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ABSTRACT

A Variety of Proofs of the Steiner-Lehmus Theorem

by

Sherri Gardner

The Steiner-Lehmus Theorem has garnered much attention since its conception in the

1840s. A variety of proofs resulting from the posing of the theorem are still appearing

today, well over 100 years later. There are some amazing similarities among these

proofs, as different as they seem to be. These characteristics allow for some interesting

groupings and observations.
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1 THE BEGINNINGS OF THE STEINER-LEHMUS THEOREM

Since approximately 300 B.C.E. Euclid struggled to collect and organize an ax-

iomatic system for geometry, a field that had been developing empirically all over the

learned world for some 280 years. He finally released his textbook, The Elements. As

his creation spread, Euclid has been bombarded with criticism, suggestions, and new

or newly stated theorems to add to the original publication. Over the following years,

theorems upon theorems have been stated, proved and accepted and The Elements

has grown to be the definitive basis of what we call Euclidean Geometry[5].

Hidden among Euclid’s axioms and theorems are the descriptions of triangles,

quadrilaterals, circles, polygons, and many of the relationships between these figures.

These similarities and properties establish many specific types of triangles: scalene,

equilateral, and of special interest to this work, isosceles (see Figure 1.)

 

 

 

     

 

Figure 1: Various Isosceles Triangles

An isosceles triangle has two equal sides that oppose two angles of equal measure.

The characteristics of its medians, cevians, internal bisectors, sines, cosines, etc. have
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been dissected and detailed within Euclid’s Elements[5] and the work that followed.

So it seems almost inconceivable that with all the attention, there is a property of

isosceles triangles that is still being proven nearly 1500 years later.

The question of whether or not the angle bisectors of an isosceles triangle are

congruent was itself a direct result of ASA (Angle-Side-Angle) congruency, which

was shown in the first volume of The Elements[5]. But the converse seemed to have

been forgotten or deliberately ignored for many years, and new proofs of this converse

are still being published even today.

The first concrete evidence of an actual posing of the question is found in a letter

from C.H. Lehmus penned to C. Sturm in 1840 looking for a geometric proof[1,14].

Sturm did not put forth a proof but he did pass the problem onto others. One of

the first responses was from Jacob Steiner[14]. Thus the birth of what has come be

to known as the Steiner-Lehmus Theorem: Any triangle with two angle bisectors of

equal lengths is isosceles.

The Steiner-Lehmus Theorem has garnered attention since its conception and

proofs have been put forth for over one hundred years, resulting in more than 80

accepted proofs[12]. We are going to look at a varied sample of these and discuss how

they are constructed and the ways in which they both resemble and differ from each

other. Then, at the end, we will expound on some of the more subtle characteristics

of this particular theorem.
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2 A CLOSE LOOK AT EACH PROOF INDIVIDUALLY

2.1 Seydel/Newman

This proof is a collaboration between an educator, Ken Seydel and his student,

Carl Newman Jr.[13], and is itself the product of one of the many traits of the Steiner-

Lehmus Theorem. The Steiner-Lehmus Theorem has long drawn the interest of edu-

cators because of the seemingly endless ways to prove the theorem (80 plus accepted

different proofs.) This has made the it a popular challenge problem. This character-

istic of the theorem has also drawn the attention of many mathematicians who are

fascinated by puzzles, such as Martin Gardner[7].

This particular proof uses the following facts:

1.) Law of Sines: a
sinA

= b
sinB

= c
sinC

(see Figure 2.)

3.) Double Angle Identity: sin 2A = 2sin Acos A

4.) Trigonometric Formula for Area of a Triangle: 1
2
(AB)(AC)sin∠A (see Figure

2.)

5.) Properties of Sine: specifically, increasing on the interval [0◦,90◦]

6.) Properties of Cosine: specifically, decreasing on the interval [0◦,90◦]

10



A

B Ca

bc

Figure 2: Typical labeling of a triangle

Let us start by stating the hypothesis: AE, CD are angle bisectors of ∠A, ∠C

respectively; AE = CD; 0◦ < θ, α < 90◦ (Figure 3.)

B

A C

D E

β

θ α

Figure 3: Figure for Seydel/Newman
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It should be noted that this is the only proof discussed that limits the base angles

of the triangle in question to less 90◦. It does not change the outcome but it certainly

simplifies some of the details by reducing the number of arguments needed.

Decompose4ABC into4ABE and4AEC (Figure 4) and then again into4CBD

and 4CDA. (Figure 5)

B

A C

E

Figure 4: Decomposition into ABE and AEC
B

A C

D

Figure 5: Decomposition into CBD and CDA
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Apply the trigonometric formula for area of a triangle to each separate decompo-

sition to achieve the following:

Area4ABC = Area4ABE + Area4AEC

=
1

2
(AB)(AE) sin

θ

2
+

1

2
(AE)(AC) sin

θ

2
.

And again,

Area4ABC = Area4CBD + Area4CDA

=
1

2
(CB)(CD) sin

α

2
+

1

2
(CD)(AC) sin

α

2
.

So, obviously,

1

2
(CB)(CD) sin

α

2
+

1

2
(CD)(AC) sin

α

2
=

1

2
(AB)(AE) sin

θ

2
+

1

2
(AE)(AC) sin

θ

2
.

Now we establish the assumption, if θ = α, then 4ABC is isosceles and the point

of the proof is moot, so let us assume θ 6= α is true. For example, let θ > α be

the assumption. Sine is an increasing function in this instance and AE ∼= CD by

hypothesis; so it is accurate to say

1

2
(AE)(AC) sin

θ

2
>

1

2
(CD)(AC) sin

α

2
,

Then we can take the previous equation, namely,

1

2
(CB)(CD) sin

α

2
+

1

2
(CD)(AC) sin

α

2
=

1

2
(AB)(AE) sin

θ

2
+

1

2
(AE)(AC) sin

θ

2
,

and deduce the inequalities

1

2
(CD)(AC) sin

α

2
<

1

2
(AC)(AE) sin

θ

2
,

1

2
(CD)(CB) sin

α

2
<

1

2
(AB)(AE) sin

θ

2
.
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Apply the Law of Sines (Figure 3) to get

AB

sinα
=

AC

sin β
=

CB

sin θ
,

and

AB =
(AC) sinα

sin β
; CB =

(AC) sin θ

sin β
.

So,

1

2
(AC) sin θ

1

sin β
sin

α

2
>

1

2
(AC) sinα

1

sin β
sin

θ

2
;

which reduces to

(sin θ)
(

sin
α

2

)
> (sinα)

(
sin

θ

2

)
.

Using the double angle formulas to achieve some commonalty leads to,

(2)
(

sin
θ

2

)(
cos

θ

2

)(
sin

α

2

)
> (2)

(
sin

α

2

)(
cos

α

2

)(
sin

θ

2

)
,

cos
θ

2
> cos

α

2
.

Cosine is a decreasing function in the setting of this particular proof implying that

θ < α, which is a contradiction to the original assumption of α < θ. Using the

assumption θ < α will lead to a similar outcome, thus proving the only option left is

that θ = α. That fact leads directly to the angle bisectors being congruent as well;

therefore, the triangle is isosceles. �

This proof is very similar to the proof attributed to Plachkey in a later paper[11].

In body and argument the papers are near identical but this proof is by contradic-

tion and the Plachkey proof is considered direct. This is very nice proof using a

construction and contradiction.
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2.2 David Beran

This proof can be found in the article,“SSA and the Steiner-Lehmus Theorem” by

David Beran[1]. In the article, Beran attributes this particular proof of the Steiner-

Lehmus Theorem to F.G. Hesse and dates its publication to 1874, with a conception

date of 1840[1]. That would make this one of the first proofs to appear in response

to Sturm’s query for a proof. Before we get into the proof of the Steiner-Lehmus

Theorem, a tool that Beran calls “side-side obtuse congruency” needs to be clarified.

Students are warned that using SSA (Side-Side-Angle) to show congruency is

unwise in the first year of geometry. There are two distinct scenarios in which students

are compelled to use SSA and then there are three distinct possibilities to the second

scenario. In one of these possibilities it will become apparent the problem with SSA.

The setting is that it is known that the two triangles in question have two congruent

sides. The first scenario is that it is possible to show that the third sides are also

congruent and SSS (Side-Side-Side) can be applied. The second scenario is that it

is not possible to show any relationship between the third sides but there does exist

enough information to show a relationship between a pair of angles.

One possibility to the second scenario is that this relationship is one of non-

congruency and the triangles are in fact not congruent regardless of the location of

the angles. The second possibility is that the relationship between the two angles is

one of congruency and the angle is included (that is, it is located at the intersection of

the two congruent sides) then SAS is possible and the triangles again are congruent.

The third possibility is that the congruent angles are not included between the two

congruent sides then the problem with SSA becomes apparent.

15



If the angle is an acute angle (less than 90 degrees) there is not enough information

to assert that the triangles are congruent because a disturbing possibility appears.

The two bottom triangles under consideration in Figure 6 are not congruent even

though BA ∼= BD, they share a common side BC, and a common (acute) angle,

namely ∠C. If the congruent angles are obtuse (greater than 90 degrees), then the

triangles are congruent because no triangle can contain more than one obtuse angle.

Beran refers to this as “side-side-obtuse” congruency[1].

14

12

10

8

6

4

2

-2

-4

-6

-20 -15 -10 -5

C

B

DCA

B

D C

B

A

Figure 6: An example of the problem with SSA congruency

Beran presents the Steiner-Lehmus Theorem as the third example in his paper[1].

He uses Hesse’s proof as a basis but adds his side-side-obtuse approach as part of

the justification. Let us begin this version by assuming the following: BD bisects

∠ABC; CE bisects ∠ACB; and BD ∼= CE.(Figure 7)
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A

B C

E

DF

Figure 7: Initial set up for Beran proof

The goal of Beran is to show that AB ∼= AC or that the triangle is isosceles by

showing that 4BEC ∼= 4CBD by SSS (Side-Side-Side Congruency.) To do that it

is necessary to show that EB ∼= DC is true.

Let F be a point to the side of BD and opposite C so that DF can be constructed

such that m∠BDF = 1
2
m∠C and DF ∼= BC. Then 4BDF ∼= 4ECB by SAS, and

∠FBD ∼= ∠BEC, B̄F ∼= ĒB by CPCTC (Congruent Parts of Congruent Triangles

are Congruent). Next construct FC. (Figure 8)

Using this construction 4BFC ∼= 4DCF. Indeed,

m∠FBC = m∠FBD + m∠DBC, (by construction)

= m∠BEC + m∠B
2
, (by construction, original hypothesis)

= (m∠A + m∠C
2

) + m∠B
2

)(which is possible by accepting that the sum

of the angles of a triangle is 180 degrees).

Hence,

m∠FDC = m∠FDB + m∠BDC, (by construction)

17



= m∠C
2

+ (m∠A + m∠B
2

),

m∠FDC = m∠A + m∠C
2

+ m∠B
2

= m∠FBC. (by transitivity)

A

B C

E

DF

Figure 8: Construction of diagonal FC in the parallelogram

So, both are equivalent to each other and the following,

= m∠A + m∠B
2

+ m∠C
2

,

= m∠A+m∠B+m∠C
2

+ m∠A
2

,

= 90◦ + m∠A
2

is true.

So, m∠FDC ∼= m∠FBC > 90◦; thus, both angles are obtuse.

Hence, BF ∼= DC (by CPCTC),

and EB ∼= BF (by construction);

therefore, EB ∼= DC.

The result EB ∼= DC will allow us to show that 4BEC ∼= 4DCF. It can be used

to show that 4AED is isosceles, which can be further used to show that AB ∼= AC

18



and finally that 4ABC is also isosceles. �

Thus, this presentation of Hesse’s proof is direct in that is does not use the proof

style of contradiction, which most proofs of the Steiner-Lehmus Theorem utilize. It

does; however, draw heavily on various constructions and many parts of the proof rely

on the fact that the angles of any triangle sum to 180◦. Many of those constructions

and the justifications of the summation of a triangle’s angles are dependent on several

theorems that are themselves limited to proofs by contradiction. To follow the most

pure line of thought for direct proofs, a mathematician must avoid not only any

indirect style of proof in his own proof but ensure that nothing used in his proof

was proved using an indirect style either[4]. That line does not preclude the Steiner-

Lehmus theorem with complete certainty but it certainly precludes this particular

proof from being considered direct by a purist.

19



2.3 K.R.S. Sastry

The next 4 proofs are found in “A Gergonne Analogue of the Steiner-Lehmus

Theorem” by K.R.S. Sastry[12]. This paper illustrates that the characteristics of

angle bisectors used to show that a triangle is isosceles are also applicable to the

Gergonne cevians of a triangle. A Gergonne cevian is a line segment from a vertex

of a triangle to the point of contact/tangency of that triangle’s incircle (on the side

opposite the aforementioned vertex.)

The technique for this first proof is by contradiction. This is going to be one of

the two main styles used for proofs of the Steiner-Lehmus Theorem. That is part

of the unusual fascination associated with this theorem. Many mathematicians find

the lack of directness in these proofs to be worthy of intense scrutiny. Why should

the converse of such a straightforward theorem be itself lacking that same straight

forwardness or directness? The converse of this theorem is, if a triangle is isosceles,

then its (base) angle bisectors are congruent. This statement is very basic and direct,

so much so that its proof is one of the first to show up following Euclid’s initial

axiomatic system of geometry.

Sastry begins by offering up a proof from 1880 by M. Descube[12]. He uses this

proof as a lead to his own proof, which we will dissect momentarily. Descube’s proof

is a nice example of some of the existing, classic proofs. Let us begin by assuming

BE and CF are angle bisectors of 4ABC; BE ∼= CF . (Figure 9)

Proceeding by contradiction, assume that 4ABC is not isosceles even though its

base angle bisectors are congruent. At the point of contradiction, the reader must

concede that the original assumption of 4ABC not being isosceles must be incorrect,

20



thus, leaving only the option that 4ABC is in fact isosceles.

A

B C

F

E

G

Figure 9: Initial figure for Sastry’s presentation of Descube proof

Let AB 6= AC be true. For example, let AB < AC. The preceding inequality, AB

< AC leads to ∠C < ∠B, so ∠C
2
< ∠B

2
, ultimately implying that CE > BF by the

Hinge Theorem. This is illustrated by Figure 10.
16

14

12

10

8

6

4

2

-2

-4

-20 -15 -10 -5

largersmaller

largersmaller

E

B C
B C

F

Figure 10: Decomposition for Descube’s proof

∠FGE is constructed so that BFGE is a parallelogram. Drawing on the charac-
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teristics of parallelograms,

EG ∼= BF , FG ∼= BE,

∠FGE = ∠FBE.

So, ∠FGE = ∠B
2

, and FG = BE = CF.

But that implies that ∠FGC = ∠FCG.

Recall that part of the original assumption is that ∠FGE = ∠B
2
> ∠C

2
= ∠FCE,

which implied ∠EGC < ∠ECG, and CE < GE.

But GE ∼= BF is true by construction and characteristics of parallelograms, which

implies that CE < BF, contradicting a result of the initial assumption CE > BF.

So AB > AC is not true. A similar argument can be stated for the assumption

AB > AC. Therefore, if neither of those statements is correct, the only possibility left

is that AB ∼= AC has to be the case and the triangle is isosceles. �

The proof attributed to Descube[12] is nearly identical to the proof from Feti-

sov’s[6] book that is profiled later. There is only the slightest of differences in the

final arguments, but retaining both of these proofs is a good example of how similar

some of the accepted proofs can be while still being considered original.

In Sastry’s own proof he does not appeal to the results of the Steiner-Lehmus

Theorem but instead focuses on using distance and area to prove the following: “If

two Gergonne cevians of a triangle are equal, then the triangle is isosceles[12].”

Notice the labeling of Figure 2 and 11. Figure 2 is the standard labeling of sides

and vertices unless otherwise noted. The additions to the sides of the triangle in

Figure 11 are common in most proofs/discussions involving an inscribed circle. The

‘s’ in Figure 11 is a standard variable used to represent the semi-perimeter (a+b+c
2

.)
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It is worthwhile to note that

BC = a = (s−b)+(s−c) =
(a+ b+ c

2
−b

)
+
(a+ b+ c

2
−c

)
= (a+b+c)−b−c = a.

A

B C

F E

I

s−a s−a

s−b s−c

s−b s−c

Figure 11: Sastry figure for cevian proof

Let us assume that BE ∼= CF , where BE, CF are the Gergonne cevians of

4ABC, as the hypothesis. Look at these two particular triangles in Figure 12.
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C

FE

B

A

Figure 12: Breakdown of internal triangles for Sastry proof
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Apply the law of cosines to the angle common to both triangles, ∠A. (BE)2 =

c2 + (s− a)2 − 2c(s− a) cosA and (CF )2 = b2 + (s− a)2 − 2b(s− a) cosA.

Since BE = CF, c2 + (s − a)2 − 2c(s − a) cosA = b2 + (s − a)2 − 2b(s − a) cosA

Some shifting and algebra leads to:

c2 + (s− a)2 − 2c(s− a) cosA = b2 + (s− a)2 − 2b(s− a) cosA,

c2 − 2c(s− a) cosA = b2 − 2b(s− a) cosA,

c2 − b2 − 2c(s− a) cosA = −2b(s− a) cosA,

c2 − b2 − 2c(s− a) cosA+ 2b(s− a) cosA = 0,

c2 − b2 − 2(s− a) cosA(c− b) = 0,

(c− b)(c+ b)− 2(s− a) cosA(c− b) = 0,

(c− b)((c+ b)− 2(s− a) cosA) = 0.

Then either Case 1:(c-b) = 0 or Case 2:((c+b) - 2(s-a)cos A) = 0.

Case 1: c-b = 0 or c=b, which means the triangle would be isosceles and the proof

has come to an end.

We must look at Case 2 to either eliminate or accept it as a possibility. The

following chain of equalities are equivalent:

(c+ b)− 2(s− a) cosA = 0,

(c+ b)− 2(s− a)
(−a2 + b2 + c2

2cb

)
= 0,

(use law of cosines on 4 ABC, and solve for cos A)

c+ b− (s− a)(−a2 + b2 + c2)
( 1

bc

)
= 0,
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c+ b−
(a

2
+
b

2
+
c

2
− a)(−a2 + b2 + c2)

( 1

bc

)
= 0,

c+ b− 1

2bc
(−a+ b+ c)(−a2 + b2 + c2) = 0,

2bc2

2bc
+

2b2c

2bc
− (−a+ b+ c)(−a2 + b2 + c2)

2bc
= 0,

2bc2 + 2b2c− (−a+ b+ c)(−a2 + b2 + c2) = 0,

2bc2 + 2b2c− (a3 − ab2 − ac2 − a2b+ b3 + bc2 − ac + b2c+ c3) = 0,

2bc2 + 2b2c− a3 + ab2 + ac2 + a2b− b3 − bc2 + ac − b2c− c3 = 0,

−a3 + ab2 + ac2 + a2b− b3 + bc2 + a2c+ b2c− c3 = 0,

−a3 + a2b+ a2c+ ab2 − b3 + bc2 + a2c+ b2c− c3 = 0,

a2(b+ c− a) + b2(a− b+ c) + c2(a+ b− c) = 0.

And by the triangle inequality and general rules of arithmetic all parts of the left

side are positive and non-zero. This is an impossibility and Case 1 must be true.

Thus 4ABC is isosceles. � This is the second direct proof thus far.

Sastry’s third proof is a combination of pieces of the two previous proofs[12]. In

fact, Figure 13 is a combination of Figures 9 and 11.
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A

B C

F
E

G

H

s−a

s−b s−c

Figure 13: Sastry extension, figure for proof 3

This proof will take on the style of many Steiner-Lehmus proofs, a proof by con-

tradiction. From the information in the paper, this is supposed to be a second proof

of the statement, “If two Gergonne cevians of a triangle are equal, then the triangle

is isosceles[12].” However, the cevians are not noted in the figure. Figure 14 is more

reprensentative of the proof. This figure has only the addition of the inscribed circle

and adds very little in the way of useful information. However, it does make clear

that BE and CF are Gergonne cevians.
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s-c

s-b

s-a

F

H

B C

E

G

A

Figure 14: Addition of circle to denote cevians for Sastry extension proof 3

Let BE and CF be the Gergonne cevians associated with 4ABC and circle H;

also BE ∼= CF . Proceeding by contradiction assume that AB 6= AC, say AB < AC

or c < b. Recall, from the first proof, that if ∠EBC > ∠FCB is true then CH > BH

will also be true.

Since BE ∼= CF is true by hypothesis, then FH < EH will also be true. Scruti-

nize 4s ABE and AFC (Figure 15) and notice that AE ∼= AF = (s-a), BE ∼= CF ,

and AB < AC.
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B

A

Figure 15: Decomposition to ABE and ACF
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Scrutiny should lead to the conclusion that ∠AEB < ∠ACF. From that, the

conclusion ∠BEC > ∠BFC or equivalently ∠HEC > ∠HFB should be clear. Now

shift attention to 4BFH and 4EHC (Figure 16). Using the congruency of alternate

angles, ∠BHF ∼= ∠EHC and notice that ∠FBH > ∠ECH.
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Figure 16: Decomposition into FBH and EHC

Sastry specifically states that we are using the same construction now as as the one

used in the first proof, but at this point he calls our attention to the fact that 4FGC

is isosceles by Descube’s construction[12]. But, in fact, point G was established so

that BFGE would be a parallelogram. So while it is true that 4FGC is isosceles,

that was not the original purpose of the construction.

4FBC is isosceles because FG was constructed as congruent to BE which is

congruent to CF by hypothesis; therefore, ∠FGC = ∠FCG or equivalently, ∠FGE

+ ∠EGC = ∠HCE + ∠ECG. Since ∠FBH = ∠FGE > ∠HCE by both construction

and previous statements, it stands to reason that ∠EGC < ∠ECG must be true.

Also, EC < EG would be true by their relationship to their opposite angles. Which
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leads directly to

(s− c) < (s− b)

−c < −b

c > b.

Thus, contradicting our initial assumption that c < b. If the process is repeated

assuming AB > AC or c > b, the result will again be similar, a contradiction. There-

fore, if b < c is not true and c < b is not true, it must be that b = c and 4ABC is

isosceles. So, this is yet another proof involving contradiction and that will turn out

to be the most prevalent style. �

Sastry wraps up his paper with an extension to his last proof noted in the following

statement: The internal angle bisectors of the ∠ABC and ∠ACB of 4ABC meet the

Gergonne cevian AD at E and F respectively[12]. If BE ∼= CF then 4ABC is

isosceles. (Figure 17.)

So, let us assume that BE ∼= CF where BE,CF are the angle bisectors of ∠B and

∠C, respectively. The gist of the argument is going to be that E and F are in fact the

same point since Gergonne cevians and angle bisectors are concurrent. In an isosceles

triangle not only are the angle bisectors concurrent, but they are also concurrent

about the same point as the Gergonne cevians. Just to be clear, that means that the

Gergonne cevians and angle bisectors are the same line in an isosceles triangle. The

proof will follow the same path as most of Steiner-Lehmus proofs, namely a proof by

contradiction.
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A

B C

E

F

s−b s−cD

c b

Figure 17: Sastry proof 4 extension figure

If AB 6= AC then let AB < AC which is equivalent to b > c or (s-b) < (s-c).

Therefore, E lies below F on AD. The assumption of AB < AC implies ∠ABC >

∠ACB. ∠ECB > ∠FCD > ∠ECB is true by characteristics of angle bisectors and

the parts are less than the whole. That implies that either CE > BE or CE > CF

since CF = BE.

However, ∠ADC = ∠EDC > π
2

as noted in earlier proofs. And ∠FEC = ∠EDC

+ ∠ECD, so ∠FEC > π
2
. And ∠EFC < π

2
since the sum of the angles of any triangle

are 180 degrees. Thus, CE < CF which is a contradiction of our earlier result and

furthermore implies that the original assumption of AB < AC can not be true. As

before, it is necessary to note that assuming AB > AC will lead to a similar, albeit

reversed situation. Therefore, our only choice is that AB = AC or 4ABC is isosceles.

�

30



Sastry has provided a total of four proofs of the Steiner-Lehmus Theorem. One is

a direct proof and the other three are proofs by contradiction. This foreshadows that

contradiction will ultimately be the most popular method for this theorem. When

Sastry is introducing the paper the we have just discussed in this thesis, he brings up

one of the more interesting characteristics of the Steiner-Lehmus Theorem. Sastry

refers the Steiner-Lehmus Theorem as notorious because the record number of not

only accepted proofs, but also due to the large number of incorrect proofs published

and withdrawn.
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2.4 Mowaffaq Hajja (I)

The style of this next proof will be very similar to the earlier ones in that it will

use contradiction, but it will differ by depending heavily on trigonometric functions

and identities. In fact, the title of the paper is “A Short Trigonometric Proof of the

Steiner-Lehmus Theorem” authored by Mowaffaq Hajja[9].

Hajja has added more details to his figures to accommodate the many trigono-

metric formulas he uses. This is apparent by Figure 18. Note that: u = AB’, U =

B’C, v = AC’, and V = BC’.

A

B C

C‘ B‘

v u

V U

β γ

c b

a

Figure 18: Figure for Hajja’s first paper, initial

This first proof uses the contrapositive instead of the actual theorem as stated.
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Hajja specifically notes that this proof is short, even titling the paper as such[9].

Maybe the only reason it is short is because Hajja has edited most of the algebra,

and his reasoning and thought process, from the proof. His proof depends heavily on

the Angle Bisector Theorem and the Law of Sines. Using Figure 18 for notation let

us recall both results.

Angle Bisector Theorem: Relating the angle bisector BB′, u
U

= c
a

and relating the

angle bisector CC ′, v
V

= b
a
.

The Law of Sines: a
sinA

= b
sinB

= c
sinC

(see Figure 2 for notation.)

Let us begin by stating that BB′, CC ′ are the angle bisectors of ∠B and ∠C re-

spectively; m∠B = 2β; m∠C = 2γ. Let us assume that BB′ = CC ′ as the hypothesis

of Steiner-Lehmus Theorem.

If 4ABC is not isosceles then ∠C 6= ∠B so let ∠C > ∠B which implies to c > b.

So if c > b, then b < c obviously and b
u
< c

v
.

Since u+U = b and v+V = c, u+U
u

< v+V
v

.

u
u

+ U
u
< v

v
+ V

v
.

1 + U
u
< 1 + V

v
.

U
u
< V

v
.

Apply the angle bisector theorem and conclude that a
c
< a

b
.

So, we have taken the assumption c 6= b or more specifically c > b and some clever

substitution and the application of the angle bisector theorem to show that if c > b

is true then a
c
− a

b
< 0 is also true.

The technique of establishing an assumption and building each step to reach a

contradiction is more accepted. To present the proof with maximum clarity let us
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restate this previous section as such. Say c > b, then ...

1

c
<

1

b
,

a

c
<
a

b
,

c

a
>
b

a
,

u

U
>

v

V
, (by applying the angle bisector theorem)

U

u
<
V

v
,

1 +
U

u
< 1 +

V

v
,

u

u
+
U

u
<
v

v
+
V

v
,

u+ U

u
<
v + V

v
,

b

u
<
c

v
,

b

u
− c

v
< 0.

Continuing on with the initial assumption of c > b, the implication is

γ < β,

cos γ < cos β, (because cosine is a decreasing function)

cos β > cos γ,

cos β(sinA) > cos γ(sinA),

cos β(sinA)

BB′
>

cos γ(sinA)

CC ′
,

(note CC’ = BB’ ; Law of Sines: sinA
BB′ = sinβ

u
= sin γ

v
)
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cos β(sin β)

u
>

cos γ(sin γ)

v
,

2
cos β(sin β)

u
> 2

cos γ(sin γ)

v
,

sin 2β

u
>

sin 2γ

v
,

sinB

u
>

sinC

v
, (Law of Sines: sin B/C =

b/c sinA

a

)
b sinA
a

u
>

c sinA
a

v
,

b

u
>
c

v
,

b

u
− c

v
> 0.

We have a contradiction. The same assumption has produced two possibilities that

are incongruous, thus the assumption is considered false. Modifying the assumption

to say c < b will result in a similar set of results, so the only option left is that c

must be equal to b and 4ABC must be isosceles. �

The remainder of the paper is spent on a discussion of the evolution of the Steiner-

Lehmus Theorem[9]. Specifically, how the proofs presented since its conception seem

to have shifted from the search for a direct geometric proof to the expansion of various

other parts of the triangle; such as, cevians, in-circles, etc. Hajja also spends some

time expanding his own opinions on applying Steiner-Lehmus Theorem to higher

dimensions. His final thoughts are a digression into the possible existence of a direct

proof of three equal angle bisectors implying an equilateral triangle.
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2.5 Mowaffaq Hajja (II)

This paper is also by Mowaffaq Hajja. It is titled “Stonger Forms of the Steiner-

Lehmus Theorem[10]”. He has modified his labeling so we will have to forgo previous

Figure for a new one, Figure 19.

A

B C

Z Y

U u

V v

y z

Figure 19: Hajja, 2nd paper, initial figure

This proof makes use of the following result (Breusch’s Lemma)[3]:

p(ABC)

a
=

2

1− tan B
2

tan C
2

,

where P(ABC) is the perimeter (a+b+c) based on the standard labeling of a triangle

(see Figure 2).
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But more specifically for our purposes we will set the result up in the following

format:

p(ABC) =
2a

1− tan B
2

tan C
2

,

p(ABC)(1− tan
B

2
tan

C

2
) = 2a,

p(ABC)(1− tanB
2
tanC

2
)

2
= a.

Note that ’a’ is the side included by the two ’base’ angles used in the denominator.

And we begin as usual - y, z are angle bisectors of 4ABC and are congruent to

each other. Decompose 4ABC into the two triangles in Figure 20.
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V

v
zy

Y Z

CBCB

Figure 20: Decomposition into YBC and ZBC for application of Breusch’s Lemma

So,
p(Y BC)(1−tan B

4
tan C

2
)

2
= a =

p(ZBC)(1−tan B
2
tan C

4

2
; therefore,

p(Y BC)

p(ZBC)
=

(1− tan B
2

tan C
4

)

(1− tan B
4

tan C
2

)
.

So, without loss of generality (WLOG), c > b will be the initial assumption and
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remember if this is true then the ratio of p(Y BC)
p(ZBC)

> 1.

c > b,

∠C > ∠B,

tanC > tanB, (because tangent is an increasing function)

tan
C

2
> tan

B

2
, (since c > b),

tan
C

2
tan

B

4
> tan

B

2
tan

C

4
, (since

B

4
<
C

4

)
tan

C

4
tan

B

4
> tan

B

4
tan

C

4
, (since

B

4
>
B

4

)
2 tan

C

4
tan

B

4
> 2 tan

B

4
tan

C

4

tan
C

4
> tan

B

4
, (because sin

C

4
>
B

4

)
tan2 C

4
> tan2 B

4
,

1− tan2 C

4
< 1− tan2 B

4
, (because tan2 C

4
,
B

4
< 1).

Hence, p(YBC) > p(ZBC).

Recall that

|BY | = y, |CZ| = z, |AZ| = U, |ZB| = V, |AY | = u, |Y C| = v.

Simple substitution allows for p(YBC) = (YB + BC + CY) = (y + a + v)

and p(ZBC) = (ZB + BC + CZ) = (V + a + z).

We can now say that

y + a+ v > V + a+ z

y + v > V + z,
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which is stronger. It is stronger because of a few facts. First, y > v, which is the

same result one obtains with the Steiner-Lehmus Theorm. Second, we have to recall

that v < V from the initial setup of the proof. Third and lastly, we need to notice

that those two inequalities are reversed. A small amount(v) was added to the larger

side(y), and a large amount(V) was added to the smaller side(z). That made our

inequality stronger because it did not change the original result.

In the previous statement, it is mentioned that V > v, which is easily proven by

the following argument. By applying the angle bisector theorem to ∠C in the Figure

19, it is easy to establish that V
U

= a
b

Then,

V

U
=
a

b
,

U

V
=
b

a
,

1 +
U

V
=
b

a
+ 1,

V

V
+
U

V
=
b

a
+
a

a
,

V + U

V
=
a+ b

a
,

V

V + U
=

a

a+ b
,

V

c
=

a

a+ b
, (since U+V = c)

V =
ac

a+ b
.

And for v, we can apply the angle bisector theorem to ∠B to get v
u

= a
c
, which is

equivalent to v
v+u

= a
a+c

and onto v = ab
a+c

. Combining these,
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V − v =
ac

a+ b
− ab

a+ c
,

=
ac(a+ c)

(a+ b)(a+ c)
− ab(a+ b)

(a+ b)(a+ c)
,

=
1

(a+ b)(a+ c)
[a2c+ ac2 − a2b− ab2],

=
1

(a+ b)(a+ c)
[a(ac+ c2 − ab− b2)],

=
1

(a+ b)(a+ c)
[a(ac− ab+ c2 − b2)],

=
1

(a+ b)(a+ c)
[a(a(c− b) + (c− b)(c+ b)],

=
1

(a+ b)(a+ c)
a(c− b)(a+ b+ c),

=
a(c− b)(a+ b+ c)

(a+ b)(a+ c)
.

So, a>0; (a+b+c)>0; (a+b)>0; (a+c)>0 and if c>b (remember this is the original

assumption upon which this whole argument is founded) then (c-b)>0 is also true

and so V>v definitively.

If that is true, why can’t we apply the angle bisector theorem and similar algebra

to establish that U = bc
a+b

and u = bc
a+c

? And carry that onto if U>u and c>b then a

similar result of y + u > z + U . Combining these two could result in the following.

y + v > z + V combined logically withy + u > z + U,

to result iny + (u+ v) > z + (V + U),

y + b > z + c.

But that has been proved false by M. Tetiva in 2008[10], so there must be more to

the Steiner-Lehmus Theorem than we are currently understanding.
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The remainder of this paper is spent building algebraically on the result Hajja has

achieved. For example, Hajja questions if y + b > z +c isn’t true, does that mean

that y + u > z +U is also false? Then he proceeds to build as such, noting that a

proof of any of the 3 options listed would verify his conjecture:

y + u > z + U,

y − z > U − u,

y − z
U − u

> 1,

(y − z)

U − u
(y + z) > y + z,

Option 1:
y2 − z2

U − u
> y + z,

Option 2: (
y2 − z2

U − u
)2 > (y + z)2,

(
y2 − z2

U − u
)2 > y2 + 2yz + z2,

(
y2 − z2

U − u
)2 > y2 + z2 + 2yz,

(
y2 − z2

U − u
)2 > y2 + z2 + y2 + z2 > y2 + z2 + 2yz,

Options 3: (
y2 − z2

U − u
)2 > (y2 + z2)2.

And combining these two results leads to:

c > b⇒ y + u/v > z + U/V,

c > b⇒ y +
b

2
> z +

c

2
,

c > b⇒ y − z > c

2
− b

2
,

c > b⇒ y − z > 1

2
(c− b).
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Hajja also expands into multiplicative forms such as

c > b⇒ y2b > z2c.

All of these forms are built algebraically from Hajja’s original result. These proofs

would be so similar to the one we have already scrutinized that it would not be

productive to repeat them.

Hajja also includes an expansion on the implication c > b⇒ y− z > 1
2
(c− b). He

uses an iterative computing program to attempt to improve the factor 1
2

or 0.5. He

has established a value of 0.8568 and indicates that as the coefficient 0.5 is increased,

specifically as it is increased to 0.8568, the two sides of the inequality approach

equality (the goal of the Steiner-Lehmus Theorem) and further work has resulted in

a refinement of 0.856762. All of these were based on

lim(c−b)
y − z
c− b

=
(a+ab+ 2b2)

2b(a+ b)2
.

But, other than a passing mention, this is beyond the scope of this thesis as it is not

a proof, nor is it portrayed as one. It is, in fact, a conjecture based on the exploration

of the limitations of the theorem in certain settings. It is also an example of the

widely varied work being done on the Steiner-Lehmus Theorem.
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2.6 Oláh-Gál/Sándor

Leaving Hajja and his numerous proofs[9,10] let us discuss another paper from

Forum Geometricorum. This paper is a collaboration by Róbert Oláh-Gál and József

Sándor. Their paper is titled “On Trigonometric Proofs of the Steiner-Lehmus Theo-

rem[11]”. They introduce their paper with a very nice summary of the history of the

Steiner-Lehmus Theorem.

The first proof offered in this paper is from a Romanian paper and attributed to

V. Cristescu circa 1916[11]. Referring to Figure 21, BB’, CC’ are the angle bisectors

of ∠B and ∠C, respectively, and we assume that BB′ ∼= CC ′. By applying the Law

of Sines to 4BB’C, we reach the following: BB′

sinC
= CC′

sin(C+B
2
)
.

A

B C

C‘ B‘

Figure 21: Figure for Cristescu proof
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Note:

∠C +
∠B
2

= ∠C +
180◦ − ∠C − ∠A

2
,

= ∠C + 90◦
∠C
2
− ∠A

2
,

= 90◦ − ∠A
2
− ∠C

2
,

= 90◦ − ∠A− ∠C
2

.

Then,

BB′

sinC
=

a

sin(90◦ − ∠A−∠C
2

)
,

BB′

sinC
=

a

cos(∠A−∠C
2

)
,

BB′ = a
sinC

cos(∠A−∠C
2

)
.

By a similar argument,

CC ′ = a
sinB

cos(∠A−∠B
2

)
.

At this point the proof makes use of the double and half angle formulas, so both will

be stated as needed. (Use Figure 21 for notation.)

Double Angle Formula: sin C = 2 sin(C
2

)cos(C
2

),

Half Angle Formulas: sin C
2

= cos(A+B
2

); sin B
2

= cos(A+C
2

),

Then,

a
sinC

cos(A−C
2

)
= a

sinB

cos(A−B
2

)
,

sinC
( 1

cos(A−C
2

)

)
= sinB

( 1

cos(A−B
2

)

)
,

2 sin
C

2
cos

C

2

1

cos(A−C
2

)
= 2 sin

B

2
cos

B

2

1

cos(A−B
2

)
,

cos
C

2
cos

A+B

2

1

cos(A−C
2

)
= cos

B

2
cos

A+ C

2

1

cos(A−B
2

)
,
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cos
C

2
cos

A+B

2
cos

A− C
2

= cos
B

2
cos

A+ C

2
cos

A− C
2

,

By applying the identity (cos (x+y))(cos (x -y)) = cos2 x + cos2 y - 1;

cos
C

2

(
cos2

A

2
+ cos2

B

2
− 1

)
= cos

B

2

(
cos2

A

2
+ cos2

C

2
− 1

)
,

cos
C

2
cos2

A

2
+ cos

C

2
cos2

B

2
− cC

2
− cos

B

2
cos2

A

2
− cos

B

2
cos2

C

2
+ cos

B

2
= 0,

cos
C

2
cos2

A

2
+ cos

B

2
cos2

A

2
+ cos

C

2
cos2

B

2
− cos

B

2
cos2

C

2
− cos

C

2
+ cos

B

2
= 0,

cos2
A

2
(cos

C

2
− cos

B

2
)− cos

C

2
cos

B

2
(cos

C

2
− cos

B

2
)− (cos

C

2
− cos

B

2
) = 0,(

cos
C

2
− cos

B

2

)(
cos2

A

2
− cos

C

2
cos

B

2
− 1

)
= 0,(

cos
C

2
− cos

B

2

)(
cos2

A

2
− 1− cos

C

2
cos

B

2

)
= 0,(

cos
B

2
− cos

C

2

)(
1− cos2

A

2
+ cos

C

2
cos

B

2

)
= 0,(

cos
C

2
− cos

B

2

)(
sin2 A

2
− cos

C

2
cos

B

2

)
= 0.

At this stage, either (cos C
2

- cosB
2

) = 0 or (sin2A
2

- cosC
2

cos B
2

) = 0.

If sin2A
2

- cosC
2

cos B
2

= 0 is true that would mean that cos B
2

cos C
2

would have to

be negative, which means that either C or B must have a measure greater than 180◦.

This is an impossibility for any triangle, isosceles or not. Therefore, cos C
2

- cosB
2

=

0 must be true, meaning that cos C
2

= cosB
2

is true. Which can only happen if ∠B =

∠C or if the triangle is isosceles. �

The second proof presented by Oláh-Gál/Sándor is attributed to Plachky in

2000[11], but it can be found in a similar form earlier in a 1983 publication as a

collaboration of Ken Seydel and his student D. Carl Newman Jr[13]. However, that

was a proof by contradiction and this proof is direct, so it will be profiled with equal

importance.
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Let us assume that AA′, BB′ are the angle bisectors of ∠s A and B respectively,

and that ωa = ωb where ωa = AA′ and ωb = BB′. Using the trigonometric area

formula (1
2
ab)sin γ (Figure 22) and applying it to the decomposition of 4BB’C and

4BB’A in Figure 23, we get

Area4ABC =
1

2
aωb sin

β

2
+

1

2
cωb sin

β

2
.

A

B C
A‘

B‘

ωb

ωa

β
γ

Figure 22: Figure for Plachky proof

In a similar fashion, using Figure 24 to apply the area formula to 4AA’C and

4AA’B

Area4ABC =
1

2
bωa sin

α

2
+

1

2
cωa sin

α

2
.
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-30 -25 -20 -15 -10

α

γ

b
ω

c

B

A

B'

Ca

Figure 23: Decomposition based on ωb

-30 -25 -20 -15 -10

a

b
c

C

A

A'B

β

ω

Figure 24: Decomposition based on ωa

Using the Law of Sines and the identity sin (A-B) = sinA cosB - cosA sinB,

sinα

a
=

sin(π)− (α + β)

c
=

sin β

b
,

a =
c sinα

sin(α + β)
.

Similarly it can be shown that

b =
c sin β

sin(α + β)
.

Assume ωa = ωb, in other words assume the angle bisectors are congruent and
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combining the area formulations will result in the following:

1

2
aωb sin

β

2
+

1

2
cωb sin

β

2
=

1

2
aωa sin

α

2
+

1

2
cωa sin

α

2
,

sin
β

2
(a+ c) = sin

α

2
(b+ c),

sin
β

2

( c sinα

sin(α + β)
+ c) = sin

α

2

( c sin β

sin(α + β)
+ c),

sin
β

2

c sinα

sin(α + β)
+ sin

β

2
c− sin

α

2

c sin β

sin(α + β)
− c sin

α

2
= 0,

c(sin
β

2

)( sinα

sin(α + β)

)
− c(sin α

2

)( sin β

sin(α + β)

)
+ c(sin

β

2

)
− c(sin α

2

)
= 0,

sin
β

2

( sinα

sin(α + β)

)
− sin

α

2

( sin β

sin(α + β)

)
+ sin

β

2
− sin

α

2
= 0,

sin
β

2
sinα− sin

α

2
sin β + sin(α + β) sin

β

2
− sin(α + β) sin

α

2
= 0,

sin
β

2
sinα− sin

α

2
sin β + sin(α + β)

(
sin

β

2
− sin

α

2

)
= 0,

(use sin u = 2sin
u

2
cos

u

2
)

2 sin
β

2
sin

α

2
cos

α

2
− 2 sin

α

2
sin

β

2
cos

β

2
+ sin(α + β) sin

β

2
− sin(α + β) sin

α

2
= 0,

2 sin
β

2
sin

α

2
(cos

α

2
− cos

β

2
) + sin(α + β)(sin

β

2
− sin

α

2
) = 0,

(use sin u - sin v = 2 sin
u− v

2
cos

u+ v

2
)

(and cos u - cos v = -2 sin
u− v

2
sin

u+ v

2
)

2 sin
β

2
sin

α

2
(−2 sin

α
2
− β

2

2
sin

α
2

+ β
2

2
) + sin(α + β)(2 sin

β
2
− α

2

2
cos

β
2

+ α
2

2
) = 0,

−4 sin
β

2
sin

α

2
(sin

α− β
4

sin
α + β

4
) + 2 sin(α + β)(sin

β − α
4

cos
β + α

4
) = 0,

4 sin
β

2
sin

α

2
sin

α− β
4

sin
α + β

4
)− 2 sin(α + β) sin

β − α
4

cos
β + α

4
= 0,

2 sin
α− β

4
(2 sin

β

2
sin

α

2
sin

α + β

4
+ sin(α + β) cos

α + β

4
) = 0.
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And, as before in the other direct proofs, either 2sinα−β
4

= 0, which happens only

when α = β (4ABC is isosceles), or 2sinβ
2
sinα

2
sinα+β

4
+ sin(α+β) cos α+β

4
=0, which

can never happen since (α+β) < π in this setting. This proof is complete. �

The third proof presented in the Oláh-Gál/Sándor paper[11] is an obscure proof

from a Russian text with no specific author credited. It is another trigonometric

proof that follows the style of contradiction. Recall that the area of a triangle is 1
2
bc

sin A, which is one half the product of two sides and the sine of the angle formed by

those two sides. So, to use ∠B as the angle, sides a and c must be used. Leading to

Area4ABC =
1

2
(a)(c)(sinB) =

1

2
(a)(c)(sin β) =

1

2
(a)(c)(sin 2 ∗ β

2

)
.

Decompose4ABC utilizing ωb from Figure 25 into the following two triangles,4ABB’

and 4CBB’. Area = 1
2
ωbc(sinβ

2
) + 1

2
ωba(sinβ

2
).

A

B C

B‘

ωb

Figure 25: Figure for Russian proof offered in Oláh-Gál/Sándor paper
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Therefore,

1

2
ωb ∗ c ∗ sin

β

2
+

1

2
ωb ∗ a ∗ sin

β

2
=

1

2
a ∗ c ∗ sin(2 ∗ β

2
)

(use sin 2A = 2sinAcosA),

1

2
ωb ∗ c ∗ sin

β

2
+

1

2
ωb ∗ a ∗ sin

β

2
=

1

2
a ∗ c ∗ 2 sin(

β

2
) cos(

β

2
),

1

2
ωb ∗ c+

1

2
ωb ∗ a = a ∗ c ∗ cos

β

2
,

ωb ∗ c+ ωa = 2a ∗ c ∗ cos
β

2
,

ωb(a+ c) = 2a ∗ c ∗ cos
β

2
,

ωb =
2a ∗ c
a+ c

cos
β

2
.

Similarly, it can be established that ωa = 2b∗c
b+c

cosα
2
.

Now, let a > b, then α > β must be true in addition to α
2
> β

2
. This a triangle,

thus α, β < 180◦ is true as is α
2
, β
2
∈ (0, π

2
).

So, if α
2
> β

2
then cos α

2
< cosβ

2
because cosine is a positive decreasing function

on (0, π
2
).

Also, since a > b, ac
a+c

> bc
b+c

would be accurate. Then the combination 2ac
a+c

cosβ
2
>

2bc
b+c

cosα
2

is equivalent to stating ωa > ωb.

We have our contradiction to the hypothesis of the Steiner-Lehmus theorem that

the angle bisectors are congruent. It is a similar argument to assume that a < b and

reach the opposite contradiction. Thus ends the proof by reaching the conclusion

that a = b must be true. �

This fourth proof presented by Oláh-Gál/Sándor[11] is inspired in part by the

earlier proof presented by Hajja[10]. However, Oláh-Gál/Sándor have offered a proof
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using the Law of Sines and more elementary trigonometric facts. To follow the proof

we will need to the notation in Figure 26.

A

B C

Z Y

vV

y z

Figure 26: Figure for Oláh-Gál/Sándor proof

Using Figure 26 as the basis, extract Figures 27 and 28.

B C

Y

v

y

B 2

Figure 27: Decomposition to BYC for Oláh-Gál/Sándor proof
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B C

Z

V

z

C 2

Figure 28: Decomposition to BZC for the Oláh-Gál/Sándor proof

Applying the law of sines to figure 27 results in

BC

sin(C + B
2

)
=

CY

sin B
2

=
BY

sinC

or

a

sin(C + B
2

)
=

v

sin B
2

=
y

sinC

which leads to

a

sin(C + B
2

)
=

y + v

sinC + sin B
2

,

so y+v =
a(sinC+sin B

2
)

sin(C+B
2
)
. Using Figure 28 will similarly result that z+V =

a(sinB+sin C
2
)

sin(B+C
2
)

.

At this point results, from Hajja’s[10] are used, instead of using the fact that if

4ABC is isosceles then y+v = a+V would be true. Oláh-Gál/Sándor assume that

y+v > z+V and start yet another proof by contradiction.

If y+v > z+V, then

a(sinC + sin B
2

)

sin(C + B
2

)
>
a(sinB + sin C

2
)

sin(B + C
2

)
,

sinC + sin B
2

sin(C + B
2

)
>

sinB + sin C
2

sin(B + C
2

)
,

(because sin u + sin v = 2 sin
u+ v

2
cos

u− v
2

)
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1

sin(C + B
2

)
(2 sin

(C + B
2

2

)
cos

(C − B
2

2

))
>

1

sin(B + C
2

)
(2 sin

(B + C
2

2

)
cos

(B − C
2

2

))
,

2 sin(C
2

+ B
4

) cos(C
2
− B

4
)

sin(C + B
2

)
>

2 sin(B
2

+ C
4

) cos(B
2
− C

4
)

sin(B + C
2

)
,

(using sin 2A = 2 sinA cos A)

2 sin(C
2

+ B
4

) cos(C
2
− B

4
)

sin 2(C
2

+ B
4

)
>

2 sin(C
2

+ C
4

) cos(B
2
− C

4
)

sin 2(B
2

+ C
4

)
,

2 sin(C
2

+ B
4

) cos(C
2
− B

4
)

2 sin(C
2

+ B
4

cos(C
2

+ B
4

)
>

2 sin(C
2

+ C
4

) cos(B
2
− C

4
)

2 sin(B
2

+ C
4

cos(B
2

+ C
4

)
,

cos(C
2
− B

4
)

cos(C
2

+ B
4

)
>

cos(B
2
− C

4
)

cos(B
2

+ C
4

)
,

(note that cos
(C

2
+
B

4

)
, cos

(B
2

+
C

4

)
> 0),

cos
(B

2
+
C

4

)
cos

(C
2
− B

4

)
> cos

(C
2

+
B

4

)
cos

(B
2
− C

4

)
,

(use cos u cos v =
cos(u+ v)

2
+

cos(u− v)

2
)

cos
(C

2
− B

4

)
cos

(B
2

+
C

4

)
> cos

(B
2
− C

4

)
cos

(C
2

+
B

4

)
(use cos u cos v =

1

2
cos(u-v)+

1

2
cos(u+v))

1

2
cos

(C
2
− B

4
− B

2
− C

4

)
+

1

2
cos

(C
2
− B

4
+
B

2
+
C

4

)
>

1

2
cos

(B
2
− C

4
− C

2
− B

4

)
+

1

2
cos

(B
2
− C

4
+
C

2
+
B

4

)
,

cos
(C

4
− 3B

4

)
+ cos

(3C

4
+
B

4

)
> cos

(B
4
− 3C

4

)
+ cos

(3B

4
+
C

4

)
,

cos
(3C

4
+
B

4

)
− cos

(3B

4
+
C

4

)
> cos

(B
4
− 3C

4

)
− cos

(C
4
− 3B

4

)
,

(use cos u - cos v = -2sin
u− v

2
sin

u+ v

2

)
−2 sin

(3C
4

+ B
4

)− (3B
4

+ C
4

)

2
sin

(3C
4

+ B
4

) + (3B
4

+ C
4

)

2

53



> −2 sin
(B
4
− 3C

4
)− (C

4
− 3B

4
)

2
sin

(B
4
− 3C

4
) + (C

4
− 3B

4
)

2
,

−2 sin
(C
2
− B

2
)

2
sin

C +B

2
> −2 sin

(B − C)

2
sin

(−B
2
− C

2
)

2
,

−2 sin
(C

4
− B

4

)
sin

(C
2

+
B

2

)
> −2 sin

(B
2
− C

2

)
sin

(
−B

4
− C

4

)
,

apply cos u - cos v = -2 sin
u− v

2
sin

u+ v

2

− sin
B

2
sin

3C

2
> − sin

C

2
sin

3B

2
,

(use sin 3u = 3sin u - 4sin3u)

− sin
B

2
(3 sin

C

2
− 4 sin3 C

2

)
> − sin

C

2
(3 sin

B

2
− 4 sin3 B

2

)
,

−
(3 sin C

2
− 4 sin3 C

2
)

sin C
2

> −
(3 sin B

2
− 4 sin3 B

2
)

sin B
2

,

−3 + 4 sin
C
2 > −3 + 4 sin

B
2 ,

4 sin2 C

2
> 4 sin2 B

2
,

sin2 C

2
> sin2 B

2
,

(Since
C

2
,
B

2
∈ (0,

π

2
) ensures that sin

C

2
,
B

2
> 0)

sin
C

2
> sin

B

2
,

C

2
>
B

2
,

(because sine is an increasing function on
(

0,
π

2

))
∠C > ∠B.

Thus, y+v > z+V ⇒ c > b proving the contrapositive of Hajja’s result[10] so that

now it can be safely stated that y+v > z+V ⇔ c > b. �
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2.7 A. I. Fetisov

The previous proofs have relied on trigonometric identities and functions, but this

proof uses the method of construction. This proof appeared in Fetisov’s own book[6].

As noted before, this proof is nearly identical to the proof attributed to Descube[12].

This proof will also follow the trend of utilizing contradiction. We want to get the

result of AM = CN implies AB = BC after we assume that AB neq BC.

We need the application of the Hinge Theorem for this proof, so a short summary

of that theorem will be offered. The Hinge Theorem states that if two triangles, for

example 4s AMC and CNA from Figure 29, have two congruent sides (AM = AN;

AC is common). And a relationship between the included angle is established, in our

example β > α. Then the respective third sides have the same relationship as the

angles, namely AN > CM.

B

A C

N M

Figure 29: Initial figure for Fetisov proof
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Let us say AM and CN are the angle bisectors of ∠A and ∠C. Proceeding by

contradiction assume that AB > BC so ∠C > ∠A, using Figure 30 which is just

Figure 29 with additional notation.

B

A C

N M

β

β

α

α

Figure 30: Addition of angle labels

Then, 2β > 2α is equivalent to β > α. Look at these triangles from Figure 31.

12

10

8

6

4

2

-2

-4

-6

-8

-20 -15 -10 -5 5

αβ

MN

A C CA

Figure 31: Decomposition for Fetisov proof

Notice that the two triangles have two sets of congruent sides. One is AC ∼= AC

because it is the same side, and AM ∼= CN by hypothesis but since β > α the ”Hinge
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Theorem” allows us to assert that AN > CM. Now that we have established that AN

> CM, we can construct and develop our contradiction.

Construct ND with the following characteristics: ND||AM and ND ∼= AM (see

Figure 32.)

B

A C

N
M

D

β
β

α
α

α
γ

δ

Figure 32: Complete figure for Fetisov proof

Now there are a pair of congruent and parallel sides, so ANDM is a parallelogram.

Since ANDM is a parallellogram, MD = AN and ∠α ∼= ∠NDM. So, if MD ∼= AN

and AN > CM then MD > CM must also be true.
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Then look at Figure 33 to see that if MD > CM, then δ > γ is also true.

C

M

D

γ

δ

Figure 33: Triangle CMD

Then, let us look at 4CND in Figure 34.

C

N
M

D

β

α
γ

δ

Figure 34: Triangles CND and CMD
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Note that AM ∼= CN by hypothesis and CN ∼= ND by construction, so 4CND

is isosceles. So, ∠NCD ∼= ∠NDC or β + δ = α + γ. The result is a contradiction

because β > α by assumption and δ > γ. Therefore, β + δ > α + γ should also have

been true but it is not. Thus, another proof using contradiction is completed. �
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2.8 Gilbert/MacDonnell

The next proof is attributed to G. Gilbert and D. MacDonnell[8]. This proof uses

a property of concyclic points that we need to present initially for use later.

The specific property that we will need comes from the following proposition: If

four points A, B, C, and D, are the vertices of a quadrilateral and angles α and β are

congruent, then A, B, C, and D are concyclic. (Figure 35)

-25 -20 -15 -10

βα

D

CB

A

Figure 35: Concyclic points initial figure

Let A, B, C, and D be the vertices of a quadrilateral and assume that α ∼= β.

Proceed by contradiction. Suppose that point C does not lie on the same circle as

points A, B, and D. That would mean there are two distinct possibilities, either C is

located in the interior of the circle (Figure 36) or C is located in the exterior of the

circle (Figure 37).
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14
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-20 -15 -10 -5 5

D

E
C

B

A

βα

Figure 36: Concyclic points possibility 1
16

14

12

10

8

6

4

2

-2

-4

-20 -15 -10 -5 5

E β

C

D

B

A

α

Figure 37: Concyclic points possibility 2

Let us look at the possibility that C is located in the interior of the circle first.

Extend AC so that it intersects the circle and let that intersection be point E. Then

construct ED to create ∠AED. But since ∠AED subtends the same arc as ∠ABD and

both are inscribed (interior to the circle) then ∠AED ∼= ∠ABD. However, by the

exterior angle theorem (referring to 4ECD) ∠AED > ∠ACD must be true, which

contradicts the original assumption. Thus point C can not be located on the interior
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of the circle.

Now let us look to the second possibility.

Say point C is located on the exterior of the circle. Then AC will intersect the

circle at some point, say E. Construct ED to form ∠AED. As before ∠AED and

∠ABD are both inscribed and subtend the same arc; therefore, are congruent. As

before we can use the Exterior Angle Theorem, but this time we apply it to 4CED

to illustrate that ∠AED < ∠ACD. Again, that contradicts the assumption that

∠ABD = ∠ACD. Hence, point C must lie on the circle and points A, B, C, and D

are concyclic. �

Now, let us develop the Gilbert/MacDonnell proof of the Steiner-Lehmus The-

orem. Assuming that AE,CD are the angle bisectors and AE ∼= CD, we wish to

show that 4ABC is isosceles. (Figure 38) Proceeding by contradiction, suppose that

4ABC is not isosceles, say BC < AB. Then, ∠BAC < ∠BCA, which in turn implies

that α < β. B

A C

D

E

β

β

α

α

Figure 38: Initial figure for Gilbert and MacDonnell proof
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Construct CF such that ∠FCD ∼= α and then connect DF to create quadrilateral

DFCA, illustrated by Figure 39.

B

A C

D
E

F

βα
α

Figure 39: Construction for Gilbert and MacDonnell proof

Then AF<AE. Construct the circle that contains points D, F, C and A, illustrated

by Figure 40.

Since α < β, it follows that α + α < α + β is also true. So, DC < AF and since

AF < AE we get DC < AF < AE or DC < AE, but DC ∼= AE was a central part

of the hypothesis, thus a contradiction has been achieved. �
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Figure 40: Quadrilateral DFCA with circle

Interestingly, this proof was also published by Martin Gardner in Scientific Amer-

ican[7]. As indicated earlier, the Steiner-Lehmus proof has long drawn the attention

of many mathematicians and, in 1963, Martin Gardner included the theorem in his

regular column. Hundreds of proofs were sent in response and this was the proof that

Gardner selected as his favorite[7]. Even more interesting, this proof is very near to

the proof that Steiner himself published in the 1840s[7].
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2.9 Berele/Goldman

This proof is offered in Geometry: Theorems and Constructions by Allan Berele

and Jerry Goldman[2]. It is also a proof by contradiction but, since it is not part

of a published article, it has very little in the way of an introduction. It is under

the heading, “An Old Chestnut (The Steiner-Lehmus Theorem)” with a short note

mentioning the popularity this theorem enjoys in mathematical puzzles.

Let us begin by saying that EC andBD are angle bisectors of ∠C, ∠B respectively;

EC ∼= BD in figure 41. This proof is also by contradiction, so let us say that AB 6=

AC. Then ∠B 6= ∠C, and without loss of generality, assume that ∠B > ∠C.

A

B C

E D

Figure 41: Berele/Goldman, initial figure

Since ∠B > ∠C, then ∠ABD = 1
2
∠B > 1

2
∠C is true and we can establish that a
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point F on AC exists so that BF can be constructed in such a way so that ∠FBD =

1
2
∠C. (See Figure 42 for illustration.)

A

B C

E D

F

G

Figure 42: Berele/Goldman construction figure

Let the intersection of BF and EC be point G and notice that

a.) ∠GFC ∼= ∠BFD because they are the same angle with different notations.

b.) ∠FBD ∼= ∠FCG by construction. Ultimately, the conclusion is that 4BFD

∼ 4CFG by AA similarity.

Employing the characteristics of similarity, the ratio of the sides of those two

triangles would be

CG

BD
=
CF

BF
.

Since CE ∼= BD and CG + GE = CE; CG
BD

= CG
CE

= CG
CG+GE

< 1 is true.
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And if CG
BD

< 1, then CF
BF

< 1 which implies CF < BF, leading to ∠C > ∠B, a

contradiction to the assumption ∠C < ∠B.

The entire process can be repeated assuming ∠C > ∠B and reaching a similar

contradiction of ∠C < ∠B. We complete our short study with a final example of the

most prevalent style, contradiction. �
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2.10 The Converse

After all of these proofs of the Steiner-Lehmus Theorem, some of which are tedious

and nearly all are lengthy contradictions, it seems beneficial to provide a proof of the

converse of the theorem, namely, “If a triangle is isosceles, its angle bisectors are

congruent.”

Back to our standard figure, using Figure 43.

A

B C

D E

Figure 43: Typical labeling for Isosceles Triangle

Now the hypothesis is AB ∼= AC and BE,CD are the angle bisectors of ∠B, ∠C

respectively. The goal is to show that BE ∼= CD.
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Look at the following two triangles in Figure 44.
14

12
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8

6

4

2

-2

-4

-20 -15 -10 -5 5

A

C

DE

A

B

Figure 44: Decomposition into ABE and ACD

It is clear that ∠A is present in both triangles and AB ∼= AC by hypothesis. Since

4ABC is isosceles, ∠B ∼= ∠C which means that ∠B
2
∼= ∠C

2
or ∠ABF ∼= ∠ACD. Thus,

4ABE ∼= 4ACD by ASA (Angle-Side-Angle) and BE ∼= CD by CPCTC.

It is hard to relate this proof of the converse with all the other proofs presented.

Specifically, a relationship that is as near as theorem and converse seems almost in-

conceivable. The converse can be proven with approximately three lines, a direct

argument and a single figure breakdown, whereas the Steiner-Lehmus Theorem ar-

guably has no direct line of reasoning and generally requires some construction or

trigonometric argument and certainly more that three lines.
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3 SIMILARITIES, DIFFERENCES, AND GROUPINGS

In the previous pages there are twenty-one proofs are mentioned. Some are men-

tioned in more detail than others simply because they require a more thorough study.

These are an estimated 25% of the proofs in existence for the Steiner-Lehmus The-

orem. It is unusual for a single theorem to garner such attention. One aspect that

has drawn such attention has been hinted at throughout the paper, namely the di-

rect versus indirect argument. This seemingly innocuous theorem has no uncontested

direct proof.

The direct versus indirect argument is long and well-documented. In his column

in Scientific American, Martin Gardner[7] was one of several scholars who expressed

a fascination with this theorem. Martin Gardner was not alone in this respect. The

top most link in an internet search is a Wikipedia page where the third paragraph

links the impossibility of a direct proof to an article by John Conway[14]. Within

the next few links you will find several academic pages discussing the particulars of

direct/indirect proofs of the Steiner-Lehmus Theorem. The discussion spirals out from

there to include even more mathematicians, prominent websites, and publications.

This direct/indirect discussion can be continued much longer but it is a digression

from the purpose of this thesis. Which is to categorize and relate several proofs of

the Steiner-Lehmus Theorem and their styles to one another. In that spirit, when the

proofs presented here are considered direct it will not be in the strictest sense. We

will simply accept a direct style as just that, direct.

There are several ways to classify these proofs. It has already been mentioned more

than a few times, let us group the proofs into direct and indirect first. There are four
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direct proofs: the Beran proof[1], Sastry’s proof using cevians[12], and two of the

proofs presented in the Oláh-Gál/Sándor paper[11], specifically the proofs attributed

to Plachkey and Cristescu. Of the fifteen proofs detailed in this paper, the remaining

eleven are indirect. Two of those proofs are essentially the same, the proofs attributed

to Descube[12] and Fetisov[6]. Even if we remove one, we are still left with ten proofs

by contradiction. That is easily a majority of even our small sample.

It is interesting to note that there are two more proofs that are very similar.

The proofs by Plachkey and by Seydel/Newman are nearly identical in argument but

one is direct (Plachkey[10]) and the other is by contradiction (Seydel/Newman[13]).

Because they differ in that distinct and important way, it is not really possible to

remove either one from the work or to even let one overshadow the other.

There are a few more proofs mentioned in passing but it is difficult to place them in

either the direct or indirect category. Hajja expanded his second proof to include six

additional statements with only minimal support[10]. One of these is the conjecture

based on an iterative computer program and does not fit either the direct mode or

the indirect mode as it is not a proof anyway. As noted earlier, the remaining five of

these results take Hajja’s proof and build on that conclusion algebraically. At points

where Hajja has a definitive and strictly positive formula on the right, he will use that

as a benchmark for an additional form. At heart each of these is an indirect proof

because the original proof was by contradiction, but this thesis has not included much

more than just topical information on these proofs because they are all “children” of

a single proof that was detailed.

The style of contradiction seems to be the most prevalent way to prove the Steiner-
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Lehmus Theorem, which makes sense in that almost everyone with some experience

in proving uses contradiction because it is one of the easiest methods. This is even

more so in our case since, upon hearing this question, most mathematicians would

respond with a ‘how could it be otherwise’ argument.

When assigning these proofs into body styles, all the proofs fit into two groups.

The group with construction bodies contained eight of the fifteen proofs. That is

slightly more than half. Leaving seven proofs with trigonometric body styles to

create the second group.

When the proof were separated based on construction versus trigonometric body

styyle, it became apparent that once an author completed a proof with either con-

struction or trigonometry, he tended to stick with the same technique. Out of the

authors who have papers with multiple proofs presented, all of Sastry’s[12] proofs have

a construction in them and all of Hajja’s[9,10] and Oláh-Gál/Sándor’s[11] proofs are

trigonometry based. Even though all of Sastry’s[12] proofs have a construction in

them, he has three that are direct and one proof by contradiction. Hajja’s[9,10]

proofs all have trigonometric bodies but he has two proofs by contradiction and two

direct. Oláh-Gál/Sándor[11] also have trigonometry proofs with two proofs by contra-

diction, one direct proof and one direct proof using the contrapositive. The obvious

conclusion is that an author tends to adopt with a certain body style (construction

or trigonometry) but will still use a variety of techniques (contradiction, direct, etc.)

Part of the original plan of analysis was to summarize the trigonometric identities

used, but the list was quite long and not easily narrowed to a few key identities.

Also planned was to try and limit the scope of the construction proofs to a few basic
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structures or theorems, but that was also too broad to be effective or meaningful. The

reason for mentioning this is because both of these problems are a large part of the

reason the Steiner-Lehmus Theorem has been and still it so popular. This theorem

has proofs with breadth and variety. It is not the simple problem it first appears to

be. There multiple approaches possible to reach the proof of the theorem, lending

the theorem to different thinking and learning styles.

The Steiner-Lehmus Theorem is not a problem that will intimidate students or

challenge seekers. It is simple in appearance. It is elegant and streamlined. Its

converse is elementary, so it is easy for students to believe that the theorem is true

and therefore possible. Overall, this is a very interesting theorem with proofs that

range from the simple to the complex. In other words, it is an argument that can be

enjoyed by all levels of mathematical talent. Any theorem/proof combination that is

as inclusive as the Steiner-Lehmus Theorem will enjoy a long and productive life in

the spotlight.
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