
East Tennessee State University
Digital Commons @ East

Tennessee State University

Electronic Theses and Dissertations Student Works

5-2013

Restricted and Unrestricted Coverings of
Complete Bipartite Graphs with Hexagons
Wesley M. Surber
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Discrete Mathematics and Combinatorics Commons

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State
University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Surber, Wesley M., "Restricted and Unrestricted Coverings of Complete Bipartite Graphs with Hexagons" (2013). Electronic Theses and
Dissertations. Paper 1136. https://dc.etsu.edu/etd/1136

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F1136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F1136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F1136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F1136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F1136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=dc.etsu.edu%2Fetd%2F1136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


Restricted and Unrestricted Coverings of Complete Bipartite Graphs with Hexagons

A thesis

presented to

the faculty of the Department of Mathematics

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Mathematical Sciences

by

Wesley Surber

May 2013

Robert Gardner, Ph.D., Chair

Robert Beeler, Ph.D.

Ariel Cintron-Arias, Ph.D.

Keywords: graph theory, experimental design, covering, decomposition



ABSTRACT

Restricted and Unrestricted Coverings of Complete Bipartite Graphs with Hexagons

by

Wesley Surber

A minimal covering of a simple graph G with isomorphic copies of a graph H is

a set {H1, H2, . . . , Hn} where Hi
∼= H, V (Hi) ⊂ V (G), E(G) ⊂ ∪n

i=1E(H)i, and

| ∪ni=1 E(Hi) \E(G)| is minimal (the graph ∪ni=1Hi may not be simple and ∪ni=1E(Hi)

may be a multiset). Some studies have been made of covering the complete graph,

in which case an added condition of “E(Hi) ⊂ E(G) for all i” implies no additional

restrictions. However, if G is not the complete graph then this condition may have

implications. We will give necessary and sufficient conditions for minimal coverings

(as defined above, without the added restriction) of Km,n with 6-cycles, which we call

minimal unrestricted coverings. We also give necessary and sufficient conditions for

minimal coverings of Km,n with 6-cycles with the added condition E(Hi) ⊂ E(G) for

all i, and call these minimal restricted coverings.
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1 GRAPH DECOMPOSITION

1.1 Definition

Graph decomposition is a part of design theory where we can take a graph and

break it into isomorphic subgraphs whose union is the original graph. Formally, a

decomposition of a graph G is a set of isomorphic subgraphs H, {H1, H2, . . . Hn},

where Hi
∼= H, E(H) ⊂ E(G), and V (Hi) ⊂ V (G) for all i ∈ {1, 2, . . . , n}. Also,

E(Hi) ∩ E(Hj) = ∅ if i 6= j and ∪ni=1E(Hi) = E(G). In Figure 1, we see an example

of graph decomposition.

Figure 1: A K5 and its C5 decomposition.

1.2 History

In 1853, Jakob Steiner started to elaborate on an idea on the conditions that

it would take to decompose a complete graph into smaller subgraphs which were all

isomorphic [12]. His result was that if a complete graph is of order 1 or 3 (mod 6), then

there exists a decomposition into C3’s [12], where C3 denotes a 3-cycle. This research

was unique during that time period since modern day graph theory was established

many years later. Today, we refer to such decompositions as Steiner triple systems.
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A steiner triple system of order n, STS(n), is a decomposition of a complete graph

on n vertices into C3’s.

Oddly, a similar theorem was mentioned in 1847. Thomas P. Kirkman stated the

necessary and sufficient conditions for the same decompositions. He states that there

is a C3-decomposition of a complete graph if and only if the order of the complete

graph is 1 or 3 (mod 6) [8]. An interesting fact is that even though Thomas P.

Kirkman’s publication was similar and earlier than Steiner’s research, we still refer

to Steiner triple systems when working with C3 decompositions of complete graphs.

1.3 Motivation

Graph decomposition is part of experimental design theory because it is used to

model situations where ideal grouping will lead to efficient and cost effective testing.

For example, consider a company that needs to compare a certain characteristic of

all samples in a test group with equipment that the business owns. However, this

equipment is only able to compare three samples at a time. This example leads to

the creation of a model that relates to graph decomposition. Assume we have seven

samples in the test group, so the graph that would represent the samples would be a

complete graph on seven vertices where the vertices represent samples and the edges

represent comparisons. Assume the machine is only able to handle three samples at

a time; each run of the machine would be represented by a C3. We know that a

decomposition exists in this case because the necessary and sufficient conditions for

a complete graph to have a decomposition into C3’s. In Figure 2, we create a model

that would represent this problem.
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Figure 2: A C3 decomposition of a K7.

In Figure 2, we have a C3 decomposition of a K7. The triples are in the form of

(a, b, c) which is a C3 that is created by the vertices a, b, and c. We know by Jakob

Steiner that this has a C3 decomposition so we are able to make a construction. We

can use a technique called difference method to easily create this construction. Let us

define the difference associated with the edge (a, b) as min{(a− b)(mod (n− 1)), (b−

a)(mod (n−1))}. For example, the edge (1, 3) has a difference of 2 and the edge (0, 6)

has a difference of 1. Then we want to create a triple that uses each difference only

once. We can observe from Figure 2 that a black edge has associated difference of 1,

a red edge has associated difference of 2, and a blue edge has associated difference of

3. We create the first C3 as (0, 1, 3) which uses each distance exactly once. Therefore,

if we add 1 to each vertex label, then we will create another triple that is unique from

the original, in this case, (1, 2, 4). We repeat this process until all edges are used.
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2 GRAPH PACKINGS AND COVERINGS

2.1 Definitions

Since graph decompositions are types of experimental designs, they are used in

real world situations by creating models and solutions to given questions. However,

not all models will have the conditions that is needed for a decomposition. We know

the necessary and sufficient conditions for complete graphs to be decomposed into

cycles of length n by Alspach, Brian, and Heather Gavlas [4] and complete bipartite

graphs to be decomposed into cycles of length n by D. Sotteau [11]. However, we

know there are cases where the conditions are not met. In these cases, we can define

a graph covering and graph packing.

Assume we have parameters of the complete graph that do not meet the conditions

for a decomposition. If we are not required to have every edge in the original graph G

in the union of the subgraphs, H, then we have an alternative graph decomposition

called a graph packing.

A maximal packing of a simple graph G with isomorphic copies of a graph H is a

set {H1, H2, . . . , Hn} where Hi
∼= H and V (Hi) ⊂ V (G) for all i, E(Hi)

⋂
E(Hj) = ∅

for i 6= j,
n⋃

i=1

E(Hi) ⊂ E(G), and |E(G) \
⋃n

i=1E(Hi)| is minimal. The set of edges

for the leave, L, of the packing is E(L) = E(G) \
⋃n

i=1E(Hi).

Assume we have a graph G such as a K4 and we want to decompose this graph

into C4’s. Let V (G) = {1, 2, 3, 4} and E(G) = {(1, 2), (2, 3), (3, 4), (1, 4), (1, 3), (2, 4)}.

Since we know that a C4 will take 4 edges to create, then we will have 2 edges left

over. These edges will be our leave. The C4 that is created is {(1, 2, 3, 4)} which is
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the edges{(1, 2), (1, 4), (2, 3), (3, 4)} and the leave will be, E(L) = {(1, 3), (2, 4)}.

In certain models, it is required that we use every edge that exists in the original

graph. However, if there exists conditions where a decomposition does not exist and

every edge must be used, then we will use a graph covering.

A minimal graph covering of a simple graph G is a set of isomorphic graphs H,

{H1, H2, . . . Hn} where E(H) ⊂ E(G), V (Hi) ⊂ V (G), and E(G) ⊂ ∪ni=1E(H)i. It is

possible for ∪ni=1E(H)i to be a multiset since we are allowing the reuse of edges. The

padding is equal to these edges that are reused, E(P ) = ∪ni=1E(H)i \ E(G). So we

know that the cardinality of a padding is the number of edges that must be repeated

for a graph covering, |E(P )| = | ∪n
i=1 E(Hi) \ E(G)|.

Assume we have a graph G such as K6 and we want to create a graph covering

with cycles of size 3, C3. The first observation that should be made is the argument

against the degree of each vertex. We know that in a complete graph, Kn, each vertex

has degree n − 1. Every vertex of a cycle is of even degree. In the case of a K6, we

know that each vertex has degree 5. This means we need to change every vertex to

an even degree by adding edges from the padding. However, we want this padding

to be minimal, so we must use the most cost efficient padding. In this case, since we

have six vertices, we have a minimum of 3 edges can be added from a matching, the

vertices which give us an even degree at each vertex of K6. There exists 15 edges in

a K6 so if we add 3 more edges for the padding as a matching that would bring the

total edge cardinality to 18, which is divisible by 3, the number of edges in a C3.

In Figure 3, we have a K6. From the difference method once again, where the

red edges are difference 1, green edges are difference 2, and black edges are difference

10



Figure 3: A C3-covering of a K6.

3, we can create a covering. What we notice though, is that we need to reuse the

edges of distance 3, this well be represented by the curved edges. Note, that since

there is an even amount of vertices and each has odd degree, we can pair each vertex

with another vertex to correct the odd degree argument. In Figure 3, we can see our

covering and the padding that is generated. We have the necessary and sufficient

conditions for a minimal restricted covering where padding is minimal and there is a

minimal covering of a K6 with C3.

2.2 Restricted and Unrestricted Coverings

Graph coverings have often been studied in the setting of complete graphs. What

if our model should take on a different form? Let us say, a partite graph. A partite

graph has n partitions of its vertices, {V1, V2, . . . , Vn}, where all possible edges exist

between Vi and Vj where i 6= j and no edges exist between the partitions when i = j.
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For example, a K1,2,3 would have a total of 11 edges. If all possible connections

existed, then we would have a total of 15 edges. Let us assume that we have a graph

G which is a K1,2,3 and we want to decompose it into C3’s. In this example, let us

assume that the edges that are not present in G are “forbidden,” then we would have

what we call a restricted covering.

A minimal restricted covering of a simple graph G is a set of isomorphic graphs

H, {H1, H2, . . . Hn}, where E(H) ⊂ E(G), V (Hi) ⊂ V (G), and E(G) ⊂ ∪n
i=1E(H)i.

It may be that ∪ni=1E(H)i is a multiset since we are allowing the reuse of edges. The

padding is equal to these edges that are reused, E(P ) = ∪ni=1E(Hi)/E(G). So we

know that the cardinality of padding is the number of edges that must be repeated

for a graph covering, |E(P )| = | ∪n
i=1 E(Hi)/E(G)| where |E(P )| is minimal. The

requirement to stress here is E(H) ⊂ E(G) which limits us to only be able to use the

edges that exist in the original graph G.

If we wanted a restricted covering of a graph G, K1,2,3, with C3’s, then we will

make a construction after predicting the minimum number of edges required for a

covering. For the vertex set, we have V (G) = {11, 12, 22, 13, 23, 33}, and for the

edge set we have E(G) = {(11, 12), (11, 22), (11, 13), (11, 23), (11, 33), (12, 13), (12, 23),

(12, 33), (22, 13), (22, 23), (22, 33)}. Let us name the partite sets V1, V2, and V3 where

E(V1) = {11}, E(V1) = {12, 22}, and E(V1) = {13, 23, 33}. We know that there exists

four vertices with odd degree, three in V3, and one V1. We can predict that we can

connect one edge between V1 and V3 to make two even degree vertices, and would

need another two edges to fix the degree of the other two odd vertices. However,

we also need more edges in the V2 because we have is 3 edges going to V3 and only
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one coming from V1. So we need a minimum of four extra edges from V1 to V2 to

create cycles that uses all the edges connected to V2 and V3. This in total would

be an extra seven edges for a covering. Let the construction of the covering be

{(11, 12, 13),(11, 33, 22),(11, 23, 22),(11, 13, 22), (11, 23, 12),(11, 33, 12)}. Then the set of

the padding for this example will be E(P ) = {(11, 23), (11, 22),(11, 13),(11, 22),(11, 12),

(11, 33), (11, 12)}. There exists a construction, as seen in Figure 4, where the padding

is seven. Therefore, we have found a minimal restricted covering of a K1,2,3 with C3’s.

Figure 4: A C3 restricted covering of a K1,2,3.

Let us now assume that the restriction of a partite graph does not exist and we

can now use edges that would connect vertices that exist in the same partite set. This

means even though the edge (12, 22) is not in the original graph, we are able to use it

in the covering. This leads us to unrestricted graph coverings.

A minimal unrestricted covering of simple graph G with isomorphic copies of

a graph H is a set {H1, H2, . . . , Hn} where Hi
∼= H, V (Hi) ⊂ V (G), E(G) ⊂

13



∪ni=1E(H)i, and | ∪n
i=1 E(Hi) \ E(G)| is minimal. The graph ∪ni=1E(H)i may not

be simple and ∪ni=1E(Hi) may be a multiset. The thing to note here is the fact that

the E(H) ⊂ E(G) is missing. We are now allowing these forbidden edges to be in

our covering.

If we wanted an unrestricted covering of a graph G, K1,2,3, with C3’s, then we will

make a construction after predicting the minimum number of edges required for a cov-

ering. For the vertex set, we have V (G) = {11, 12, 22, 13, 23, 33} and for the edge set

we have E(G) = {(11, 12), (11, 22), (11, 13), (11, 23), (11, 33), (12, 13), (12, 23), (12, 33),

(22, 13), (22, 23), (22, 33)}. Let us name the three partitions V1, V2, and V3 as E(V1) =

{11}, E(V2) = {12, 22}, and E(V3) = {13, 23, 33}. We know that there exists four ver-

tices with odd degree, three in V3 and one in V1. So, we have four odd degree vertices.

Since we can have edges within the partite set, we can say we need two edges to fix

all the odd degree arguments. Since we started with 11 edges and we need at least 2

more, we are at a total of 13 edges which is not divisible by three. We need the num-

ber of edges to be divisble by the order of the cycle or a covering cannot exist, so we

need to add two more edges, bringing the total up to 15 edges. Let the construction of

the covering be {(11, 12, 13), (11, 33, 22), (11, 13, 22), (11, 23, 22), (12, 23, 33)}. Then the

set of the padding for this example will be E(P ) = {(11, 13), (11, 22), (11, 22), (23, 33)}.

Since there exists a construction where the padding is four and we predicted a padding

of four, we have found an unrestricted minimal covering of a K1,2,3 with C3’s. This is

shown in Figure 5, where the curved lines are the padding.

As observed, the padding is reduced when using the unrestricted method. If we

observe a covering of a complete graph, then we can assume that the restricted and

14



Figure 5: A C3 unrestricted covering of a K1,2,3.

unrestricted coverings will be equal since all edges exist. In cases where there are

missing edges in the original graph, then it is possible for the unrestricted covering

to be more efficient.

2.3 Previous Results

The following theorems are previous results that give us a foundation of decom-

positons for complete bipartite graphs.

Theorem 2.1 [2] The complete bipartite graph Km,n can be decomposed into hexagons

if and only if m ≡ 0 (mod 6) and n ≡ 0 (mod 2),n ≥ 4.

The following theorem originates from one of Dominique Sotteau’s published pa-

pers [11]. In 1981, Sotteau published a paper that stated the conditions that are

required for a complete bipartite graph, Km,n to have a decompositon of cycles of

length 2k.
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Theorem 2.2 [11] Km,n can be decomposed into 2k-cycles if and only if m ≥ k,

n ≥ k, and k divides mn.

This theorem implies the three conditions that are required: m and n must be

even, m and n must be larger than k, and k must divide mn. The proof is intuitive

because m and n must be even for there to exist a cycle. Think of one degree being an

entrance and another degree being an exit. If either are missing, then it is impossible

for there to exist a cycle. The cardinality of the partite sets must be larger than k for

there to exist a cycle because if m or n was smaller than k, then we would not have

enough vertices to complete the cycle. Lastly, k must divide mn because of the edge

cardinality arguement; if there are not enough edges or too many edges, then there

cannot exist a decomposition.

In the case for which k = 3, we are trying to decompose a complete bipartite

graph into hexagons. Theorem 2.1 requires m to be 0 (mod 6) and n to be 0 (mod 2)

and by Sotteau, m and n must be larger than three. In Theorem 2.1, since m can not

be zero, it would then be six or larger and n must be four or larger because that is the

first even number greater than 3. Also, since m and n are even, we have met two out

of the three requirements. For the last requirement, since m will always be divisible

by six, then mn will always be divisible by six. Therefore, Theorem 2.1 meets all

requirements by Sotteau’s conditions in Theorem 2.2 for a complete bipartite graph

to be decomposed by hexagons.

Also, we have to use theorems that were proved for the use of graph packings. If

we are able to generate a leave and then cover that as a seperate graph, then it may

be possible to generate a minimal covering. We will be using a previous theorem thats
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states a decomposition exists if a matching is subtracted from the original graph.

Theorem 2.3 [2] A hexagon decomposition of Kn,n\M , where M is a perfect match-

ing of Kn,n, exists if and only if n ≡ 1 or 3 (mod 6).

2.4 Proof Technique

For a theorem which states the necessary and sufficient conditions for a restricted

or unrestricted covering of the complete bipartite graph, we need lemmas that state

all possible coverings of a complete bipartite graph. The most basic cases are if m

and n are both odd, if m and n are both even, and if one is odd and the other is

even. Then we break those cases into sub cases, such as if m and n are both odd,

then we need to check all cases of the values of m and n against each other for all

possible situations. We will define the larger partition of a complete bipartite graph

as Vm that has the cardinality of m and the smaller partition of the same complete

bipartite graph as Vn that has the cardinality of n. Let us introduce the lemmas that

prove the padding for restricted and unrestriced coverings. First, let us look at all

the lemmas that are required for restricted hexagon coverings.

Lemma 2.4 A minimal restricted hexagon covering of Km,n where m and n are even,

m,n ≥ 4, has a padding P satisfying:

(1) |E(P )| = 0 when m ≡ 0 (mod 6),

(2) |E(P )| = 2 when m ≡ n ≡ 2 (mod 6) or m ≡ n ≡ 4 (mod 6), and

(3) |E(P )| = 4 when m ≡ 2 (mod 6) and n ≡ 4 (mod 6).

Proof. We consider cases.

Case 1. Suppose m ≡ 0 (mod 6), n ≡ 0 (mod 2), and n ≥ 4. Then Km,n can be

17



decomposed into hexagons by Theorem 2.2 and in a minimal covering |E(P )| = 0.

Case 2. Suppose m ≡ n ≡ 2 (mod 6), m,n ≥ 4. Now |E(Km,n)| ≡ 4 (mod 6),

so it is necessary that a covering have a padding with |E(P )| ≥ 2. Now Km,n =

Km−8,n ∪K8,n−8 ∪K8,8 where the partite sets of Km−8,n are {91, 101, . . . ,m1} and Vn,

the partite sets of K8,n−8 are {11, 21, . . . , 81} and {92, 102, . . . , n2}, and the partite

sets of K8,8 are {11, 21, . . . , 81} and {12, 22, . . . , 82}. Now Km−8,n and K8,n−8 can be

decomposed into hexagons by Theorem 2.2. Next we note that there is a restricted

hexagon covering of K8,8, namely the set { [21, 22, 41, 82, 11, 32], [31, 32, 51, 12, 21, 42],

[51, 52, 71, 32, 41, 62], [71, 72, 11, 52, 61, 82], [81, 32, 61, 12, 41, 72], [61, 62, 11, 42, 51, 72],

[11, 12, 31, 82, 51, 32], [21, 52, 81, 62, 31, 72], [81, 22, 71, 62, 21, 82], [81, 22, 61, 42, 71, 12],

[81, 22, 31, 52, 41, 42]}. This is a minimal restricted covering of Km,n with padding P

where E(P ) = {(81, 22), (81, 22)} and so |E(P )| = 2.

Case 3. Suppose m ≡ n ≡ 4 (mod 6). As in Case 2, a packing with padding P satis-

fies |E(P )| ≥ 2. Now Km,n = Km−4,n∪K4,n−4∪K4,4 where the partite sets of Km−4,n

are Vm \ {11, 21, 31, 41} and Vn, the partite sets of K4,n−4 are {11, 21, 31, 41} and Vn \

{12, 22, 32, 42}, and the partite sets of K4,4 are {11, 22, 31, 41} and {12, 22, 32, 42}. Now

Km−4,n and K4,n−4 can be decomposed into hexagons by Theorem 2.2. Next we note

that there is a restricted hexagon covering of K4,4, namely the set {[11, 12, 31, 42, 41, 22],

[11, 12, 21, 22, 31, 32], [11, 12, 41, 32, 21, 42]}. This is a minimal restricted covering of Km,n

with padding P where E(P ) = {2× (11, 12)} and so |E(P )| = 2.

Case 4. Suppose m ≡ 2 (mod 6), m ≥ 8, and n ≡ 4 (mod 6). Now |E(Km,n| ≡ 2

(mod 6), so it is necessary that a covering have a padding with |E(P )| ≥ 4. Now

Km,n = K8,n−4∪Km−8,n∪K8,4 where the partite sets of K8,n−4 are {11, 21, . . . , 81} and
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Vn\{12, 22, 32, 42}, the partite sets of Km−8,n are {91, 101, . . . ,m1} and Vn, and the par-

tite sets of K8,4 are {11, 22, . . . , 81} and {12, 22, 32, 42}. Now K8,n−4 and Km−8,n can be

decomposed into hexagons by Theorem 2.2. Next we note that there is a restricted

hexagon covering of K8,4, namely the set {[11, 12, 21, 22, 31, 32], [41, 12, 31, 42, 21, 32],

[51, 12, 61, 22, 71, 32], [81, 12, 71, 42, 61, 32], [11, 42, 81, 12, 51, 22], [41, 42, 51, 12, 81, 22]}. This

is a minimal restricted covering of Km,n with padding P where E(P ) = {(51, 12),

(51, 12), (81, 12), (81, 12)} and so |E(P )| = 4. �

Lemma 2.5 A minimal restricted hexagon covering of Km,n where m is even and n

is odd (m ≥ 4, n ≥ 3) has a padding P satisfying |E(P )| = m + k where k is the

smallest nonnegative integer such that |E(Km,n)|+ (m + k) ≡ 0 (mod 6).

Proof. Since each vertex of Vm is of odd degree in Km,n, in the padding of a covering

each of these vertices will be of odd degree. Therefore, in a restricted covering of

Km,n with padding P , it is necessary that |E(P )| ≥ m. Since a covering yields a

decomposition of Km,n ∪ P , then it is necessary that |E(Km,n)| + |E(P )| ≡ 0 (mod

6).

Case 1. First, suppose m ≡ 0 (mod 6) and n = 5. Consider the set of hexagons

{[(1 + 6i)1, 12, (2 + 6i)1, 22, (3 + 6i)1, 32], [(4 + 6i)1, 32, (5 + 6i)1, 42, (6 + 6i)1, 52], [(3 +

6i)1, 12, (5+6i)1, 22, (4+6i)1, 42], [(1+6i)1, 22, (6+6i)1, 32, (2+6i)1, 42], [(3+6i)1, 12, (6+

6i)1, 32, (5 + 6i)1, 52], [(1 + 6i)1, 12, (4 + 6i)1, 22, (2 + 6i)1, 52] | i = 0, 1, . . . ,m/6− 1}.

This is a restricted hexagon covering of Km,n with padding P satisfying E(P ) =

{((1+6i)1, 12), ((2+6i)1, 22), ((3+6i)1, 12), ((4+6i)1, 22), ((5+6i)1, 32), ((6+6i)1, 32) |

i = 0, 1, . . . ,m/6− 1}, and so |E(P )| = m and the restricted covering is minimal.
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Next, suppose m ≡ 0 (mod 6), n ≡ 1 (mod 2), and n 6= 5. Now Km,n =

Km,n−3 ∪ m
6
×K6,3 where the partite sets of Km,n−3 are Vm and Vn \ {12, 22, 32}, and

E(m
6
×K6,3) = {[(1 + 6i)1, 12, (4 + 6i)1, 22, (2 + 6i)1, 32], [(3 + 6i)1, 22, (5 + 6i)1, 12, (6 +

6i)1, 32], [(3+6i)1, 12, (5+6i)1, 32, (4+6i)1, 22], [(1+6i)1, 22, (6+6i)1, 12, (2+6i)1, 32] |

i = 0, 1, . . . , m
6
− 1}. Now Km,n−3 can be decomposed into hexagons by Theorem 2.2.

Therefore, there is a restricted covering of Km,n with hexagons with padding P where

E(P ) = {((1+6i)1, 32), ((2+6i)1, 32), ((3+6i)1, 22), ((4+6i)1, 22), ((5+6i)1, 12), ((6+

6i)1, 12) | i = 0, 1, . . . , m
6
− 1} and so |E(P )| = m and the restricted covering is mini-

mal.

Case 2. Suppose m ≡ 2 (mod 6), m ≥ 8, n ≡ 1 (mod 6), and n ≥ 7. Now Km,n =

Km−8,n ∪K8,n−7 ∪K8,7 where the partite sets of Km−8,n are Vm \ {11, 21, . . . , 81} and

Vn, the partite sets of K8,n−7 are {11, 21, . . . , 81} and Vn \{12, 22, . . . , 72}, and the par-

tite sets of K8,7 are {11, 21, . . . , 81} and {12, 22, . . . , 72}. Now Km−8,n has a restricted

hexagon covering with padding P where |E(P )| = m− 8 (by Case 1) and K8,n−7 can

be decomposed into hexagons by Theorem 2.2. Next, we note that there is a restricted

hexagon covering of K8,7, namely the set {[21, 42, 31, 52, 41, 62], [61, 42, 71, 52, 81, 62],

[11, 12, 21, 22, 31, 32], [51, 12, 61, 22, 71, 32], [11, 22, 31, 12, 41, 72], [51, 22, 71, 12, 81, 72],

[11, 42, 41, 32, 21, 52], [51, 42, 81, 32, 61, 52], [11, 62, 31, 72, 21, 12], [51, 62, 71, 72, 61, 12],

[41, 22, 81, 32, 31, 12]} with padding P2 satisfying E(P2) = {(31, 22), (71, 22), (11, 12),

(21, 12), (51, 12), (61, 12), (81, 32), (31, 32), (31, 12), (41, 12)} and so |E(P2)| = 10.

Therefore, there is a restricted covering of Km,n with hexagons with padding P =

P1 ∪ P2 where |E(P )| = m + 2 and the restricted covering is minimal.

Case 3. Suppose m ≡ 2 (mod 6), n ≡ 3 (mod 6), and m ≥ 8. Now Km,n =
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Km−8,n ∪K8,n−3 ∪K8,3 where the partite sets of Km−8,n are Vm \ {11, 21, . . . , 81} and

Vn, the partite sets of K8,n−3 are {11, 21, . . . , 81} and Vn \ {12, 22, 32}, and the partite

sets of K8,3 are {11, 21, . . . , 81} and {12, 22, 32}. Now Km−8,n has a restricted hexagon

covering with padding P1 where |E(P1)| = m− 8 (by Case 1), and there is a hexagon

decomposition of K8,n−3 by Theorem 2.2.

Next, we note that there is a restricted hexagon covering of K8,3, namely the

set {[11, 32, 31, 22, 21, 12], [41, 12, 51, 22, 61, 32], [61, 12, 71, 32, 81, 22], [21, 12, 71, 22, 51, 32],

[11, 12, 81, 32, 41, 22], [31, 12, 41, 22, 51, 32]} with padding P2 satisfying E(P2) = {(61, 22),

(21, 12), (71, 12), (51, 22), (11, 12), (41, 32), (81, 32), (31, 32), (51, 32), (51, 22), (41, 22),

(41, 12)} and so |E(P2)| = 12. Therefore, there is a restricted covering of Km,n with

hexagons with padding P = P1∪P2 where |E(P )| = m+4 and the restricted covering

is minimal.

Case 4. Suppose m ≡ 2 (mod 6), n ≡ 5 (mod 6), and m ≥ 8. Now Km,n = Km−8,n∪

K8,n−5 ∪ K8,5 where the partite sets of Km−8,n are Vm \ {11, 21, . . . , 81} and Vn, the

partite sets of K8,n−5 are {11, 21, . . . , 81} and Vn \{12, 22, . . . , 52}, and the partite sets

of K8,5 are {11, 21, . . . , 81} and {12, 22, . . . , 52}. Now Km−8,n has a restricted hexagon

covering with padding P1 where |E(P1)| = m− 8 (by Case 1), and there is a hexagon

decomposition of K8,n−5 by Theorem 2.2. Next, we note that there is a restricted

hexagon covering of K8,5, namely the set {[11, 12, 21, 32, 31, 22], [51, 12, 61, 32, 71, 22],

[11, 12, 31, 42, 41, 52, ] [51, 12, 71, 42, 81, 52], [21, 22, 41, 32, 31, 52], [61, 22, 81, 32, 71, 52],

[51, 32, 81, 12, 61, 42]} with padding P2 satisfying E(P2) = {(11, 12), (31, 32), (51, 12),

(71, 32), (61, 12), (81, 32), (21, 12), (41, 32)} and so |E(P2)| = 8. Therefore, there is a re-

stricted covering of Km,n with hexagons with padding P = P1∪P2 where |E(P )| = m.
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Case 5. Suppose m ≡ 4 (mod 6), n ≡ 1 (mod 6), and n ≥ 7. Now Km,n = Km−4,n ∪

K4,n−7 ∪ K4,7 where the partite sets of Km−4,n are Vm \ {11, 21, 31, 41} and Vn, the

partite sets of K4,n−7 are {11, 21, 31, 41} and Vn \ {12, 22, . . . , 72}, and the partite sets

of K4,7 are {11, 21, 31, 41} and {12, 22, . . . 72}. Now Km−4,n has a restricted hexagon

covering with padding P1 where |E(P1)| = m− 4 (by Case 1), and there is a hexagon

decomposition of K4,n−7 by Theorem 2.2. Next, we note that there is a restricted

hexagon covering of K4,7, namely the set {[11, 12, 21, 22, 31, 32], [21, 52, 31, 21, 42, 41, 52],

[11, 32, 21, 42, 41, 31, 72], [11, 22, 41, 32, 21, 42], [21, 52, 31, 12, 41, 62]}, with padding P2 sat-

isfying E(P2) = {(11, 32), (21, 42), (21, 32), (21, 42), (21, 52), (21, 62), (31, 52), (41, 62)}

and so |E(P2)| = 8. Therefore, there is a restricted covering of Km,n with hexagons

with padding P = P1 ∪ P2 where |E(P )| = m + 4.

Case 6. Suppose m ≡ 4 (mod 6) and n ≡ 3 (mod 6). Now Km,n = Km−4,n ∪

K4,n−3 ∪ K4,3 where the partite sets of Km−4,n are Vm \ {11, 21, 31, 41} and Vn, the

partite sets of K4,n−3 are {11, 21, 31, 41} and Vn \ {12, 22, 32}, and the partite sets of

K4,3 are {11, 21, 31, 41} and {12, 22, 32}. Now Km−4,n has a restricted hexagon cov-

ering with padding P1 where |E(P1)| = m − 4 (by Case 1) and there is a hexagon

decomposition of K4,n−3 by Theorem 2.2. Next, we note that there is a restricted

hexagon covering of K4,3, namely the set {[11, 11, 21, 22, 31, 32], [11, 12, 21, 32, 41, 22],

[21, 22, 31, 12, 41, 32]} with padding P2 satisfying E(P2) = {(11, 12), (21, 12), (21, 22),

(21, 32), (31, 22), (41, 32)} and so |E(P2)| = 6. Therefore, there is a restricted covering

of Km,n with hexagons with padding P = P1 ∪ P2 where |E(P )| = m + 2.

Case 7. Suppose m ≡ 4 (mod 6), n ≡ 5 (mod 6). Now Km,n = Km−4,n∪K4,n−5∪K4,5

where the partite sets of Km−4,n are Vm \ {11, 21, 31, 41} and Vn, the partite sets of
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K4,n−5 are {11, 21, 31, 41} and Vn \ {12, 22, . . . , 52}, and the partite sets of K4,5 are

{11, 21, 31, 41} and {12, 22, . . . 52}. Now Km−4,n has a restricted hexagon covering with

padding P1 where |E(P1)| = m− 4 (by Case 1) and there is a hexagon decomposition

of K4,n−5 by Theorem 2.2. Next, we note that there is a restricted hexagon covering

of K4,5, namely the set {[11, 12, 21, 22, 31, 32], [11, 22, 41, 52, 31, 42], [21, 32, 31, 12, 41, 42],

[11, 12, 41, 32, 21, 52]} with padding P2 satisfying E(P2) = {(31, 32), (11, 12), (21, 32),

(41, 12), } and so |E(P2)| = 4. Therefore, there is a restricted covering of Km,n with

hexagons with padding P = P1 ∪ P2 where |E(P )| = m. �

Lemma 2.6 A minimal restricted hexagon covering of Km,n where m = n ≡ 5 (mod

6) has padding P satisfying |E(P )| = m.

Proof. Each vertex of Vm is of odd degree, so in a minimal covering, as in Lemma

2.5, it is necessary that |E(P )| ≥ m. In the constructions for this case, we assume

that Vm = {01, 11, . . . , (m − 1)1} and Vn = {02, 12, . . . , (n − 1)2}. In each of the

following two cases, we reduce the vertex labels modulo m.

Case 1. Suppose m = n ≡ 5 (mod 12). Consider the set of hexagons {[j1, (4 +

j)2, (1+j)1, (1+j)2, (m−1+j)1, j2]}∪{[j1, (11+12i+j)2, (2+j)1, (9+12i+j)2, (1+

j)1, (6+12i+ j)2], [j1, (16+12i+ j)2, (1+ j)1, (15+12i+ j)2, (2+ j)1, (12+12i+ j)2] |

i = 0, 1, . . . , (n−17)/12; j = 0, 1, 2, . . . ,m−1}. This is a minimal hexagon covering of

Km,n with padding P where E(P ) = {(i1, i2) | i = 0, 1, . . . ,m−1}, and so |E(P )| = m.

Case 2. Suppose m = n ≡ 11 (mod 12). Consider the set of hexagons {[j1, (6+12i+

j)2, (2 + j)1, (4 + 12i + j)2, (1 + j)1, (1 + 12i + j)2], [j1, (11 + 12i + j)2, (1 + j)1, (10 +

12i+ j)2, (2+ j)1, (7+12i+ j)2] | i = 0, 1, . . . , (n−11)/12; j = 0, 1, 2, . . . ,m−1} This
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is a minimal hexagon covering of Km,n with padding P where E(P ) = {(i1, i2) | i =

0, 1, . . . ,m− 1}, and so |E(P )| = m. �

Lemma 2.7 A minimal restricted hexagon covering of Km,n where m and n are both

odd, m ≥ n ≥ 3, has a padding P satisfying |E(P )| = m + k, where k is the smallest

nonnegative integer such that |E(Km,n)|+ (m + k) ≡ 0 (mod 6).

Proof. The necessary conditions follow as in Lemma 2.5. We now establish suf-

ficiency.

Case 1. Suppose m ≡ n ≡ 1 (mod 6) and m ≥ n ≥ 7. Now Km,n = Kn,n ∪Km−n,n

where the partite sets of Km−n,n are {(n + 1)1, (n + 2)1 . . . ,m1} and Vn, and the

partite sets of Kn,n are {11, 21, . . . , n1} and Vn. By Theorem 2.3, there is a decompo-

sition of Kn,n \M where M is a perfect matching which referes to the edge (a1, a2)

where a ∈ {1, 2, 3 . . .m} of Kn,n, say E(M) = {(i1, 12) | i = 1, 2, . . . , n}. We take

the collection of hexagons for such a decomposition along with the set of hexagons

{[(1 + 3i)1, (3 + 3i)2, (3 + 3i)1, (2 + 3i)2, (2 + 3i)1, (1 + 3i)2] | i = 0, 1, . . . , n−4
3
}. We

see that Kn,n \ {(n1, n2)} has a hexagon covering with padding P1 where E(P1) =

{((1 + 3i)1, (3 + 3i)2), ((2 + 3i)1, (1 + 3i)2), (3 + 3i)1, (2 + 3i)2) | i = 0, 1, . . . , n−4
3
}. So

|E(P1)| = n− 1. We cover edge (n1, n2) with hexagon [n1, n2, (n− 1)1, (n− 1)2, (n−

2)1, (n−2)2] and add to the padding the edges in E(P2) = {(n2, (n−1)1), ((n−1)1, (n−

1)2), ((n − 1)2, (n − 2)1), ((n − 2)1, (n − 2)2), (n1, (n − 2)2)} and so |E(P2)| = 5. By

Lemma 2.5 Case 1, there is a restricted hexagon covering of Km−n,n with padding

P3 where |E(P3)| = m − n. Therefore, there is a restricted covering of Km,n with

hexagons with padding P = P1 ∪ P2 ∪ P3 where |E(P )| = m + 4.

Case 2. Suppose m ≡ 1 (mod 6), n ≡ 3 (mod 6), and m ≥ n. Now Km,n =
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Kn,n ∪Km−n,n where the partite sets of Kn,n are {(n + 1)1, (n + 2)1 . . . ,m1} and Vn,

and the partite sets of Km−n,n are {11, 21, . . . , n1} and Vn. By Theorem 2.3, there is

a decomposition of Kn,n \M where M is a perfect matching of Kn,n, say E(M) =

{(i1, i2) | i = 1, 2, . . . , n}. We take the collection of hexagons for such a decomposition

along with the set of hexagons {[(1+3i)1, (3+3i)2, (3+3i)1, (2+3i)2, (2+3i)1, (1+3i)2] |

i = 0, 1, . . . , n−4
3
}. We see that Kn,n has a hexagon covering with padding P1 where

E(P1) = {((1 + 3i)1, (3 + 3i)2), ((2 + 3i)1, (1 + 3i)2), ((3 + 3i)1, (2 + 3i)2) | i =

0, 1, . . . , n−4
3
}. So |E(P1)| = n. By Lemma 2.5, Case 6, there is a restricted hexagon

covering of Km−n,n with padding P2, where |E(P2)| = m − n + 2. Therefore, there

is a restricted covering of Km,n with hexagons with padding P = P1 ∪ P2 where

|E(P )| = m + 2.

Case 3. First, suppose m = n + 2 ≡ 1 (mod 6). Then the set of hexagons

{[11, 22, 31, 12, 21, 32], [41, 42, 61, 32, 51, 52], [31, 32, 41, 22, 71, 52], [11, 12, 61, 22, 51, 42],

[11, 12, 71, 32, 61, 52], [21, 22, 41, 12, 71, 42], [21, 42, 31, 12, 51, 52]} ∪{[11, (6 + 6i)2, (8 +

6i)1, 12, (9 + 6i)1, 72], [21, (8 + 6i)2, (10 + 6i)1, 22, (11 + 6i)1, 92], [11, (8 + 6i)2, (12 +

6i)1, 52, (9 + 6i)1, 92], [31, (7 + 6i)2, (10 + 6i)1, 32, (9 + 6i)1, 82], [31, (10 + 6i)2, (12 +

6i)1, 32, (13 + 6i)1, 112], [41, (6 + 6i)2, (9 + 6i)1, 42, (8 + 6i)1, 72], [41, (9 + 6i)2, (13 +

6i)1, 12, (11 + 6i)1, 112], [51, (8 + 6i)2, (11 + 6i)1, 52, (10 + 6i)1, 92], [61, (10 + 6i)2, (13 +

6i)1, 22, (12 + 6i)1, 112], [71, (6 + 6i)2, (13 + 6i)1, 52, (8 + 6i)1, 82], [71, (9 + 6i)2, (12 +

6i)1, 42, (11 + 6i)1, 102], [11, (10 + 6i)2, 51, (7 + 6i)2, 21, (11 + 6i)2], [21, (6 + 6i)2, 61, (8 +

6i)2, 41, (10+6i)2], [(6+6i)2, (10+6i)1, 12, (12+6i)1, (7+6i)2, (11+6i)1], [(10+6i)2, (8+

6i)1, 22, (9 + 6i)1, (11 + 6i)2, (10 + 6i)1], [31, (6 + 6i)2, 51, (11 + 6i)2, (8 + 6i)1, (9 + 6i)2]

[61, (7 + 6i)2, (11 + 6i)1, 32, (8 + 6i)1, (9 + 6i)2], [71, (7 + 6i)2, (13 + 6i)1, 42, (10 +
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6i)1, (11 + 6i)2], [(6 + 6i)2, (9 + 6i)1, (10 + 6i)2, (13 + 6i)1, (8 + 6i)2, (12 + 6i)1] | i =

0, 1, . . . , (m − 7)/6 − 1} is an unrestricted covering of Km,n with padding P where

E(P ) = {(11, 12), (21, 42), (31, 12), (41, 22), (51, 52), (61, 32), (71, 12)} ∪{((8+6i)1, (9+

6i)2), ((9+6i)1, (6+6i)2), ((10+6i)1, (11+6i)2), ((11+6i)1, (7+6i)2), ((12+6i)1, (8+

6i)2), ((13 + 6i)1, (10 + 6i)2) | i = 0, 1, . . . , (m− 7)/6− 1} and so |E(P )| = m. Next,

suppose m ≡ 1 (mod 6), n ≡ 5 (mod 6), and m ≥ n+ 8. Now, Km,n = Kn,n∪Km−n,n

where the partite sets of Kn,n are {11, 21 . . . , n1} and Vn, and the partite sets of

Km−n,n are {(n + 1)1, (n + 2)1, . . . ,m1} and Vn. Now Kn,n has a restricted hexagon

covering with padding P1 where |E(P1)| = n (by Lemma 2.5), and there is a restricted

hexagon covering of Km−n,n with padding P2 satisfying |E(P2)| = m− n (by Lemma

2.4, Case 4). Therefore, there is a restricted covering of Km,n with hexagons with

padding P = P1 ∪ P2 where |E(P )| = m.

Case 4. Suppose m ≡ 3 (mod 6), n ≡ 1 (mod 6), and m > n ≥ 7. Now Km,n =

Kn−2,n ∪Km−n+2,n where the partite sets of Kn−2,n are {11, 21. . . . , (n− 2)1} and Vn,

and the partite sets of Km−n+2,n are {(n− 1)1, n1, . . . ,m1} and Vn. By Case 3, there

is a restricted covering of Kn−2,n with padding P1 where |E(P1)| = n−2, and there is

a restricted covering of Km−n+2,n with padding P2 satisfying |E(P2)| = m−n+ 6 (by

Lemma 2.5, Case 5). Therefore, there is a restricted covering of Km,n with hexagons

with padding P = P1 ∪ P2 where |E(P )| = m + 4.

Case 5. Suppose m ≡ n ≡ 3 (mod 6) and m ≥ n. Now Km,n = Kn,n ∪ Km−n,n

where the partite sets of Km−n,n are {(n + 1)1, (n + 2)1 . . . ,m1} and Vn, and the

partite sets of Km−n,n are {11, 21, . . . , n1} and Vn. By Theorem 2.3, there is a decom-

position of Kn,n \M where M is a perfect matching of Kn,n, say E(M) = {(i1, i2) |
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i = 1, 2, . . . , n}. Taking the collection of hexagons for such a decomposition along

with the set of hexagons {[(1 + 3i)1, (3 + 3i)2, (3 + 3i)1, (2 + 3i)2, (2 + 3i)1, (1 + 3i)2] |

i = 0, 1, . . . , n
3
− 1}, we see that Kn,n has a hexagon covering with padding P1 where

E(P1) = {((1+3i)1, (3+3i)2), ((2+3i)1, (13i)2), (3+3i)1, (2+3i)) | i = 0, 1, . . . , n
3
−1}

and so |E(P1)| = n. By Lemma 2.5, Case 1, there is a restricted hexagon covering

of Km−n,n with padding P2 where |E(P1)| = m − n. Therefore, there is a restricted

covering of Km,n with hexagons with padding P = P1 ∪ P2 where |E(P )| = m.

Case 6. Suppose m ≡ 3 (mod 6), n ≡ 5 (mod 6), and m > n. Now Km,n =

Kn,n ∪Km−n,n where the partite sets of Kn,n are {11, 21 . . . , n1} and Vn and the par-

tite sets of Km−n,n are {(n+ 1)1, (n+ 2)1, . . . ,m1} and Vn. Now Kn,n has a restricted

hexagon covering with padding P1 where |E(P1)| = n (by Lemma 3.3), and there is a

restricted hexagon covering of Km−n,n with padding P2 satisfying |E(P2)| = m−n (by

Lemma 2.5, Case 7). Therefore, there is a restricted covering of Km,n with hexagons

with padding P = P1 ∪ P2 where |E(P )| = m.

Case 7. Suppose m ≡ 5 (mod 6), n ≡ 1 (mod 6), and m > n. Now Km,n =

Kn−2,n ∪Km−n+2,n where the partite sets of Kn−2,n are {11, 21. . . . , (n− 2)1} and Vn

and the partite sets of Km−n+2,n are {(n− 1)1, n1, . . . ,m1} and Vn. By Case 3, there

is a restricted covering of Kn−2,n with padding P1 where |E(P1)| = n− 2 and there is

a restricted covering of Km−n+2,n with padding P2 satisfying |E(P2)| = m−n+ 2 (by

Lemma 2.5 Case 1). Therefore, there is a restricted covering of Km,n with hexagons

with padding P = P1 ∪ P2 where |E(P )| = m.

Case 8. First, suppose m = n + 2 ≡ 5 (mod 6). Then the set of hexagons

{[11, 12, 21, 32, 31, 22], [11, 12, 21, 22, 51, 32], [31, 12, 51, 32, 41, 22], [31, 12, 41, 32, 51, 22]} ∪{[11, (4+
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6i)2, (6 + 6i)1, 12, (7 + 6i)1, (5 + 6i)2], [21, (4 + 6i)2, (7 + 6i)1, 22, (6 + 6i)1, (5 + 6i)2],

[21, (6+6i)2, (8+6i)1, 22, (9+6i)1, (7+6i)2], [41, (6+6i)2, (9+6i)1, 12, (8+6i)1, (7+6i)2],

[31, (8+6i)2, (10+6i)1, 32, (11+6i)1, (9+6i)2], [51, (8+6i)2, (11+6i)1, 22, (10+6i)1, (9+

6i)2], [31, (5+6i)2, (8+6i)1, 32, (7+6i)1, (6+6i)2], [41, (8+6i)2, (9+6i)1, (4+6i)2, (8+

6i)2, (9+6i)2], [31, (4+6i)2, 41, (5+6i)2, 51, (7+6i)2], [(11+6i)1, (4+6i)2, (10+6i)1, (6+

6i)2, (6+6i)1, (7+6i)2], [11, (8+6i)2, (6+6i)1, 32, (9+6i)1, (9+6i)2], [11, (6+6i)2, (11+

6i)1, 12, (10 + 6i)1, (7 + 6i)2], [21, (8 + 6i)2, (7 + 6i)1, (7 + 6i)2, (6 + 6i)1, (9 + 6i)2],

[51, (4+6i)2, (9+6i)1, (5+6i)2, (10+6i)1, (6+6i)2], [(11+6i)1, (5+6i)2, (8+6i)1, (8+

6i)2, (7 + 6i)1, (9 + 6i)2] | i = 0, 1, . . . , (m − 5)/6 − 1} is an unrestricted covering

of Km,n with padding P where E(P ) = {(31, 22), (11, 12), (21, 12), (31, 12), (31, 22),

(41, 32), (51, 22), (51, 32), (51, 32)} ∪{((6 + 6i)1, (7 + 6i)2), ((7 + 6i)1, (8 + 6i)2), ((8 +

6i)1, (5 + 6i)2), ((9 + 6i)1, (4 + 6i)2), ((10 + 6i)1, (6 + 6i)2), ((11 + 6i)1, (9 + 6i)2) | i =

0, 1, . . . , (m − 5)/6 − 1} and so |E(P )| = m + 4. Next, suppose m ≡ 5 (mod 6),

n ≡ 3 (mod 6), m ≥ n. Now Km,n = Kn,n∪Km−n,n where the partite sets of Kn,n are

{11, 21 . . . , n1} and Vn, and the partite sets of Km−n,n are {(n+ 1)1, (n+ 2)1, . . . ,m1}

and Vn. By Theorem 2.3, there is a decomposition of Kn,n \ M where M is a

perfect matching of Kn,n, say E(M) = {(i1, 12) | i = 1, 2, . . . , n}. We take the

collection of hexagons for such a decomposition along with the set of hexagons

{[(1 + 3i)1, (3 + 3i)2, (3 + 3i)1, (2 + 3i)2, (2 + 3i)1, (1 + 3i)2] | i = 0, 1, . . . , n
3
− 1}.

We see that Kn,n has a hexagon covering with padding P1 where E(P1) = {((1 +

3i)1, (3 + 3i)2), ((2 + 3i)1, (1 + 3i)2), (3 + 3i)1, (2 + 3i)) | i = 0, 1, . . . , n
3
− 1}. So

|E(P1)| = n. By Lemma 2.5, Case 3, there is a restricted hexagon covering of Km−n,n

with padding P2 where |E(P1)| = m−n+ 4. Therefore, there is a restricted covering
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of Km,n with hexagons with padding P = P1 ∪ P2 where |E(P )| = m + 4.

Case 9. Suppose m ≡ n ≡ 5 (mod 6), and m > n. Now Km,n = Kn,n∪Km−n,n where

the partite sets of Kn,n are {11, 21 . . . , n1} and Vn, and the partite sets of Km−n,n are

{(n + 1)1, (n + 2)1, . . . ,m1} and Vn. Now Kn,n has a restricted hexagon covering

with padding P1 where |E(P1)| = n (by Lemma 3.3). There is a restricted hexagon

covering of Km−n,n with padding P2 satisfying |E(P2)| = m− n (by Lemma 2.5 Case

1). Therefore, there is a restricted covering of Km,n with hexagons with padding

P = P1 ∪ P2 where |E(P )| = m. �

For these cases, we take some value of m and n that we are able to break into

smaller cases that has previously been solved or we are able to create a covering.

For example, in case 7 of Lemma 2.4, m ≡ 4 (mod 6) and n ≡ 5 (mod 6). In this

case, we can say Km,n = Km−4,n ∪ K4,n−5 ∪ K4,5 which means we are breaking the

original bipartite graph into three subgraphs. If we look at Km−4,n, then we would

have m − 4 ≡ 0 (mod 6) and n ≡ 5 (mod 6) which are the conditions for Case 1.

We know the padding is equal to m − 4, which for this specific subgraph would be

|E(P1)| = m − 4. If we look at K4,n−5, then the partite sets are size 4 and 0 (mod

6) which are the conditions for a decomposition by a previous theorem. Then all

we have left is K4,5 which we can predict would need four extra edges to create a

covering. We are able to do it with a padding of four, so |E(P2)| = 4. This means

that the padding for Km,n is P = P1 ∪ P2 which is P = m − 4 + 4 = m. Next, let

us look at a lemma that is used in the unrestricted coverings of complete bipartite

graphs.
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Lemma 2.8 A minimal unrestricted covering of K1,n, n ≥ 5, has a padding P where

|E(P )| = 2n when n is even and |E(P )| = 2n + 3 when n is odd.

Proof. For n even, n ≥ 6, we have V1 and Vn as the partite sets of K2,n. If a

hexagon in such a covering contains no vertices of V1, then it must contain 6 edges in

the padding. If a hexagon in a covering contains 1 vertex of V1, then it must contain

at least 4 edges in P and at most 2 edges in K2,n. Since K1, n contains n edges,

then an unrestricted covering with padding P must satisfy |E(P )| ≥ 2n. The set

of hexagons {[11, 12, 52, 42, 32, 22], [11, 32, 22, 12, 52, 42], [11, 52, 42, 32, 22, 62]}∪{[11, (5 +

2i)2, 32, 22, 12, (6+2i)2] | i = 1, 2, . . . , (n−6)/2 forms an unrestricted covering of Km,n

with padding P where E(P ) = {(12, 52), (42, 52), (32, 42), (22, 32), (22, 32), (12, 32),

(12, 52), (42, 52), (42, 52), (32, 42), (22, 32), (22, 62)} ∪ {(32, (5 + 2i)2), (22, 32), (12, 22),

(12, (6 + 2i)2) | i = 1, 2, . . . , (n− 6)/2} and so |E(P )| = 2n.

For n odd, as when n is even, each hexagon of an unrestricted covering contains

at least 4 edges in the padding, so an unrestricted with padding P must satisfy

|E(P )| ≥ 2n. Since |E(Km,n)|+ |E(P )| ≡ 0 (mod 6), it follows that |E(P )| ≥ 2n+ 3.

The set of hexagons {[11, 12, 52, 42, 32, 22], [11, 32, 22, 12, 52, 42], [11, 42, 12, 22, 32, 52]} ∪

{[(11, (4 + 2i)2, 32, 22, 12, (5 + 2i)2] | i = 1, 2, . . . , (n − 5)/2} forms an unrestricted

covering of Km,n with padding P where E(P ) = {(12, 52),(42, 52),(32, 42), (22, 32),

(22, 32), (12, 32), (12, 52), (42, 52), (11, 42), (12, 42), (12, 22), (22, 32), (32, 52)}∪{(32, (4+

2i)2), (22, 32), (12, 22), (12, (5 + 2i)2) | i = 1, 2, . . . , (n− 5)/2} and so |E(P )| = 2n + 3.

�

Lemma 2.9 A minimal unrestricted covering of K2,n where n ≡ 0 (mod 2), n ≥ 4,

has a padding P where |E(P )| = n.
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Proof. We have V2 and Vn as the partite sets of K2,n. If a hexagon in such a covering

contains no vertices of V2, then it must contain 6 edges in the padding. If a hexagon

in a covering contains 1 vertex of V2, then it must contain 4 edges in P and 2 edges in

K2,n. If a hexagon in a covering contains 2 vertices of V2, then it must contain either

(1) 2 edges in P and 4 edges in K2,n, or (2) 4 edges in P and 2 edges in K2,n. Since

K2,n contains 2n edges, then an unrestricted covering with padding P must satisfy

|E(P )| ≥ n. Since n ≥ 4 is even, then n = 4n1 + 6n2 for some n1, n2 ∈ N. Then

the set of hexagons: {[11, (1 + 4i)2, (4 + 4i)2, (3 + 4i)2, 21, (2 + 4i)2], [11, (3 + 4i)2, (2 +

4i)2, (1 + 4i)2, 21, (4 + 4i)2] | i = 0, 1, . . . , n1 − 1} ∪ {[11, (6 + 6j)2, (2 + 6j)2, (1 +

6j)2, 21, (5 + 6j)2], [11, (1 + 6j)2, (4 + 6j)2, (3 + 6j)2, 21, (2 + 6j)2], [11, (3 + 6j)2, (2 +

6j)2, (6 + 6j)2, 21, (4 + 6j)2] | j = 0, 1, . . . , n2 − 1} is an unrestricted covering of K2,n

with padding P = {((1+4i)2, (2+4i)2), ((2+4i)2, (3+4i)2), ((3+4i)2, (4+4i)2), ((1+

4i)2, (4+4i)2) | i = 0, 1, . . . , n1−1}∪{((1+6j)2, (2+6j)2), ((2+6j)2, (3+6j)2), ((3+

6j)2, (4 + 6j)2), ((1 + 6j)2, (4 + 6j)2), 2× ((2 + 6j)2, (6 + 6j)2) | j = 0, 1, . . . , n2 − 1}

and so |E(P )| = 4n1 + 6n2 = n and this unrestricted covering is minimal. �

Lemma 2.10 A minimal unrestricted covering of K2,n where n ≡ 1 (mod 2) and

n ≥ 5, has a padding P where |E(P )| = n + 3.

Proof. As in Lemma 2.8, each hexagon of a covering of K2,n contains at least 2

edges of the padding and at most 4 edges of K2,n. Since |E(K2,n)| = 2n, then the

number of hexagons in a covering must be at least d2n/4e = dn/2e = (n+ 1)/2 since

n is odd. Since each hexagon contains at least 2 edges of the padding P , we have

|E(P )| ≥ n+1. Now we need |E(K2,n)|+|E(P )| ≡ 0 (mod 6) and |E(K2,n)|+|E(P )| ≥
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3n+ 1, so |E(P )| ≥ n+ 3. Since n is odd and n ≥ 5, then either (1) n = 4`+ 5 where

` = (n− 5)/4 ∈ N, or (2) n = 4` + 7 where ` = (n− 7)/4 ∈ N.

Define A = {[11, (1 + 4i)2, (4 + 4i)2, (3 + 4i)2, 21, (2 + 4i)2], [11, (3 + 4i)2, (2 +

4i)2, (1 + 4i)2, 21, (4 + 4i)2] | i = 0, 1, . . . , ` − 1}. For n = 4` + 5, consider the set

of blocks A ∪ {[11, (n − 4)2, 21, n2, (n − 1)2, (n − 2)2], [11, (n − 4)2, 21, (n − 1)2, (n −

2)2, (n− 3)2], [11, (n− 1)2, (n− 2)2, 21, (n− 3)2, n2]}. This is an unrestricted covering

of K2,n with padding P where E(P ) = {((1+4i)2, (2+4i)2), ((2+4i)2, (3+4i)2), ((3+

4i)2, (4 + 4i)2), ((1 + 4i)2, (4 + 4i)2) | i = 0, 1, . . . , ` − 1} ∪ {(11, (n − 4)2), (21, (n −

4)2), ((n − 3)2, (n − 2)2), ((n − 3)2, n2), 3 × ((n − 2)2, (n − 1)2), ((n − 1)2, n2)}. Since

|E(P )| = 4` + 8 = n + 3, the covering is minimal. For n = 4` + 7, consider the set of

blocks A∪ {[11, (n− 6)2, 21, (n− 2)2, (n− 3)2, (n− 4)2], [11, (n− 6)2, 21, (n− 3)2, (n−

4)2, (n−5)2], [11, (n−1)2, (n−4)2, 21, (n−5)2, n2], [11, (n−3)2, n2, 21, (n−1)2, (n−2)2]}.

This is an unrestricted covering of K2,n with padding P = {((1+4i)2, (2+4i)2), ((2+

4i)2, (3 + 4i)2), ((3 + 4i)2, (4 + 4i)2), ((1 + 4i)2, (4 + 4i)2) | i = 0, 1, . . . , ` − 1} ∪

{(11, (n − 6)2), (21, (n − 6)2), ((n − 5)2, (n − 4)2), ((n − 5)2, n2), 2 × ((n − 4)2, (n −

3)2), ((n− 4)2, (n− 1)2), ((n− 3)2, n2), ((n− 3)2, (n− 2)2), ((n− 2)2, (n− 1)2)}. Since

|E(P )| = 4` + 10 = n + 3, the covering is minimal. �

Lemma 2.11 A minimal unrestricted hexagon covering of Km,n where m and n are

even, m,n ≥ 4, has a padding P satisfying:

(1) |E(P )| = 0 when m ≡ 0 (mod 6),

(2) |E(P )| = 2 when m ≡ n ≡ 2 (mod 6) or m ≡ n ≡ 4 (mod 6), and

(3) |E(P )| = 4 when m ≡ 2 (mod 6) and n ≡ 4 (mod 6).
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Lemma 2.12 A minimal unrestricted hexagon covering of Km,n where m is even and

n is odd (m ≥ 4, n ≥ 3) has a padding P satisfying |E(P )| = m/2 + k, where k is the

smallest nonnegative integer such that |E(Km,n)|+ (m/2 + k) ≡ 0 (mod 6).

Proof. Since each vertex of Vm is of odd degree in Km,n, in the padding of a covering

each of these vertices will be of odd degree. Therefore, in a restricted covering of

Km,n with padding P , it is necessary that |E(P )| ≥ m/2. Since a covering yields a

decomposition of Km,n ∪ P , then it is necessary that |E(Km,n)| + |E(P )| ≡ 0 (mod

6).

Case 1. First, suppose m ≡ 0 (mod 12) and n = 3. Then the set of hexagons {[(1 +

12i)1, 22, (3 + 12i)1, 12, (2 + 12i)1, 32], [(4 + 12i)1, 22, (6 + 12i)1, 12, (5 + 12i)1, 32], [(7 +

12i)1, 22, (9+12i)1, 12, (8+12i)1, 32], [(10+12i)1, 22, (12+12i)1, 12, (11+12i)1, 32], [(1+

12i)1, 12, (4+12i)1, (5+12i)1, 22, (2+12i)1], [(6+12i)1, 32, (9+12i)1, (10+12i)1, 12, (7+

12i)1], [(3 + 12i)1, 32, (12 + 12i)1, (11 + 12i)1, 22, (8 + 12i)1] | i = 0, 1, . . . ,m/12 − 1}

is an unrestricted covering of Km,n with padding P where E(P ) = {((1 + 12i)1, (2 +

12i)1), ((3 + 12i)1, (8 + 12i)1), ((4 + 12i)1, (5 + 12i)1), ((6 + 12i)1, (7 + 12i)1), ((9 +

12i)1, (10+12i)1), ((11+12i)1, (12+12i)1) |= 0, 1, . . . ,m/12−1} and so |E(P )| = m/2.

Second, suppose m ≡ 0 (mod 12) and n = 5. Then the set of hexagons {[(1 +

12i)1, 12, (2 + 12i)1, 22, (3 + 12i)1, 32], [(1 + 12i)1, 42, (3 + 12i)1, 12, (5 + 12i)1, 52], [(2 +

12i)1, 32, (6 + 12i)1, 22, (4 + 12i)1, 42], [(4 + 12i)1, 32, (5 + 12i)1, 42, (6 + 12i)1, 52], [(7 +

12i)1, 42, (8 + 12i)1, 52, (9 + 12i)1, 12], [(7 + 12i)1, 22, (9 + 12i)1, 42, (11 + 12i)1, 32],

[(8 + 12i)1, 12, (12 + 12i)1, 52, (10 + 12i)1, 22], [(10 + 12i)1, 12, (111 + 12i)1, 22, (12 +

12i)1, 32], [(1 + 12i)1, 22, (5 + 12i)1, (7 + 12i)1, 52, (11 + 12i)1], [(2 + 12i)1, 52, (3 +

12i)1, (10 + 12i)1, 42, (12 + 12i)1], [(4 + 12i)1, 12, (6 + 12i)1, (8 + 12i)1, 32, (9 + 12i)1] |
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i = 0, 1, . . . ,m/12 − 1} is an unrestricted covering of Km,n with padding P where

E(P ) = {((1+12i)1, (11+12i)1), ((2+12i)1, (12+12i)1), ((3+12i)1, (10+12i)1), ((4+

12i)1, (9+12i)1), ((5+12i)1, (7+12i)1), ((6+12i)1, (8+12i)1) | i = 0, 1, . . . ,m/12−1}

and so |E(P )| = m/2.

Finally, suppose m ≡ 0 (mod 12), n ≡ 1 (mod 2), and n > 5. Now Km,n ⊂

Km,n−3∪ m
3
×C6∪ m

4
×C6 where the partite sets of Km,n−3 are Vm and Vn\{12, 22, 32},

m
3
× C6 = {[(1 + 3i)1, 22, (3 + 3i)1, 12, (2 + 3i)1, 32] | i = 0, 1, . . . , m

3
− 1}, and

m
4
× C6 = {[(1 + 12i)1, 12, (4 + 12i)1, (2 + 12i)1, 22, (5 + 12i)1], [(3 + 12i)1, 32, (6 +

12i)1, (7 + 12i)1, 12, (10 + 12i)1], [(8 + 12i)1, 22, (11 + 12i)1, (12 + 12i)1, 32, (9 + 12i)1] |

i = 0, 1, . . . , m
4
−1}. Therefore, there is an unrestricted covering of Km,n with hexagons

with padding P where E(P ) = {((1 + 12i)1, (5 + 12i)1), ((2 + 12i)1, (4 + 12i)1), ((3 +

12i)1, (10+12i)1), ((6+12i)1, (7+12i)1), ((8+12i)1, (9+12i)1), ((11+12i)1, (12+12i)1) |

i = 0, 1, . . . , m
12
− 1}. So |E(P )| = m

2
and the unrestricted covering is minimal.

Case 2. Suppose m ≡ 2 (mod 12) and m ≥ 14, and n ≡ 1 (mod 6), n ≥ 7. Now

Km,n = K14,7∪Km−14,7∪Km,n−7 where the partite sets of K14,7 are {11, 21, . . . , 141} and

{12, 22, . . . , 72}, the partite sets of Km−14,7 are {151, 161, . . . ,m1} and {12, 22, . . . , 72},

and the partite sets of Km,n−7 are Vm and {82, 92, . . . , n2}. There exists an unre-

stricted covering of Km−14,7 with padding P1 where |E(P1)| = (m − 14)/2 by Case

1 and there exists a hexagon decomposition of Km,n−7 by Theorem 2.2. Next, we

note that K14,7 = K7,7 ∪ K7,7 where the partite sets of the first copy of K7,7 are

{11, 21, . . . , 71} and {12, 22, . . . , 72}, and the partite sets of the second copy of K7,7

are {81, 91, . . . , 141} and {12, 22, . . . , 72}. By Theorem 2.3, there is a hexagon de-

composition of K7,7 \ M where M is a matching of K7,7. So there is a hexagon
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decomposition of K14,7 \M1 where E(M1) = {(i1, i2), ((i + 7)1, i2) | i = 1, 2, . . . , 7}.

This decomposition along with the set {[11, 12, 81, 91, 22, 21], [31, 32, 101, 111, 42, 41],

[51, 52, 121, 131, 62, 61], [61, 62, 131, 141, 72, 71]} forms an unrestricted covering of K14,7

with padding P2 where E(P2) = { (11, 21), (31, 41), (51, 61), (61, 71), (61, 62), (81, 91),

(101, 111), (121, 131), (131, 141), (131, 62)} and so |E(P2)| = 10. Therefore, there is

an unrestricted covering of Km,n with hexagons with padding P = P1 ∪ P2 where

|E(P )| = m/2 + 3.

Case 3. Suppose m ≡ 2 (mod 12), m ≥ 14, and n ≡ 3 (mod 6). Now Km,n =

K14,3 ∪ Km−14,3 ∪ Km,n−3, where the partite sets of K14,3 are {11, 21, . . . , 141} and

{12, 22, 32}, the partite sets of Km−14,3 are Vm \ {11, 21, . . . , 141} and {12, 22, 32},

and the partite sets of Km,n−3 are Vm and Vn \ {12, 22, 32}. There exists an unre-

stricted covering of Km−14,3 with padding P1 where |E(P1)| = (m − 14)/2 by Case

1 and Km,n−3 can be decomposed by Theorem 2.2. Next, we note that there is

an unrestricted hexagon covering of K14,3, namely the set {[11, 22, 21, 111, 32, 141],

[31, 12, 61, 71, 22, 41], [91, 12, 121, 131, 22, 101, ] [31, 22, 51, 12, 41, 32], [61, 22, 81, 12, 71, 32],

[91, 22, 111, 12, 101, 32], [121, 22, 141, 12, 131, 32], [11, 12, 21, 51, 32, 81], [11, 12, 31, 22, 21, 32]}

with padding P2 satisfying E(P2) = {(11, 141), (21, 111), (31, 41), (61, 71), (91, 101),

(121, 131), (11, 12), (11, 81), (21, 22), (21, 51), (31, 12), (31, 22)} and so |E(P2)| = 12.

Therefore, there is an unrestricted covering of Km,n with hexagons with padding

P = P1 ∪ P2, where |E(P )| = m/2 + 5.

Case 4. Suppose m ≡ 2 (mod 12) and m ≥ 14, and n ≡ 5 (mod 6), n ≥ 5. Now

Km,n = K14,5∪Km−14,5∪Km,n−5 where the partite sets of K14,5 are {11, 21, . . . , 141} and

{12, 22, . . . , 52}, the partite sets of Km−14,5 are {151, 161, . . . ,m1} and {12, 22, . . . , 52},
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and the partite sets of Km,n−5 are Vm and {62, 72, . . . , n2}. There exists an unre-

stricted covering of Km−14,5 with padding P1 where |E(P1)| = (m − 14)/2 by Case

1 and there exists a hexagon decomposition of Km,n−5 by Theorem 2.2. Next, we

note that K14,5 = K8,5 ∪ K6,5 where the partite sets of the first copy of K8,5 are

{11, 21, . . . , 81} and {12, 22, . . . , 52}, and the partite sets of the second copy of K6,5

are {91, 101, . . . , 141} and {12, 22, . . . , 52}. By a theorem in a previous paper by Brown,

Coker, Gardner, and Kennedy [2] , there is a hexagon decomposition of K8,5\M1 where

E(M1) = {(11, 52), (21, 52), (31, 12), (41, 42), (51, 22), (51, 42), (51, 52), (61, 52), (71, 12),

(81, 22)}. Also, by the same paper [2], there exists a decomposition of a K6,5 \M2

where E(M2) = {(91, 12), (101, 22), (111, 32), (121, 12), (131, 22), (141, 32)} So there is

a hexagon decomposition of K14,7 \M1 ∪M2. This decomposition along with the set

{[11, 52, 21, 91, 12, 121], [31, 12, 71, 51, 22, 81], [101, 22, 131, 51, 52, 61],

[111, 32, 141, 41, 42, 51]} forms an unrestricted covering of K14,5 with padding P2 where

E(P2) = { (11, 121), (21, 91), (31, 81), (41, 141), (51, 72), (51, 111), (51, 131), (61, 101)}

and so |E(P2)| = 8. Therefore, there is an unrestricted covering of Km,n with hexagons

with padding P = P1 ∪ P2 where |E(P )| = m/2 + 1.

Case 5. Suppose m ≡ 4 (mod 12), n ≡ 1 (mod 6), and n 6= 7. Now Km,n =

Km−4,n ∪K4,n−7 ∪K4,7 where the partite sets of Km−4,n are Vm \ {11, 21, 31, 41} and

Vn, the partite sets of K4,n−7 are {11, 21, 31, 41} and Vn \ {12, 22, . . . , 72}, and the par-

tite sets of K4,7 are {11, 21, 31, 41} and {12, 22, . . . , 72}. There exists an unrestricted

covering of Km−4,n with padding P1 where |E(P1)| = (m−4)/2 by Case 1 and K4,n−7

can be decomposed by Theorem 2.2. Next, we note that there is an unrestricted

hexagon covering of K4,7, namely the set {[11, 12, 21, 22, 31, 32], [21, 52, 41, 72, 31, 62],
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[11, 62, 41, 42, 21, 72], [11, 22, 41, 12, 31, 52], [11, 42, 31, 41, 32, 21]} with padding P2 satis-

fying E(P2) = {(11, 21), (31, 41)} So |E(P2)| = 2. Therefore, there is an unrestricted

covering of Km,n with hexagons with padding P = P1 ∪ P2, where |E(P )| = m/2.

Case 6. Suppose m ≡ 4 (mod 12) and n ≡ 3 (mod 6). Now Km,n = Km−4,n∪K4,n−3∪

K4,3 where the partite sets of Km−4,n are Vm \ {11, 21, 31, 41} and Vn, the partite sets

of K4,n−3 are {11, 21, 31, 41} and Vn \ {12, 22, 32}, and the partite sets of K4,3 are

{11, 21, 31, 41} and {12, 22, 32}. There exists an unrestricted covering of Km−4,n with

padding P1 where |E(P1)| = (m− 4)/2 by Case 1 and K4,n−3 can be decomposed by

Theorem 2.2. Next, we note that there is an unrestricted hexagon covering of K4,3,

namely the set {[11, 12, 21, 22, 31, 32], [11, 22, 41, 12, 31, 21], [11, 12, 21, 32, 41, 22]} with

padding P2 satisfying E(P2) = {(11, 21), (21, 31), (11, 12), (11, 22), (21, 12), (41, 22)} .

So |E(P2)| = 6. Therefore, there is an unrestricted covering of Km,n with hexagons

with padding P = P1 ∪ P2, where |E(P )| = m/2 + 4.

Case 7. Suppose m ≡ 4 (mod 12), n ≡ 5 (mod 6), and n ≥ 17. Now Km,n =

Km,n−4∪Km,4 where the partite sets of Km,n−4 are Vm and Vn \{12, 22, 32, 42} and the

partite sets of Km,4 are Vm and {12, 22, 32, 42}. There exists an unrestricted hexagon

covering of Km,n−4 with padding P1 where |E(P1)| = m/2 by Case 5 and there is a re-

stricted hexagon covering of Km,4 with padding P2 where |E(P2)| = 2 by Lemma 2.11

Case 3. Therefore, there is an unrestricted hexagon covering of Km,n with hexagons

with padding P = P1 ∪ P2 where |E(P )| = m/2 + 2.

Case 8. First, suppose m ≡ 6 (mod 12) and n = 3. Now Km,n = K6,3 ∪ Km−6,3

where the partite sets of K6,3 are {11, 21, . . . , 61} and Vn and the partite sets of

Km−6,3 are Vm \ {11, 21, . . . , 61} and Vn. There exists an unrestricted covering of
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Km−6,3 with padding P1 where |E(P1)| = (m − 6)/2 by Case 1. Next, we note that

there is an unrestricted hexagon covering of K6,3, namely the set {[11, 22, 31, 12, 21, 32],

[41, 22, 61, 12, 51, 32], [11, 12, 41, 51, 22, 21], [31, 12, 51, 22, 61, 32]} with padding P2 satisfy-

ing E(P2) = {(11, 21), (41, 51), (31, 12), (51, 12), (51, 22), (61, 22)} and so |E(P2)| = 6.

Therefore, there is an unrestricted covering of Km,n with heagons with padding

P + P1 ∪ P2, where |E(P )| = m/2 + 3. Second, suppose m ≡ 6 (mod 12) and

n = 5. Now Km,n = K6,5 ∪Km−6,5 where the partite sets of K6,5 are {11, 21, . . . , 61}

and Vn and the partite sets of Km−6,5 are Vm \ {11, 21, . . . , 61} and Vn. There ex-

ists an unrestricted covering of Km−6,n with padding P1 where |E(P1)| = (m −

6)/2 by Case 1. Next, we note that there is an unrestricted hexagon covering of

K6,5, namely the set {[11, 12, 21, 22, 31, 32], [11, 42, 31, 12, 51, 52], [21, 32, 61, 22, 41, 42],

[41, 32, 51, 42, 61, 52], [11, 22, 51, 31, 52, 21], [41, 12, 61, 52, 51, 42]} with padding P2 satis-

fying E(P2) = {(11, 21), (31, 51), (41, 42), ((51, 42), (51, 52), (61, 52)} and so |E(P2)| = 6.

Therefore, there is an unresticted covering of Km,n with hexagons with padding

P = P1 ∪ P2, where |E(P )| = m/2 + 3. Finally, suppose m ≡ 6 (mod 12), n ≡ 1

(mod 2), and n > 5. Now Km,n = K6,n ∪Km−6,n where the partite sets of K6,n are

{11, 21 . . . , 61} and Vn and the partite sets of Km−6,n are Vm \ {11, 21, . . . , 61} and

Vn. There exists a restricted covering of K6,n with padding P1 where |E(P1)| = 6 by

Lemma 3.2 Case 1 and there exists an unrestricted covering of Km−6,n with padding

P2 where |E(P2)| = (m− 6)/2 by Case 1. Therefore, there is a unrestricted covering

of Km,n with hexagons with padding P = P1 ∪ P2 where |E(P )| = m/2 + 3 and the

unrestricted covering is minimal.

Case 9. Suppose m ≡ 8 (mod 12), n ≡ 1 (mod 6), and n ≥ 7. Now Km,n = K8,7 ∪
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Km−8,7∪Km,n−7 where the partite sets of K8,7 are {11, 21, . . . , 81} and {12, 22, . . . , 72},

the partite sets of Km−8,7 are Vm \{11, 21, . . . , 81} and {12, 22, . . . , 72}, and the partite

sets of Km,n−7 are Vm and Vn \ {12, 22, . . . , 72}. There exists an unrestricted cover-

ing of Km−8,7 with padding P1 where |E(P1)| = (m − 8)/2 by Case 1 and Km,n−7

can be decomposed by Theorem 2.2. Next, we note that there is an unrestricted

hexagon covering of K8,7, namely the set {[11, 22, 61, 52, 21, 32], [11, 42, 51, 12, 41, 62],

[31, 32, 51, 22, 41, 42], [31, 62, 51, 52, 41, 72], [61, 32, 81, 22, 71, 42], [61, 62, 81, 52, 71, 72],

[11, 12, 81, 72, 31, 52], [21, 12, 71, 62, 31, 22], [11, 72, 51, 81, 42, 21], [31, 12, 61, 71, 32, 41]}

with padding P2 satisfying E(P2) = {(11, 21), (31, 41), (51, 81), (61, 71)} and so |E(P2)| =

4. Therefore, there is an unrestricted covering of Km,n with hexagons with padding

P = P1 ∪ P2 where |E(P )| = m/2.

Case 10. Suppose m ≡ 8 (mod 12) and n ≡ 3 (mod 6). Now Km,n = K8,3 ∪

Km−8,n ∪ K8,n−3 where the partite sets of K8,3 are {11, 21, . . . , 81} and {12, 22, 32},

the partite sets of Km−8,n are Vm \ {11, 21, . . . , 81} and Vn, and the partite sets of

K8,n−3 are {11, 21, . . . , 81} and Vn \ {12, 22, 32}. There exists an unrestricted cover-

ing of Km−8,n with padding P1 where |E(P1)| = (m − 8)/2 by Case 1 and K8,n−3

can be decomposed by Theorem 2.2. Next, we note that there is an unrestricted

hexagon covering of K8,3, namely the set {[11, 12, 21, 22, 41, 32], [11, 22, 71, 51, 32, 21],

[31, 12, 61, 81, 32, 41], [31, 22, 51, 12, 41, 32], [61, 22, 81, 12, 71, 32]} with padding P2 satis-

fying E(P2) = {(11, 21), (31, 41), (51, 71), (61, 81), 2 × (41, 32)} and so |E(P2)| = 6.

Therefore, there is an unrestricted covering of Km,n with hexagons with padding

P = P1 ∪ P2 where |E(P )| = m/2 + 2.

Case 11. Suppose m ≡ 8 (mod 12), n ≡ 5 (mod 6). Now Km,n = K8,5 ∪Km−8,5 ∪
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Km,n−5 where the partite sets of K8,5 are {11, 21, . . . , 81} and {12, 22, . . . , 52}, the par-

tite sets of Km−8,5 are Vm \{11, 21, . . . , 81} and {12, 22, . . . , 52}, and the partite sets of

Km,n−5 are Vm and Vn\{12, 22, . . . , 52}. There exists an unrestricted covering of Km−8,5

with padding P1 where |E(P1)| = (m − 8)/2 by Case 1 and Km,n−5 can be decom-

posed by Theorem 2.2. Next, we note that there is an unrestricted hexagon covering of

K8,5, namely the set {[11, 12, 31, 32, 61, 22], [21, 12, 41, 51, 22, 31], [31, 42, 51, 32, 41, 52],

[61, 42, 81, 32, 71, 52], [11, 32, 21, 22, 81, 52], [21, 42, 71, 12, 51, 52], [41, 22, 71, 81, 12, 61],

[11, 12, 21, 22, 41, 42]} with padding P2 satisfying E(P2) = {(21, 31), (41, 51), (11, 12),

(21, 12), (21, 22), (41, 22), (41, 61), (71, 81)} and so |E(P2)| = 8. Therefore, there is

an unrestricted covering of Km,n with hexagons with padding P = P1 ∪ P2, where

|E(P )| = m/2 + 4.

Case 12. Suppose m ≡ 10 (mod 12), n ≡ 1 (mod 6), and n 6= 7. Now Km,n =

Km−4,n ∪K4,n−7 ∪K4,7 where the partite sets of Km−4,n are Vm \ {11, 21, 31, 41} and

Vn, the partite sets of K4,n−7 are {11, 21, 31, 41} and Vn \ {12, 22, . . . , 72}, and the par-

tite sets of K4,7 are {11, 21, 31, 41} and {12, 22, . . . , 72}. There exists an unrestricted

covering of Km−4,n with padding P1 where |E(P1)| = m/2 + 1 by Case 8 and K4,n−7

can be decomposed by Theorem 2.2. Then Case 5 gives an unrestricted hexagon cov-

ering of K4,7 with padding P2 where |E(P2)| = 2. Therefore, there is an unrestricted

covering of Km,n with hexagons with padding P = P1 ∪P2, where |E(P )| = m/2 + 3.

Case 13. Suppose m ≡ 10 (mod 12) and n ≡ 3 (mod 6). Now Km,n = K10,3 ∪

Km−10,3 ∪Km,n−3 where the partite sets of K10,3 are {11, 21, . . . , 101} and {12, 22, 32},

the partite sets of Km−10,3 are Vm \ {11, 21, . . . , 101} and {12, 22, 32}, and the partite

sets of Km,n−3 are Vm and Vn \ {12, 22, 32}. There exists an unrestricted hexagon cov-
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ering of Km−10,3 with padding P1 where |E(P1)| = (m− 10)/2 by Case 2 and Km,n−3

can be decomposed by Theorem 2.2. Next, we note that there is an unrestricted

hexagon covering of K10,3, namely the set {[11, 12, 21, 22, 101, 32], [11, 22, 31, 51, 12, 81],

[41, 32, 71, 91, 22, 61], [21, 22, 41, 12, 31, 32], [51, 22, 71, 12, 61, 32], [81, 22, 101, 12, 91, 32]} with

padding P2 satisfying E(P2) = {(11, 81), (21, 22), (31, 51), (41, 61), (71, 91), (101, 22)}

and so |E(P2)| = 6. Therefore, there is an unrestricted covering of Km,n with hexagons

with padding P = P1 ∪ P2, where |E(P )| = m/2 + 1.

Case 14. Suppose m ≡ 10 (mod 12) and n ≡ 5 (mod 6). Now Km,n = Km,n−4∪Km,4

where the partite sets of Km,n−4 are Vm and Vn \ {12, 22, 32, 42} and the partite sets

of Km,4 are Vm and {12, 22, 32, 42}. There exists an unrestricted hexagon covering of

Km,n−4 with padding P1 where |E(P1)| = m/2+3 by Case 12 and there is a restricted

hexagon covering of Km,4 with padding P2 where |E(P2)| = 2 by Lemma 3.1 Case

2. Therefore, there is an unrestricted hexagon covering of Km,n with hexagons with

padding P = P1 ∪ P2, where |E(P )| = m/2 + 5. �

Lemma 2.13 A minimal unrestricted hexagon covering of Km,n where m and n are

both odd, m ≥ n ≥ 3, has a padding P satisfying |E(P )| = (m + n)/2 + k where k is

the smallest nonnegative integer such that |E(Km,n)|+ (m + n)/2 + k ≡ 0 (mod 6).

Proof. Since each vertex of Km,n is of odd degree, in the padding of a covering

each of these vertices will be of odd degree. Therefore, in an unrestricted covering

of Km,n with padding P , it is necessary that |E(P )| ≥ (m + n)/2. Since a covering

yields a decomposition of Km,n∪P , it is necessary that |E(Km,n)|+ |E(P )| ≡ 0 (mod

6).

Case 1. Suppose m ≡ 1 (mod 12), m ≥ 13, and n ≡ 7 (mod 12). We have Km,n =
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Kn,n∪Km−n,n−3∪K6,3∪Km−n−6,3 where the partite sets of Kn,n are {11, 22, . . . , n1} and

Vn, the partite sets of Km−n,n−3 are {(n + 1)1, (n + 2)1, . . . ,m1} and {42, 52, . . . , n2},

the partite sets of K6,3 are {(n + 1)1, (n + 2)1, . . . , (n + 6)1} and {12, 22, 33}, and the

partite sets of Km−n−6,3 are {(n + 7)1, (n + 8)1, . . . ,m1} and {12, 22, 32}. There is a

hexagon decomposition of Kn,n\M by Theorem 2.3, where (without loss of generality)

E(M) = {(i1, i2) | i = 1, 2, . . . , n}. There is a hexagon decomposition of Km−n,n−3 by

Theorem 2.2. There is an unrestricted covering of Km−n−6,3 with padding P1 where

|E(P1)| = (m − n − 6)/2 by Lemma 2.11 Case 1. Taking these decompositions, the

covering, and {((3i− 2)1, (3i− 2)2, (3i)1, (3i)2, (3i− 1)1, (3i− 1)2) | i = 1, 2, . . . , (n−

1)/3}∪{((n+1)1, 12, (n+4)1, (n+5)1, 22, (n+2)1), (n1, n2, (n+6)1, 32, (n+3)1, (n+2)1)}

yields an unrestricted covering of Km,n with padding P where E(P ) = E(P1)∪{((3i−

2)1, (3i − 1)2), ((3i − 1)1, (3i)2), ((3i)1, (3i − 2)2) | i = 1, 2, . . . , (n − 1)/3} ∪ {((n +

1)1, (n+ 2)1), ((n+ 2)1, (n+ 3)1), ((n+ 4)1, (n+ 5)1), (n1, (n+ 2)1), ((n+ 6)1, n2)} and

so |E(P )| = (m + n)/2 + 1.

Case 2. First, suppose m = 3 and n ≡ 1 (mod 12), n ≥ 13. We have Km,n =

K3,13 ∪ K3,n−13 where the partite sets of K3,13 are {11, 21, 31} and {12, 22, . . . , 132},

and the partite sets of K3,n−13 are {11, 21, 31} and {142, 152, . . . , n2}. Now K3,n−13

has an unrestricted covering with padding P1 where |E(P1)| = (n− 13)/2 by Lemma

2.14 Case 1. Next, we note that there is an unrestricted hexagon covering of K3,13,

namely the set {[11, 32, 31, 22, 21, 12], [11, 122, 102, 112, 31, 132], [31, 82, 102, 21, 132, 52],

[11, 62, 42, 21, 72, 92]} with padding P2 = {((21, 12), (31, 22), (11, 32), (102, 112), (102, 122),

(52, 132), (82, 102), (42, 62), (72, 92)} and so |E(P2)| = 9. Therefore, there is an

unrestricted covering of Km,n with hexagons with padding P = P1 ∪ P2 where
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|E(P )| = (m + n)/2 + 1.

Now suppose m ≡ 3 (mod 12), m ≥ 15, and n ≡ 1 (mod 12), n ≥ 13. We have

Km,n = K7,13∪K8,13∪Km−15,13∪K15,n−13∪Km−15,n−13 where the partite sets of K7,13

are {11, 21, . . . , 71} and {12, 22, . . . , 132}, the partite sets of K8,13 are {81, 91, . . . , 151}

and {12, 22, . . . , 132}, the partite sets of Km−15,13 are {161, 171, . . . ,m1}

and {12, 22, . . . , 132}, the partite sets of Km−15,n−13 are {161, 171, . . . ,m1} and

{142, 152, . . . , n2}. Now K7,13 has an unrestricted hexagon covering with padding P1

where |E(P1)| = 11 by Case 1, K8,13 has an unrestricted covering with a padding P2

where |E(P2)| = 4 by Lemma 2.12 Case 9, Km−15,13 has an unrestricted covering with

a padding P3 where |E(P )| = (m− 15)/2, K15,n−13 has an unrestricted covering with

a padding P4 where |E(P4)| = (n − 13)/2, and there is a hexagon decomposition of

Km−15,n−13 by Theorem 2.2. Taking these coverings and the decomposition yields an

unrestricted covering of Km,n with padding P = P1 ∪ P2 ∪ P3 ∪ P4 where |E(P )| =

(m + n)/2 + 1.

Case 3. Suppose m ≡ 5 (mod 12) and n ≡ 7 (mod 12). We have Km,n = Km−4,n ∪

K4,n where that partite sets of Km−4,n are Vm\{(m−3)1, (m−2)1, (m−1)1,m1} and Vn,

and the partite sets of K4,n are {(m−3)1, (m−2)1, (m−1)1,m1} and Vn. Now Km−4,n

has an unrestricted hexagon covering with padding P1 where |E(P1)| = (m+n−2)/2

by Case 1, and K4,n has an unrestricted hexagon covering with padding P2 where

|E(P2)| = 2 by Lemma 2.14 Case 5. Taking these two coverings together gives a

covering of Km,n with padding P where |E(P )| = (m + n)/2 + 1.

Case 4. Suppose m ≡ 7 (mod 12) and n ≡ 1 (mod 12), n ≥ 13. We have Km,n =

Km−4,n ∪K4,n where that partite sets of Km−4,n are Vm \ {(m − 3)1, (m − 2)1, (m −
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1)1,m1} and Vn, and the partite sets of K4,n are {(m − 3)1, (m − 2)1, (m − 1)1,m1}

and Vn. Now Km−4,n has an unrestricted hexagon covering with padding P1 where

|E(P1)| = (m+n−2)/2 by Case 2, and K4,n has an unrestricted hexagon covering with

padding P2 where |E(P2)| = 2 by Lemma 2.14 Case 5. Taking these two coverings

together gives a covering of Km,n with padding P where |E(P )| = (m + n)/2 + 1.

Case 5. Suppose m ≡ 9 (mod 12) and n ≡ 7 (mod 12). We have Km,n = Km−8,n ∪

K8,n where that partite sets of Km−8,n are Vm \ {(m− 7)1, (m− 6)1, . . . ,m1} and Vn,

and the partite sets of K8,n are {(m − 7)1, (m − 6)1, . . . ,m1} and Vn. Now Km−8,n

has an unrestricted hexagon covering with padding P1 where |E(P1)| = (m+n−6)/2

by Case 1, and K8,n has an unrestricted hexagon covering with padding P2 where

|E(P2)| = 4 by Lemma 2.14 Case 9. Taking these two coverings together gives a

covering of Km,n with padding P where |E(P )| = (m + n)/2 + 1.

Case 6. Suppose m ≡ 11 (mod 12) and n ≡ 1 (mod 12). We have Km,n = Km−8,n ∪

K8,n where that partite sets of Km−8,n are Vm \ {(m− 7)1, (m− 6)1, . . . ,m1} and Vn,

and the partite sets of K8,n are {(m − 7)1, (m − 6)1, . . . ,m1} and Vn. Now Km−8,n

has an unrestricted hexagon covering with padding P1 where |E(P1)| = (m+n−6)/2

by Case 2, and K8,n has an unrestricted hexagon covering with padding P2 where

|E(P2)| = 4 by Lemma 2.14 Case 9. Taking these two coverings together gives a

covering of Km,n with padding P where |E(P )| = (m + n)/2 + 1.

For the remaining cases, Km,n = Kn,n ∪Km−n,n where the partite sets of Kn,n are

{11, 21, . . . , n1} and Vn and the partite sets of Km−n,n are {(n+ 1)1, (n+ 2)1, . . . ,m1}

and Vn. There exists a restricted hexagon covering of Kn,n with padding P1 and

an unrestricted hexagon covering of Km−n,n with padding P2, by previous results.
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These allow us to cover Km,n with padding P = P1 ∪ P2 which satisfies the required

conditions. We present the results in a table which covers these 30 cases.

m n m− n |E(P1)| Lemma/ |E(P2)| Lemma/
(mod 12) (mod 12) (mod 12) Case Case

1 1 0 n + 4 2.6/1 (m− n)/2 2.10/1
1 3 10 n 2.6/5 (m− n)/2 + 1 2.10/13
1 5 8 n 2.5 (m− n)/2 + 4 2.10/11
1 9 4 n 2.6/5 (m− n)/2 + 4 2.10/6
1 11 2 n 2.5 (m− n)/2 + 1 2.10/4
3 3 0 n 2.6/5 (m− n)/2 2.10/1
3 5 10 n 2.5 (m− n)/2 + 5 2.10/14
3 7 8 n + 4 2.6/1 (m− n)/2 2.10/9
3 9 6 n 2.6/5 (m− n)/2 + 3 2.10/8
3 11 4 n 2.5 (m− n)/2 + 2 2.10/7
5 1 4 n + 4 2.6/1 (m− n)/2 2.10/5
5 3 2 n 2.6/5 (m− n)/2 + 5 2.10/3
5 5 0 n 2.5 (m− n)/2 2.10/1
5 9 8 n 2.6/5 (m− n)/2 + 2 2.10/10
5 11 6 n 2.5 (m− n)/2 + 3 2.10/8
7 3 4 n 2.6/5 (m− n)/2 + 4 2.10/6
7 5 2 n 2.5 (m− n)/2 + 1 2.10/3
7 7 0 n + 4 2.6/1 (m− n)/2 2.10/1
7 9 10 n 2.6/5 (m− n)/2 + 1 2.10/13
7 11 8 n 2.5 (m− n)/2 + 4 2.10/11
9 1 0 n + 4 2.6/1 (m− n)/2 2.10/9
9 3 10 n 2.6/5 (m− n)/2 + 3 2.10/8
9 5 8 n 2.5 (m− n)/2 + 2 2.10/7
9 9 4 n 2.6/5 (m− n)/2 2.10/1
9 11 2 n 2.5 (m− n)/2 + 5 2.10/14
11 3 8 n 2.6/5 (m− n)/2 + 1 2.10/10
11 5 6 n 2.5 (m− n)/2 + 4 2.10/8
11 7 4 n + 4 2.6/1 (m− n)/2 + 3 2.10/5
11 9 2 n 2.6/5 (m− n)/2 + 4 2.10/3
11 11 0 n 2.5 (m− n)/2 + 1 2.10/1

�
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3 RESTRICTED AND UNRESTRICTED COVERINGS OF COMPLETE

BIPARTITE GRAPHS WITH HEXAGONS

3.1 Restricted Coverings of Km,n with Hexagons

We can now construct the following theorem from all previous lemmas that were

created for restricted hexagon coverings of compelte bipartite graphs.

Theorem 3.1 A minimal restricted hexagon covering of Km,n (where m ≥ 3 and

n ≥ 3) with padding P satisfies:

(1) when m ≡0 (mod 2) and n ≡1 (mod 2), |E(P )| = m + k, where k is the smallest

nonnegative integer such that |E(Km,n)|+ (m + k) ≡0 (mod 6),

(2) when m ≡ n ≡ 1 (mod 2) and m ≥ n, |E(P )| = m + k, where k is the smallest

nonnegative integer such that |E(Km,n)|+ (m + k) ≡ 0 (mod 6),

(3) when m ≡ 0 (mod 6) and n ≡ 0 (mod 2), |E(P )| = 0,

(4) when m ≡ n ≡2 (mod 6) or m ≡ n ≡4 (mod 6), then |E(P )| = 2, and

(5) when m ≡2 (mod 6) and n ≡4 (mod 6), then |E(P )| =4.

As shown with the theorem, we know the necessary and sufficient conditions for

a restricted covering of a complete bipartite graph with hexagons given that m ≥ 3

and n ≥ 3. We have a K6,4 by the third condition of Theorem 3.1, we know there

exists a decomposition of this bipartite graph since there are no edges in the padding

of the covering.

A more complex example would be a K10,5. We know we need to use condition

one of the theorem. We have a Vm that is equivilent to 0 (mod 2) and an Vn that

is equivilent to 1 (mod 2). This means that we have an even amount of vertices on
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the Vm set and an odd amount of vertices on the Vn set. By the theorem, we know

that the padding is 12 which is 50 + 10 ≡ 0 (mod 6). This makes sense because we

have a total of 50 edges in the K10,5. We know that the vertices in the Vm set has

odd degrees. This forces us to add an edge for every vertex in Vm to create an even

degree since we have a restricted covering and cannot generate an even degree any

other way, and since there exists an even number of vertices in Vm, we know that all

the degrees in Vn will remain even with these additional edges from Vm to Vn. Then

we have a total of 60 edges. This number is equivilent to 0 (mod 6), so we know there

exists enough edges for a covering, and there exists a construction for the covering.

Therefore, we have a minimal covering where the |E(P )| = 10

Now, because of all the previous lemmas associated with unrestricted hexagon

coverings of complete bipartite graphs we are able to construct a theorem that covers

all possible scenarios. A major difference between the theorems is that fact that the

theorem for unrestricted hexagon coverings are able to cover the scenarios where one

of the vertex sets is of order one or two.

3.2 Unrestricted Coverings of Km,n with Hexagons

Theorem 3.2 A minimal unrestricted hexagon covering of Km,n with padding P sat-

isfies:

(1) when m = 1 and n ≥ 4, |E(P )| = 2n for n even and |E(P )| = 2n + 3 for n odd,

(2) when m = 2 and n ≥ 4, |E(P )| = n for n even and |E(P )| = n + 3 for n odd,

(3) when m ≡ 0 (mod 2), m ≥ 4, and n ≡ 1 (mod 2), n ≥ 3, |E(P )| = m/2 + k,

where k is the smallest nonnegative integer such that |E(Km,n)|+(m/2+k) ≡ 0 (mod
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6),

(4) when m ≡ n ≡ 1 (mod 2) and m ≥ n ≥ 3, |E(P )| = (m + n)/2 + k, where k is

the smallest nonnegative integer such that |E(Km,n)|+ (m + n)/2 + k ≡ 0 (mod 6),

(5) when m ≡ 0 (mod 6) and n ≡ 0 (mod 2), n ≥ 4, |E(L)| = 0,

(6) when m ≡ n ≡ 2 (mod 6), n ≥ 4, or m ≡ n ≡ 4 (mod 6), m ≥ 4, then |E(P )| = 2,

and

(7) when m ≡ 2 (mod 6), m ≥ 8, and n ≡ 4 (mod 6), then |E(P )| = 4.

Let us apply this theorem to an example of a K6,7. We see that the first condition

applies to this example where m is even and n is odd. Since we are working with an

unrestricted covering, we connect odd degree vertices together. This means it takes

roughly half the number of edges in the padding compared to the restricted covering.

So we know |E(P )| = m/2 + k, where k is the smallest nonnegative integer such that

|E(Km,n)| + (m/2 + k) ≡0 (mod 6). We know m is six in this example and k would

be zero. This means the cardinality of the padding is three.
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4 CONCLUSION

We see a difference between restricted and unrestricted coverings. It is important

to note though that the difference is only observed when one of the sets in a complete

bipartite graph is odd. When they are even, the theorems are equivalent. This means

that the difference between restricted and unrestricted mostly helps correct the odd

degree argument. Let us compare the first condition of each theorem which involves

one set being even and the other being odd.

For the restricted covering, we have when m ≡0 (mod 2) and n ≡1 (mod 2),

|E(P )| = m + k, where k is the smallest nonnegative integer such that |E(Km,n)| +

(m + k) ≡0 (mod 6). For the unrestricted covering we have when m ≡0 (mod 2)

and n ≡1 (mod 2), |E(P )| = m/2 + k, where k is the smallest nonnegative integer

such that |E(Km,n)| + (m/2 + k) ≡0 (mod 6). In both theorems, n is the odd set.

Therefore, every vertex in m has odd degree. We notice that the difference is in

cardinality of the padding, where in the restricted |E(P )| = m+ k which m fixes the

odd degree argument in the m set and k is to fix the cardinality argument and in the

unrestricted |E(P )| = m/2+k which m/2 fixes the odd degree argument of the set m

and k fixes the cardinality argument. Since m always has an even number of vertices,

m/2 will be a whole number and m/2 fixed the odd degree argument in unrestricted

coverings because we can allow one edge to fix two vertices.

From our observations, we can say that unrestricted coverings are more efficient

than restricted coverings. This concept can be spread into other types of graph

coverings and is not unique to bipartite graphs. This concept is to be explored in the

future with the covering of complete graphs with a whole and other types of complete
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graphs that will help model real situations.
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