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ABSTRACT

Power Analysis for Alternative Tests for the Equality of Means

by

Haiyin Li

The two sample t-test is the test usually taught in introductory statistics courses to

test for the equality of means of two populations. However, the t-test is not the only

test available to compare the means of two populations. The randomization test is

being incorporated into some introductory courses. There is also the bootstrap test. It

is also not uncommon to decide the equality of the means based on confidence intervals

for the means of these two populations. Are all those methods equally powerful? Can

the idea of non-overlapping t confidence intervals be extended to bootstrap confidence

intervals? The powers of seven alternative ways of comparing two population means

are analyzed using small samples with data coming from distributions with different

degrees of skewness and kurtosis. The analysis is done using simulation; programs in

GAUSS were especially written for this purpose.
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1 INTRODUCTION

Traditionally in introductory statistics courses, the means of two populations are

compared using the two-sample t-test. Recently, the randomization test is making

its way into such courses. This opens the discussion: is the randomization test really

more powerful than the t-test when the assumptions for the t-test are not fulfilled or

is it being included because it has fewer prerequisites and can be taught earlier in the

semester? Instructors of introductory statistics courses are probably going to ask this

question and they deserve information about the comparison of these two tests. Also,

there are two common versions of the randomization test, one that uses the simple

difference of the two sample means and one that calculates the t-statistic for the

randomized samples. Is there really a difference between these two versions in terms

of power? According to Efron and Tibshirani [5], the randomization test is not really

a test for means but a test to compare distributions. Would it happen that, if the

means are equal but the shapes of the distributions are very different, then we would

be likely to reject the hypothesis of equal means? Efron and Tibshirani [5] defined a

bootstrap test that is beyond the scope of an introductory course. However, it will be

interesting to compare the power of the bootstrap test with that of the randomization

test.

It is common practice among some teachers of introductory statistics to arrive

at conclusions about the null hypothesis of equality of means based on confidence

intervals for the mean of each one of the two populations. If the confidence intervals

overlap, the null hypothesis is not rejected; while if the confidence intervals do not

overlap, the null hypothesis is rejected. Schenker and Gentleman [23] analyzed the

12



consequences of using confidence intervals in lieu of a formal test of hypothesis. One

question that comes to mind is: are the consequences in terms of power similar

to those obtained by Schenker and Gentleman [23] if instead of using t-confidence

intervals, bootstrap confidence intervals are used?

The focus of this work is on the behavior of power for small samples (n=5, 10 and

15) since for large samples most methods tend to behave well. Since the t-procedures

assume normality, it is interesting to explore the impact of different degrees of skew-

ness and kurtosis in the power of the different tests. The analysis of empirical power

was done with data simulated with different distributions such as the uniform, Nor-

mal, SU(0.9), exponential, Laplace, lognormal, Tukey(10), and scale contaminated

normal. Those distributions are described in Chapter 2. The variability of the data

of course plays a role in the power of a test, the effect sizes were written in terms of

the standard deviation of the distribution. Programs in Gauss were written in order

to perform the simulations.
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2 HYPOTHESIS TESTING METHODS

2.1 Introduction to Hypothesis Testing

Hypothesis testing, also referred as test of hypothesis or significance test, is one

of the major parts of statistical inference. The procedure is used to examine whether

the data constitute evidence against the null hypothesis. In introductory statistics,

we emphasize statistical inference on parametric methods or sometimes called classi-

cal methods, such as z-test, t-test and Analysis of Variance (ANOVA). In case of two

independent samples, the two sample t-test is the most common classical method that

is based on strict distribution theories; nevertheless, it has assumptions that are hard

to fulfill in many cases. In the modern world of statistics, non-parametric inferential

methods are becoming more and more popular and a number of computer-intensive

methods have been well developed. The most famous ones include randomization

tests, bootstrap and Monte Carlo methods (Manly [18]). Another alternative to hy-

pothesis testing is to examine overlapping confidence intervals. Although this method

has limitations, it is relatively efficient and easier under certain circumstances.

Hypothesis testing involves Type I errors (Reject a true H0) and Type II errors

(Not reject a false H0). It is known that if the probability of making one type of error

is reduced, simultaneously, the probability of making the other error will increase.

Our goal is to choose an appropriate significance level in order to control Type I

error. However, it is important to be aware that the probability of making the Type I

error in practice is not always equal to the theoretical significance level, i.e not always

the real α is equal to the nominal value α of the test. If the probability of Type I error
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is equal to the assigned significance level, then we say the hypothesis test is exact,

otherwise, the test is either conservative or liberal. Certain assumptions should be

held in order to make a test exact, i.e a one sample t-test is exact only if data come

from a normal distribution.

In order to evaluate the efficiency of the hypothesis testing method, it is necessary

to calculate the power of the test. The power of a statistical test is defined as the

probability of rejecting a false null hypothesis and it can also be calculated as 1 −

P (Type II error) [13]. The power of the test depends on the difference between the

two population means, as well as the significance level being used. In introductory

statistics courses, it is already emphasized that for a fixed significance level, the power

of the test increases as the sample sizes increase. High power indicates the statistical

test is highly efficient. In this study, the focus is on the comparison of different

hypothesis tests under the condition of small samples.

2.2 Two Sample T-Test

The t-test is formally called ‘Student’s t-test’ in honor of the famous British

statistician William Sealy Gosset whose pseudonym was ‘Student’ [26]. Gosset [26]

introduced the t statistic in 1908 and the probability distribution he derived was

called t-distribution or Student’s t probability model. In case of the two sided t-test,

the null and alternative hypotheses are written as:

H0 : µ1 = µ2

Ha : µ1 6= µ2

Before performing the two sample t-test, usually these three assumptions should be

15



checked:

1. Two independent samples are randomly selected from two distinct populations.

2. Both of the populations are normally distributed, which is called the assumption

of normality.

3. The two populations have similar variances.

In order to compute the test statistic, let x̄1 and x̄2 be the two sample means respec-

tively and n1 and n2 be the corresponding sample sizes. Learning from solving the

one sample case, without knowing the two population standard deviations, we replace

the population standard deviations σ1 and σ2 by the sample standard deviations s1

and s2. The two sample t-statistic is written as:

t =
x̄1 − x̄2

√

s1
2

n1

+ s2
2

n2

(1)

Under the assumption of equal variances, the pooled variance sp
2 is used to estimate

the unknown population variance rather than s1
2 and s2

2 because the pooled estimator

in equation (3) is based on a larger sample (n1 + n2 observations) than s1
2 or s2

2

separately. In this case, the t statistic is written as

t =
x̄1 − x̄2

sp

√

1

n1

+
1

n2

(2)

where

sp =

√

(n1 − 1)s1
2 + (n2 − 1)s2

2

n1 + n2 − 2
(3)

and degrees of freedom = n1 + n2 − 2.
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On the other hand, if the consistency or equal variance assumption is dropped,

Welch’s t-test [13] is an adaption of the two sample t-test by using expression (4) and

approximating the degree of freedom from the data,

t =
x̄1 − x̄2

√

s1
2

n1

+
s2

2

n2

(4)

with degrees of freedom approximated by the integer part of

df =
(
s1

2

n1

+
s2

2

n2

)2

s1
4

n1
2(n1 − 1)

+
s2

4

n2
2(n2 − 1)

(5)

Expression (5) is called Welch-Satterthwaite equation [13].

2.3 Overlapping T Confidence Intervals

Statistical significance is often associated with confidence intervals. For example,

consider the two sample t-test with the null hypothesis and alternative hypothesis

stated as in Section 2.2. For each of the population means, a confidence interval can

be calculated as follows:

x̄1 ± t∗
1

s1√
n1

x̄2 ± t∗
2

s2√
n2

Here, the t critical value t∗
1

and t∗
2

can be found in the t table or can be computed

using software.

In introductory statistics courses, it is sometimes said when the two confidence

intervals for the two population means are not overlapping, we can conclude that the
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two means are not the same. In other words, the null hypothesis should be rejected.

However, failure to reject the null hypothesis using overlapping confidence intervals

does not necessarily imply failure to reject H0 using the corresponding hypothesis

test. Schenker and Gentleman [23] concluded that due to the conservatism and low

power relative to the standard methods, the overlap method should not be used as a

formal significance testing unless this is the only option for the data analyst.

2.4 Randomization Tests

The randomization test is considered as one of the great revolutions in statistics

in the twentieth century and it is becoming one of the major approaches in statistical

education. The basic idea of randomization was first introduced by Sir Ronald A.

Fisher in 1923 and was greatly explained by him again in his book on experimental

design [8]. Now it is widely applied in data analysis, especially in biological sciences

and health sciences. The basic idea behind the randomization test is to generate an

empirical distribution of the statistic of interest by regrouping data from the original

samples. Depending on different situations, there are two main probability models

for explaining the probability basis for statistical inference in randomization tests.

Lehmann [16] called the first model the randomization model in which the available

subjects are randomly assigned to treatments. The second, the population model, is

used when subjects are randomly sampled from different populations. Edgington [4]

pointed out that the methods used for the randomization model are randomization

tests, while the same methods used for the population model are called permutation

tests. The two names, randomization and permutation, are frequently considered

18



interchangeable in the hypotheses testing context. However, there is an important

distinction between two models in the design of a study. The randomization model

is used in the design of experiments and the population model in the design of obser-

vational studies.

Compared to classical methods, the main advantages of randomization tests are

that they can be applied even without random samples and that they are almost

distribution free. Thus, randomization tests are relatively less restrictive than the

classical methods such as the t-test. However, the limitations of the randomization

tests are obvious, too. First, they are only applicable to the comparison of two

or more populations. Second, by its nature, a randomization test can only tell us

whether a certain pattern of data is likely to have arisen purely by chance. Therefore,

a randomization test can only test whether populations are equal instead of arriving

at conclusions about the values of the parameters of populations.

In a two sample case, the null hypothesis and alternative hypothesis are

H0 : F = G

Ha : F 6= G

If the null hypothesis is true, we can consider these two populations are really a

single population. There are four steps to conduct the randomization tests for the

difference between two population means as described below.

1. Find the true difference D1 between two sample means.

2. Put the two samples together and then randomly reallocate n1 elements as the

first new group and the remaining n2 as the second group. The difference, D,
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between these two groups can be now obtained.

3. Repeat the random selection in step 2 a large number of times, for example

ten thousand times in the approximated version of the test. In the exact test,

all the possible re-groupings of n1 + n2 observations are considered. For each

re-grouping obtain the difference between the two reallocated groups. Keeping

the difference between the means of the two groups for each re-grouping, an

empirical distribution for the differences is obtained by randomization.

4. Use the empirical distribution to obtain the achieved significance level and arrive

at a conclusion about the null hypothesis.

If the true difference, D1, is a value that looks extremely large or small based on the

empirical distribution obtained by randomization, we reject the null hypothesis. Al-

ternatively, we calculate the achieved significance level, defined by Efron [5]. Similar

to the p-value in classical test, the achieved significance level of the test, abbreviated

ASL, is the probability of observing at least that large a value when the null hypoth-

esis is true.

ASL = ProbH0
(|D| ≥ |D1|)

If the ASL is very small, the null hypothesis would not seem reasonable and the

alternative hypothesis would be preferred. Otherwise, the allocation in reality seems

to be random and we do not reject the null hypothesis.

The interesting thing is that there is more than one way to obtain the test statistic

of the randomization test, some of which are equivalent. Instead of using the difference
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between the two sample means, the pooled two sample t statistic could be used and

it will give the exactly the same result as using difference between two means. Some

statisticians such as Manly [18] and Ernst [6] pointed out that the sum of the responses

in one group is often used as the statistic rather than the t statistic and the difference

in means because it is computationally more efficient as the two sample sizes increase.

How many random re-groupings of the original data should be considered? The

exact randomization test requires us to do all the possible regrouping of the data:

(

n1 + n2

n1

)

Randomization tests are exact [5], which means the probability of making a Type

I error is always equal to the defined significance level. For example, if there are

two samples with ten subjects each, then there will be
(

20

10

)

= 184756 possible re-

arrangements of the twenty individuals in two groups of ten individuals each. In

introductory statistics, we probably would prefer not to perform all possible reallo-

cations. The number of re-groupings can be reduced to a certain level while keeping

the significance level estimated close to the nominal value of the exact significance

level. This type of randomization test is called the approximate randomization test.

In this study, the approximate randomization test is used in the simulations.

2.5 Testing with Bootstrap Confidence Intervals

Schenker [23] compared the t-test with the overlapping t-confidence intervals.

Bootstrapping [5] is an alternative way of building confidence intervals. A new com-

parison to be done is that of the randomization test with overlapping bootstrap confi-
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dence intervals. It would be interesting to see whether or not the relationship between

the randomization test and overlapping bootstrap confidence intervals is similar or

not to the relationship, between the t-test and overlapping t-confidence intervals,

found by Schenker [23].

In statistics, resampling means sampling from the sample. Bootstrap is a method

defined by Efron in 1980 [5]. The bootstrap method relies only on an empirical

distribution obtained from the data in order to do inference about the parameters.

Resampling is a very practical method to obtain such an empirical distribution. To

do resampling is to select random samples from the original sample. The new samples

are called “bootstrap samples” [5] and they are of the same size as the original sample.

The statistic of interest is calculated for each bootstrap sample in order to obtain an

empirical bootstrap distribution for the statistic. The bootstrap method is usually

a good choice when the assumptions necessary for more classical methods are not

fulfilled or when extremely complicated calculations were necessary. The biggest

difference from the sampling point of view between bootstrap and the randomization

test is whether to sample with replacement or without replacement.

There are several ways of building confidence intervals based on the bootstrap

empirical distribution. The percentile bootstrap confidence interval was described

by Efron in his earlier work [5]. This method is also referred as “the first percentile

method” or “simple percentile confidence limits”. The two bounds are the values

that encompass the central 100(1-α)% of the bootstrap empirical distribution. Other

improved percentile methods also exist, such as the second percentile method by Hall

[18]. Furthermore, some better confidence intervals have also been defined [5], such
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as the bootstrap t-confidence interval, the accelerated bias-corrected percentile limits

(BCa intervals) and the approximate bootstrap confidence interval (ABC). In this

study, the percentile bootstrap confidence intervals and the bootstrap t-confidence

intervals will be used in the simulations because those are the bootstrap type tests

most likely to be used in an introductory statistics course.

2.6 Testing with Bootstrap Test

The bootstrap test is not as popular as the bootstrap confidence intervals. Fisher

and Hall [9] and Hall and Wilson [12] point out that an important difference between

bootstrap confidence intervals and the bootstrap test is the accuracy of the estimators

of the critical values for the test statistic. The basic procedure of the bootstrap test

is as follows:

1. Standardize the observations zi and yi of the two samples

z′i = zi − z̄ + x̄

y′i = yi − ȳ + x̄

where z̄ and ȳ are group means and x̄ is the mean of the combined sample.

2. Regroup the two groups of the standardized values 1000 times. Each time,

obtain the sample means z̄∗ and ȳ∗ and standard deviations s1
2 and s2

2 .

3. For each re-grouping, compute the t statistic using the formula below

t∗ =
z̄∗ − ȳ∗

√

s1
2

n1

+
s2

2

n2

4. Approximate ASL by

23



ASL = #{t∗ ≥ tobs}/B

In this study, the power of the bootstrap test is compared with the power of other

methods using simulation as shown in the results section.
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3 ENVIRONMENT OF POWER COMPARISON

3.1 Statistical Power

Statistical power is the probability of rejecting the null hypothesis when the null

hypothesis is false. As power increases, the probability of type II error (not rejecting

Ho when Ho is false) will decrease. Statistical power is usually associated with sample

size and the effect size. The larger the sample sizes and the effect sizes are, the more

powerful the statistical test will be. When the probability of one of the error decreases,

the other will increase. The change of the probabilities of these two types of errors

is never in the same direction. The nominal value of the significance level, α, is set

before the test is performed, and 0.05 is a common value. The statistical power is

usually a criterion to judge and compare different statistical tests. However, better

alpha control should also be considered. All the procedures mentioned in the previous

section will be compared pairwise, as shown in Figure 1, by plotting the values of α

= P(Type I error) and power.

Figure 1: Comparison of different methods
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3.2 Different Skewness Environments

In probability theory and statistics, skewness is defined as a measure of asymmetry

of the probability density function of a real-valued random variable. The value of

skewness is negative when the distribution is left skewed and a positive value indicates

the distribution is right skewed; and when the distribution is symmetric, the value of

skewness is zero. There are many different ways to calculate skewness. The skewness

coefficient was originally defined by Pearson using the third central moment γ1 =

µ3/σ
3 where µ3 = E(X − µ)3 [2]. There are also more simple ways of measuring

skewness such as (mean-mode)/standard deviation, for the Pearson’s mode or first

coefficient of skewness, and (mean-median)/standard deviation, for the Pearson’s

median or second coefficient of skewness.

For inference about the population mean, skewness is one of the factors that

should be taken into consideration since it can affect the power of the statistical test

and lead to a misleading result. For example, the t procedures always emphasize

the assumption of normality. The one sample t-test and the one sample t-confidence

interval are robust enough under mild skewness when the sample size is greater than

15. However, the impact of skewness will be significant when the sample size is smaller

or equal to 15. In cases of severe skewness, we need much a larger sample size to apply

the one sample t procedures. The question is how skewness can affect the power of

the two sample test when sample sizes are smaller than or equal to 15. For instance,

such skewed distributions as exponential and lognormal distributions are widely used

in the analysis of survival data.
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3.3 Different Kurtosis Environments

In 1905, Karl Pearson originally defined the “degree of kurtosis” η = β2 − 3,

where β2 = µ4/m
2

2
and µi is the ith moment with respect to the mean, as the measure

of peakedness in order to compare the distribution of a real-valued random variable

to the normal distribution [24]. Balanda and Mac Gillivray [1] pointed out that

kurtosis should not only be related to peakedness but also tails of the distribution by

saying that kurtosis could be understood as “the location- and scale-free movement of

probability mass from the shoulders of a distribution into its center and tails”. Now,

the representation of kurtosis as Pearson’s coefficient β2 for both peak and tails is

more broadly accepted by statisticians and widely used in various statistics books [2].

Statisticians have defined several measures to quantify kurtosis and proposed different

approaches of studying kurtosis [24]. The understanding of kurtosis is not restricted

to β2. For example, one simple way for introducing kurtosis to students is visualizing

the peak and tails of an unimodal distribution to a uniform distribution with the same

median and variance proposed [15]. Kurtosis can affect the performance of inferential

tools, especially with regard to inference about the variance. Also the median is a

more efficient estimator of center than the mean for symmetric distributions when

the kurtosis is high. For small samples, the behavior of some tests will be weakened

by high kurtosis of the distributions. Results obtained by simulation with regard to

the power of tests in the presence of high kurtosis are included in the results section.
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4 PROBABILITY DISTRIBUTIONS

The following eight distributions are considered in this study.

4.1 Normal Distribution

Figure 2: Normal Distribution N(0,1)

The normal (or Gaussian) distribution plays an extremely important part in

statistics. The revolution of theoretical statistics started at the beginning of the

twentieth century, however, the normal distribution appears earlier in history [2].

First it appeared in connection to the binomial distribution and later it was used

to represent the distribution of errors [13]. Furthermore, Central Limit Theorem

according to which the normal distribution serves as the basis of practical statistical

work. It is also widely used as an approximation to other distributions. If the random

variable X has a normal distribution, then the probability density function (pdf) is
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given by:

f(x) =
1√
2πσ

e
−
(x − µ)2

2σ2 for x ∈ (−∞,∞) (6)

For an arbitrary normal distribution N(µ, σ), the mean and variance are µ and

σ2. The standard normal distribution N(0,1) (Fig. 2) is defined as a specific normal

distribution with mean µ = 0 and variance σ2 =1.

4.2 Uniform Distribution

Figure 3: Uniform Distribution U(0,1)

The uniform distribution, also called rectangular distribution, refers to both

the continuous and discrete cases. In this study, only the continuous uniform dis-

tribution is considered. The probability density function of the uniform distribution

U(a,b) is
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f(x) =

{ 1

b − a
a ≤ x ≤ b

0 otherwise
(7)

For an arbitrary uniform distribution U(a,b), the mean and variance are
a + b

2
and

(b − a)2

12
.

In particular, the standardized uniform distribution is the uniform distribution

which has mean 0 and standard deviation 1 and the standard uniform distribution

(Fig. 3) is the uniform distribution over (0,1). The relationship between standardized

uniform distribution and standard uniform distribution is that if X has a standard

uniform distribution, then Y =
√

3(2X − 1) has a standardized uniform distribution.

4.3 Lognormal Distribution

Figure 4: Lognormal Distribution Ln(0,1)

The normal distribution is considered as the logarithmic transformation of the

lognormal distribution, that is, if a random variable Y has a lognormal distribution

with parameters µ and σ, then the variable X = log(Y ) has a normal distribution
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with mean µ and standard deviation σ. The notation Ln(µ,σ) or Log(µ, σ) is used to

represent the lognormal distribution. Another way of expressing this relationship is to

say that if X ∼ N(µ, σ2), then Y = eX has a lognormal distribution, Y ∼ Ln(µ, σ2).

The parameters of the lognormal distribution are µ and σ. The lognormal distribution

is extremely skewed to the right and it is widely used as a typical model in survival

analysis. The mean, median and mode of the lognomal distribution Ln(µ, σ2) are

exp(µ + 0.5σ2), exp(µ), and exp(µ − σ2), respectively. However, their estimators are

biased and inefficient and this motivates statisticians to seek for different ways of

estimating the parameters [17]. Usually, the logarithmic transformation is applied in

the generalized linear model context in order to fulfill the normality assumption. The

specific lognormal distribution, Ln(0,1) (Fig. 4), will be used in the simulations.

4.4 Exponential Distribution

Figure 5: Exponential Distribution Exp(1)

A random variable X has an exponential distribution if its probability density
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function is of the form:

f(x) =
1

σ
e−

(x − θ)
σ , x > θ; σ > 0 (8)

When θ = 0 and σ = 1, we call the exponential distribution ‘standard expo-

nential distribution’ (Fig. 5) which has the mean 1 with probability density function:

f(x) = e−x, x > 0. (9)

4.5 SU Johnson Distribution

Figure 6: SU Johnson Distribution SU(0.9)

Johnson et al. [14] described the transformations

Z = γ + δlog(X − ξ), X ≥ ξ, (10)

Z = γ + δlog(
X − ξ

ξ + λ − X
), ξ ≤ X ≤ ξ + λ, (11)

Z = γ + δsinh−1(
X − ξ

λ
). (12)

32



The distribution of Z is the standard normal distribution. Equation (10) corre-

sponds to the family of lognormal distributions. For the other of two, the type of

distribution depends on the range of X. If X is bounded, then the family of distri-

butions in equation (11) is called SB, otherwise, the symbol SU is used. The four

parameters of the SU distribution are γ, δ, ξ and λ. In this study simulations are

done with the SU(0.9) (Fig. 6) which has high kurtosis and has parameters γ = 0,

δ = 0.9, ξ = 0 and λ = 1.

4.6 Laplace Distribution

Figure 7: Laplace Distribution Laplace(0,1)

The Laplace distribution was defined by Pierre Laplace (1774) and is known

under several names [14]: two-tailed exponential, bilateral exponential and the most

common one, the double exponential distribution. The Laplace distribution is sym-

metric and has higher kurtosis than the normal distribution. The general version of

the probability density function of Laplace distribution is
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f(x) =
1

2θ
e
−
|x − φ|

θ (13)

The Laplace distribution with φ = 0 and θ = 1 (Fig. 7) will be used in the

simulation.

4.7 Tukey(λ) Distribution

Figure 8: Tukey Distribution Tukey(10)

The Tukey(λ) family of distributions, sometimes also called Tukey distribu-

tions, are defined as transformed distributions. Let the variable U be standard uni-

formly distributed with the following probability density function

f(u) = 1, 0 < u < 1 (14)

It is said that the variable X has a Tukey(λ) distribution if it is defined as
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X =
Uλ − (1 − U)λ

λ
, −λ−1 ≤ X ≤ λ−1, λ > 0 (15)

and

X = log(
U

1 − U
), λ = 0 (16)

Tukey(10) (Fig. 8) denotes the symmetrical Tukey lambda distribution with λ =

10. This is the distribution to be used in the simulations because it is a challenging

environment for inferential tools due to its short range of values for the variable and

extreme peakedness.

4.8 Scale Contaminated Distribution

Figure 9: Scale Contaminated Distribution ScCon(5,0.1)

The scale contaminated distribution ScCon(a,p) denotes the mixture of a stan-

dard normal distribution N(0,1) with probability (1-p) and a normal distribution

N(0,a) with probability p. The probability density function has a very complicated
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form. However, it is a symmetric distribution with µ = 0 and σ2 = (1−p)+pa2. The

scale contaminated distribution ScCon(5, 0.1) (Fig. 9) will be used in the simulation.

4.9 Summary of distributions

Table 1 displays the summary of the eight distributions which will be used for

simulation purposes.

Table 1: Summary of Distributions

Distribution Mean Standard Deviation Skewness Kurtosis

N(0,1) 0 1 0 3
U(0,1) 0.5 0.29 0 1.8

Tukey(10) 0 0.031 0 5.38
Lapalce(0,1) 0 1.414 0 6

SU(0.9) 0 2.328 0 82.1
ScCon(0.1,5) 0 1.844 0 16.5

Exp(1) 1 1 2 9
Ln(0,1) 1.65 2.16 6.18 113.9
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5 SIMULATION RESULTS

5.1 Summary of Data

The null hypothesis and alternative statistical hypothesis for two-sided tests are

H0 : µ1 = µ2

Ha : µ1 6= µ2

In this study, only small samples with equal or unequal sizes are considered.

Therefore, the first sample size is fixed to be 10 whereas the second sample has the

size 5, 10 and 15. The effect sizes for power comparison are set as 0.5, 1 and 2. For the

randomization test, bootstrap confidence intervals and the bootstrap test, the most

simple versions that can be taught in an introductory statistics course is used. For

each sample, 1000 bootstrap subsamples were obtained or 1000 random re-groupings

were done. Ten thousand simulations were used to obtain the estimated ASL and the

statistical power for each method.

5.2 Summary of Comparisons

Twelve pairs of the tests are to be compared and all the results of pairwise com-

parisons are shown in the following nine sections.

1. Randomization test using the difference of means vs. randomization test using

the t-statistic.

2. Randomization test vs. two sample t-test.

3. Bootstrap test vs. two sample t-test.
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4. Bootstrap test vs. randomization test.

5. Overlapping t confidence intervals vs. two sample t-test.

6. Overlapping bootstrap confidence intervals vs. randomization test.

7. Overlapping bootstrap confidence intervals vs. bootstrap test.

8. Overlapping bootstrap confidence intervals vs. overlapping t confidence inter-

vals.

9. Overlapping bootstrap percentile confidence intervals vs. overlapping bootstrap

t confidence intervals.

5.3 Randomization Test Using the Difference of Means and Using T-Statistics

As we mentioned in Section 2, the randomization test can be conducted using

different statistics and some of them are equivalent. For example, the difference

between the sample means or the pooled t-test statistic could be used. According

to Ernst [6], the randomization test, Ran(d), using the difference in means always

agrees with the randomization test using the pooled t-test statistic. Instead of using

the pooled t-test statistic, the randomization test using Welch’s t statistic (Ran(tw))

will be compared in the simulations with the randomization test using the difference

of means. Figure 10 displays the results for the estimated significance level and the

power of those two types of randomization tests.

The simulation results show that the two randomization tests always agree when

sample sizes are the same. However, this is not necessarily true when the two samples
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Figure 10: Randomization Tests with Different Statistics
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are simulated with different sample sizes. On the other hand, the empirical signifi-

cance levels are not far away from the nominal value 0.05. It seems that when one of

the sample sizes is extremely small, the randomization test that uses the difference

of the means as the test statistic works better. The lognormal distribution, that has

kurtosis 113.9 is an outlier in Figure 10 with regard to alpha control when n1=15.

That is, its empirical significance level is relatively far away from 0.05 for both ver-

sions of the randomization test. The randomization test may have problems with

strongly skewed data. The two versions of the randomization test almost agree in

terms of power except for some rare cases, i.e. when at least one of the samples is

too small. Overall for the randomization test, using the difference of means works

better than using Welch’s t statistic as the test statistic. Therefore, for the following

analysis, we will focus on performing the randomization test using the difference of

means as the test statistic.

5.4 Randomization Test and Two Sample T-Test

The Central Limit Theorem about the approximately normal distribution of the

sample mean is an asymptotic result. In introductory statistics courses, it is frequently

said that an approximately normal distribution can be assumed for sample means

when sample sizes are larger than 15 or 30. The t-test will be relatively robust in

most situations. However, we are interested in the analysis of alpha control and power

for sample sizes smaller than 15, where the t-test may not be an optimal method.

Figure 11 indicates that although the randomization test does not show a distinct

advantage in terms of power, it has a better alpha control. It should be remembered
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Figure 11: Randomization Test and Two Sample T-Test
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that in this study the exact version of the randomization test is not being applied,

only 1000 re-groupings of the original samples were done. The exact randomization

test (when all the possible re-groupings are done) always has its empirical significance

level equal to the nominal significance level. Therefore, if all the possible permutations

are included, the estimated significance level will be exactly 0.05.

5.5 Randomization Test and Bootstrap Test

There has been discussion in the statistical literature that the randomization

test is not so much a test for equal means as a test for equal distributions [5]. A

bootstrap test was defined by Efron and Tibshirani [5] as a possible replacement for

the randomization test. However, the bootstrap test is more complicated to apply

and has not made its way into introductory statistics courses yet. Figure 12 indicates

that, although the bootstrap test and the randomization test can both be considered

Monte Carlo methods, there is an overwhelming advantage in using the randomization

test. The randomization test has both better alpha control and higher power than

the bootstrap test. Randomization tests are exact when all the possible re-groupings

of the samples are considered, which is not true for bootstrap tests.

5.6 Bootstrap Test and Two Sample T-Test

The limitations of the bootstrap test can be clearly seen from Figure 13. The

t-test is not always appropriate in dealing with small samples when the data come

from a non-normal distribution. However, the performance of the bootstrap test is

even worse.

42



Figure 12: Randomization Test and Bootstrap Test
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Figure 13: Bootstrap Test and Two Sample T-Test
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5.7 Overlapping T Confidence Intervals and Two Sample T-Test

The comparison done in Figure 14 verifies Schenker’s idea in judging the signifi-

cance using overlapping confidence intervals and the corresponding test of hypothesis

method [23]. The overlapping t confidence intervals method tends to be very conser-

vative based on the same significance level as the corresponding two sample t-test.

Statisticians have explored if adjusting the confidence level for each confidence interval

helps in achieving the nominal significance level 0.05. For example, Payton, Green-

stone and Schenker [20] proposed to adjust the confidence level of each confidence

interval to 84% for large samples, instead of the usual 95%. According to Payton,

Greenstone and Schenker [20], the adjusted significance level for each t confidence

interval is associated with the ratio of the two standard errors.

Table 2 shows the results for the estimated significance levels when using 84%

overlapping t confidence intervals in the case of small samples. The achieved sig-

nificance levels are smaller than the expected value 0.05. However, this can be an

starting point to look for more appropriate confidence levels in order to achieve the

desired significance level.

In the statistical literature, only the t-test and the t-confidence intervals have been

compared. We wanted to extend this comparison to other types of tests and confidence

intervals. The 84% overlapping percentile and t bootstrap confidence intervals have

been checked. The average empirical significance level for overlapping bootstrap t

confidence intervals is around 0.06. For the percentile bootstrap confidence interval

the empirical significance level is much larger.
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Figure 14: Overlapping T Confidence Intervals and Two Sample T-Test
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Table 2: Simulation Results for Adjust Significance Levels

Distribution n1 n2 84% t CIs 84%B(p) 84%B(t)

normal 10 10 0.0486 0.0817 0.0601
uniform 10 10 0.0496 0.0808 0.0613

lognormal 10 10 0.0533 0.1078 0.0667
exponential 10 10 0.0502 0.0890 0.0622

laplace 10 10 0.0416 0.0840 0.0539
tukey10 10 10 0.0486 0.1004 0.0625
SU0.9 10 10 0.0408 0.0897 0.0553

ScCon(0.1,5) 10 10 0.0387 0.0922 0.0531
normal 5 10 0.0488 0.1109 0.0699
uniform 5 10 0.0596 0.1098 0.0763

lognormal 5 10 0.0604 0.1408 0.0796
exponential 5 10 0.0659 0.1355 0.0851

laplace 5 10 0.0455 0.1192 0.0666
tukey10 5 10 0.0366 0.1256 0.0559
SU0.9 5 10 0.0375 0.1143 0.0562

ScCon(0.1,5) 5 10 0.0426 0.1203 0.0607
normal 15 10 0.0467 0.0719 0.0564
uniform 15 10 0.0480 0.0707 0.0573

lognormal 15 10 0.0547 0.0965 0.0646
exponential 15 10 0.0572 0.0903 0.0686

laplace 15 10 0.0444 0.0779 0.0536
tukey10 151 10 0.0464 0.0866 0.0569
SU0.9 15 10 0.0405 0.0835 0.0510

ScCon(0.1,5) 15 10 0.0388 0.0829 0.0493
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5.8 Overlapping Bootstrap Percentile Confidence Intervals and Overlapping

Bootstrap T Confidence Intervals

These two bootstrap confidence intervals are popular in statistics courses, how-

ever, there is a difference in their construction. The percentile method selects as

the endpoints of a (1 − α)100% confidence interval, two quantiles of the empirical

distribution (obtained by re-sampling) for the sample mean. The quantiles selected

are those that occupy the m × α/2 and m × (1 − α/2) (where m is the number

of bootstrap samples generated by resampling) positions, once the values of the

bootstrap sample means have been ordered. The bootstrap t confidence interval is

x̄ ± tα/2 × boostrap standard error .

The standard error is calculated as the standard deviation of the means of the boot-

strap samples.

The simulation results summarized in Figure 15 indicate that with regard to alpha

control, both of them are far away from the nominal value 0.05 when 95% confidence

intervals are used. However, the percentile method looks relatively better and has

higher power than the overlapping bootstrap t confidence intervals in the case of small

samples.

5.9 Overlapping Bootstrap Confidence Intervals and Overlapping T Confidence

Intervals

In this section both types of bootstrap confidence intervals (percentile and t-

bootstrap) are being compared with the traditional t-student confidence intervals.

The construction of the bootstrap confidence intervals is described in the previous

48



Figure 15: Overlapping Percentile and t Bootstrap Confidence Intervals
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Figure 16: Overlapping Bootstrap Percentile and T Confidence Intervals
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Figure 17: Overlapping Bootstrap T and T Confidence Intervals
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section. The t-student confidence interval is calculated as

x̄ ± tα/2 × s√
n

where s is the standard deviation of the sample. When the confidence intervals for

the two samples do not overlap, the null hypothesis of equal population means is

rejected.

Figures 16 and 17 summarize the simulation results. The conclusion is that the

overlapping bootstrap t-confidence intervals work better than the classic t-confidence

intervals, both alpha control and power. Among the three overlapping confidence

intervals, the overlapping bootstrap percentile confidence intervals method is best

while the overlapping classic t-confidence intervals method produces the worse results.

5.10 Overlapping Bootstrap Confidence Intervals vs Randomization Test

In this section the overlapping bootstrap confidence intervals (both percentile

and bootstrap-t) are compared to the randomization tests. The simulation results

are summarized in Figures 18 and 19. The results indicate that the method of over-

lapping bootstrap confidence intervals is conservative (the empirical α is below the

nominal α). This is the same pattern observed for overlapping t confidence intervals

as compared to the t-test. Unfortunately, the results also show that Schenker’s idea

[23] of reducing the confidence level of the overlapping intervals in order to achieve the

nominal value of α is not applicable to the overlapping bootstrap confidence intervals

in order to achieve the same α than the randomization test. Although both boot-

strap and randomization tests are based on the idea of resampling, they use different

strategies to obtain new samples - sampling with replacement for the first one and
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Figure 18: Overlapping Bootstrap Percentile Confidence Intervals and Randomization
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Figure 19: Overlapping Bootstrap T Confidence Intervals and Randomization Test
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sampling without replacement for the latter one.

5.11 Overlapping Bootstrap Confidence Intervals vs Bootstrap Test

In this section the bootstrap test is being compared to the method of using overlap-

ping bootstrap confidence intervals to arrive at a conclusion about the null hypothesis

of equal means. In section 5.5 the bootstrap test was found to be more conservative

and have lower power than the randomization test for small samples. However, ac-

cording to the simulation results summarized in Figures 20 and 21, the bootstrap has

a better performance than the method that uses overlapping bootstrap confidence

intervals to judge whether to reject the null hypothesis or not. Although both boot-

strap confidence intervals and the bootstrap test use exactly the same re-sampling

methods, the bootstrap test works better. Our simulation results also indicate that

Schenker’s idea [23] of reducing the confidence of the intervals to achieve the desired

value of α when testing hypotheses is not applicable to the bootstrap test.

5.12 Other Simulation Results

In addition to the results explained in the previous sections, the agreement or

disagreement between different methods was also studied. For example, if the two

t-confidence intervals do not overlap, then the two bootstrap percentile confidence

intervals will not overlap either. For two population means, µ1 < µ2, the upper

bound of the bootstrap percentile confidence interval for µ1 is always smaller than

the upper bound of the t confidence interval. On the other hand, the lower bound
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Figure 20: Overlapping Bootstrap Percentile Confidence Intervals and Bootstrap Test
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Figure 21: Overlapping Bootstrap T Confidence Intervals and Bootstrap Test
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Figure 22: Power vs Effect Sizes

of the bootstrap percentile confidence interval for µ2 is always greater than the lower

bound of the t confidence interval.

The fact that power increases as the sample size increases is a widely known

fact. It is also interesting to compare the power in relation to the effect size or true

difference between the two population means when the null hypothesis is not true.

Figure 22 shows the change in power in terms of different effect sizes for four different

tests and equal sample sizes (n1 = n2 = 10) from both populations. The effect size is

in terms of the standard deviation of each distribution. The tests being compared are

the classical t-test, the two versions of the randomization test (using the difference

of means and Welch’t statistic), and the bootstrap test. The comparison is being
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done for a wide range of distributions with regard to skewness and kurtosis. There

is no difference in terms of power between the two versions of the randomization test

because equal sample sizes were used in the simulations. The bootstrap test has lower

power than other tests for some distributions. However, something interesting about

the bootstrap test is that it seems to be pretty robust with regard to the shape of

the distribution. For a fixed effect size of half or one standard deviations, there is

less difference in power among the different distributions for the bootstrap test than

for the other tests. However, when the difference between the two population means

is equal to two standard deviations, the other three tests achieve a power of 1 for all

the distributions, but not the bootstrap test. The average power for the bootstrap

tests tends to be lower than for the other tests for all effect sizes.
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6 CONCLUSIONS

• In this study, different methods to test the null hypothesis of equality of means

for two populations have been compared, in terms of α control and power,

by simulation using samples generated with eight distributions with different

degrees of skewness and kurtosis.

• For small samples, the randomization test works better in terms of alpha control

and power than other methods for a wide spectrum of distributions. Therefore,

it should be considered appropriate to teach it in introductory statistics courses.

• One important reason for preferring the randomization test when some of the

assumptions of the t-test are not held is that it has the best alpha control.

For the exact randomization test the probability of type I error always equals

the significance level. The approximate randomization test can still give the

estimated significance level close to the nominal value provided that a large

enough number (at least 1,000) of re-groupings is done.

• There is more than one version of the randomization test with respect to the

test statistic to be used, i.e difference between sample means, t-test statistic,

sum of one sample, difference of medians, etcetera. The main question in an

introductory statistics course is whether to use the difference between the two

means or to use the t-statistic. The Welch’s t-test statistic and the difference of

means will produce the same results only if the two sample sizes are equal. It

is not necessary to calculate the Welch’s t-statistic while doing randomization

test since the difference between means is more simple to calculate and produces
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better results when the sample sizes are not equal.

• The t-test is not considered an appropriate test when the data are very skewed

because the assumption of normality is not being fulfilled. However, when

small samples are simulated from strongly skewed distributions or distributions

with high kurtosis, the power of the test may not be lower than when samples

are simulated with the normal distribution or the uniform distribution when

the effect size is fixed in terms of the standard deviation of the distribution.

The reason is that for highly skewed distributions such as the lognormal, the

standard deviation is relatively large and it is known that the larger the “effect

size”, the higher the power.

• The adjusted significance level for overlapping t confidence intervals proposed

by Payton, Greenstone and Schenker [20] is preferred to being used in large

samples. The 84% overlapping t confidence interval method for small samples

is a little bit conservative.

• Schenker’s idea [23] about the relationship between overlapping confidence in-

tervals can only be applied to the t-test and t-confidence intervals but not to

overlapping bootstrap confidence intervals, randomization tests or the bootstrap

test.

• There is a relationship between overlapping t confidence interval methods and

overlapping bootstrap percentile confidence intervals. If the two t confidence

intervals are not overlapping, then the two bootstrap percentile confidence in-

tervals also will not overlap.
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• The bootstrap test is not as popular in data analysis as the randomization test.

In this study, we verified by simulation that the bootstrap test is not efficient

enough in dealing with small samples.

• Among all the overlapping confidence interval methods, bootstrap percentile

confidence intervals work relatively better than the bootstrap-t and t-confidence

intervals. When samples are so small, the normal theory based methods do not

have a good performance.

62



BIBLIOGRAPHY

[1] K. P. Balanda and H. L. MacGillivray, Kurtosis and Spread, The Canadian

Journal of Statistics, 18 (1990) 17-30.

[2] G. Casella and R. L. Berger, Statistical Inference, Second Edition, Duxbury,

Thousand Oaks, CA (2002).

[3] M. Donegani, An Adaptive and Powerful Randomization Test, Biometrika 78

(1991) 930-933.

[4] S. Edgington, Randomization Test, Third Edition, Marcel Dekker, New York

(1995).

[5] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, Chapman &

Hall, Boca Raton, FL (1997).

[6] M. D. Ernst, Permutation Methods: A Basis for Exact Inference, Statistical

Science 19 (2004) 676-685.

[7] R. A. Fisher, Statistical Methods for Research Workers, Eleventh Edition, Hafner

Publishing Company, New York (1951).

[8] R. A. Fisher, The Design of Experiments, Sixth Edition, Hafner Publishing Com-

pany, New York (1951).

[9] R. A. Fisher and P. Hall, On Bootstrap Hypothesis Testing, Australian Journal

of Statistics 32 (1990) 177-190.

[10] Gauss Command Reference Manual, Aptech Systems, Inc. Vol II (1997).

63



[11] R. A. Groeneveld and G. Meeden, Measuring Skewness and Kurtosis, The Statis-

tician 33 (1984) 391-399.

[12] P. Hall and S.R. Wilson, Two Guidelines for Bootstrap Hypothesis Testing, Bio-

metrics 47 (1991) 757-762.

[13] R. V. Hogg and E. A. Tanis, Probability and Statistical Inference, Seventh Edi-

tion., Pearson Prentice Hall, Upper Saddle River, NJ (2006).

[14] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distribu-

tions Volume I and II, 2nd edition. John Wiley and Sons, NY (1994).

[15] S. Kotz and E. Seier, Visualizing Peak and Tails to Introduce Kurtosis, The

American Statistician 62 (2008) 346-352.

[16] E. L. Lehmann, Nonparametrics: Statistical Methods Based on Ranks. Holden-

Day, San Francisco, CA (1975).

[17] N. T. Longford, Inference with the Lognormal Distribution, Journal of Statistical

Planning and Inference 139 (2009) 2329-2340.

[18] B. F. J. Manly, Randomization Bootstrap and Monte Carlo Methods in Biology,

Second Edition. Chapman & Hall, Boca Raton, FL (1997).

[19] D. S. Moore, Essential Statistics, W. H. Freeman and Company, New York

(2010).

64



[20] M. E. Payton, M. H. Greenstone, and N. Schenker, Overlapping Confidence

Intervals or Standard Error Intervals: What do they mean in terms of statistical

significance?, Journal of Insect Science 3 (2003) 34-40.

[21] M. E. Payton, A. E. Miller, and W. R. Raun, Testing Statistical Hypotheses

Using Standard Error Bars and Confidence Intervals, Communications in Soil

Science and Plant Analysis 31 (2000) 547-552.

[22] J. G. Pitmane, Significance Tests Which May Be Applied to Samples from Any

Populations, Journal of the Royal Statistical Society 4 (1937) 119-130.

[23] N. Schenker and J. F. Gentleman, On Judging the Significance of Differences by

Examining the Overlap Between Confidence Intervals. The American Statistician

55 (2001) 182-186.

[24] E. Seier, Kurtosis-An Overview. International Encyclopedia of Statistical Science

Miodrag Lovric (ed), Springer, Berlin, (2011) 328-330.

[25] E. Seier and K. Joplin, Introduction to Statistics in a Biological Context, Create

Space Pub. In press.

[26] Student, The Probable Error of a Mean, Biometrika 6 (1908) 1-25.

65



APPENDIX

0.1 Gauss code for calculating empirical significance levels

This is the program to calculate the empirical significance level. The program

to calculate power (not included here) is similar, only that the samples are generated

from populations with different means. The difference between the population means

is indicated by the selected effect size.

/*INPUT TO BE CHANGED*/

n1 = 15; /* first sample size */

n2= 10 ; /* second sample size */

tcrit1=2.145; /* t critical value for n1-1 */

tcrit2=2.262 ; /* t critical value for n2-1 */

tcrit3 = 1.484; /*for overlapping CIs*/

tcrit4 = 1.532; /*for overlapping CIs*/

rep= 10000; /* number of simulations */

sim = 1000; /*number of regroupings */

mboo=1000; /* number of bootstrap subsamples*/

/*REJECT Ho */

rejt=0;

rejci=0;

rejcib = 0;

rejcibt = 0;

rejcran = 0;

rejcrant=0;

rejcboo = 0;

rejcia=0;

rejciba = 0 ;

rejcibta = 0;

/*INDICATOR FOR REJECTION*/

rejct =0;

rejcci = 0;

rejccran = 0;

rejccrant =0;

rejccib = 0;

rejccibt = 0;

rejccboo = 0;
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rejccia = 0;

rejcciba = 0;

rejccibta = 0;

/* CHECK AGREEMENT*/

/*t vs overelapping t CIs*/

sagreetci=0;

gret = 0;

smalt = 0;

/* randomization d vs boostrap p*/

sagreeranb = 0;

grecibr=0;

smacibr = 0;

/*randomization t vs boostrap p*/

sagreeranbtt = 0;

grecibtt = 0;

smacibtt =0;

/* randomization t vs boostrap t*/

sagreeranbbt = 0;

grecibt = 0;

smacibt = 0;

/*randomization t vs boostrap p*/

sagreeranbt = 0;

grecibrt = 0;

smacibrt =0;

/* randomization d vs randomization t*/

sagreerans = 0;

greaterr= 0;

smallerr = 0;

/* bootstrap p vs bootstrap t */

sagreeboos = 0;

greaterb = 0;

smallerb =0;

/* randomization d vs boostrap test*/

sagreeranboo = 0;

greranboo =0;

smaranboo =0;

/*randomization t vs boostrap test*/

sagreeranboot=0;

greranboot=0;

smaranboot=0;

/*bootstrap test vs t test*/
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sagreeboot = 0;

greboot = 0;

smaboot = 0;

/*bootstrap test vs bootstrap percentile CI*/

sagreebooc =0;

grebooc=0;

smabooc = 0;

/*bootstrap test vs bootstrap t CI*/

sagreebooct = 0;

grebooct = 0;

smabooct = 0;

/* overlapping t CI vs boostrap percentile CI*/

sagreecib = 0;

grecib =0;

smacib = 0;

/*overlapping t CI vs boostrap t CI*/

sagreecibt = 0;

greacibt =0;

smalcibt= 0;

/* randomization(d) vs t test*/

sagreerant =0;

grerant=0;

smarant=0;

/* randomization t vs t test*/

sagreerantt=0;

grerantt=0;

smarantt=0;

/*sum of the p value for diff test*/

sumpt = 0;

sumpran=0;

sumprant=0;

sumpboo = 0;

/*MAIN PROCEDURES*/

n = n1+n2;

n1seq=seqa(1,1,n1);

n2seq=seqa(n1+1,1,n2);

c1=0;

print " Normal vs Lognormal" ;

/*GENERATE DATA FROM CERTAIN DISTRIBUTION*/

do while c1 < rep;

c1 = c1 + 1;
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y11 = rndn(n1,1);

y1=y11+0.5;

prox2 = rndn(n2,1);

y2 = exp(prox2);

y=y1|y2;

y1m=meanc(y1); /* calculates mean in the first sample */

y2m=meanc(y2); /* mean second sample */

y1s=stdc(y1); /* standard deviation in first sample */

y2s=stdc(y2); /* standard deviation in second sample */

ym= meanc(y);

y1star = y1-y1m+ym; /* adjusted mean for bootstrap test, sample1*/

y2star = y2-y2m+ym; /* adjusted mean for bootstrap test, sample2*/

torig = (y2m-y1m)/ sqrt(y1s^2/n1+y2s^2/n2);

truedif=y1m-y2m;

tb=zeros(mboo,1);

cr=0;

cb =0;

numrejr = 0; /* greater than true for randomization test*/

nurejrt=0; /* greater than t for randomization t test*/

numrejrb = 0; /* greater than t for bootstrap test*/

/*RANDOMIZATION TEST FOR THE DIFFERENCE OF MEANS*/

do while cr<sim;

cr=cr+1;

hx=rndn(n,1);

hr=rankindx(hx,1);

scry=submat(y,hr,1);

rg1=submat(scry,n1seq,1);

rg2=submat(scry,n2seq,1);

meanrg1=meanc(rg1);

meanrg2=meanc(rg2);

difmeanrg = meanrg1-meanrg2;

if abs(difmeanrg) > abs(truedif);

numrejr = numrejr+1;

endif;

/* RANDOMIZATION T TEST */

y1sr=stdc(rg1);

y2sr=stdc(rg2);

trand = (difmeanrg)/ sqrt(y1sr^2/n1+y2sr^2/n2);

if abs(trand)>abs(torig);
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nurejrt=nurejrt+1;

endif;

endo;

pvalran = numrejr/sim;

pvalrant=nurejrt/sim;

sumpran = sumpran+pvalran;

sumprant=sumprant+pvalrant;

if pvalran<0.05;

rejcran = rejcran+ 1;

endif;

if pvalran<0.05;

rejccran = 1;

else; rejccran = 0;

endif;

if pvalrant<0.05;

rejcrant = rejcrant+ 1;

endif;

if pvalrant<0.05;

rejccrant = 1;

else; rejccrant = 0;

endif;

/*BOOTSTRAP CI AND BOOTSTRAP TEST*/

/*BOOTSTRAP SAMPLE 1*/

whob1 = rndu(n1,mboo);

whosb1 = n1*whob1;

whosib1 = ceil(whosb1);

py1 = submat(y1,whosib1,0);

yb1 = reshape(py1,n1,mboo);

yvar1=meanc(yb1);

sovar1 = sortc(yvar1,1);

seb1=stdc(yvar1);

pyb1 = submat(y1star,whosib1,0);

ybb1 = reshape(pyb1,n1,mboo);

yvarb1=meanc(ybb1);

sebb1=stdc(ybb1);

k1 = (mboo+1)*0.025;

k2 = (mboo+1)*0.975;

k11 = (mboo+1)*0.08;

k22 = (mboo+1)*0.92;

Lper1 = sovar1[k1,.];
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Uper1 = sovar1[k2,.];

Lper11 = sovar1[k11,.];

Uper11 = sovar1[k22,.];

Lbt1=y1m-tcrit1*seb1;

Ubt1=y1m+tcrit1*seb1;

Lbt11=y1m-tcrit3*seb1;

Ubt11=y1m+tcrit3*seb1;

/*BOOTSTRAP SAMPLE 2*/

whob2 = rndu(n2,mboo);

whosb2 = n2*whob2;

whosib2 = ceil(whosb2);

py2 = submat(y2,whosib2,0);

yb2 = reshape(py2,n2,mboo);

yvar2=meanc(yb2);

sovar2 = sortc(yvar2,1);

seb2=stdc(yvar2);

pyb2= submat(y2star,whosib2,0);

ybb2 = reshape(pyb2,n2,mboo);

yvarb2=meanc(ybb2);

sebb2=stdc(ybb2);

Lper2 = sovar2[k1,.];

Uper2 = sovar2[k2,.];

Lper22 = sovar2[k11,.];

Uper22 = sovar2[k22,.];

Lbt2=y2m-tcrit2*seb2;

Ubt2=y2m+tcrit2*seb2;

Lbt22=y2m-tcrit4*seb2;

Ubt22=y2m+tcrit4*seb2;

/*CHECK WHETER OVERLAPPING FOR PERCENTILE METHOD*/

if (Lper2>Uper1);

rejcib=rejcib+1;

endif;

if (Lper2>Uper1);

rejccib = 1;

else; rejccib = 0;

endif;

if(Lper1>Uper2);

rejcib = rejcib+1;

endif;

if (Lper1>Uper2);

rejccib = 1;
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else; rejccib = 0;

endif;

/* for 84% individual CI*/

if (Lper22>Uper11);

rejciba=rejciba+1;

endif;

if (Lper22>Uper11);

rejcciba = 1;

else; rejcciba = 0;

endif;

if(Lper11>Uper22);

rejciba = rejciba+1;

endif;

if (Lper11>Uper22);

rejcciba = 1;

else; rejcciba = 0;

endif;

/* CHECK WHETHER OVERLAPPING FOR T METHOD*/

if(Lbt1>Ubt2);

rejcibt = rejcibt+1;

endif;

if (Lbt1>Ubt2);

rejccibt = 1;

else; rejccibt = 0;

endif;

if (Lbt2>Ubt1);

rejcibt=rejcibt+1;

endif;

if (Lbt2>Ubt1);

rejccibt = 1;

else; rejccibt = 0;

endif;

if(Lbt11>Ubt22);

rejcibta = rejcibta+1;

endif;

if (Lbt11>Ubt22);

rejccibta = 1;

else; rejccibta = 0;

endif;

if (Lbt22>Ubt11);
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rejcibta=rejcibta+1;

endif;

if (Lbt22>Ubt11);

rejccibta = 1;

else; rejccibta = 0;

endif;

/*BOOTSTRAP TEST USING T*/

do while cb<mboo;

cb=cb+1;

tb[cb] = (yvarb1[cb]-yvarb2[cb])/sqrt((sebb1[cb])^2/n1+(sebb2[cb])^2/n2);

if abs(tb[cb] )> abs(torig);

numrejrb = numrejrb+1;

endif;

endo;

pvalboo = numrejrb/mboo;

sumpboo = sumpboo+pvalboo;

if pvalboo<0.05;

rejcboo = rejcboo+ 1;

endif;

if pvalboo<0.05;

rejccboo =1;

else; rejccboo=0;

endif;

/* TWO SIDED T TEST FOR UNEQUAL VARIANCES */

t = (y2m-y1m)/ sqrt(y1s^2/n1+y2s^2/n2);

dft= (y1s^2/n1+y2s^2/n2)^2/(y1s^4/(n1^2*(n1-1))+y2s^4/(n2^2*(n2-1)));

at=abs(t);

pvalt=2*cdftc(at,dft);

sumpt=sumpt+pvalt;

if pvalt<0.05;

rejt=rejt+1 ;

endif ;

if pvalt<0.05;

rejct=1;

else;

rejct=0;

endif;

/* OVERLAPPING CONFIDENCE INTERVALS */

le1=y1m-tcrit1 * y1s/sqrt(n1);

ue1= y1m+tcrit1 * y1s/sqrt(n1);

le2=y2m-tcrit2* y2s/sqrt(n2);
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ue2=y2m+tcrit2 * y2s/sqrt(n2);

if (le2>ue1);

rejci=rejci+1;

endif;

if(le2>ue1);

rejcci=1;

else; rejcci=0;

endif;

if (le1>ue2);

rejci=rejci+1;

endif;

if (le1>ue2);

rejcci=1;

else; rejcci=0;

endif;

le11=y1m-tcrit3 * y1s/sqrt(n1);

ue11= y1m+tcrit3 * y1s/sqrt(n1);

le22=y2m-tcrit4* y2s/sqrt(n2);

ue22=y2m+tcrit4 * y2s/sqrt(n2);

if (le22>ue11);

rejcia=rejcia+1;

endif;

if(le22>ue11);

rejccia=1;

else; rejccia=0;

endif;

if (le11>ue22);

rejcia=rejcia+1;

endif;

if (le11>ue22);

rejccia=1;

else; rejccia=0;

endif;

/*AGREEMENT FOR REJECTION */

/*agreement for two randomization tests*/

if rejccran == rejccrant;

sagreerans = sagreerans +1;

endif;

if rejccran > rejccrant;

greaterr = greaterr+1;

endif;
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if rejccran < rejccrant;

smallerr = smallerr+1;

endif;

/*agreement for two bootstrap CIs*/

if rejccib ==rejccibt;

sagreeboos = sagreeboos +1;

endif;

if rejccib > rejccibt;

greaterb = greaterb+1;

endif;

if rejccib< rejccibt;

smallerb = smallerb+1;

endif;

/*for percentile bootstrap CI v.s. randomization d*/

if (rejccib==rejccran);

sagreeranb=sagreeranb+1;

endif;

if rejccib>rejccran;

grecibr = grecibr +1;

endif;

if rejccib<rejccran;

smacibr = smacibr+1;

endif;

if(rejccib==rejccrant);

sagreeranbt= sagreeranbt+1;

endif;

if rejccib>rejccrant;

grecibrt = grecibrt+1;

endif;

if rejccib<rejccrant;

smacibrt = smacibrt+1;

endif;

/* for t bootstrap CI v.s. randomization*/

if (rejccibt==rejccran);

sagreeranbbt=sagreeranbbt+1;

endif;

if rejccibt>rejccran;

grecibt =grecibt+1;

endif;

if rejccibt<rejccran;

smacibt=smacibt+1;
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endif;

if(rejccibt==rejccrant);

sagreeranbtt= sagreeranbtt+1;

endif;

if rejccibt>rejccrant;

grecibtt = grecibtt+1;

endif;

if rejccibt<rejccrant;

smacibtt = smacibtt+1;

endif;

if (rejcci==rejct);

sagreetci=sagreetci+1;

endif;

if rejcci > rejct;

gret = gret+1;

endif;

if rejcci<rejct;

smalt = smalt +1;

endif;

/*agreement randomization t test v.s t test */

if rejccrant == rejct;

sagreerantt = sagreerantt+1;

endif;

if rejccrant>rejct;

grerantt = grerantt+1;

endif;

if rejccrant<rejct;

smarantt = smarantt+1;

endif;

/*agreement overlap CI and bootstrap percentile CI*/

if rejccib == rejcci;

sagreecib = sagreecib+1;

endif;

if rejccib>rejcci;

grecib = grecib+1;

endif;

if rejccib<rejcci;

smacib = smacib+1;

endif;

/*agreement overlap CI and bootstrap t CI*/

if rejccibt == rejcci;
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sagreecibt = sagreecibt+1;

endif;

if rejccibt>rejcci;

greacibt = greacibt+1;

endif;

if rejccibt<rejcci;

smalcibt = smalcibt+1;

endif;

/*agreement bootstrap test vs t test*/

if rejccboo == rejct;

sagreeboot = sagreeboot+1;

endif;

if rejccboo>rejct;

greboot = greboot+1;

endif;

if rejccboo<rejct;

smaboot = smaboot+1;

endif;

/*agreement boostrap test vs randomization test*/

if (rejccboo==rejccran);

sagreeranboo=sagreeranboo+1;

endif;

if rejccboo>rejccran;

greranboo =greranboo+1;

endif;

if rejccboo<rejccran;

smaranboo=smaranboo+1;

endif;

/*agreement boostrap test and bootstrap percentile CI*/

if rejccboo == rejccib;

sagreebooc= sagreebooc+1;

endif;

if rejccboo>rejccib;

grebooc = grebooc+1;

endif;

if rejccboo<rejccib;

smabooc = smabooc+1;

endif;

/*agreement bootstrap test and bootstrap t CI*/

if rejccboo== rejccibt;

sagreebooct = sagreebooct+1;

77



endif;

if rejccboo>rejccibt;

grebooct = grebooct+1;

endif;

if rejccboo<rejccibt;

smabooct = smabooct+1;

endif;

/*agreement randomization d vs t test*/

if rejccran== rejct;

sagreerant = sagreerant+1;

endif;

if rejccran>rejct;

grerant = grerant+1;

endif;

if rejccran<rejct;

smarant = smarant+1;

endif;

/* agreement bootstrap test vs randomization t test*/

if (rejccboo==rejccrant);

sagreeranboot=sagreeranboot+1;

endif;

if rejccboo>rejccrant;

greranboot =greranboot+1;

endif;

if rejccboo<rejccrant;

smaranboot=smaranboot+1;

endif;

endo;

/* THE LOOP ENDS */

/* CALCULATE SUMMARIES */

avepvalt=sumpt/rep;

avepvalr= sumpran/rep;

avepvalrt = sumprant/rep;

avepvalboo= sumpboo/rep;

alphat=rejt/rep;

alphaover=rejci/rep;

alphaovera=rejcia/rep;

alpharan = rejcran/rep;

alpharant= rejcrant/rep;

alphaboo = rejcboo/rep;

alphacib = rejcib/rep;
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alphacibt = rejcibt/rep;

alphaciba = rejciba/rep;

alphacibta= rejcibta/rep;

agreetci=sagreetci/rep;

agreeranb = sagreeranb/rep; /* rand. v.s bootstrap perc. CI*/

agreeranbt = sagreeranbt/rep; /* rand.t v.s bootstrap perc. CI*/

agreeranbbt = sagreeranbbt/rep; /* rand. v.s bootstrap t CI*/

agreeranbtt = sagreeranbtt/rep; /* rand.t v.s bootstrap t CI*/

agreerans = sagreerans/rep; /*rand. vs rand. t*/

agreeboos = sagreeboos/rep; /*bootstrap perc. CI v.s bootstrap t CI*/

agreerantt = sagreerantt/rep; /*rand.t vs t test*/

agreecib = sagreecib/rep; /* bootstrap perc. CI vs overlapping CI*/

agreecibt = sagreecibt/rep; /* bootstrap t CI vs overlapping CI*/

agreeboot = sagreeboot/rep; /* bootstrap test vs t test*/

agreeranboo = sagreeranboo/rep; /*bootstrap test vs rand. test*/

agreebooc = sagreebooc/rep; /*bootstrap test vs boostrap perc. CI*/

agreebooct = sagreebooct/rep; /*bootstrap test vs boostrap t CI*/

agreeranboot = sagreeranboot/rep; /*bootstrap test vs rand. t test*/

agreerant = sagreerant/rep; /*rand. d vs t test*/

/* PRINT RESULTS */

print "TWO SIDED TEST " ;

print "Sample sizes:" n1~n2;

print " ALPHA-t ALPHA-T CI ALPHA RAN(DIF) ALPHA RAN(T) ";

print alphat~alphaover~alpharan~alpharant;

print BOO CI(PER) BOO T CI BOO tci(84%) b(p)(84%) b(t)(84%)";

print alphacib~alphacibt~alphaboo~alphaovera~alphaciba~alphacibta;

print "TvsCI RAN(D)vsB(P)RAN(D)vsB(T)RAN(T)vsB(P) RAN(T)vsB(T)";

print "RANs BOOs RAN(T)vsT RAN(D) vs T B(P)vsCI";

print "B(T)vsCI BOOvsT BOOvsRAN(D) BOOvsRAN(T) BOOvsB(P) BOOvsB(T)";

print agreetci~agreeranb~agreeranbt~agreeranbbt~agreeranbtt;

print agreerans~agreeboos~agreerantt~agreerant~agreecib;

print agreecibt~agreeboot~agreeranboo~agreeranboot~agreebooc~agreebooct;

print " AVE P (T) AVE P(RAN DIF) AVE P(RAN T) AVE BOO";

print avepvalt~avepvalr~avepvalrt~avepvalboo;

print " Agreement Rej1not2 Rej2not1";

print "CI test Vs T";

print sagreetci~gret~smalt;

print "Bootstrap percentile CI vs Randomization test";

print sagreeranb~grecibr~smacibr;

print "Bootstrap percentile CI vs Randomization t test";

print sagreeranbt~grecibrt~smacibrt;
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print "Bootstrap t CI vs Randomization test";

print sagreeranbbt~grecibt~smacibt;

print "Boostrap t CI vs Randomization t test";

print sagreeranbtt~grecibtt~smacibtt;

print "Randomization vs randomization t test";

print sagreerans~greaterr~smallerr;

print "Bootstrap percentile CI vs Bootstrap t CI";

print sagreeboos~greaterb~smallerb;

print "Randomization t test vs t test";

print sagreerantt~grerantt~smarantt;

print "Randomization d test vs t test";

print sagreerant~grerant~smarant;

print "Boostrap percentile CI vs CI";

print sagreecib~grecib~smacib;

print "Boostrap t CI vs CI";

print sagreecibt~greacibt~smalcibt;

print "Bootstrap test vs t test";

print sagreeboot~greboot~smaboot;

print "Boostrap test vs randomization d test";

print sagreeranboo~greranboo~smaranboo;

print "Boostrap test vs randomization t test";

print sagreeranboot~greranboot~smaranboot;

print "Boostrap test vs boostrap percentile CI";

print sagreebooc~grebooc~smabooc;

print "Boostrap test vs boostrap t CI";

print sagreebooct~grebooct~smabooct;

end;
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