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ABSTRACT

Early Stopping of a Neural Network via the Receiver Operating Curve

by

Daoping Yu

This thesis presents the area under the ROC (Receiver Operating Characteristics)

curve, or abbreviated AUC, as an alternate measure for evaluating the predictive

performance of ANNs (Artificial Neural Networks) classifiers. Conventionally, neural

networks are trained to have total error converge to zero which may give rise to over-

fitting problems. To ensure that they do not over fit the training data and then

fail to generalize well in new data, it appears effective to stop training as early as

possible once getting AUC sufficiently large via integrating ROC/AUC analysis into

the training process. In order to reduce learning costs involving the imbalanced data

set of the uneven class distribution, random sampling and k-means clustering are

implemented to draw a smaller subset of representatives from the original training

data set. Finally, the confidence interval for the AUC is estimated in a non-parametric

approach.
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1 INTRODUCTION

Who will take direct mail from insurers more seriously to advertise their products

or services and show more interest in a particular product or service? The marketing

team would effectively decrease expenses if they could more accurately identify who

potential customers are and select to whom to mail designed marketing bulletins.

Actuaries hired by insurers can assist in detecting potential customers by taking ad-

vantage of predictive modeling to analyze factual data which can lead to improved

marketing decisions. Predictive modeling encompasses a variety of techniques from

mathematics, statistics and machine learning, which is widely used in business for

decision making. It aims to extract subtle informative patterns by capturing rela-

tionships between explanatory variables and response variables from historical and

current data to make predictions about future events.

For predictive modeling, various classifiers such as Naive Bayes [31, 37], k-nearest

neighbors [32], Support Vector Machines (SVMs) [6], logistic regression [13], Artificial

Neural Networks (ANNs) [10] are all employable. This thesis focuses on ANNs as

binary classifiers for prediction of customers’ propensity to have a caravan insurance

policy. ANNs, biologically inspired and incorporating neuroscience advances, are

non-linear models that are able to approximate sophisticated functions. ANNs can

be applied to problems of classification, prediction and control in a wide spectrum

of fields such as actuarial science, neuroscience, bioinformatics, and engineering. It

is appropriate to employ ANNs when there is little information available about the

probability distribution of a population or how response variables are associated with
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explanatory variables [17].

In particular, we apply a back-propagation learning algorithm to train multilayer

feed-forward (MLF) neural networks and incorporate analysis of the Receiver Op-

erating Characteristics (ROC) curve into the training process for the early stopping

purpose. Because the real data usually has an uneven two-class distribution as poten-

tial customers just occupy a small proportion of the population, it may be necessary

to pre-process the data to achieve a certain degree of balance between two distinct

classes.

1.1 ANNs in Actuarial Science

ANNs classifiers have a wide range of applications to analyze insurance data in

such settings as underwriting [18], rate making [30], loss reserving [26], and marketing

to make some sort of classification and prediction. Risk classification is fundamental

to insurance business, of vital importance in properly identifying and segmenting risk

groups for correct underwriting, and appropriate rating to counter effects of adverse

selection [1]. Also comparison studies between ANNs and Generalized Linear Models

(GLMs, widely used by actuaries) could be conducted from a theoretical perspective

and with practical examples based on real insurance data [23].

The work in this thesis falls into the realm of insurance marketing prediction.

Marketing analyzes customers to predict response rates (sales volume) and thus prof-

itability of the marketing activity. Actuaries could play an active role in the marketing

process helping marketers with response prediction to maximize the return per dollar

10



invested in acquiring customers.
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2 NEURAL NETWORKS AS BINARY CLASSIFIERS

Given a set of training patterns {〈pi, ti〉, i = 1, ..., N} of input patterns pi =

(pi
1, p

i
2, ..., p

i
r) and target outputs ti = (ti

1, t
i
2, ..., t

i
n), machine learning algorithms learn

some initially unknown function

f : P → T

such that

ti = f
(

pi
)

, (1)

where f is a classifier mapping from a discrete or continuous r-dimensional feature

space P to a discrete set of labels T , pi ∈ P , ti ∈ T .

From the mathematical point of view, a classifier partitions feature space P so

that each subset in the partition contains points corresponding to only one label in

T . Training corresponds to using a set of training patterns with a priori classified

functional relationship to approximate such a partition. Classification corresponds

to using the approximate partition to make predictions about a pattern whose label

is not known [19]. If there are only two labels, as dealt with in this thesis where

consumers are classified as either interested or not interested in purchasing a caravan

insurance policy, the goal is to establish a binary classifier to partition a r-dimensional

space into two distinct subsets.
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2.1 Back-Propagation Multi-Layer Feed-Forward Neural Networks

Prior to the introduction of basic concepts of neural networks, let us begin with

logistic regression which is a useful way of describing the relationship between multiple

explanatory variables and a binary response variable. It is a generalized linear model

(GLM) used for prediction of the probability of occurrence of an event by fitting data

to a logistic function. The logistic function is sigmoid, and the sigmoid function is a

real function σ : R→ (0, 1), defined by the expression

σ(x) =
1

1 + e−κx
(2)

where x = −b+w1x1 + ...+wrxr, and the parameter κ > 0 can be selected arbitrarily

and sigmoid means differentiable and non-decreasing from 0 up to 1. The shape of

the sigmoid changes according to the value of κ, as can be seen in Figure 1.

Figure 1: The Sigmoid Function

The sigmoid function is useful because it can take as an input x any value from

−∞ to ∞, whereas the output σ (x) is confined to values between 0 and 1, which
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matches up with the range of probability of an event. A logistic regression classifier

can be interpreted as one single artificial neuron with the logistic function as the

activation function, w1, ..., wr as synaptic weights and b as a bias, which is shown in

Figure 2.
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Figure 2: An Artificial Neuron

A multi-layer feed-forward neural network (MLF) consists of multiple layers of

artificial neurons, and each neuron in one layer has connections to all the neurons in

the previous and subsequent layers but not to any other neuron in the layer itself.

We will consider networks with a single hidden layer (intermediate layer), the input

layer (the first layer) and the output layer (the last layer) as shown in Figure 3.
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Figure 3: A Three-Layer Feed-Forward Neural Network
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In the feed-forward neural network, the information moves in only one direction,

forward, from the input neurons, through the hidden neurons and to the output

neurons, without loops in the network.

Suppose that a three-layer feed-forward neural network has r input neurons con-

nected to m hidden layer neurons that are connected to n neurons in the output

layer. In the feed-forward phase, the ith input patterns pi
1, p

i
2, ..., p

i
r are presented to

the input layer neurons, and their activations are calculated as

xl = σ
(

pi
l − θl

)

, (3)

for l = 1, ..., r and where θl denotes the bias for the lth input neuron.

Those input neurons activations are multiplied by the synaptic weights wkl be-

tween the lth input neuron and the kth hidden neuron and used to calculate the

activations of the hidden layer neurons as

hk = σ

(

r
∑

l=1

wklxl − θk

)

, (4)

for k = 1, ..., m and where θk denotes the bias for the kth hidden neuron.

Similarly, those hidden neurons activations are multiplied by the synaptic weights

αjk between the kth hidden neuron and the jth output neuron and are used to

calculate the activations from the output layer neurons as

yj = σ

(

m
∑

k=1

αjkhk − bj

)

= σ

(

m
∑

k=1

αjkσ

(

r
∑

l=1

wklxl − θk

)

− bj

)

, (5)

for j = 1, ..., n and where bj denotes the bias for the jth output neuron.
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The produced output yj is different in general from the target tj. What we want

is to make yj and tj identical for j = 1, ..., n, by using a learning algorithm. More

precisely, we want to minimize the total squared error function of a neural network

in the weight space for a given training set, defined as

E (w1, ...,wk, ...,wm; α1, ..., αj , ..., αn) =
1

2

n
∑

j=1

(yj − tj)
2 , (6)

where wk = (wk1, ..., wkl, ..., wkr) denotes the vector of weights between the input

layer and the kth-hidden neuron, and αj = (αj1, ..., αjk, ..., αjm) denotes the vector

of weights between the hidden layer and the jth-output neuron.

We want to train a three-layer feed-forward neural network until we have closely

approximated

∂E

∂wkl

= 0, (7)

and

∂E

∂αjk

= 0 (8)

at the inputs pi for all l = 1, ..., r; k = 1, ..., m; and j = 1, ..., n. Because these

equations cannot be solved directly, a back-propagation algorithm with an iterative

process of gradient descent is used instead to find appropriate synaptic weights.

Because this numerical optimization method requires computation of the gradient

of the error function with respect to synaptic weights at each iteration step, one

must guarantee the differentiability (differentiability implies continuity) of the error

function. Because a neural network itself computes only function compositions, in

order to have the error function differentiable, one has to use a differentiable activation

function. A popular and simple one is the sigmoid function defined in the equation
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(2). The derivative of the sigmoid with respect to x, needed later on in this section,

is

dσ

dx
=

κe−κx

(1 + e−κx)2

= κσ (x) (1− σ (x)) . (9)

Thus, E is a continuous and differentiable function of the weights wkl, αjk in a

neural network. One can thus minimize E by using an iterative process of gradient

descent, for which one needs to calculate the gradient

∇E =

(

...,
∂E

∂wkl

, ...,
∂E

∂αjk

, ...

)

. (10)

Each weight is updated using the increment

∆wkl = −λ
∂E

∂wkl

(11)

and

∆αjk = −λ
∂E

∂αjk

, (12)

where λ is a parameter called the learning rate which defines the step length of each

iteration in the negative gradient direction.

The derivation of ∂E
∂αjk

is given by

∂E

∂αjk

=
∂
(

1
2

∑n

j=1 (yj − tj)
2
)

∂αjk

= (yj − tj)
∂yj

∂αjk

= (yj − tj)
∂σ (

∑m

k=1 αjkhk − bj)

∂αjk

= (yj − tj)κyj (1− yj)hk (13)
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The weights αjk are adjusted using

αjk ← αjk + λδjhk,

where hk is given in the equation (4), and

δj = κyj (1− yj) (tj − yj) . (14)

We show the derivation of ∂E
∂wkl

below.

∂E

∂wkl

=
∂
(

1
2

∑n

j=1 (yj − tj)
2
)

∂wkl

=
n
∑

j=1

(yj − tj)
∂yj

∂wkl

=
n
∑

j=1

(yj − tj)
∂σ (

∑m

k=1 αjkhk − bj)

∂wkl

=
n
∑

j=1

(yj − tj) κyj (1− yj)
∂
∑m

k=1 αjkhk − bj

∂wkl

=

n
∑

j=1

(yj − tj) κyj (1− yj) αjk

∂hk

∂wkl

=
n
∑

j=1

(yj − tj) κyj (1− yj) αjk

∂σ (
∑r

l=1 wklxl − θk)

∂wkl

=
n
∑

j=1

(yj − tj) κyj (1− yj) αjkκhk (1− hk)xl (15)

The weights wkl are adjusted using

wkl ← wkl + λρkxl,

where xl is given in the equation (3), and

ρk = κhk (1− hk)
n
∑

j=1

αjkδj. (16)

with hk given in the equation (4), and δj given in the equation (14).
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2.2 Advantages and Limitations of ANNs

Consider strengths and weaknesses of ANNs. One nice property of MLF neural

networks is that they are known as universal classifiers according to the Cybenko’s

Theorem [9] that says choosing a hidden layer sufficiently large with the appropriate

selection of synaptic weights, there exists a neural network to uniformly approximate

any absolutely integrable function f on a compact set in R
n to within any ε > 0.

Therefore, in practice the number of hidden layer neurons may necessarily be

large, thus contradicting the desire to use smaller hidden layers to better avoid over-

training and over-fitting problems [19]. There are several other typical problems of

neural networks including the speed of convergence, and the possibility of getting

stuck in a local minimum of the error function.

Advantages Limitations
High accuracy Poor transparency
Universality Undesirable Local Minima

Noise tolerance Over-fitting

Table 1: Main Advantages and Limitations of Neural Networks

The back-propagation algorithm will eventually converge, albeit it may converge

slowly or converge to local minima. The learning rate is a significant factor to de-

termine the speed of convergence. Setting a too small learning rate may require too

many iterations until convergence, but setting a too large learning rate may end up

with oscillation around a minimum. One typical way to deal with undesirable lo-

cal minima is to randomly reinitialize the weights to different starting values, which

approach ends up with a set of neural networks and then the one with the best per-
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formance will be chosen. Even if a neural network just converges to local minima, if

it has good performance on the training set and can be successfully validated it will

often still generalize well on new data.

ANNs can be over-trained to the training set. Over-training corresponds to the

“memorizing”of the training set, thus leading to poor recognition for noisy patterns

not in the training set. This issue is often addressed using the cross-validation train-

ing method in which a part of the original training set is randomly removed as the

validation set, and a neural network is trained with the remaining training patterns,

then the classifications of the removed patterns are predicted. When the performance

on both the training set and the validation set becomes good enough, the network

training could stop.

Similar to other non-linear models, ANNs can over-fit the training data. Typically,

there are small variations in the values within each feature, so that if there are too

many parameters (for example, too many neurons in the hidden layer) then training

may lead to an “interpolation” of the slightly flawed training set at the expense of

poor generalization of the training set and predictions become meaningless [19].
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3 ROC ANALYSIS

ROC analysis provides a decision tool to select possibly optimal models, originally

developed for analysis of radar images where complex and weak signals are to be

distinguished from a noisy background. Often the ROC analysis is used to find an

optimal threshold value for decision making, which is widely used in medicine [4],

radiology [29], bioinformatics [35], and machine learning research [34].

Recently, in both theoretical and empirical studies, the area under the ROC curve

(AUC) has been suggested [5] as the alternative metric of classifier performance, and

many existing learning algorithms have been modified in order to seek a classifier with

maximum AUC. It has been shown that the AUC is a better (statistically consistent

and more discriminating) measure than accuracy in the test of learning algorithms

[22].

We provide a mathematical introduction to ROC analysis. Important concepts

involved in the correct use and interpretation of this analysis, such as generation

of ROC curves, estimation of the AUC in parametric, semi-parametric and non-

parametric methods, and the confidence interval estimation of the AUC are discussed.

3.1 ROC Curves

Among available binary classifier performance measures, overall accuracy

TP + TN

TotalCounts

21



and mis-classification rate

FP + FN

TotalCounts
,

TPR (true positive rate)

TP

TP + FN

and FPR (false positive rate)

FP

FP + TN

can be empirically calculated from a 2× 2 confusion matrix as shown in Figure 4.

True False
Positive Positive

False True
Negative Negative

actual value

prediction
outcome

P N

P
′

N
′

Figure 4: 2× 2 Confusion Matrix

Such measures require that all predicted cases be divided into true positives (ac-

tually positive and correctly classified as such), false negatives (actually positive but

erroneously classified as negative), true negatives (actually negative and correctly

classified as such), and false positives (actually negative but erroneously classified as

positive).

Assuming that we have only two classes, labeled P (actually positive) and N (ac-

tually negative). Let Y be the prediction outputs of a binary classifier with cumulative

22



distribution functions G for actual positives and F for actual negatives, respectively.

For a particular threshold value t, the true positive rate (TPR, or sensitivity) and

the false positive rate (FPR, or 1−specificity) of the classifier are defined as

TPR = P (Y > t |P ) = 1−G (t) , (17)

and

FPR = P (Y > t |N ) = 1− F (t) (18)

respectively.

The ROC curve for a binary classification problem, which is defined as a plot

of the true positive rate as the vertical coordinate versus the false positive rate as

the horizontal coordinate for all possible threshold levels. The ROC curve can be

mathematically expressed by

R (x) = 1−G
(

F−1 (1− x)
)

, (19)

where F−1 is the inverse function of F . R (x) is indeed the TPR of the classifier when

the FPR is at level x. The area under the ROC curve (AUC), defined as

A =

∫ 1

0

R (x) dx, (20)

is a single-number measure of the overall performance across the entire range of all

possible threshold levels.

A single pair of TPR and FPR values, corresponding to selecting a single thresh-

old for classification, is insufficient to describe the full spectrum of performance. To

overcome that insufficiency, in practice we scan over the entire range of threshold

levels. Each specific pair of TPR and FPR values for a particular threshold level

23



corresponds to a discrete point on the graph called an operating point. An empirical

ROC curve can be estimated or constructed from these discrete points, either by mak-

ing the assumption that the prediction results follow an approximating distribution,

or by connecting all points.

Figure 5: ROC Curves, Best Threshold Closest to the Top Left Corner

ROC curves begin from the bottom-left corner (threshold set at 1) and rise to the

top-right corner (threshold set at 0), and the closer to the top-left corner, the larger

24



area under the ROC curve, and the better classification capability. The practical lower

bound for the AUC is 0.5 (random guessing performance with the ROC curve along

the diagonal line), and the ideal upper bound for the AUC is 1 (perfect classification

performance).

Many approaches have been proposed to do inference about the ROC curve, in-

cluding parametric [25], non-parametric [14] and semi-parametric [11] approaches.

The AUC can be estimated both parametrically, fitting prediction outcomes to a

model with maximum likelihood estimates (MLE) with the assumption that either

prediction outcomes themselves or some transformation of prediction outcomes fol-

lows certain (for example, bi-normal) distribution, and non-parametrically from the

empirical ROC curve with no or weak assumptions made about the distributions of

prediction outcomes. Semi-parametric [11] approaches are also available. It has been

suggested that for a wide range of distributions, concern about bias or imprecision

of the estimates of the AUC should not be a major factor in choosing between the

non-parametric and parametric approaches [15].

There are different non-parametric methods for an estimate of the AUC. One is

to use the Wilcoxon-Mann-Whitney statistic [16] that is a distribution-independent

statistic. This method does neither necessarily require actually graphing the ROC

curve nor make assumptions on the distributions of outcomes. Let y+
1 , ..., y+

m be the

outputs of a classifier on the actual positives and y−
1 , ..., y−

n its outputs on the actual

negatives. Then, the AUC of that classifier is given by

A =

∑m
i=1

∑n
j=1

(

Iy+
i >y−j

+ 1
2
Iy+

i =y−j

)

mn
, (21)

that is the value of the Wilcoxon-Mann-Whitney statistic [16]. Another is the sum-
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mation of the areas of the trapezoids formed by connecting all the operating points

on the ROC curve. The latter method is used in this thesis.

3.2 Confidence Interval Estimation for the AUC

The AUC is often presented along with its confidence interval (CI). If one per-

forms the same classifier on a different sample, the AUC obtained may be different.

Parametric methods based on the bi-normal model were proposed [25] to estimate

confidence intervals for the AUC. Empirical likelihood (EL) based approach [28, 33]

were proposed to derive non-parametric confidence intervals for the AUC and com-

pared with normal approximation based intervals and bootstrap intervals for the

AUC. Cortes et al. [8] derived relatively tight confidence intervals for the AUC based

on a statistical and combinatorial analysis using only a small number of readily avail-

able parameters such as the mis-classification number k0, the number of positives m

and the number of negatives n.

Assume that all classifications with fixed k mis-classifications are equally probable.

For a given classification, there may be x, 0 ≤ x ≤ k, false positives. Then, the

expectation of the AUC, A, over all classifications with k mis-classifications is given

by

E [Ak] = 1− k

m + n
− (m− n)2 (m + n + 1)

4mn

(

k

m + n
−
∑k−1

x=0

(

m+n

x

)

∑k

x=0

(

m+n+1
x

)

)

(22)
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and the variance of the AUC is given by

σ2 (Ak) =
kQ0

144m2n2
− (m + n + 1)2 (m− n)4 Z2

1

16m2n2
− (m + n + 1) Q1Z1

72m2n2
+

(m + n + 1) (m + n)T (m2 − nm + 3km− 5m + 2k2 − nk + 12− 9k) Z2

48m2n2
+

(m + n + 1) (m + n) (m + n− 1)T ((m + n− 2)Z4 − (2m− n + 3k − 10) Z3)

72m2n2
(23)

with

Zi =

∑k−i

x=0

(

m+n+1−i

x

)

∑k

x=0

(

m+n+1
x

)
, (24)

T = 3
(

(m− n)2 + m + n
)

+ 2, (25)

Q0 =
(

−3m2 + 7m + 10n + 3nm + 10
)

T − 4 (3mn + m + n + 1) +

((

−3n2 + 3mn + 3m + 1
)

T − 12 (3mn + m + n)− 8
)

k + (m + n + 1) Tk2, (26)

Q1 =
(

−3m2 + 7 (m + n) + 3mn
)

T − 2 (6mn + m + n)+

((

−3n2 + 3mn− 3m + 8
)

T − 6 (6mn + m + n)
)

k + +3 (m− 1)Tk2 + Tk3. (27)

E [Ak] and σ (Ak) depend only on k, m, and n [8].

Assume that a binary classifier follows a binomial law (use the normal approxi-

mation of the binomial law when m + n is large), then, for any ε, 0 ≤ ε ≤ 1, one can

construct IA, the confidence interval for the AUC at the confidence level 1− ε defined

by

IA =

[

min
k∈Ik

{

E [Ak]−
σ (Ak)√

εk

}

, max
k∈Ik

{

E [Ak] +
σ (Ak)√

εk

}]

, (28)

where

εk = 1−
√

1− ε, (29)
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and

Ik =

[

k0 −
√

NΦ−1(1−
√

1−ε
2

)√
2

, k0 +

√
NΦ−1(1−

√
1−ε

2
)√

2

]

(30)

is the confidence interval for the mis-classifications number k at the confidence level

√
1− ε with

Φ (u) =

∫ ∞

u

e
−x2

2

√
2Π

dx. (31)

IA depends only on ε, k0, m, and n [8].
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4 IMBALANCED DATA PRE-PROCESSING

Information about customers consists of the target variable (caravan policy holders

or not) and 85 explanatory variables describing customer attributes including product

usage data and socio-demographic data derived from postal zip codes. The training

set contains 5822 customers, with values of target variable known. A test set contains

4000 customers with values of target variable to be determined (actual values removed

and stored somewhere else) [36].

Notice that in the training set there are only 348 customers who have a caravan

insurance policy, a very small proportion just around 6%, similarly to the test set. A

classifier that predicts that “no one will buy” has about 94% classification accuracy

but is useless for selecting potential customers. In such case, the class imbalance

problem occurs, and standard classifiers tend to be overwhelmed by the majority

class and treat the minority class as noise. Class imbalance problems have been well-

studied with many approaches such as over-sampling [2, 3, 21], down-sampling [2, 21],

uncertainty sampling [20], informative sampling [12, 24], and pre-clustering [27].

4.1 Random Sampling and k-means Clustering

For the reason of lowering the cost involving training on a highly imbalanced data

set, one could conduct either random sampling from the majority class of the popula-

tion or k-means clustering to adjust to the size of the minority class. Simple random

sampling (SRS) is a process of drawing simple random samples from a population
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such that all samples of the same size have an equal chance of being selected from

the population. In statistics and machine learning, k-means clustering is an algo-

rithm employing an iterative refinement approach to partition a given data set into k

clusters in which each data point belongs to the cluster with the nearest mean, also

referred to as Lloyd’s algorithm.

Given a set of data points (x1,x2, ...,xn), where each data point is a d-dimensional

real vector, the k-means clustering aims to partition the set of n data points into k

clusters (k < n) C = {C1, C2, ..., Ck} so as to achieve

arg min
C

k
∑

i=1

∑

xj∈Ci

‖xj − µi‖2

where µi is the mean of all data points in cluster Ci.

Given an initial set of k means µ
(1)
1 , ..., µ

(1)
k as the initial k cluster representa-

tives (centroids), which may be selected by random sampling from the data set, the

algorithm proceeds by alternating between two steps till convergence:

Assignment step: Associate each data point xj with its closest (the default mea-

sure of closeness is the Euclidean distance) centroid µi resulting in a partitioning of

the data set.

C
(t)
i =

{

xj :
∥

∥xj − µ
(t)
i

∥

∥ ≤
∥

∥xj − µ
(t)
i∗

∥

∥ for all i∗ = 1, . . . , k
}

Relocation step: The centroid for each cluster is relocated to the mean of all data

points assigned to it.

µ
(t+1)
i ← 1

|C(t)
i |

∑

xj∈C
(t)
i

xj

When the assignments no longer change, the algorithm converges and convergence

is guaranteed in a finite number of iterations. Note that each iteration needs n × k
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comparisons, which determines the time complexity of one iteration. The number

of iterations required for convergence varies and may depend on n and k. With

regard to the computational intensity and the convergence speed of k-means clustering

implemented in this thesis, we set tolerable sufficiently small shift of centroids as the

stopping criterion rather than until no changes would be made within each cluster.

There is no guarantee that k means algorithm will converge to the global optimum,

instead, only to a local optimum. The local optima problem can be countered to some

extent by running the algorithm multiple times with different initial centroids. Also,

k-means clustering algorithm is sensitive to the presence of outliers, and mean is not

a robust statistic.
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5 EXPERIMENTAL RESULTS AND DISCUSSIONS

Divide the data into two groups (positives/negatives), and rescale the data by nor-

malization before clustering or random sampling. Design a neural network structure

with 85 input neurons (one for each attribute in the input pattern), and 2 output

neurons (the number of output patterns we want to recognize), and the number of

hidden layer neurons is set to be 170, hoping to balance efficiency and having enough

weights to store all patterns. Split the training data into a training set and a vali-

dation set. After a neural network is trained on the training set, the classifications

on the validation set are used to validate the neural network which will be used to

predict outputs on the test set.

The objective function is still the total squared error function to achieve weight

optimization using an iterative gradient descent algorithm. The reason not to di-

rectly optimize the AUC as an objective function is that the AUC statistic as a

function is non-differentiable, whereas a differentiable approximation to the AUC

require assumptions on data distributions. The AUC may not necessarily monotoni-

cally increase as the total squared error goes downward direction. Nevertheless, the

AUC close to 1 may be achieved during the training process before error drops to 0.

Hence we can set the stopping criterion as the AUC sufficiently large instead of total

error approaching 0. Once the network can successfully separate two classes, in other

words, the separation performance rises to some pre-specified target AUC value, the

network training stops as early as possible, not caring about how low the error falls.

The reason for early stopping is to some extent to overcome over-fitting problems
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which lead to neural networks useless in terms of generalization to new data.

5.1 Experiments and Results

Firstly, randomly draw negatives of a sample size n and positives of the same

sample size from the original training data set for training a neural network and use

the remaining to validate neural networks. For a small n, the training error drops

significantly, not necessarily down to 0, within a finite number of iterations, but it

still comes up with a good AUC estimated from a ROC curve as shown in Figure 6.

Figure 6: Training Error and ROC Curve

Vary the sample size (70, or 278, or 1112, or 4380). Initialize a neural network

with initial value 0.3 (or 0.11) and learning rate 0.09 (or 0.1) stopping training at

100-500 iterations ending up with the AUC above 0.75-0.95 (depending on the sample
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size, because it tends to be harder to obtain a high AUC value when sample size gets

larger). How could the sample size be 1112 or 4380 for positives considering that

there are only 348 positives in the original training set? The way to solve that is to

cluster 348 positives into 174 centroids again and again and combine those thousands

of centroids with the original 348 to get a new positive training subset from which

random samples will be drawn.

The average performance on the test set is calculated over a cumulative number of

trials as shown in Table 2. If more (at least one half) neural networks among all trials

predict some pattern as positive, then that pattern would eventually be classified as

positive, otherwise eventually it would be classified as negative if more trials output

negative predictions.

Sample Trials Average Performance 95% C.I.
Size (TPR, FPR) for AUC

70 1 (.571, .309) [.553, .707]
70 25 (.609, .288) [.583, .735]
70 302 (.689, .358) [.588, .740]
70 327 (.672, .347) [.585, .737]
278 1 (.630, .306) [.585, .737]
278 5 (.603, .251) [.599, .750]
278 301 (.676, .334) [.593, .745]
278 331 (.681, .337) [.595, .747]
278 400 (.685, .343) [.593, .745]
1112 1 (.588, .283) [.575, .728]
1112 9 (.605, .247) [.602, .753]
1112 25 (.538, .222) [.580, .733]
4380 1 (.521, .197) [.585, .737]
4380 32 (.529, .205) [.585, .737]
4380 84 (.508, .192) [.580, .737]
ALL 836 (.647, .316) [.588, .740]

Table 2: Test Performance on Average

34



For one single trial, increasing the sample size may result in improved perfor-

mance. For a small sample size n, certain improvement could be achieved if average

performance is taken on several repeated trials even though the average performance

oscillates as more and more trials are conducted, but improvement in that sense of

average performance on multiple trials becomes more difficult when the sample size

gets larger. There might be, sporadically, some trials with AUC values below that

pre-specified target level, but still having good or even a little bit better classification

performance. That gives an inspiration that it might have better average performance

of a set of neural networks with training stopping as early as possible.

A tighter 95% confidence interval for the AUC could be obtained if it is estimated

from better validation performance on a larger validation set. The reason is that the

confidence interval (its estimation in the aforementioned method only depends on the

number of positives m, the number of negatives n, and the mis-classifications number

k) tends to become tighter as m and n increase and k decreases. The test AUC

appears to more often lie within the 95% confidence interval computed based on the

validation performance than that based on the training performance. And the test

performance appears strongly positively associated with the validation performance,

so that it is good to estimate the confidence interval for the AUC based on either

one. Also, experiments indicate that the aforementioned method for confidence in-

terval estimation is only applicable for an equal number of positives and negatives

(m = n). Therefore, if estimating the confidence interval for the AUC from the test

performance, multiply the sum of the false negative rate and the false positive rate by

the minority class size 586 (combine 348 positives in the training set and 238 positives
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in the test set) to get the mis-classifications number k (k = 586 (FNR + FPR)) and

set both m and n equal to 586.

Secondly, partition the subset of 5474 negatives into groups and then partition

each group into clusters, because it involves intensive computation to directly par-

tition the original training subset of 5474 negatives into 348 clusters. Find a cor-

responding data point from the subset of 5474 negatives with a closest distance to

each data point in the original training subset of 348 positives, respectively. Here the

distance is measured by the angle defined by

θ = arccos

(

a · b
|a||b|

)

between two data points a and b. The first-round gave 348 negative data points to

constitute the 1st group which is then removed from the subset of negative training

patterns; repeat the same process to construct the 2nd up to the 15th group and the

last remaining 254 negatives form the 16th group. Then, cluster each of the 1st up to

the 15th negative groups into 22 centroids, and cluster the 16th negative group into

18 centroids and combine all centroids to get a set of 348 representatives of negative

training patterns. Then, randomly remove 70 from the original 348 positives and 70

from the 348 negative representatives and use the remaining 278 positives plus 278

negatives for training. The average performance over seven such trials is measured

by: TPR .672, FPR .438, and the estimated 95% confidence interval for the AUC

[.538, .693].

Thirdly, try to train a neural network with the original highly imbalanced data

set. Restart neural networks using different initial values and learning rates. It has

been found that an initial value in a range of 0.0055 − 0.011 with a learning rate
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0.005 − 0.01 (10/11 proportional to the initial value) ends up with relatively better

AUC (0.72-0.76) right at the beginning (for example, 2 iterations) of the training

process. As training goes on up to 128 iterations, the error decreases slightly but

the AUC goes down from 0.732 to 0.654 and most operating points become denser

toward the left-bottom corner. In other words, it turns out low FPR at most threshold

levels but it seems hard to improve TPR, which is consistent with the theory that

ANNs tend to ignore the minority class as noise. It has as good performance on the

validation set as on the test set, indicating that a model properly fitting the training

data and successfully validated by new data does have a capability to predict patterns

in the test set. Then, train a set of neural networks with the original imbalanced data

and figure out the average performance on 111 trials (initialize 0.011, learning rate

0.01, 20% for Validation): TPR .634, FPR .306, and the estimated 95% confidence

interval for the AUC [.586, .739].

Trials Initialize Learning Rate Training Validation Test
AUC AUC AUC

1 0.011 0.01 .732 .732 .707
2 0.0099 0.009 .721 .742 .698
3 0.0088 0.008 .724 .763 .706
4 0.0077 0.007 .733 .771 .709
5 0.0066 0.006 .735 .775 .700
6 0.0055 0.005 .729 .764 .701

Table 3: Train 2 Iterations With the Original Training Set
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5.2 Discussion

Apparently, there appears to be a certain degree of information loss to draw a

smaller subset of representatives from the original imbalanced data for training, and

a neural network trained in that respect even with as high AUC as 0.95 does not

necessarily outperform another neural network trained with the original data just

with a relatively low AUC such as 0.73. Random sampling appears to work slightly

better than k-means clustering. Average performance over several trials seems better

than that on a single trial more obviously for a small sample size.

The maximum number of policy holders that could be found is 238 and random

selection results in 48 policy holders if the task is to find the set of 800 customers in the

test set that contains the most caravan policy holders. In the CoIL Challenge 2000

report [7], the winning model selected 121 policy holders (Naive Bayes approach),

and neural networks selected 105 policy holders. In this thesis, a slightly improved

result with respect to neural networks (selecting 124 policy holders from a set of 865

customers, approximately 115 out of 800, and 115 > 105) has been obtained on one

single trial with the best performance (trained by over sampling the minority class

with a sample size 4380 to adjust to the sample size 4380 of the majority class).

One issue to resolve for clustering is how to better measure distance (heterogene-

ity/homogeneity) in a high dimensional space. Besides the default Euclidean distance,

other alternatives such as the angle and the KL-divergence for information-theoretic

clustering could be considered as well. Data points within a cluster should ideally

be as homogeneous (closest distance) as possible, but there should be heterogene-
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ity among cluster representatives. The statistical analysis of clusters must take into

account the intra-cluster correlation and variation, and variations among clusters.

In all, we need to improve the sufficiency of the selected representative data to best

approximate the underlying probability distribution of the original data. A certain

degree of improvement tends to be made if random samples of size k (for exam-

ple, 348) are drawn from the original subset of 5474 negatives repeatedly sufficiently

many times, although it might oscillate especially at the beginning. In conclusion,

a sufficiently large AUC as an early stopping criterion is able to measure the overall

performance of a neural network with the mitigation of over-training and over-fitting

problems.
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