2.1 Lifecycle of Sarcophaga crassipalpis

Holometabolous insects undergo a complex transition during their life cycle, collec-

tively described as a complete metamorphosis. After embryonic development, larvae

go through a series of molts, the last larval stage enters a pupal stage and the adult

emerges, becomes sexually active and reproduces [14]. In Dipteran species and some

other holometabolous insects, the last larval stage undergoes a process where the

larval epidermis smooths and then sclerotizes to form the puparial case (Figure 1).

Inside this case, the pupal cuticle is produced and pupal apolysis occurs [6].

Figure 1: Puparial Development: wandering larvae (left), and successive puparial
development (from left to right) showing the barreling and tanning process.

The life cycle of the flesh fly, Sarcophaga crassipalpis Macquart, consists of the

female fly depositing pharate larvae directly onto a food source where the larvae feed

and undergo 3 larval molts. Late in the third larval instar, the larvae leave the food

source and migrate to find a pupariation site (wandering larvae, WL). During pupari-

ation, the larvae become immobile and barrel, with the epidermis contracting into a

smooth structure. Over a period of hours the larval cuticle hardens and sclerotizes

14



to become the puparial case (Figure 1). The hard brittle puparial case is opaque and

obscures developmental processes from visual examination. The developing fly does

not leave the puparial case until it emerges as a fully developed adult.

Several major developmental milestones occur between pupariation and eclosion

including larval-pupal apolysis, head eversion, and pupal-adult apolysis. Larval-pupal

apolysis corresponds to the transition from the encapsulated larva to a cryptocephalic

or head hidden pupa. The cryptocephalic pupa is similar to the larva in that its head

is still inverted and the appendages are still undifferentiated. These features change

around the time of head eversion as the imaginal discs evaginate and expand to form

their final pupal shapes. Pupal-adult apolysis corresponds to the transition from pupa

to pharate adult [6]. Although the general outline of these processes are known, there

may be many complex changes that are still unknown. One of the processes that has

not received adequate attention is the development of respiratory patterns associated

with these changes.

2.2 Respiration as a Measure of Physiological Change

The insect respiratory system consists of a series of branching tubes (trachea) that

deliver oxygen to individual cells and tissues and carry waste gases, carbon dioxide

and water, from the cells and out of the body [4]. This kind of respiratory system

precludes the need for a complex circulatory system with an oxygen or carbon dioxide

carrying pigment, such as hemoglobin in vertebrates, but has issues associated with

a high surface area to volume ratio. Water loss is a severe problem in these small

terrestrial organisms. Insects have addressed this problem by using spiracles to limit

15



the flow of gas and water loss.

Respiration is reportedly controlled by several methods in insects ranging from

passive diffusive flow [8, 11], discontinuous gas exchange (DGC) [9], the coelopulse

[17], and changing tracheal volume [21]. The time scale associated with these physio-

logical functions range from hours (DGC) to less than 1 sec (tracheal volume change).

Although there has been no consensus about physiological control mechanisms, the

indications are that the processes are complex and are rich areas for further studies.

Respirometry could be a valuable tool to gain insights into physiological and

developmental changes given the development of this organism. It is also important

to note that, since a developing fly is non-motile, no adjustments or exceptions need

to be made for activities such as eating or crawling; all changes in respirometry data

not attributed to the instrument itself are assumed to be developmental in nature.

2.3 Biological Goals

The biological goals of this thesis involve using a noninvasive technique as a win-

dow for examining the physiological and developmental processes that occur during

the time after pupariation. Morphological staging can only determine that the lar-

val epidermis sclerotizes during this time and examines snapshots of development by

histological sectioning. Due to the largely descriptive nature of this approach, it is

difficult to delineate where developmental phases begin and end while also measuring

variation in individuals. This study is the first description of the complex changes

that can be seen using respiration, and presumably reflects undescribed developmen-

tal and physiological processes.
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3 INSTRUMENTATION

3.1 Instrumental Considerations

Considerations when choosing a respirometry system include resolution, sensitiv-

ity, and stability. Early attempts to measure respiration used closed-system manome-

ter measurements, such as adaptations of a Gilson respirometer [10, 5]. This type

of respirometry system has limitations on sensitivity and resolution when used on

insects. This method depends on measurements of changes in gas volume due to

oxygen consumption. Given the low mass of insects, resolutions ranging from a single

measurement of oxygen consumption per hour to one measurement per day are not

uncommon [5].

The advent of flow-through or open-system respirometry for measuring carbon

dioxide release allows for much higher resolution measurements. This type of system

depends on the absorption of infrared light by carbon dioxide and can be sampled

several times a second. This technological advance theoretically allows researchers to

examine small scale changes in respiration that would reflect the physiological changes

associated with development, but comes with some cost. To increase the fidelity of

the system, carbon dioxide and water are chemically removed from the air stream

which requires the use of caustic chemicals such as sodium hydroxide and magnesium

perchlorate. The measurement of oxygen consumption cannot be measured with the

same resolution and sensitivity as carbon dioxide production in a flow-through system.

This is because oxygen consumption is measuring a small depletion relative to the

atmospheric concentration of oxygen, while carbon dioxide production measurements

17



are measuring deviations from near zero concentrations [10].

3.2 Materials and Methods

Newly pupariated larvae within a half hour of barreling, consistent with the first

and second pupariation stages seen in Figure 1, were placed into a sample chamber

of a flow-through respirometry system. The air for the respirometry system was

drawn out of an unsealed twenty liter carboy, which buffered the system from large

changes in ambient carbon dioxide concentration. The air was drawn through a one

liter Dryrite-sodalime-Dryrite column to chemically scrub out carbon dioxide and

water. After passing though the pump the air stream was pushed through a smaller

50 milliliter secondary Dryrite-Ascerite-Dryrite column to further scrub water and

carbon dioxide that can enter the system through the pump’s semi-permeable parts.

The airstream then passed through a Sierra mass-flow driver (Sierra Instruments,

Monterey, CA) which controls the system’s flow rate by automatically adjusting for

standard temperature and pressure. The air stream then passed through the reference

cell of the LI-COR 6251 differential carbon dioxide analyzer (LI-COR Biosciences,

Lincoln, NE) and into the sample chamber inside a Percival environmental chamber

(Percival Scientific, Perry, IA). The airstream was then passed through a column

of magnesium perchlorate, to eliminate any water released by the organism. The

air then flowed through the sample cell of the LI-COR and back into the carboy.

The incubation chamber is set to twenty-five degrees centigrade with a photoperiod

of 15:9 L:D. Quarter inch external diameter Bev-A-Line V tubing (Thermoplastic

Processes, Stirling, NJ) was used to connect the components of this system. Every
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time the air stream enters a piece of equipment a filter has been installed to protect the

instrumentation from dust and chemicals. Signals from the mass flow controller and

the LI-COR were acquired using a Sable Systems UI-2 interfacing unit and Expedata

software (Sable Systems, Las Vegas, NV). Data was exported from Expedata for

analysis in Maple and MINITAB.

Larvae were reared in a laboratory colony at twenty-five degrees centigrade with

a photoperiod of 15:9 L:D The colony has been maintained at East Tennessee State

University by Dr. Karl Joplin since 1994 when it was established from a long term

colony maintained at The Ohio State University.

3.3 Technical Concerns

3.3.1 Negative Control

Frequent measurements of very low changes in gas concentration from an approxi-

mately 150 mg organism over a period of days make extreme demands on the stability

of the instrumentation. At this low level, the instrumentation is operating near the

limits of the technology and these limitations must be verified to yield a reliable source

of information. Consequently a negative control or blank sample was recorded and

analyzed to determine properties of the data that can be attributed to the machine.

3.3.2 Flow Rate

One of the more difficult problems associated with open or flow-through respirom-

etry is control of the flow rate. Fluctuations in flow rate can have effects on the

measurement of carbon dioxide. First, fluctuations in flow rate cause the air to pass
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more quickly or slowly over the sample, resulting in a more diluted or concentrated

air stream respectively. This effect is accounted for when the actual time series is

constructed from the flow rate and concentration streams of data (see section 4.3).

Large cyclic fluctuations in flow can, however, cause noticeable artifacts in the final

time series. Many samples had to be regarded as preliminary data until this prob-

lem was consistently controlled. An example of poor flow and the kind of artifact

generated by poor flow control can be seen in Figure 2.

Figure 2: Flow Control: preliminary data with poor flow control (A), and artifact
(Arrow) created (B).

3.3.3 Caustic Chemicals

It is very important to maintain proper control of the caustic chemicals used to

chemically scrub the air. Improper care when handling these chemicals cannot only

lead to wasted supplies, but also damage to the instrumentation and cause physical

harm to lab personnel. While Dryrite is innocuous enough, Ascerite and magnesium

perchlorate are highly corrosive and should be handled with care. Ascerite, which

is mostly sodium hydroxide, has the added problem of being hydroscopic so that if

20



exposed to too much water vapor it will turn into a corrosive sludge. Insuring that

chemical dust is properly contained is another important concern. Filters should be

placed into the air stream so that any chemical dust does not find its way into the

instrumentation.
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4 DEVELOPMENT OF MATHEMATICAL AND STATISTICAL TOOLS

4.1 Objectives

One of the major objectives of this thesis is to adapt and develop analytical

procedures to identify and characterize features of this and similar time series. The

main features of interest to be identified and defined in the time series are long term

trend, short term variability, periodicity; and identification of the moments in which

these three characteristics undergo change.

Some of these characteristics and turning points might be apparent to the naked

eye but a major goal of this work attempts to define these points objectively and

reduce the number of subjective decisions in the identification of these features. In

addition, some of these points might not be apparent, but are hidden by the prevalence

of varying degrees of noise. One way to avoid subjective decisions is to develop

analytical tools that clearly identify features. These tools will also enable others

to easily reproduce the analysis on similar time series. The development of these

analytical procedures will be described in this section and programs for analyzing

this data in Maple will be presented in Appendix B.

In order to explore these time series, a single individual was chosen by dice throw

as a representative. Any exploration needed, as in section 4.3, was done on this time

series and decisions based on it will then applied to the other time series. In order

to minimize in-text graphs, most of the graphs of experimental data are of this indi-

vidual. The interested reader is pointed to Appendix A where graphs are presented

for all the individuals in a larger format. An eight sided die was used to select the
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representative sample randomly. The first throw showed 8, so the die was rerolled.

On the second throw it showed 6 indicating individual six as the representative.

4.2 Negative Control Data

Before the respiration data can be properly understood, it is important to establish

what kind of data the respirometry system can produce with no organism present.

A negative control or blank is a sample taken under the exact same conditions, but

with no organism in the sample chamber. Figure 3 shows the blank and a sample in

the same units and scale.

Figure 3: Blank and Individual 6:Blank (black) and Individual 6 (blue).

From this view the blank seems to be a straight line that slowly moves from zero

parts per million to around 0.6 parts per million. One strategy is to fit a line over

the blank and subtract that line from the blank and all other readings to correct for

instrument drift. This however may not be the best method. If a line was subtracted

from the blank some structure would still be left. Figure 4A shows the residuals

from a linear regression or what remains of the blank after a best fit line has been
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subtracted. Figure 4B shows the first 150 coefficients of the serial autocorrelation

function of the residuals.

Figure 4: Blank Residuals and Autocorrelation: residuals of a linear regresion of the
blank (A) and the first 150 autocorrelation coeffients (B).

The autocorrelation coefficients show that the new time series is not stationary.

Subtracting a line representing machine drift from all the time series would not remove

all the structure induced by the machine, and it is unknown what structure might be

induced by subtracting it. It is better to look at the finite differences of the original

time series.

Figure 5A shows ∇yt ,the finite difference of lag one computed from the blank

data and Figure 5B displays the serial autocorrelation function. Figure 5B shows a

single significant autocorrelation r1 = 0.497585. This suggests that an ARIMA(0,1,1)

model seen in Equation 1 is appropriate to describe the random process of the empty

respirometry system [2].

Yt = Yt−1 + at − θ ∗ at−1 (1)
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Figure 5: Finite Differences and Autocorrelation: finite differances of lag one of the
blank (A) and the first 150 autocorrelation coeffients (B).

The first serial autocorrelation r1 can be used as an initial estimator of the auto-

correlation of the process, ρ1. An ARIMA(0,1,1) process has one parameter θ and it

is related to ρ by Equation 2.

ρ =
−θ

1 + θ2
(2)

If the first autocorrelation of the process was ρ = 0.497585, then the parameter

of the model would be θ = 0.9062104487. However a better estimation of the model

can be achieved by applying maximum likelihood estimation. There is no closed

form expression for this estimation; the estimators have to be obtained by numerical

approximation. This was done using SAS and the estimated model can be seen in

Equation 3.

Yt = Yt−1 + at − 0.97313 ∗ at−1 (3)
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An interpretation of this model is that the machine has white noise error, but

about three percent of this error accumulates producing something similar to a ran-

dom walk. A θ value of one would have no accumulation and would be white noise.

A θ value of zero would correspond to a true random walk.

The Fourier transform can be used to explore another aspect of the blank data,

but will be covered in Subsection 4.3.3.

4.3 Respiration Data

Larvae were selected from the colony based upon the most recently puparited larva

at the time of recording. All larvae were immobilized, had red spiracles and were only

slightly tanned consistent with the second larva from the left in Figure 1. Expedata

was set up to sample the carbon dioxide and flow signals sixty times a second and

then average those sixty values and record that value for that second. The system

was set up to record for three days producing two streams of 259,200 time points.

The first step in the analytical process was to convert the two streams of data into

biologically relevant units. Each data point must be converted using the Equation 4.

St = Ct ∗
1 part CO2

1000000 total parts
∗ Ft ∗

1000000 nanoliter

1 milliliter
∗ 1 min

60 sec
∗ 1

m
(4)

Where Ct is carbon dioxide measured in parts per million from the LI-COR and

Ft is the flow measured in milliliters per minute by the mass flow controller at time

t. The mass in grams of the individual pupa at time of insertion is represented by m.
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The other factors are necessary for unit conversion. The process produces a single

stream of 259200 time points with units of nanoliter/second∗gram (Figure 6).

Figure 6: Individual 6

4.3.1 Identifying Trend

The trend is the long term behavior of a variable through time. If the behavior of

the variable through time is such that it can be described as random variations around

a mean, the process is said to be stationary and the trend would be constant. If the

trend is very consistent it may be described with a polynomial or non-linear function

of time using regression methods. However, the trend can be quite irregular and a

regression model would make little sense. In this situation it is preferable to apply a

smoothing method to the time series in order to be able to describe the trend. After

the trend is identified and represented either by a function of time or numerically by

a smoothed version of the series, the trend can be removed from the original time

series as to observe any other patterns that the variable might exhibit.

It is clear from Figure 6 that this developmental time series is non-stationary with
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an irregular trend. A commonly used technique for smoothing a time series with an

irregular trend is moving averages. In a moving average the time series is smoothed

by averaging each point by some of its neighbors. The longer the moving average

length, the more neighbors are included and the smoothed the result. Equation 5

gives the formula for a centered moving average of length L.

Sj+L+1
2

=
1

L
∗

i+L−1∑

k=j

ak (5)

There can be negative impacts if the moving average length is too long. First the

time series is shortened by the moving average length. Shortening the time series is

not a problem in this case becuse of its length. Another negative effect is seen in the

residuals. If the moving average length is too long, the residuals can have a trend.

This trend takes the form of long sequences of residuals with a mean above or below

zero. For example, Figure 7A shows a very desirable smoothed time series generated

using a moving average length of 5000, but Figure 7B shows how the residuals can

Figure 7: Moving Average and Residuals: smoothed time series using moving avergage
of length 5000 of Individual 6 (A) and the residuals (B).
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deviate from zero for long periods of time. This is because the moving average

is calculated with respect to values too far away in time and no longer represents

accurately the local behavior. This effect is not desirable because the residuals will

be used later in the analysis to explore variability and periodicity.

Another option is to use block averaging in conjunction with cubic spline interpo-

lation. In this method, large sections of the data are averaged together and assigned

to the average of there times creating A(t), a mapping defined only over the averaged

times. In this example, the first 900 data points are averaged together and assigned

to t1 = 450.5 sec and the next point is not defined until t2 = 1350.5 sec. A(t1) is

about equal to 120 (nL/sec*g) as seen in Figure 8.

Figure 8: A(t): of Individual 6 generated by block averaging of length 900.

Once A(t) is constructed a piecewise defined continuous cubic polynomial S(t) is

constructed that goes through all the points of A(t) (Figure 9). Each piece Si(t) of this

polynomial is defined between two of our data points ti and ti+1 with Si(ti) = A(ti)

and Si(ti+1) = A(ti+1). In addition, S ′

i(ti) = S ′

i−1(ti) and S ′′

i (ti) = S ′′

i−1(ti). Natural

boundary conditions were chosen for this application which means that the first and
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second derivative of S(t) is equal to zero at its endpoints. S(t) and its first and

second derivative are continuous. It is also the piecewise continuous polynomial with

the smallest curvature that goes through all the points [7]. The cubic spline is a

special case of the B-spline used in Functional Data Analysis [13]. SplinerD is a

program written in Maple and is available in Appendix B for computing, evaluating,

and exporting a spline or its derivatives.

Figure 9: Spline and Residuals: smoothed time series using the spline of A(t) of
Individual 6 (A) and the residuals (B).

It is important to note that in one way the comparison between a moving average of

length 5000 and a block averaging of 900 is lopsided. If the spline had been computed

using block averaging of 5000, its residuals would have the same problems the moving

average had. The reason for the above comparison is based on the relative smoothing

capabilities of the two methods. If a moving average of length 900 is compared to

block averaging 900 with a cubic spline the difference in relative smoothing can be

seen. Figure 10 shows an excerpt of Individual 6’s trend estimated by moving average

900 and block averaging 900 with cubic spline.

30



Figure 10: Smoothing Capabilities Comparison: spline based on block averaging of
length 900(red) moving average of length 900 (blue).

Because block averaging coupled with cubic spline interpolation produces a smoother

estimation of trend than a moving average of the same length, a smaller length block

average and spline can be used to gain the same smoothness. By using a spline of

a shorter length, the problem of the residuals deviating from zero for long periods

of time is avoided. Thus, the time series can be decomposed into two separate time

series. The spline represents the long term trend of the series, and the residuals

represent the short term variation.

4.3.2 Identifying Features in Trend

Although the time series has an irregular trend, the trend still has a general shape.

The features of the long term trend of the time series can be isolated as changes in

the first and second derivative of the time series. There are many choices available

for estimating the derivative of the time series. Taking the derivative of the spline is

one possibility. The problem with this method as well as many other estimators is
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related to the high sampling frequency. Because of the high sampling frequency it is

possible to describe or detect events that are very small in the time domain. While

these features are of interest, the goal here is to describe the general shape of the

time series. An example of a problematic section is given in Figure 11.

Figure 11: Excerpt of Individual 6.

Somewhere between 8.5 hours and 10.5 hours there is there is a change in concavity

from concave up to concave down. This would correspond to the second derivative

being equal to zero and the first derivative being at a maximum. The search for this

structurally significant point is complicated by the presence of as yet to be described

but biologically significant dips in the carbon dioxide reading about once every hour

and other noise. These dips make estimations based on the original data or the

spline ineffective which can be seen in Figure 12 . What can be used however, is a

modified form of exponential smoothing named Moving Weighted Linear Regression

(WMLR) coupled with block averaging. In this method the first n block averages are

used to compute a weighted linear regression [12] and the slope of this regression is

stored. The algorithm then moves over one block average and starts over. The result
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is a smoothed estimation of the derivative. MWLR, a program written in Maple, is

provided to compute the WMLR of a time series and is available in Appendix B.

Figure 12: Spline Derivate and MWLR Comparison: spline derivate (black) and
moving weighted linear regresion (blue).

Choice of weighting function is dependant on analytical goals. Since a smooth

estimator of the derivative is desired, a weight function related to the normal distri-

bution was chosen as a place to start. After generating preliminary weighting values

using Equation 6, the weights were divided by their mean to produce weighting values

with mean equal to one.

W (n) =
1√
2π

e
18(n−

L
2 )

L2 (6)

The use of these particular weighting values makes the process similar to expo-

nential smoothing except that this algorithm is two-sided and takes the future into

account. Consequently the algorithm would not be useful for prediction. The trade-

off for the loss of prediction capabilities is that MWLR does not suffer from some of

the problems that double exponential smoothing does. Because double exponential
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smoothing is one-sided the predictions for when change points are going to be are

always later than actuality.

This error would not be critical if the values always deviated by a constant since

a simple correction could be used. However, how far the estimation deviates from

reality is based on the behavior of the time series as seen in Figure 13. If a minimum or

maximum is approached slowly, similar to the point at 25.8 hours, then the estimation

for when it is going to be further off than if the minimum or maximum is approached

quickly, as in the point at 39.8 hours. The error is 1.4 and 0.9 for the points at 25.8

hours and 39.8 hours, respectively. This is a difference of half an hour. This level of

ambiguity is not acceptable for this analysis.

Figure 13: Exponential Smoothing Error: displays discrepancy between actual trend
(A)and exponential smoothing trend estimation (B) from preliminary data

Once the smoothed derivative is estimated, change points need to be extracted.

Programs were written in Maple, and are provided in Appendix B, that will identify

minimums in the first derivative which correspond to changes from concave up to

concave down, maximums in the first derivative which correspond to changes from
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concave down to concave up, and zeros which usually correspond to local minimums

or maximums in the time series. If too many features are present to move forward

with analysis, a special set of these features may be chosen by some criteria. The key

to this process being objective is the criterions.

A list of criterions can be assembled in many ways. The simplest would be to

include all features, but this can become cumbersome. To avoid this problem a

minimum time between features limit can be chosen. Features can also be chosen

according to size or magnitude [16]. These are great ways to filter a large list of

features especially if reconstruction is a goal. Another possibility for time series that

are extremely similar is a more descriptive approach. This method has the added

benefit of matching features from different individual time series. The first step is to

choose a major or landmark feature that is present in all the individuals, and describe

what it is and where it can be found. Now other features can be described relative to

this feature. This method has the issue of not being viable if the landmark feature is

not present in a subsequent individual. Consequently careful selection is need when

defining any land mark features.

For this application, the first landmark feature will be called Max1 and is a max-

imum between .001 and .002 nL/sec∗sec∗g and happens in the first ten hours of the

time series. Max1 can be seen in Figure 14; it is marked with an arrow. From Max1,

several other features can be defined. If there are any zero crossings before Max1,

Zero1 is the first zero crossing before Max1. The first zero crossing after Max1 is

Zero2 and the first minimum after Max1 is Min1. In this way all the desired features

can be enumerated. The above examples are simple and extra rules can be added if
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there is any ambiguity. If no point meets the criteria for a particular feature, then

the time series is said to “not have” that feature. For example, Individual 1 does not

have a Zero1.

Figure 14: Derivative Estimation: of Individual 6 computed using moving weighted
linear regreshion, indicates Max1 (Arrow).

4.3.3 Variability

In section 4.3.1 the separation or decomposition of the long term trend from the

short term variability was covered. The goal now is to identify features based the short

term variability. When the absolute value of the residuals from the spline are grafted

(Figure 15) one major feature dominates the variability. The beginning and end of

this Period of High Variability (PHV) could be identified by the use of a threshold

value. The question remains, however: What threshold value should be used?

To explore the possibility of two distinct populations of variability, a histogram is

used. Figure 16A shows an asymmetric distribution with high kurtosis. To explore

the data further, a histogram of the natural log of the residuals was created. The
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Figure 15: Variability Threshold: absolute residuals from the spline with threshold
value displayed.

shape of the histogram in Figure 16B suggests that the distribution is a mixture of

distributions. This information will be used to set a threshold value. A value of 1.6

Figure 16: Population Exploration: histogram of the absolute value of the residuals

from the spline (A) and histogram of the natural log of the absolute value of the

residuals from the spline (B).

37



was chosen to separate the population to the far left from the rest of the data. This

value corresponds to a value of 4.95 for absolute residuals and will be used to separate

this feature on all the individuals.

4.3.4 Periodicity

The frequency domain approach for the analysis of time series is an approach

used for the detection of cyclic patterns in a variable. It is clear from the other

subsections in 4.3 that the developmental time series data are not stationary in trend

or variability. It is also likely that any periodic behavior, if present, would change

over time. The detection and characterization of cyclic patterns and the changes that

they might exhibit are the purpose of this subsection and the next.

When a time series is stationary, a periodogram is the tool commonly used to

identify the important frequencies in the behavior of a variable. The classical spec-

trum is defined for stationary time series, thus when the trend or variability of a time

series changes over time, the series is usually converted into a stationary time series

and then a periodogram is computed. However there are processes where the peri-

odic behavior changes over time and more complex tools, such as the spectrogram,

are needed [3, 15].

This time series shows interesting periodic properties and the purpose of this sec-

tion is to explore them. A discussion of the Fourier transform is needed to understand

the interpretation of the following section. The Fourier transform maps data from

the form of a function known as the time domain into an infinite sum of functions of

the form of Equation 7 known as the frequency domain.
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f =
∞∑

j=1

aj eiω(j )t (7)

Since it is not practical to work with an infinite sum, the Fast Fourier Trans-

form (FFT) can be used to approximate the Fourier Transform with a finite sum of

functions. With the use of this simplification as well as Euler’s identity a simplified

version (Equation 8) can be used that is more intuitive [19].

f =

n∑

j=1

aj (cos(ω(j)t) + i sin(ω(j)t)) (8)

Equation 8 makes it clearer that the Fourier transform is writing the data as a sum

of multiple sine and cosine waves. By graphing |aj|, which represents the amplitude

of each of these waves, it is possible to get an idea of the strength of each frequency.

This kind of graph is called a periodogram and can be seen in Figure 17B. Because of

the extreme differences possible in intensities, a log scale is often used; twenty times

the log base ten is used here.

Figure 17: Example Periodogram: example time series (A) and its periodogram (B)
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Figure 17 shows a time series (A) and its periodogram (B). This time series is

generated by Equation 9. Notice the peaks at 0.25 and 0.091. These two peaks

should, in theory, be the only data present, this is not the case. This error is known

as side lobe error, and is caused by window function being used [20].

f(n) =
n

1000
sin(

2πn

11
) +

1000 − n

2000
sin(

πn

2
) (9)

A window function is a function that is zero outside a given interval (the window)

that is multiplied by the original time series before the FFT is computed. The

simplest window function, the rectangular window, was used in the above example.

The rectangular window is one inside the interval and zero outside it. Whole families

of window functions exist and the choice of which to use is non-trivial. There are two

main considerations when choosing a window function: the main lobe width and the

height of the largest side-lobe. These values will correspond to resolving power and

significance of side lobe error respectively [18]. In order to compare windows easily, a

normalized spectrum of the window can be used. The windows that will be covered in

this thesis are Rectangular, Hamming, Blackman, and Truncated Gaussian windows.

Figure 18 shows the rectangular window (A) its performance when used to com-

pute the spectrogram of the time series created by Equation 9 (B) and its normalized

spectrum (C). The interpretation of Figure 18C starts with its main lob width which

is just two bins wide. This means that when the spectrogram is computed that the

main peak of a signal will be only two bins thick or has high resolution. The second

feature of importance is the highest side lobe is only 13 decibels below main lobe or

has high side lobe error [20]. These features can be seen in Figure 18 B in that the
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Figure 18: Rectangular Window: window (A), periodogram performance (B), and
normalized spectrum(C)
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peaks at 0.09 and 0.25 are thin, but high side lobe error is evidenced by how much

data is above the intensity equal to zero line.

The Hamming window has a four bin wide main lobe, which means that it has

less resolving power than the rectangular window, but the Hamming window has a

much lower highest side lobe at 42 decibels below the main lobe [20]. This can be

seen in Figure 19B where the wider peaks cross the intensity equal to zero line before

side lobe error is seen.

The Blackman window (Figure 20) takes one more step in sacrificing resolution for

minimized side lobe error. Its highest side lobe is 58 decibels below, but its main lobe

is eight bins wide. This kind of window is good for audio encoding because its side

lobe error falls below the noise floor of the system. The final window to be considered

here, the Gaussian window, has a very interesting property. The Fourier Transform

of the Gaussian window is the Gaussian distribution itself. Any side lobe error is due

strictly to truncation. Truncation is necessary because the window is theoretically of

infinite length. By manipulation of the parameters of the window and the truncation

of the window, arbitrarily small side lobe error can be achieved, but at the cost of

a large main lobe width [20]. This will not work well for this application and is not

considered further.

The astute reader will have noticed that Equation 9 produces a signal with prop-

erties that change over time. It is important to note the FFT does not take change

over time into account. Frequency intensities are given, but no information is gener-

ated about when or if dominate frequencies change. To overcome this, a spectrogram

can be used. A spectrogram is generated by computing several Short-Time Fourier
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Figure 19: Hamming Window: window (A), periodogram performance (B), and nor-
malized spectrum(C)
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Figure 20: Blackman Window: window (A), periodogram performance (B), and nor-
malized spectrum(C)
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Transforms (STFT). A STFT is a FFT that is computed by using a window that fo-

cuses on a small piece of time series. This provides a time localized estimation of the

periodicity of the time series. By sliding the window over a little or “hopping” and

computing more STFTs, it is possible to gain insight into how periodicity changes

over time. It is important to note that this process depends on the assumption that

the any non-stationary characteristics of the time series are changing slowly over

time. [18, 1]. Figure 21 shows the periodogram and spectrogram of the time series

generated by Equation 9. The spectrogram was created with a program for matlab

from Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications,

Second Edition [19].

Figure 21: Spectrogram and Periodogram Comparison: shows periodogram (A) and
spectrogram (B)

The spectrogram is a three-dimensional construction. The x axis is time and

moves linearly with early observations on the left and later observations to the right.

The y axis represents frequency and moves linearly from high frequencies at the top
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to low frequencies at the bottom. The third axis represents intensity or amplitude

and is in a 20 ∗ log10 scale or dB scale. The third dimension is represented here as

colors. The color bar shows the scale in relation to the different colors. It is possible

to see in Figure 21B how the two different frequencies created by Equation 9 change

over time. The intensity of the 0.9 frequency is waning, while the intensity of the

0.25 frequency is waxing.

The spectrogram has the same considerations as the periodogram with respect to

how much zero padding to use and what windowing function to use, but also has the

added considerations of window length and hop size. It is desirable to have as large a

window as possible that still represents local conditions as it can help with frequency

resolution and expands the largest identifiable period. If too long of a window is used,

however, a non-local estimation would occur possibly violating assumptions about the

nearly stationary nature of the time series inside the window. This could produce a

spectrogram that does not accurately reflect the behavior of the time series at that

time. A short hop distance relative the window length is desirable, but the shorter the

hop length the more computationally expensive the spectrogram becomes. Several

suggestions are given in the literature [18] as to reasonable minimums for different

applications. The hop distance used here is shorter than these suggestions as to

provide better resolution in the time domain for identification of features.

It is important, when considering the spectrogram as a tool for experimental

analysis of this kind, that the periodic properties of the machine are checked. It

is common for electronic equipment and pumps to contribute periodic noise to the

data. The spectrogram of the finite differences of the blank can be seen in Figure 22
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A. It shows a featureless gradient with no frequencies dominating. Had there been

any frequencies present, those frequencies would have to be either filtered out of the

individual data or ignored in the analysis attributing it to the machine. The fact that

higher frequencies are more prevalent is an effect of the finite differences.

Figure 22: Blank Spectrogram: from finite differences (A) and from residuals from a
linear regression (B).

The spectrogram of the residuals from a linear regression of the blank are presented

in Figure 22B. The gradient effect caused by the finite differences is not masking any

underlying frequencies. The program used to generate these spectrograms [19] was

modified in order to display several images in the same intensity scale. The original

algorithm automatically chose the scaling of the intensity scale based on the maximum

intestines. The modified one lets the user select the scale manually.

The parameters for computing the following spectrogram, as well as those in Ap-

pendix A, were as follows: a Hamming window of length 2001 sec, zero padding to

4096 sec, and a hop length of 75 sec were used. Figure 23A shows the whole spec-

trogram while Figure 23B shows a close-up of the lower frequencies. Two major
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features can be seen, first a transition from lower frequicies to slightly higher frequen-

cies around 55000 sec and a highly intense section that will not be considered for

segmentation as it coincides with the period of high variability. To explore the first

feature in more depth a few programs were written in Maple designed to compliment

the spectrogram.

Figure 23: Individual 6 Spectrogram: standard view (A) and close up of lower fre-
quencies (B)

The first program was designed to compute the values for the spectrogram in the

same way as the program that produced the spectrogram [19], but instead of making

an image out of the data, the program saves the data as a text file for importing

into other programs or reloaded into Maple for further analysis. The second program

written in Maple finds the most intense frequency at every time point and saves it as

a text file. The output was then imported into Minitab and seen below in Figure 24

A.

A shift from extremely low frequencies to slightly higher frequencies is seen in

Figure 24A, which shows how the most intense frequencies change over time. In
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Figure 24: Program Output: Smax(A) and per(B)

order to identify this change point, a program was written in Maple to compute how

many time points in a particular neighborhood had a frequency below a threshold. A

graphical representation is given in Figure 24B. In the example given, one hundred

time points were considered at a time and the threshold was set to 0.004 Hz. By

examining when 60 of the 100 values are below the threshold, we can get an idea of

when the transition occurs. This tool identifies a change in the periodic nature of the

time series at time 53500 sec or about 14.9 hours.
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5 RESULTS

The procedures outlined in Chapter 3 produce 21 change points with respect to

trend, variability, and periodicity. These change points are displayed in Table 1 and

define 20 separate developmental time periods. Given the large number of segments

and the complexity contained in each one, an in depth analysis of each segment is

outside the scope of this thesis. With that being said, some basic analysis of these

time periods is useful for illustrating the value of the system as a whole.

Table 1: Change Points: Identified from experimental data.

IND 1 IND 2 IND 3 IND 4 IND 5 IND 6 IND 7
Zero1 * 7517 7667 * 9030 9277 8972
Max1 10800 17100 15300 13500 14400 14400 15300
Zero2 14733 20691 19134 17161 18476 18100 18864
Min1 20700 25200 25200 23400 24300 23400 24300
Max2 29700 33300 33300 31500 32400 34200 33300
Min2 37800 40500 42300 42300 41400 41400 42300
Max3 46800 49500 51300 49500 49500 52200 49500
Perio 52675 51400 85750 59800 74575 53500 63625
Zero3 88747 99408 97095 102452 102787 102514 104933
Max4 101700 105300 109800 107100 108000 105300 108900
Min3 105300 108900 114300 110700 109800 109800 113400
Max5 114300 115200 121500 119700 118800 117900 121500
Zero4 120885 123535 130084 127480 125509 125425 129425
Min4 128700 129600 135900 134100 133200 132300 135900
PHVB 129512 130412 137048 136539 133842 132970 136783
Zero5 132295 133238 140891 137862 136370 135975 139673
Max6 134100 135000 141300 139500 137700 137700 141300
Zero6 135381 136764 142133 141756 139590 139314 142592
PHVE 135973 136982 143698 142236 142032 141261 144067
Min5 138600 139500 145800 144900 142200 142200 145800
Zero7 206420 209946 219282 209703 207774 219674 220908

A is defined as the period between Zero1 and Max1, B is defined as the period

between Max1 and Zero2, and the rest are labeled in a similar manner. Some basic

statistics describing the length of each segment is presented in Table 3. While there

is a fair amount of variation in how long each segment, it is amazing that a biological
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measurement could be so complex yet so consistently measured. Figure 25 shows dot

plots to ilustrate the distridution of lengths of selcet segments.

Table 2: Segment Lengths: Identified from experimental data.

IND 1 IND 2 IND 3 IND 4 IND 5 IND 6 IND 7
A * 9583 7633 * 5370 5123 6328
B 3933 3591 3834 3661 4076 3700 3564
C 5967 4509 6066 6239 5824 5300 5436
D 9000 8100 8100 8100 8100 10800 9000
E 8100 7200 9000 10800 9000 7200 9000
F 9000 9000 9000 7200 8100 10800 7200
G 5875 1900 34450 10300 25075 1300 14125
H 36072 48008 11345 42652 28212 49014 41308
I 12953 5892 12705 4648 5213 2786 3967
J 3600 3600 4500 3600 1800 4500 4500
K 9000 6300 7200 9000 9000 8100 8100
L 6585 8335 8584 7780 6709 7525 7925
M 7815 6065 5816 6620 7691 6875 6475
N 812 812 1148 2439 642 670 883
O 2783 2826 3843 1323 2528 3005 2890
P 1805 1762 409 1638 1330 1725 1627
Q 1281 1764 833 2256 1890 1614 1292
R 592 218 1565 480 2442 1947 1475
S 2627 2518 2102 2664 168 939 1733
T 67820 70446 73482 64803 65574 77474 75108

What is even more astounding than the fact that this many features can be ob-

served in so many samples is how regular is the end and onset of each stage. Table 4

shows the time from Max1 to the conclusion of the segment named. It is interesting

that the progression from Max1 through the end of segment S is about 35.6 hours long

with a 95% confidence interval of about plus or minus 45 minutes. Basic statistics of

the data presented in Table 4 are presented in Table 5.

The tools developed in this thesis are well suited to the analysis of this time se-

ries, but could also be used in other applications with highly variable time series.

Continued work can and needs to be done on these time series. An in-depth analysis

of each segment may reveal more biologically significant features. The further char-
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Table 3: Segment Length Statistics

N Mean StDev Min Medn Max Range CoefVar
A 5 6807.0 1838.0 5123 6328 9583 4460 0.270016
B 7 3765.6 189.5 3564 3700 4076 512 0.050324
C 7 5620.0 594.0 4509 5824 6239 1730 0.105694
D 7 8743.0 1001.0 8100 8100 10800 2700 0.114492
E 7 8614.0 1258.0 7200 9000 10800 3600 0.146041
F 7 8614.0 1258.0 7200 9000 10800 3600 0.146041
G 7 13289.0 12415.0 1300 10300 34450 33150 0.934231
H 7 36659.0 13238.0 11345 41308 49014 37669 0.361112
I 7 6881.0 4179.0 2786 5213 12953 10167 0.607325
J 7 3729.0 962.0 1800 3600 4500 2700 0.257978
K 7 8100.0 1039.0 6300 8100 9000 2700 0.128272
L 7 7635.0 760.0 6585 7780 8584 1999 0.099542
M 7 6765.0 760.0 5816 6620 7815 1999 0.112343
N 7 1058.0 631.0 642 812 2439 1797 0.596408
O 7 2743.0 750.0 1323 2826 3843 2520 0.273423
P 7 1471.0 493.0 409 1638 1805 1396 0.335146
Q 7 1561.0 468.0 833 1614 2256 1423 0.299808
R 7 1246.0 831.0 218 1475 2442 2224 0.666934
S 7 1822.0 952.0 168 2102 2664 2496 0.522503
T 7 70672.0 4873.0 64803 70446 77474 12671 0.068952

acterization would also be useful in ongoing biological research. Another interesting

avenue for future research would be to create an average or representative time series

that incorporated all the individual time series using function data analysis. The end

result of this thesis is not just a set of tools that bring the analysis of this depth

within the reach of more people, but an excellent model system to better understand

development in flies. Experimental manipulation of this system could include changes

in temperature, insecticide treatments, and physiological manipulations just to name

a few.
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Figure 25: Segment Lengths

Table 4: Segment Conclusion

IND 1 IND 2 IND 3 IND 4 IND 5 IND 6 IND 7
B 3933 3591 3834 3661 4076 3700 3564
C 9900 8100 9900 9900 9900 9000 9000
D 18900 16200 18000 18000 18000 19800 18000
E 27000 23400 27000 28800 27000 27000 27000
F 36000 32400 36000 36000 35100 37800 34200
G 41875 34300 70450 46300 60175 39100 48325
H 77947 82308 81795 88952 88387 88114 89633
I 90900 88200 94500 93600 93600 90900 93600
J 94500 91800 99000 97200 95400 95400 98100
K 103500 98100 106200 106200 104400 103500 106200
L 110085 106435 114784 113980 111109 111025 114125
M 117900 112500 120600 120600 118800 117900 120600
N 118712 113312 121748 123039 119442 118570 121483
O 121495 116138 125591 124362 121970 121575 124373
P 123300 117900 126000 126000 123300 123300 126000
Q 124581 119664 126833 128256 125190 124914 127292
R 125173 119882 128398 128736 127632 126861 128767
S 127800 122400 130500 131400 127800 127800 130500
T 195620 192846 203982 196203 193374 205274 205608
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Table 5: Segment Conclusion Statistics

N Mean StDev Min Medn Max Range CoefVar
B 7 3766 189.5 3564 3700 4076 512 0.050324
C 7 9386 708.0 8100 9900 9900 1800 0.075431
D 7 18129 1093.0 16200 18000 19800 3600 0.060290
E 7 26743 1620.0 23400 27000 28800 5400 0.060577
F 7 35357 1701.0 32400 36000 37800 5400 0.048109
G 7 48646 12627.0 34300 46300 70450 36150 0.259569
H 7 85305 4562.0 77947 88114 89633 11686 0.053479
I 7 92186 2256.0 88200 93600 94500 6300 0.024472
J 7 95914 2429.0 91800 95400 99000 7200 0.025325
K 7 104014 2886.0 98100 104400 106200 8100 0.027746
L 7 111649 2936.0 106435 111109 114784 8349 0.026297
M 7 118414 2886.0 112500 118800 120600 8100 0.024372
N 7 119472 3196.0 113312 119442 123039 9727 0.026751
O 7 122215 3125.0 116138 121970 125591 9453 0.025570
P 7 123686 2886.0 117900 123300 126000 8100 0.023333
Q 7 125247 2813.0 119664 125190 128256 8592 0.022460
R 7 126493 3181.0 119882 127632 128767 8885 0.025148
S 7 128314 3023.0 122400 127800 131400 9000 0.023559
T 7 198987 5724.0 192846 196203 205608 12762 0.028766

54



BIBLIOGRAPHY

[1] Allen, Jont B., Lawerence R. Rabiner. “A Unified Aproach to Short-Time Fourier

Analysis and Synthesis.” Proceedings of the IEEE 65 (1977):1558-1564.

[2] Box, George E. P., Gwilym M. Jenkins. Time Series Analysis: Forcasting and

Control. Revised Edition. San Francisco: Holden-Day, 1976.
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[17] Sláma, K. “Regulation of Respiratory Acidemia by the Autonomic Nervous Sys-

tem (Coelopulse) in Insects and Ticks.” Physiological Zoology 67 (1994):163-174.

56



[18] Smith, Julius O. III., Xavier Serra. “PARSHL: An Analysis/Synthesis

Program for Non-Harmonic Sounds Based on a Sinusoidal Represen-

tation.” Technical Report: CCRMA STAN-M-43, 1987. March 2008

<http://ccrma.stanford.edu/stanms/stanm43/>.

[19] Smith, Julius O. III. Mathematics of the Discrete Fourier Transform (DFT):

With Audio Aplications. Second Edition. Online Book, 2007. March 2008

<http://ccrma.stanford.edu/∼jos/mdft/mdft.html>.

[20] Smith, Julius O. III. Spectral Audio Signal Processing. Draft. Online Book, 2007.

March 2008 <http://ccrma.stanford.edu/∼jos/sasp/sasp.html>.

[21] Westneat, Mark W., Oliver Betz, Richard W. Blob, Kamel Fezzaa, W. James

Cooper, Wah-Keat Lee. “Tracheal Respiration in Insects Visualized with Syn-

chrotron X-ray Imaging.” Science 299 (2003):558-60.

57



APPENDICES

Appendix A

Indviduals

Figure 26: Indvidual 1
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Figure 27: Indvidual 2
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Figure 28: Indvidual 3
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Figure 29: Indvidual 4
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Figure 30: Indvidual 5

62



Figure 31: Indvidual 6
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Figure 32: Indvidual 7
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Splines

Figure 33: Spline of Indvidual 1
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Figure 34: Spline of Indvidual 2
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Figure 35: Spline of Indvidual 3
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Figure 36: Spline of Indvidual 4
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Figure 37: Spline of Indvidual 5
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Figure 38: Spline of Indvidual 6
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Figure 39: Spline of Indvidual 7
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Spline Residuals

Figure 40: Residuals of the Spline of Indvidual 1
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Figure 41: Residuals of the Spline of Indvidual 2
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Figure 42: Residuals of the Spline of Indvidual 3
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Figure 43: Residuals of the Spline of Indvidual 4
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Figure 44: Residuals of the Spline of Indvidual 5
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Figure 45: Residuals of the Spline of Indvidual 6
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Figure 46: Residuals of the Spline of Indvidual 7
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MWLR

Figure 47: MWLR of Indvidual 1
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Figure 48: MWLR of Indvidual 2

80



Figure 49: MWLR of Indvidual 3
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Figure 50: MWLR of Indvidual 4
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Figure 51: MWLR of Indvidual 5
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Figure 52: MWLR of Indvidual 6
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Figure 53: MWLR of Indvidual 7
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Spectrograms

Figure 54: Spectrogram of Indvidual 1
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Figure 55: Spectrogram of Indvidual 2
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Figure 56: Spectrogram of Indvidual 3
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Figure 57: Spectrogram of Indvidual 4
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Figure 58: Spectrogram of Indvidual 5
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Figure 59: Spectrogram of Indvidual 6
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Figure 60: Spectrogram of Indvidual 7
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Appendix B

SplinerD

SplinerD is a program designed to create and evaluate a spline or its derivatives

and then save the results as a text file. SplinerD has four arguments. A, the first

argument, is expected to be a two column Matrix with the first column representing

the increasing time increments and the second representing values of A(t). The second

argument deg is expected to be a positive integer corresponding to the degree of the

polynomials to be used in the spline. The third argument, dir, corresponds to the

derivate that should be computed. For example if the second derivative is desired a

2 should be entered. Enter 0 if the spline itself is desired. The final argument, name,

is expected to be a combination of text and numbers (stay away from symbols) and

will be the root of the name of the file this program saves. The full file name will be

“name”.txt and will be saved in the same folder as the worksheet being used. Maple

output is a one column Matrix of the evaluated values.

SplinerD:=proc(A,deg,dir,name)

local g,m,n,o,f,F,i,S,M;

g:=CurveFitting[Spline](A,x,degree=deg):

if dir < 1 then

f:=g

else

f:=diff(g,x$dir);
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end if;

F:=unapply(f,x):

m:=A[1,1];

n:=linalg[rowdim](A);

o:=A[n,1];

S:=[seq(evalhf(F(a)), a = m..o)]:

M:=Matrix(S);

ExportMatrix(cat(name,“.txt”),M,target=delimited,delimiter=“\ t”):

M;

end proc:

MWLR

MWLR is a program designed to compute a moving weighted linear regression and

export the result to a text file. WMLR has four arguments. The first argument y is

expected to be a two column Matrix with the first column representing the increasing

time increments and the second representing values from either the time series or a

block averaging. W, the second argument, is expected to be an n by n matrix with

the weights along the main diagonal. How far the algorithm moves down the time

series before recomputing the weighted linear regression is the third argument: hop.

The final argument, name, is expected to be a combination of text and numbers (stay

away from symbols) and will be the root of the name of the file this program saves.
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The full file name will be “name”MWLR.txt and will be saved in the same folder as

the worksheet being used. Maple output is a one dimensional Array of the MWLR.

MWLR:=proc(y,W,hop,Name)

localw,q,n,A,i,M,Y,X,Xp,StepOne,StepTwo,StepThree,StepFour,FinalVector,a;

w:=LinearAlgebra[RowDimension](W);

q:=LinearAlgebra[RowDimension](y);

n:=q-w;

A:=<seq(0,i=1..n,hop)>;

for i from 1 to n by hop do

Y:=Matrix([seq([y[d,2]],d=i..i+w-1)]);

X:=Matrix([seq([1,y[d,1]],d=i..i+w-1)]);

Xp:=Transpose(X);

StepOne:=LinearAlgebra[MatrixMatrixMultiply](Xp,W);

StepTwo:=LinearAlgebra[MatrixMatrixMultiply](StepOne,X);

StepThree:=LinearAlgebra[MatrixInverse](StepTwo);

StepFour:=LinearAlgebra[MatrixMatrixMultiply](StepOne,Y);

FinalVector:=LinearAlgebra[MatrixMatrixMultiply](StepThree,StepFour);

a:=FinalVector[2,1];

A[i]:=a;

end do;

M:=Matrix(A);
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ExportMatrix(cat(Name,“MWLR”,“.txt”),M,target=delimited,delimiter=“\ t”):

A;

end proc:

MaxT and MinT

MaxT and MinT are very similar programs designed to compliment MWLR by

finding local maxima and minima of its output respectively. Both programs have

the same three arguments. V the second argument is intended to be the output of

MWLR. P its first argument is expected to be a one dimensional array of the same

length as the V that represents the times each MWLR value corresponds to. The

correct values for P are going to depend on the length of the weighting function,

choice of hop size and sampling frequency of the data entered into MWLR. The final

argument, name, is expected to be a combination of text and numbers (stay away

from symbols) and will be the root of the name of the file this program saves. The

full file name will be “name”MAX.txt or “name”Min.txt and will be saved in the

same folder as the worksheet being used. Maple output is a two column Matrix of

the MWLR local maxima or minima and their position in time.

MaxT:=proc(P,V,Name)

local M,n,A,i,a1,a2,a;

n:=LinearAlgebra[Dimension](V)-1;

A:=[];

96



for i from 2 to n do

if V[i] > V[i-1] then

if V[i] > V[i+1] then

a1:=P[i];

a2:=V[i];

A:=[op(A),[a1,a2]];

end if;

end if;

end do;

M:=Matrix(A);

ExportMatrix(cat(Name,“MAX”,“.txt”),M,target=delimited,delimiter=“\ t”):

A;

end proc:

Similarly

MinT:=proc(P,V,Name)

local M,n,A,i,a1,a2,a;

n:=LinearAlgebra[Dimension](V)-1;

A:=[];

for i from 2 to n do
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if V[i] < V[i-1] then

if V[i] < V[i+1] then

a1:=P[i];

a2:=V[i];

A:=[op(A),[a1,a2]];

end if;

end if;

end do;

M:=Matrix(A);

ExportMatrix(cat(Name,“MIN”,“.txt”),M,target=delimited,delimiter=“\ t”):

A;

end proc:

ZeroI

ZeroI is a program designed to compliment MWLR by finding intervals that con-

tain zeros. This program has two arguments. V the second argument is intended to

be the output of MWLR. P its first argument is expected to be a one dimensional

array of the same length as the V that represents the times each MWLR value corre-

sponds to. The correct values for P are going to depend on the length of the weighting

function, choice of hop size and sampling frequency of the data entered into MWLR.
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No text file is saved. Maple output is a two column Matrix of the values before and

after a zero.

ZeroI:=proc(P,V)

local A,n,i,x,a,b,c,d,M;

A:=[];

n:=LinearAlgebra[Dimension](V)-1;

for i from 1 to n do

x:=V[i]*V[i+1];

if x < 0 then

c:=P[i];

d:=P[i+1];

A:=[op(A),[c,d]];

end if;

end do;

M:=Matrix(A);

M;

end proc:

spec

The program spec was designed to compute the spectrogram and save it as a
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text file. The program has five arguments. The first argument, Sample is expected

to be a one column Matrix of Real numbers representing the data the spectrum is

going to be computed for. FFTN is the number of Fourier Coefficients that will be

generated. This value should be a power of two for fastest computation. Note that

only FFTN/2 will be reported as this program was set up with Real numbers in mind.

N is the length of the hamming window to be used to compute the STFT and must

be less than FFTN. H is the hop distance or how far the window will be advanced for

successive computations of the STFT. The final argument, name, is expected to be a

combination of text and numbers (stay away from symbols) and will be the root of

the name of the file this program saves. The full file name will be spec“name”.txt and

will be saved in the same folder as the worksheet being used. Note that with(Matlab)

is needed before the program is loaded.

with(Matlab):

spec:=proc(Sample,FFTN,N,H,Name)

local b,x,a,y,A,w,W,c,c1,c2,X,s,c3,M;

b:=FFTN/2;

a:=LinearAlgebra[RowDimension](Sample);

y:=trunc((a-N)/H)+1;

A:=Array(1..b,1..y);

w:= 0.54 -.46*cos((2*Pi*n)/(N-1));

W:=unapply(w,n);

c:=a-N;
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c1:=0;

c2:=1;

while c1 < c do

x:=Array([seq(evalf(Sample[j+c1,1]*W(j)),j=1..N)]);

X:=Matlab[fft](x,FFTN);

s:=[seq(20*log10(abs(X[k])),k=FFTN/2+1..FFTN)];

for c3 from 1 to b do

A[c3,c2]:=s[c3];

end do;

c1:=c1+H;

c2:=c2+1;

end do;

M:=Matrix(A);

ExportMatrix(cat(“spec”,Name,“.txt”),M,target=delimited,delimiter=“\ t”):

M;

end proc:

Smax

Smax is a program designed to compliment spec by finding the most intense

frequency for every time point of its output and save as a text file. Smax has two
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arguments. The first argument, A is intended to be the output of spec. The final

argument, name, is expected to be a combination of text and numbers (stay away

from symbols) and will be the root of the name of the file this program saves. The

full file name will be Smax“name”.txt and will be saved in the same folder as the

worksheet being used. Maple output is a one column Matrix of frequencies.

SMax:=proc(M,name)

local a,x,y,A,c1,m,c2,B;

x:=LinearAlgebra[RowDimension](M);

y:=LinearAlgebra[ColumnDimension](M);

A:=Array(1..y,1..2);

for c1 from 1 to y do

m:=M[1,c1];

a:=.5;

for c2 from 1 to x do

if m < M[c2,c1] then

m:=M[c2,c1];

a:=.5-((c2-2)/(2*x));

end if;

end do;

A[c1,1]:=m;

A[c1,2]:=a;
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end do;

B:=Matrix(A);

ExportMatrix(cat(“Smax”,Name,“.txt”),B,target=delimited,delimiter=“\t”):

B;

end proc:

per

The program per was designed to compliment Smax and through it spec by count-

ing how many of the frequencies reported by Smax in a particular time frame are

below a threshold. The first argument of per, M, is intended to be the output of

Smax. L, the second argument is the length of the time frame in which the counting

is conducted. The final argument, name, is expected to be a combination of text and

numbers (stay away from symbols) and will be the root of the name of the file this

program saves. The full file name will be per“name”.txt and will be saved in the

same folder as the worksheet being used. Maple output is a one column Matrix of

integers between zero and L.

per:=proc(M,L,T,name)

local x,B,c1,A,a,c2,Q;

x:=LinearAlgebra[RowDimension](M)-L;

B:=Array(1..x);
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for c1 from 1 to x do

A:=[seq(M[n,2],n=c1..c1+L-1)];

a:=0;

for c2 from 1 to L do

if A[c2] < T then

a:=a+1;

end if;

end do;

B[c1]:=a;

end do;

Q:=Matrix(B);

ExportMatrix(cat(“per”,name,“.txt”),Q,target=delimited,transpose=true,delimiter=“\t”):

Q;

end proc:
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