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ABSTRACT

Qualitative Models of Neural Activity and the Carleman Embedding Technique

by

Azamed Yehuala Gezahagne

The two variable Fitzhugh Nagumo model behaves qualitatively like the four variable

Hodgkin-Huxley space clamped system and is more mathematically tractable than

the Hodgkin Huxley model, thus allowing the action potential and other properties

of the Hodgkin Huxley system to be more readily be visualized. In this thesis, it is

shown that the Carleman Embedding Technique can be applied to both the Fitzhugh

Nagumo model and to Van der Pol’s model of nonlinear oscillation, which are both

finite nonlinear systems of differential equations. The Carleman technique can thus

be used to obtain approximate solutions of the Fitzhugh Nagumo model and to study

neural activity such as excitability.
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1 INTRODUCTION

The theory of differential equations is a basic tool in physics, engineering, biology

and other mathematically related sciences. In particular, numerous natural laws and

models of natural phenomenon are described by nonlinear finite autonomous systems

of differential equations

du

dt
= V(u, t).

Examples are the Van der Pol’s equations, Fitzhugh Nagumo equations, Lorenz model,

and Lotka Volterra models [2]. These models described different biological problems

on different scales. However, because of the nonlinear nature of the system, it is quite

complicated to find the closed form of the solution of the above system.

In 1932, Torsten Carleman, motivated by an idea of Henri Poincare in response to

a challenge by David Hilbert, proposed a method of embedding a finite dimensional

system of nonlinear differential equations where V is analytic in u into an infinite

system of linear differential equations [7].

After 30 years, Bellman and Richardson pointed out the idea of Carleman lin-

earization method to approximate the solution of nonlinear differential equations [8].

After Bellman and Richardson, numerous authors studied a method of Carleman

embedding in connection with finding approximate solution of nonlinear system of

differential equations [2]. From the historical development of the Carleman embed-

ding technique, it has become an effective tool in the study of nonlinear dynamical

systems.

The purpose of this thesis is to show that the Carleman embedding technique can

be used to approximate the solution of Van der Pol’s equation and Fitzhugh Nagumo

9



model. Moreover, it is shown that the technique can be applied to explore neural

activity such as excitability. The organization of the thesis is as follows. Section 2

defines Carleman embedding scheme and discusses the technique applied on Van der

Pol’s equation. Comparison between numerical solution and Carleman solution of

the Van der Pol’s equation has been done. In section 3, we introduces the Hodgkin

Huxley and Fitzhugh Nagumo Neural Models. Mathematical analysis of the Carleman

embedding technique to Fitzhugh Nagumo model is also presented in detail. Section 4

is devoted mainly on simulation results of the Carleman embedding technique applied

on Fitzhugh Nagumo models. Comparison between the solutions obtained by the

numerical method and the Carleman technique of the Fitzhugh Nagumo equation

has been done. It also discusses the idea of equilibrium points, suprathreshold and

subthreshold nature of the action potential.
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2 CARLEMAN EMBEDDING TECHNIQUE

2.1 Introduction

The purpose of this section is the analysis of the Carleman embedding technique

and its application to finite dimensional systems of nonlinear differential equations.

In particular, we consider Van der Pol’s equation.

Before describing the application of the technique, we first recall the general

scheme of Carleman linearization. Consider the system with analytic nonlinearities

du

dt
= V(u, t) (1)

where

V : Rk ×R→ Rk

and V is analytic in u.

We should mention that the original Carleman approach [7] dealt with autonomous

polynomial systems (1). Following Carleman we define the function

un(t) =
k∏

i=1

(ui(t))
ni (2)

where u(t) satisfies (1) and n ∈ Zk
+. Here Zk

+ denotes k-tuples of nonnegative integers.

The system (1) implies the following linear differential-difference equation

du

dt
=

∑
n′εZk

+

Mnn′(t)un′ . (3)

Note that the differential-difference equation (3) is finite order only in the case of V

polynomial in u. It should also be noted that in the case of autonomous systems
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(1) the coefficient matrix Mnn′ is constant. In view of the fact that the set Zk
+ is

countable, one finds easily that (3) is equivalent to an infinite dimensional system of

linear differential equations. Obviously, the solution of the system (1) is linked to the

solution of (3) by

ui = uei, i = 1, ..., k

where ei = (0, ..., 0, 1i, 0, ..., 0) is unit column vector. So the finite dimensional non-

linear systems (1) is embedded into the infinite dimensional linear system (3). Such

an embedding is called the Carleman embedding [2].

2.2 Carleman Embedding on Van der Pol’s Equation

The Van der Pol equation, proposed by Balthasar van der Pol in 1920 as a model

of relaxation oscillations with nonlinear damping, is governed by the second order

differential equation

d2x

dt2
− ε(1− x2)

dx

dt
+ x = 0

where x is the dynamical variable and ε is a small parameter [5, 6]. When ε is small,

the quadratic term x2 is very small and the system becomes a linear differential

equation with a negative damping . Thus, the fixed point (x = 0, dx
dt

= 0) is unstable

(an unstable focus when 0 < ε < 2 and an unstable node, otherwise). On the other

hand, when x is large, the term x2 becomes dominant and the damping becomes

positive. Therefore, the dynamics of the system is expected to be restricted in some

area around the fixed point. Actually, the van der Pol system satisfies Liénard’s

theorem ensuring that there is a stable limit cycle in the phase space. The van der

Pol system is therefore a Liénard system [5, 6].
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Using Liénard’s transformation y = x − x3

3
− 1

ε
dx
dt

, the above equation can be

rewritten as

dx

dt
= y + ε(x− 1

3
x3) (4)

dy

dt
= −x

which can be regarded as a special case of the FitzHugh-Nagumo model (also

known as Bonhoeffer-van der Pol model) [13].

By using Maple, one can easily generate a numerical solution of the initial valued

problem (4). For x(0) = α = 1, y(0) = β = 0 and ε = 0.001 , we get the plot in

Figure 1.

Figure 1: Numerical Solution of Van der Pol’s equation for ε = 0.001
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To get an approximate solution to the above systems of finite nonlinear equations,

we apply the Carleman embedding technique and solve in terms of an infinite set

of linear equations as follows. Following the scheme proposed by Carleman and

truncating at n = 3, we set

v1 = x

v2 = y

v3 = x2

v4 = xy

v5 = yx

v6 = y2

v7 = x3

v8 = x2y

v9 = yx2

v10 = xy2

v11 = yx2

v12 = yx2

v13 = y2x

v14 = y3

14



Applying the derivatives of each v′is followed by substituting and rearranging the

equations, we get

dv1

dt
=

dx

dt
= y + εx− ε

3
x3 = v2 + εv1 −

ε

3
v7

dv2

dt
=

dy

dt
= −x = −v1

dv3

dt
=

dx2

dt
= 2x(y + εx− ε

3
x3) = 2v4 + 2εv3

dv4

dt
=

d(xy)

dt
= x(−x) + y(y + εx− ε

3
x3) = −v3 + εv5 + v6

dv5

dt
=

d(yx)

dt
= x(−x) + y(y + εx− ε

3
x3) = −v3 + εv5 + v6

dv6

dt
=

dy2

dt
= −2yx = −2v5

dv7

dt
=

dx3

dt
= 3x2(y + εx− ε

3
x3) = 3v8 + 3εv7

dv8

dt
=

d(x2y)

dt
= (−x)3 + 2yx(y + εx− ε

3
x3) = −v7 + 2εv11 + 2v13

dv9

dt
=

d(yx2)

dt
= (−x)3 + 2yx(y + εx− ε

3
x3) = −v7 + v10 + 2εv11 + v12

dv10

dt
=

d(xy2)

dt
= x(−2yx) + y2(y + εx− ε

3
x3) = −2v9 + εv13 + v14

dv11

dt
=

d(yx2)

dt
= (−x)3 + y(2yx + 2(y + εx− ε

3
x3)) = −v7 + 2εv11 + 2v12

dv12

dt
=

d(xy2)

dt
= xy(−x) + y(−x2 + y2 + εyx = −v8 − v11 + εv13 + v14

dv13

dt
=

d(xy2)

dt
= x(−2yx) + y2(y + εx− ε

3
x3) = −2v9 + εv13 + v14

dv14

dt
=

dy3

dt
= −3y2x = −3v13

15



One can write the above linear system of equations in the matrix form as

dV

dt
= AV (5)

where V = [v1, v2, . . . , v14]
T and

A =



ε 1 0 0 0 0 −ε
3

0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2ε 2 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 ε 1 0 0 0 0 0 0 0 0
0 0 −1 0 ε 1 0 0 0 0 0 0 0 0
0 0 0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3ε 3 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 2ε 0 2 0
0 0 0 0 0 0 −1 0 0 1 2ε 1 0 0
0 0 0 0 0 0 0 0 −2 0 0 0 ε 1
0 0 0 0 0 0 −1 0 0 0 2ε 2 0 0
0 0 0 0 0 0 0 −1 0 0 −1 0 ε 1
0 0 0 0 0 0 0 0 −2 0 0 0 ε 1
0 0 0 0 0 0 0 0 0 0 0 0 −3 0



.

The solution to equation(5) is given by

V (t) = V0e
At (6)

where V0 is the initial value

V0 =



v1(0)
v2(0)
v3(0)
v4(0)
v5(0)
v6(0)
v7(0)
v8(0)
v9(0)
v10(0)
v11(0)
v12(0)
v13(0)
v14(0)



=



x(0)
y(0)
x2(0)

x(0)y(0)
y(0)x(0)

y2(0)
x3(0)

x2(0)y(0)
x2(0)y(0)
x(0)y2(0)
x2(0)y(0)
x(0)y2(0)
x(0)y2(0)

y3(0)



=



α
β
α2

αβ
βα
β2

α3

α2β
α2β
αβ2

α2β
αβ2

αβ2

β3



.
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We now use Maple to plot the solution of Van der Pol’s equation obtained by

Carleman embedding technique. Figure 2 shows the result of Carleman Embedding

for x(0) = α = 1, y(0) = β = 0 and ε = 0.001.

Figure 2: Solution by Carleman Embedding Technique for ε = 0.001

Now we can compare the two results and it is shown that the Carleman embedding

technique gives the best approximation to the solution of Van der Pol’s equation.

Figure 3 shows a comparison between the solutions obtained by Numerical method

and Carleman Embedding technique.

(a) Numerical (b) Carleman

Figure 3: Comparison of Numerical and Carleman solutions
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For large values of ε (such as ε = 0.1), relaxation oscillation occurs. A. V. Hill

stated that relaxation oscillations are the oscillations governing all periodic physio-

logical phenomenon [9]. Figure 4 shows the relaxation oscillation when ε is large.

Figure 4: Solution by Carleman Embedding Technique for ε = 0.1

2.3 Conclusion

These results illustrate the utility of the Carleman embedding technique to find

solutions of systems of nonlinear differential equations. We get the same solution

because Van der Pol’s equations have periodic solutions. Carleman embedding tech-

nique can also be used to explain relaxation oscillation in Van der Pol’s equations.

Carleman embedding technique did appear to have some practicality in the study

of problems with periodic solution and I used the same technique to get solutions of

systems of nonlinear differential equations which do not have solutions of a periodic

nature, in particular the Fitzhugh Nagumo equations.
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3 FITZHUGH NAGUMO MODEL

3.1 Introduction

One of the leading frontiers of biophysics is the study of neurophysiology, which

only several decades ago spawned an understanding of the basic processes underlying

the unique electro-chemical communication system that constitutes our nervous sys-

tem. Our brains and every other subsystem in the nervous system are composed of

cells called neurons [1].

While neurons tend to vary greatly in size, shape, and properties, such cells com-

monly share certain typical features. Anatomically, the cell body (soma) is the site

at which the nucleus and major subcellular structures are located and is the central

point from which synthesis and metabolism are coordinated [1].

A more prominent feature is a long tube-like structure called the axon whose length

often exceeds 1 cm. It is known that the propagation of a nerve signal is electrical in

nature; after being initiated at a site called the axon hillock, it propagates down the

length of the axon to terminal branches, which form loose connections (synapses) with

neighboring neurons. A propagated signal is called an action potential. A neuron has

a collection of dendrite (branched, ”root-like”) appendages, which receive incoming

signals by way of the synapses and convey them to the soma [1].

How the detailed electro-chemical mechanism operates is a fascinating story that,

broadly speaking, is now well understood. It is known that neuronal signals travel

along the cell membrane of the axon in the form of a local voltage difference across
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the membrane. In the resting state, the cytoplasm (cellular fluid) inside the axon con-

tains an ionic composition that makes the cell interior slightly negative in potential

(-50mV difference) with respect to the outside. Such a potential difference is main-

tained at a metabolic expense to the cell by active pumps located on the membrane.

These continually transport sodium ions (Na+) to the outside of the cell and convey

potassium ions (K+) inwards so that concentration gradients of both species of ions

are maintained. The differences in these and other ionic concentration across the

membrane result in the net electric potential that is maintained across the membrane

of the living cell. We take that the voltage V is the potential difference (inside minus

outside) for the membrane [1].

Thinking of the axon as a long electrical cylindrical cable is a vivid but somewhat

erroneous conception of its electrical properties. First, while a current is implied,

it is predominantly made up of ionic flow (not electrons), and its direction is not

longitudinal but transverse (into the cell). Second, while a passive cable has fixed

resistance per unit length, an axon has an excitable membrane whose resistance to

the penetration of ions changes as the potential difference V is variable [1].

The flow of charged ions across a cell membrane is restricted to the specific molec-

ular sites called pores, which are scattered along the membrane surface. It is known

that many different kinds of pores (each specific to a given ion) are present and that

these open and close in response to local conditions including the electrical potential

across the membrane [1]. This can be broadly understood in terms of changes in the

conformation of the proteins making up these pores, although the biophysical details

are not entirely known.
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To understand the process by which an action potential signal is propagated, we

must look closely at events happening in the immediate vicinity of the membrane.

Starting the process requires a threshold voltage: the potential difference must be

raised to about -30 to -20mV at some site on the membrane [1]. Experimentally this

can be done by stimulating an electrode that pierces a single neuron. Biologically

this happens at the axon hillock in response to an integrated appraisal of excitatory

inputs impinging on the soma. As a result of reaching this threshold voltage, the

following sequences of events occur [1].

1. Sodium channel open, letting Na+ ions enter the cell interior. This causes the

cell membrane potential to depolarize; i.e, the inside becomes positive compar-

ing to the outside, the reverse of resting-state polarization

2. After small delay, the potassium channel open, letting K+ leave the cell. This

restores the original polarization of the cell membrane, and further causes an

overshoot of the negative rest potential.

3. The sodium channels then close in response to a decrease in the potential dif-

ference.

4. Next to the site that experienced these events the potential difference exceeds

the threshold level necessary to set in motion step 1. The process repeats,

leading to spatial conduction of the spike-like signal. The action potential can

thus be transported down the length of the axon without attenuation or change

in shape. This makes a traveling wave [1].
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3.2 Hodgkin-Huxley Model

Classically, it was known that the cell membrane carries a potential across the

inner and outer surfaces, hence a basic model for a cell membrane is that of a capacitor

and resistor in parallel [10]. The model equation takes the form

Cm
dV

dt
= −V − Veq

R
+ Iappl

where Cm is the membrane capacitance, R the resistance, Veq the rest potential, V the

potential across the inner and outer surfaces, and Iappl represents the applied current.

In landmark patch clamp experiments in the early part of the 20th century [10], it

was determined that many cell membranes are excitable, i.e., exhibit large excursions

in potential if the applied current is sufficiently large. Examples include nerve cells

and certain muscle cells, e.g. cardiac cells [10].

From 1948-1952, Hodgkin and Huxley [10] conducted patch clamp experiments on

the squid giant axon, a rather large part of nerve tissue suitable for experimentation

given the technology of the time. Based on their experiments, they constructed a

model for the patch clamp experiment in an attempt to give mathematical explanation

for the axons excitable nature. A key part of their model’s assumptions was that the

membrane contains channels for potassium and sodium ion flow. In effect, the 1
R

factor in the above equation became potential dependent for both channels. The

underlying model equation is

Cm
dV

dt
= −[gNa(V )(V − VNa) + gK(V )(V − VK) + gL(V − VL)] (7)

Here VNa, VK and VL represent that part of the resting membrane potential that
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is due to the contributions of the ions Na+, K+ and L (all other mobile species)

respectively.

It is generally assumed that gL is independent of V, which is constant. To govern

the ionic conductivities gNa and gK , it is necessary to introduce three variables n, m

and h in the dynamics of the ionic pores. These hypothetical quantities could perhaps

be interpreted as concentrations of proteins that must act in concert to open or

close a pore. However, the equations were chosen to fit the data, not from a more

fundamental knowledge of molecular mechanisms.

Hodgkin and Huxley defined

gNa = ḡNam
3h

gK = ḡKn4

where the ḡ are constant conductivity parameters [10]. Hodgkin and Huxley [10]

suggested that n, m, and h are voltage-sensitive gate proteins, that obey differential

equations in which voltage dependence is described:

dn

dt
= αn(V )(1− n)− βn(V )n

dm

dt
= αm(V )(1−m)− βm(V )m (8)

dh

dt
= αh(V )(1− h)− βh(V )h

In addition, the quantities αn, αm, αh, βn, βm, βh are assumed to be voltage-dependent
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as follows:

αm(V ) = 0.1(V + 25)(e
(V +25)

10 − 1)−1

αh(V ) = 0.07e
(V )
20

αn(V ) = 0.01(V + 10)(e
(V +10)

10 − 1)−1 (9)

βm(V ) = 4e
V
18

βh(V ) = (e
V +30

10 + 1)−1

βn(V ) = 0.125e
V
80

The values of other constants appearing in the equations are ḡNa = 120, ḡK = 36 and

gL = 0.3mS/cm2; VNa = −115, VK = 12 and VL = −10.5989mV .

Taken together, equations (8) and (9) represent a four-dimensional dynamical

system (coupled ODEs) with highly nonlinear terms known as the Hodgkin-Huxley

model. Because of the high nonlinear nature of the model, it is quite difficult to

explore mathematically. Moreover, the internal variables m, n and h do not clearly

relate to underlying molecular mechanisms [1].

It does however provide a basis for qualitative explanation of the formation of

action potentials in the giant squid axon. Moreover, the model structure forms a

basis for virtually all models of excitable membrane behavior. In the next section, we

explore this model in the elegant way suggested by Fitzhugh and Nagumo [11, 12].
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3.3 Fitzhugh Nagumo Model

The Fitzhugh-Nagumo equation is a simplification of the Hodgkin-Huxley model

devised in 1952 [10]. The Hodgkin-Huxley has four variables and the Fitzhugh-

Nagumo equation is a reduction of that model. The reduction is from four variables

to two variables where phase plane techniques may be used for the analysis of the

model.

The variables retained in the reduction of the model are the excitable variable

and the recovery variable which are characterized as being the fast and slow variables

respectively. FitzHugh explains that the model was devised in the same way as the

Van der Pol equation [11]. Its solution does not, to be sure, give an accurate fit to

curves obtained from many physical oscillators. The equation was intended, rather,

to represent the qualitative properties of a wide class of such oscillators, while its

algebraic form being chosen to be as simple as possible.

The purpose of the FitzHugh-Nagumo equation is to model the same phenomenon

as the Hodgkin-Huxley model. The phenomenon that is modeled is the control of the

electrical potential across a cell membrane. This control is due to the change of flow

of the ionic channels of the cell membrane. This results in a change in potential which

is used to send electrical signals between cells. This is readily observed in muscle and

other excitable cells. For example the FitzHugh-Nagumo equation is used to model

electrical waves of the heart [3].
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The model is given by

dV

dt
= c(V − 1

3
V 3 + W + I(t))

dW

dt
= −(V − a + bW )

c
(10)

In these equations, the variable V represents the excitability of the system and could

be identified with voltage (membrane potential in the axon); W is a recovery variable,

representing combined forces that tend to return the state of the axonal membrane

to rest. Finally, I(t) is the applied stimulus that leads to excitation (such as input

current) [11]. In typical physiological situations, such stimulus might be impulses, step

functions, or rectangular pulses. Moreover, the variables a, b, and c are dimensionless

and positive.

It is thus of interest to explore how equation (10) behaves when various functions

I(t) are used as inputs and we try to get the approximate solution to the above

equations, particularly the action potential using the Carleman Embedding technique.

Because of the nonlinearity nature of the model, we can not find the closed form of

the solution. However, we can simulate and approximate. We can then use this to

explore neural activity such as excitability.

3.4 One-Sided Green’s Function

A one-sided Green’s function relates the solutions of an inhomogeneous equa-

tion to the inhomogeneous term and the solutions of the corresponding homogeneous

equation [4]. Green’s functions have been determined for an extremely wide variety

of differential equations.
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Theorem 3.1 If G is the solution of the homogeneous (F (x) ≡ 0) form of

dX

dt
= AX + F (t)

with G(0) = 1, then the solution to the inhomogeneous is

X(t) = X(0) +

∫ t

0

G(t− u)F (X)du.

Proof: If we take the derivative of X(t), we get

dX

dt
= G(t− t)F (t) +

∫ t

0

dG

dt
(t− u)F (X)du

= 1F (t) + A

∫ t

0

G(t− u)F (X)du

= AX + F (t)− AX(0).

Let us assume that X(0) = 0 so that AX(0) = 0. Then

dX

dt
= AX + F (t).

So a solution of the above nonhomgeneous system of differential equation is of the

form

X(t) =

∫ t

0

G(t− u)F (t)du (11)

If X∗(t) is any other solution, then

d(X −X∗)

dt
= A(X −X∗)

with (X −X∗)(0) = 0. This implies that X = X∗ and that equation (11) is a unique

solution.
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3.5 Carleman Embedding on Fitzhugh Nagumo Equation

Recall the F-N model:

dV

dt
= c(V − 1

3
V 3 + W + I(t))

dW

dt
= −(V − a + bW )

c
.

Before we can apply Carleman embedding, we must transform the above Fitzhugh

Nagumo equations. We can rewrite the above systems of equations as

dV

dt
= cV + cW + (cI − c

3
V 3)

dW

dt
=

−V

c
− b

c
W +

a

c
=
−V

c
− b

c
(W − a

b
).

We can make the substitution

θ = W − a

b
=⇒ dθ

dt
=

dW

dt
.

Then the above equations can be written as

dV

dt
= cV + cθ + c

a

b
+ cI − c

3
V 3

dθ

dt
=

−1

c
V − b

c
θ.

One can write the above system in the matrix form as

dX

dt
= AX + F (X) (12)

where

A =

[
c c
−1
c

−b
c

]
, X =

[
V
θ

]
, F (X) =

[
ca

b
+ cI − c

3
V 3

0

]
.
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Let

G =

[
g11 g12

g21 g22

]
be the one-sided Green’s function and let

dG
dt

= AG ; G(0) = I2×2.

The solution of the above system is

G(t) = G(0)eAt = eAt.

Now using Theorem 2.1, we assume the solution of equation (12) is of the form

X(t) =

∫ t

0

G(t− u)F (X)du

=

∫ t

0

[
g11(t− u) g12(t− u)
g21(t− u) g22(t− u)

] [
F11(X)

0

]
du.

So we have

X(t) =

[
V (t)
θ(t)

]
=

∫ t

0

[
g11(t− u)F11(X)
g21(t− u)F11(X)

]
du.

It follows that

V (t) =

∫ t

0

g11(t− u)F11(V )du

=

∫ t

0

g11(t− u)[c
a

b
+ cI − c

3
V 3(u)]du
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and

θ(t) =

∫ t

0

g21(t− u)F11(V )du

=

∫ t

0

g21(t− u)[c
a

b
+ cI − c

3
V 3(u)]du.

Now if we take the derivative of the above integral equations, we obtain

dV

dt
= g11(t− t)(c

a

b
+ cI − c

3
V 3(t)) +

∫ t

0

dg11(t− u)

dt
(c

a

b
+ cI − c

3
V 3(u))du

= g11(0)(c
a

b
+ cI − c

3
V 3(t)) +

∫ t

0

dg11(t− u)

dt
(c

a

b
+ cI − c

3
V 3(u))du

and

dθ

dt
= g21(t− t)(c

a

b
+ cI − c

3
V 3(t)) +

∫ t

0

dg21(t− u)

dt
(c

a

b
+ cI − c

3
V 3(u))du

= g21(0)(c
a

b
+ cI − c

3
V 3(t)) +

∫ t

0

dg21(t− u)

dt
(c

a

b
+ cI − c

3
V 3(u))du.

Now we use Maple to find the components of matrix G and after some simplification

(Appendix 1) we can write

g11(t) =
1

2Q
[Uext + V eyt]

g21(t) =
1

2Q
[ext − eyt]

where
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Q =
√

b2 + 2bc2 + c4 − 4c2

U = Q + c2 + b

V = Q− c2 − b

x =
−b + c2 + Q

2c

y =
−b + c2 −Q

2c
.

The derivatives of g11 and g21 are, respectively,

g′11(t) =
1

2Q
[Uxext + V yeyt]

g′21(t) =
1

2Q
[xext − yeyt].

Now let us find the limit of the ratio of these two derivatives and the functions as

t→∞

lim
t→∞

g′11(t)

g11(t)
= lim

t→∞

[Uxext + V yeyt]

[Uext + V eyt]

= lim
t→∞

Ux + V ye(y−x)t

U + V e(y−x)t

lim
t→∞

g′21(t)

g21(t)
= lim

t→∞

[xext − yeyt]

[ext − eyt]

= lim
t→∞

x− ye(y−x)t

1− e(y−x)t
.

However,

y − x = [
−b + c2 −Q

2c
]− [

−b + c2 + Q

2c
] =

−Q

c
< 0

and

lim
t→∞

e(y−x)t = 0.
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Hence

lim
t→∞

g′11(t)

g11(t)
= lim

t→∞

Ux + V ye(y−x)t

U + V e(y−x)t

= x

and

lim
t→∞

g′21(t)

g21(t)
= lim

t→∞

x− ye(y−x)t

1− e(y−x)t

= x.

So for t sufficiently large, we have

g′11(t) ≈ x(g11(t))

= (
−b + c2 + Q

2c
)g11(t)

g′21(t) ≈ x(g21(t))

= (
−b + c2 + Q

2c
)g21(t)

and thus

dV

dt
= g11(0)(c

a

b
+ cI − c

3
V 3(t)) +

∫ t

0

g′11(t− u)(c
a

b
+ cI − c

3
V 3(u))du

= e0(c
a

b
+ cI − c

3
V 3(t)) + (

−b + c2 + Q

2c
)

∫ t

0

g11(t− u)(c
a

b
+ cI − c

3
V 3(u))du

= (c
a

b
+ cI − c

3
V 3(t)) + (

−b + c2 + Q

2c
)V (t)

= (
−b + c2 + Q

2c
)V (t)− c

3
V 3(t)) + c

a

b
+ cI.

Similarly,

dθ

dt
= g21(0)(c

a

b
+ cI − c

3
V 3(t)) +

∫ t

0

g′21(t− u)(c
a

b
+ cI − c

3
V 3(u))du

= 0(c
a

b
+ cI − c

3
V 3(t)) + (

−b + c2 + Q

2c
)

∫ t

0

g21(t− u)(c
a

b
+ cI − c

3
V 3(u))du

= (
−b + c2 + Q

2c
)θ(t).

32



Since the above equation for θ(t) is a simple differential equation, we can easily find

its solution. The equation for the action potential V (t) is nonlinear but finite, thus

we apply Carleman embedding technique to get the approximate solution.

Following the scheme proposed by Carleman, we can set

y0 = 1

y1 = V

y2 = V 2

y3 = V 3

...
...

yn = V n

...
...

It follows that

dyn

dt
=

dV n

dt
= nV n−1dV

dt

so that from the initial condition

y1(0) = V (0) = V0; yn(0) = V n
0

and

dyn

dt
= nV n−1(t)[(

−b + c2 + Q

2c
)V (t)− c

3
V 3(t)) + c(

a

b
+ I)]

= (
−b + c2 + Q

2c
)nV n(t)− nc

3
V n+2(t)) + (

ca + cIb

b
)nV n−1

= (
−b + c2 + Q

2c
)nyn −

nc

3
yn+2 + (

ca + cIb

b
)nyn−1.
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For the sake of simplicity, we make the following substitution

A =
−b + c2 + Q

2c
; B =

ca + cIb

b
.

Then we have

dyn

dt
= Bnyn−1 + Anyn −

nc

3
yn+2; n ≥ 1.

The above recurrence equation can be written in matrix form as

d

dt



y0

y1

y2

y3

y4
...

yn
...


=



0 0 0 0 0 0 0 0 . . . 0
B A 0 −c

3
0 0 0 0 . . . 0

0 2B 2A 0 −2c
3

0 0 0 . . . 0
0 0 3B 3A 0 −c 0 0 . . . 0
0 0 0 4B 4A 0 −4c

3
0 . . . 0

...
. . . . . . . . .

...
0 0 0 0 0 . . . nB nA . . . 0
...

...
...

. . . . . .
...





y0

y1

y2

y3

y4
...

yn
...


.

We can write the above system in compact form as

dY

dt
= MY. (13)

The solution to equation (13) is given by

Y (t) = Y0e
Mt (14)

where Y0 is the initial value

Y0 =



y0(0)
y1(0)
y2(0)
y3(0)
y4(0)

...
yn(0)

...


=



1
V0

V 2
0

V 3
0

V 4
0
...

V n
0
...
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Here we noticed that the two-dimensional Fitzhugh Nagumo equations are embedded

into infinite nonlinear systems of differential equations. However, it is hard to find

the closed form of the solutions of equation (13). Therefore, by truncating the matrix

M at n = 15, one can use computer simulation to find the approximate solutions.

Then we can compare the results obtained by numerical and Carleman embedding

technique.
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4 SIMULATION RESULTS

In this section, the two-dimensional Fitzhugh Nagumo system of ordinary differ-

ential equations are numerically integrated using Maple and we compared the results

with the solution obtained by the Carleman Embedding Technique.

For the Carleman technique, the matrix is truncated at n = 15 and the code uses

the parameter values of a = 0.7, b = 0.8, c = 0.08, V0 = 0.4. For different initial values

of the action potential V (0), it can be seen that the system approaches to the same

equilibrium point.

Three different values of the stimulus I = −0.2, I = 0, I = 0.2 are used to explore

the solutions and predict corresponding activity of neurons.

In general, the following four issues are discussed.

1. Carleman Embedding Technique Solutions ,

2. Time Series and Equilibrium Points,

3. Effect of Changing Initial Conditions, and

4. Excitability.
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4.1 Carleman Embedding Technique Solutions

Figure 5 compares the Carleman Embedding Technique to numerical solutions.

The result is approximation to the solution of the Fitzhugh Nagumo equation and

it can be used to approximate the solution of other systems of nonlinear differential

equations.

(a) I = 0 (b) I = 0.2

(c) I = −0.2

Figure 5: Comparison of Numerical and Carleman solutions for different I values
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4.2 Time Series and Equilibrium Points

Figure 6 shows that V asymptotically approaches its equilibrium value of about

1.2 and W is monotonically approaching its steady state value of about -0.6. We thus

know that there is a stable fixed point in the system at (x, y) ≈ (1.2,−0.6) [15]. We

can confirm this by doing simple algebra with equation (10).

Figure 6: Solution using Numerical and Carleman, I = 0

4.3 Effect of Changing Initial Conditions

We can check whether this is the only stable fixed point present in the system.

Using numerical integration, one can search for multiple fixed points by investigating

what happens as the initial condition is changed in a systematic manner. If we change

our initial condition from V0 = 0.4 to V0 = 1.1994 and run the simulation, we see the

trace appears on the plot eventually approaches the same asymptotic or steady state

value as before. If we continue modifying the initial condition, we can see that there
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is only one fixed point in the system of equation (10).

If we set the initial conditions and find the equilibria algebraically, we see that

the fixed point is stable and lies at (x∗, y∗) = (1.1994,−0.62426) [15]. Figure 7 shows

that, for different initial values of V0, the trace of the action potential asymptotically

approaches the equilibrium point.

(a) I = 0, V0 = 0.4 (b) I = 0.2, V0 = 1.1994

Figure 7: Comparison of Numerical and Carleman solutions for different initial values

of V0
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4.4 Excitability

The fact that small changes in initial conditions can have a large effect on the

resultant trajectory is responsible for the property of excitability possessed by the

FitzHugh-Nagumo equations [15]. We can see this by running the simulation for

different values of the current.

1. For I = 0, V0 = 1.1994, the trace is a horizontal line, since our initial condition

is now at the fixed point itself: the transient previously present has evaporated.

Figure 8 shows that if we don’t inject a depolarizing current, the trace of the

action potential remains horizontal [15].

Figure 8: No threshold, I=0, V0 = 1.1994
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2. If we inject a strong depolarizing stimulus current of amplitude 2.0, we see that

there is an action potential with a fast upstroke phase. Figure 9 illustrates that

the trajectory of the action potential V moves away from the equilibrium point.

Figure 9: Suprathreshold, I=0.2, V0 = 1.1994

3. If we change the stimulus amplitude to -2.0, we see the response of the sub-

threshold. Figure 10 shows that the trajectory of the action potential dies away

quickly as a result of the negative current.

Figure 10: Subthreshold, I=-0.2, V0 = 1.1994
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4.5 Conclusion

It is known that finding the closed form of the solutions of nonlinear finite au-

tonomous systems of differential equations is almost impossible [2]. It will, however,

be approximated by using Carleman Embedding Technique. We have shown that

the Carleman embedding technique can be applied to find the approximate solutions

not only for those with periodic nature, but also for systems whose solutions are not

periodic.

From the simulation results, it can be seen that the Carleman embedding technique

did appear to have some practicality in finding the approximate solutions of Van der

pol’s equations and Fitzhugh Nagumo equations.

In the case of Fitzhugh Nagumo, we saw some differences between the Carleman

solution and the numerical solution. This is due to the fact that we truncated the

matrix at n = 15. But if we increase the dimension of the matrix moderately large,

the technique will approximate the solution effectively.
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APPENDICES

APPENDIX A: The Matrix G

with(LinearAlgebra):

M:=Matrix([[c,c],[-1/c,-b/c]]);

M :=

c c

K
1

c
K
b

c

G := MatrixExponential(M*t);
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g11 := G[1, 1];
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MMdMatrix 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , B, A, 0,
K1

3
 c, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0 , 0, 2$B, 2$A, 0,
K2

3
 c, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 3$B, 3$A, 0,Kc, 0, 0, 0, 0,

0, 0, 0, 0, 0 , 0, 0, 0, 4$B, 4$A, 0,
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3
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K
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$B, 12$A, 0,K4 c , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13$B, 13$A, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 14$B, 14$A :



APPENDIX B: Maple Code

> M := subs(A = -0.02, B = 0.08*i+0.07, c = 0.08, MM);

for kk from -1 to 1 do

YY[kk] := MatrixExponential(subs(i = .4*kk, M)*t);

V0:=<1, .4, .4^2, .4^3, .4^4, .4^5, .4^6, .4^7, .4^8, .4^9, .4^10,

.4^11, .4^12, .4^13, .4^14>:

Y[kk] := YY[kk][2,].V0;

end do;

> for jj from -1 to 1 do

plot(Re(Y[jj]), t = 0 .. 40)

end do;

> with(plots);

for k from -1 to 1 do

sys3 := {x(0) = .4, y(0) = .4, diff(x(t), t) = 0.08*(x(t)+y(t)+.4*k-(1/3)*x(t)^3),

diff(y(t), t) = -(x(t)-.7+.8*y(t))/(0.08)};

p[k] := dsolve(sys3, type = numeric)

end do;

> for jj from -1 to 1 do

display(plot(Re(Y[jj]), t = 0 .. 40, color = blue),

odeplot(p[jj], [[t, x(t)]], 0 .. 40, color = red))

end do;
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