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ABSTRACT

Packings and Coverings of Complete Graphs with a Hole with the 4-Cycle with a

Pendant Edge

by

Yan Xia

In this thesis, we consider packings and coverings of various complete graphs with the

4-cycle with a pendant edge. We consider both restricted and unrestricted coverings.

Necessary and sufficient conditions are given for such structures for (1) complete

graphs Kv, (2) complete bipartite graphs Km,n, and (3) complete graphs with a hole

K(v, w).
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1 INTRODUCTION, MOTIVATION, AND HISTORY

In this chapter, we will introduce definitions, give examples and verify different types

of graph decompositions, packings, and coverings with background and history.

A g-decomposition of graph G is a set of subgraphs of G, γ = {g1, g2, . . . , gn}, where

gi
∼= g for i ∈ {1, 2, . . . , n}, E(gi) ∩ E(gj) = ∅ for i 6= j, and ∪n

i=1E(gi) = E(G).

The gi are called blocks of the decomposition. When G is a complete graph, the g-

decomposition is often called a graph design. See Figure 1 for a 5-cycle decomposition

of K5.

Figure 1: A C5 decomposition of K5

The concept of a graph decomposition lies in the general area of design theory.

Consider the following experiment: Suppose we have a collection of v samples and we

want to compare a property of the samples. However, these samples are compared

by running them in the special machine three-at-a-time. Due to the cost of running

the machine, the machine cannot be calibrated from run to run. So the only way two

samples can be compared is to run them together in the machine. When can all of the

v samples be optimally compared to each other by running the machine
(

v

2

)

/3 times?

The solution to this question is equivalent to finding a K3-decomposition of Kv,
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where each vertex of Kv represents a sample, an edge joining two vertices represents

a comparison of the two corresponding samples, and a copy of K3 represents a run

of the machine. A K3-decomposition of Kv exists if and only if v ≡ 1 or 3 (mod 6).

Such a structure is called a Steiner triple system [15]. See Figure 2 for a K3.

Figure 2: The complete graph on three vertices, K3

In the event that a g-decomposition of G does not exist, we can still consider a set

of isomorphic copies of graphs g which “approximate” a decomposition. There are

two ways to approach this. We describe the two approaches in terms of the sample

comparison analogy. In the first approach, we can try comparing as many of the

samples as possible, without repetition of comparisons. From the above, we want to

find a collection of runs of the machine (represented by copies of K3) which do not

repeat pairs of samples run together. That is, the copies of K3 are edge disjoint. This

minimizes the number of pairs of samples which are omitted. That is, the cardinality

of the set of edges in Kv which are in none of the copies of K3 is minimal. Such an

experimental design is related to a maximal graph packing. A maximal packing of

a simple graph G with isomorphic copies of a graph g is a set {g1, g2, . . . , gn} where
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gi
∼= g and V (gi) ⊂ V (G) for all i, E(gi) ∩ E(gj) = ∅ for i 6= j, ∪n

i=1gi ⊂ G, and

|E(G) \ ∪n
i=1E(gi)| is minimal. This experimental design corresponds to a K3-packing

of Kv. Such designs are explored in [17]. Other packings of complete graphs have

also been studied. For example, 4-cycle-packings [18], K4-packings [3], and 6-cycle-

packings [10, 11]. See Figure 3 for a packing of K5.

Figure 3: A packing of K5 with 3-cycles has a leave L with 4 edges

A second approach involves comparing all of the samples to each other, but with

minimal repetitions of compared samples. So we might assume that the machine

must have three samples in it during each run. This experimental design is related to

a minimal graph covering. A minimal covering of a simple graph G with isomorphic

copies of a graph g is a set {g1, g2, . . . , gn} where gi
∼= g, V (gi) ⊂ V (G), E(gi) ⊂ E(G)

for all i, G ⊂ ∪n
i=1

gi, and |∪n
i=1

E(gi) \E(G)| is minimal (when considering coverings,

the graph ∪n
i=1gi may not be simple and ∪n

i=1E(gi) may be a multiset). The machine

analogy in this case corresponds to a K3-covering of Kv. Such designs are explored

in [8]. Coverings of Kv have also been explored, for example, for 4-cycles [17] and

10



6-cycles [12]. See Figure 4 for a covering of K5.

Figure 4: A covering of K5 with 3-cycles has a padding of 2 × K2

In terms of graph decompositions, several studies have centered on g-decompositions

of complete graphs into copies of a given graph g with a small number of vertices

[1, 2, 13, 14].

The 3-cycle with a pendant edge is denoted L. See Figure 5 for an L. The graph

L is sometimes called the lollipop. An L-decomposition of Kv exists if and only if

v ≡ 0 or 1 (mod 8) [2].

The 4-cycle with a pendant edge is denoted H. See Figure 6 for an H. The

graph H is sometimes called a kite. We consider a single graph g, the 4-cycle with

a pendant edge, and explore packings and coverings of several graphs related to the

complete graph. We denote the 4-cycle with a pendant edge as H = [a, b, c, d; e]

where V (H) = {a, b, c, d, e} and E(H) = {(a, b), (b, c), (c, d), (a, d), (a, e)}. An H-

decomposition of Kv exists if and only if v ≡ 0 or 1 (mod 5), v ≥ 10 [1].
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Figure 5: The 3-cycle with a pendant edge, denoted L

Figure 6: The 4-cycle with a pendant edge, denoted H

Suppose we have a collection of m samples from one population and a collection

of n samples from a second population. We are interested in comparing the two

populations and hence in comparing each sample from m to each sample from n.

This motivates us to consider decompositions, packings, and coverings of complete

bipartite graphs. An H-decomposition of the complete bipartite graph, Km,n, exists

if and only if mn ≡ 0 (mod 5), m ≥ 5, and n ≥ 2 [6].

Another graph related to the complete graph is the complete graph with a hole,
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K(v, w). The complete graph on v vertices with a hole of size w is the graph with

vertex set V (K(v, w)) = Vv−w ∪ Vw, where |Vv−w| = v − w and |Vw| = w, and

edge set E(K(v, w)) = {(a, b) | a, b ∈ V (K(v, w)), {a, b} 6⊂ Vw}. Necessary and

sufficient conditions for the decomposition of K(v, w) into m-cycles are known for

m ∈ {3, 4, 5, 6, 7, 8, 10, 12, 14} [4, 5, 16]. There is an H-decomposition of K(v, w) if

and only if |E(K(v, w))| ≡ 0 (mod 5), v − w ≥ 4, and (v, w) /∈ {(5, 1), (6, 1)} [6].

The graph K(v, w) relates to the experimental design story as follows. Suppose

we have performed comparisons on a collection of w samples and then receive an

additional collection of samples (say, v − w new samples). We now wish to compare

the v−w new samples to each other and to the original w samples. In the case of the

machine described above, this would correspond to a K3 decomposition of K(v, w).

In the event that a decomposition does not exist, we need to look into packings and

coverings of K(v, w). With a graph g-packing of G, we require that each copy of

g is a subgraph of G. The definition given above for a g-covering also involves the

condition that each copy of g is a subgraph of G. Most studies of coverings have

involved G = Kv, so the condition that the copies of g are subgraphs of G is trivially

satisfied. But when G is not a complete graph, there is no obvious reason to impose

the subgraph condition.

Returning to the testing-of-samples story, we see no reason to disallow, the testing

(or re-testing) of two samples in the hole of K(v, w). Therefore, we are motivated

to refine the definition of a graph covering into two cases—one case in which edges

that are not in G are forbidden from use in the copies of g, and a case in which these

edges are not forbidden. A minimal unrestricted covering of graph G with isomorphic
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copies of a graph g is a set {g1, g2, . . . , gn} where gi
∼= g, V (gi) ⊂ V (G), G ⊂ ∪n

i=1gi,

and | ∪n
i=1 E(gi) \G| is minimal. The graph ∪n

i=1gi may not be simple and ∪n
i=1E(gi)

may be a multiset. The definition given above for a g-covering also involves the

condition that each copy of g is a subgraph of G. Most studies of coverings have

involved G = Kv. A minimal restricted covering of graph G with isomorphic copies

of a graph g is a set {g1, g2, . . . , gn} where gi
∼= g, V (gi) ⊂ V (G), G ⊂ ∪n

i=1
gi, and

| ∪n
i=1

E(gi) \ G| is minimal, and E(gi) ⊂ E(G) for all i. Notice that in the event

that G is a complete graph, there is no distinction between a minimal restricted and

minimal unrestricted covering. See Figure 7 for an unrestricted covering of K(5, 3).

In K(5, 3), H = [00, a, b, c; 10] is bipartite with partite sets {00, 10} and {a, c, 10}. So,

(00, 10) cannot be the pendant edge. Also, (00, 10) cannot be an edge in the 4-cycle

since then the other 3 edges have to be in the bipartite K2,3, a contradiction occurs.

Therefore, the restricted covering of K(5, 3) does not exist.

Figure 7: An unrestricted H-covering of K(5, 3)

The purpose of this thesis is to give H-packings of K(v, w), and restricted and

unrestricted H-coverings of K(v, w), and unrestricted coverings of Km,n. We also
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present some related results in Chapter 2 on H-packings and H-coverings of Kv and

of Km,n.
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2 PREVIOUS KNOWN FINDINGS

In this chapter, the results are due to Brandon Coker, Gary Coker, and Robert

Gardner [7]. They will be combined with the results of the following chapters and

submitted for publication. We include these results for completeness.

2.1 Packing and Covering Kv

In this section, when necessary, we assume the vertex set of Kv is V (Kv) = {0, 1, 2, . . . ,

v − 1}. Since H has 5 vertices, we only consider v ≥ 5.

Theorem 2.1 A maximal H-packing of Kv, v ≥ 5, has leave L where |E(L)| =

|E(Kv)| (mod 5), except when v ∈ {5, 6} in which case |E(L)| = 5.

Proof. Since |E(H)| = 5, then it is necessary that in any H-packing of Kv with leave

L, |E(L)| ≡ |E(Kv)| (mod 5). Therefore, such a packing with |E(L)| = |E(Kv)|

(mod 5)| would be maximal. If v ∈ {5, 6}, then |E(Kv)| ≡ 0 (mod 5), but there is

not an H-decomposition of Kv [1]. So for v ∈ {5, 6}, an H-packing of Kv with leave

L where |E(L)| = 5 would be maximal.

Case 1. Suppose v = 5. Then |V (K5)| = 10 and, since there is no H-decomposition

of K5, then a packing with |E(L)| = 5 would be maximal. The set {[0, 1, 2, 3; 4]} is a

maximal packing of K5 with leave L where E(L) = {(0, 2), (1, 3), (1, 4), (2, 4), (3, 4)}.

Case 2. Suppose v = 6. Then |V (K6)| = 15 and, since there is no H-decomposition of

K6, then a packing with |E(L)| = 5 would be maximal. The set {[0, 1, 2, 3; 4], [1, 3, 4, 5;

4]} is a maximal packing of K6 with leave L where E(L) = {(0, 2), (0, 5), (2, 5), (2, 4),
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(3, 5)}.

Case 3. Suppose v ≡ 2 or 4 (mod 5), v ≥ 9. Since |E(Kv)| ≡ 1 (mod 5), |E(L)| = 1

would be optimal. Now K(v, 2) can be decomposed [6], so |E(L)| = 1.

Case 4. Suppose v ≡ 3 (mod 5), v ≥ 8. Since |E(Kv)| ≡ 3 (mod 5), |E(L)| = 3

would be optimal. Now K(v, 3) can be decomposed [6], so |E(L)| = 3. �

Theorem 2.2 A minimal H-covering of Kv, v ≥ 5, has padding P where |E(P )| =

−|E(Kv)| (mod 5), except when v ∈ {5, 6} in which case |E(P )| = 5.

Proof. Since |E(H)| = 5, then it is necessary that in any H-covering of Kv with

padding P , that |E(Kn)| + |E(P )| ≡ 0 (mod 5), or that |E(P )| ≡ −|E(Kv)| (mod

5). So if |E(P )| = −|E(Kv)| (mod 5), then the covering is minimal. In the case

v ∈ {5, 6}, then −|E(Kv)| ≡ 0 (mod 5), but there is no H-decomposition of Kv [1].

So for v ∈ {5, 6}, an H-covering of Kv with padding P where |E(P )| = 5 would be

minimal.

Case 1. Suppose v = 5. Then |V (K5)| = 10. Since there is no H-decomposition of

K5, then a covering with |E(P )| = 5 would be minimal. The set {[0, 1, 2, 3; 4], [1, 2, 0, 4;

3], [4, 1, 0, 2; 3]} is a minimal covering of K5 with padding P where E(P ) = {(0, 1), (0, 2),

(0, 4), (1, 2), (1, 4)}. So |E(P )| = 5.

Case 2. Suppose v = 6. Then |V (K6)| = 15. Since there is no H-decomposition of

K6, then a covering with |E(P )| = 6 would be minimal. The set {[0, 1, 2, 3; 4], [5, 0, 2, 4;

1], [5, 3, 4, 1; 2], [3, 4, 5, 2; 1]} is a minimal covering of K6 with padding P where

E(P ) = {(1, 5), (2, 3), (2, 5), (3, 4), (4, 5)}. So |E(P )| = 5.

Case 3. Suppose v ≡ 2 or 4 (mod 5), v ≥ 7. Since |E(Kv)| ≡ 1 (mod 5), |E(P )| = 4

17



would be optimal. There is a H-decomposition of K(v, 2) [6]. Take such a decompo-

sition, along with another copy of H which includes the edge of the hole of K(v, 2).

This gives a covering of Kv with padding P where |E(P )| = 4 and so the covering is

optimal.

Case 4. Suppose v ≡ 3 (mod 5), v ≥ 8. Since |E(Kv)| ≡ 3 (mod 5), |E(P )| = 2 would

be optimal. A H-covering of K8 is given by {[0, 1, 2, 7; 3], [1, 3, 5, 7; 6], [4, 5, 6, 3; 7], [2, 4,

6, 0; 5], [1, 4, 0, 5; 2], [7, 3, 2, 6; 0]} with padding P where E(P ) = {(0, 7), (1, 2)} and

the covering is optimal. For v ≥ 13, Kv = K(v, 8)
⋃

K8, K(v, 8) can be decomposed

[6], and K8 can be covered with padding P where |E(P )| = 2. Therefore, there is an

optimal H-covering of Kv with padding P where |E(P )| = 2. �

2.2 Packing and Covering Km,n

In this section, we consider H-packings and H-coverings of complete bipartite graphs

Km,n. We assume the partite sets of Km,n are {00, 10, . . . , (m−1)0} and {01, 11, . . . , (n−

1)1}.

Theorem 2.3 A maximal H-packing of Km,n has leave L where

(1) |E(L)| = mn if m = 1 or n = 1, or if m = n = 2, or

(2) |E(L)| = |E(Km,n)| (mod 5) otherwise.

Proof. First, if m or n equals 1, then H is not a subgraph of Km,n and the leave

must have mn edges. Similarly, the leave of a packing of K2,2 has mn = 4 edges. For

m ≥ 2 and n ≥ 3, as in the proof of Theorem 2.1, an H-packing of Km,n with leave

L where |E(L)| = |E(Km,n)| (mod 5) would be maximal. Next, for m ≥ 2 and n ≥ 3

18



we observe that if there is a packing of Km,n with leave L, then there is a packing of

Km+5i,n+5j with leave L for all i, j ∈ N. This is because Km+5i,n+5j = Km,n ∪Km,5j ∪

K5i,n ∪ K5i,5j where the partite sets of Km+5i,n+5j are {00, 10, . . . , (m − 1 + 5i)0} and

{01, 11, . . . , (n − 1 + 5j)1}, the partite sets of Km,n are {00, 10, . . . , (m − 1)0} and

{01, 11, . . . , (n−1)1}, the partite sets of Km,5j are {00, 10, . . . , (m−1)0} and {n1, (n+

1)1, . . . , (n−1+5j)1}, the partite sets of K5i,n are {m0, (m+1)0, . . . , (m−1+5i)0} and

{01, 11, . . . , (n−1)1}, and the partite sets of K5i,5j are {m0, (m+1)0, . . . , (m−1+5i)0}

and {n1, (n + 1)1, . . . , (n − 1 + 5j)1}. There is an H-decomposition of Km,5j , K5i,n,

and K5i,5j [6]. The packings given in Table 1, combined with the decompositions of

Table 1: Packings of Km,n for small values of m and n

(m, n) (mod 5) Km,n Packing Leave

(1, 1) K6,6 {[00, 01, 10, 11; 21], [00, 51, 10, 41; 31], {(50, 31)}
[20, 01, 30, 11; 21], [20, 41, 30, 51; 31],
[40, 01, 50, 11; 21], [40, 41, 50, 51; 31],

[21, 10, 31, 30; 50]}
(1, 2) K6,2 {[01, 00, 11, 10; 20], [11, 50, 01, 40; 30]} {(20, 11), (30, 01)}
(1, 3) K6,3 {[30, 01, 20, 11; 21], [10, 01, 00, 11; 21] {(00, 21), (20, 21),

[50, 01, 40, 11; 21]} (40, 21)}
(1, 4) K6,4 {[00, 01, 10, 11; 21], [31, 20, 21, 30; 10], {(20, 01), (20, 11),

[21, 40, 11, 50; 10], [31, 40, 01, 50; 00]} (30, 01), (30, 11)}
(2, 2) K2,2 ∅ {(00, 01), (00, 11),

(10, 01), (10, 11)}
(2, 3) K3,2 {[11, 10, 01, 00; 20]} {(20, 01)}
(2, 4) K4,2 {[11, 10, 01, 00; 20]} {(20, 01), (30, 01),

(30, 11)}
(3, 3) K3,3 {[11, 10, 01, 00; 20]} {(00, 21), (10, 21),

(20, 01), (20, 21)}
(3, 4) K4,3 {[00, 01, 10, 11; 21], [20, 31, 10, 21; 11]} {(00, 31), (20, 01)}
(4, 4) K4,4 {[10, 11, 00, 01; 21], [30, 11, 20, 01; 21], {(10, 31)}

[31, 20, 21, 00; 30]}
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complete bipartite graphs mentioned above, yield the result. �

Theorem 2.4 A minimal restricted H-covering of Km,n, where neither m nor n

equals 1 and m + n ≥ 5, has padding P where |E(P )| = −|E(Km,n)| (mod 5).

Proof. For K1,n, H is not a subgraph and so a restricted H-covering does not exist.

Similar to the argument in Theorem 2.2, an H-covering of Km,n with padding P

where |E(P )| = −|E(Km,n)| (mod 5) would be minimal. As in Theorem 2.3, for

m ≥ 2 and m ≥ 3, if there is a restricted covering of Km,n with padding P , then there

is a restricted covering of Km+5i,n+5j with padding P for all i, j ∈ N. The coverings in

Table 2, combined with the decompositions of complete graphs mentioned in Theorem

2.3, yield the result. �

Table 2: Coverings of Km,n for small values of m and n

(m, n) (mod 5) Km,n Covering Padding

(1, 1) K6,6 {[31, 00, 01, 10; 50]} {(00, 31), (00, 01), (10, 01), (10, 31)}
(1, 2) K6,2 {[01, 20, 11, 10; 30]} {(10, 01), (10, 11), (20, 01)}
(1, 3) K6,3 {[21, 00, 11, 20; 40]} {(00, 11), (20, 11)}
(1, 4) K6,4 {[20, 01, 30, 11; 21]} {(20, 21)}
(2, 2) K7,2 {[01, 00, 11, 10; 60], {(00, 11)}

[11, 20, 01, 30; 60],
[11, 50, 01, 40; 00]}

(2, 3) K3,2 {[01, 10, 11, 00; 20]} {(00, 01), (00, 11), (10, 01), (10, 11)}
(2, 4) K4,2 {[01, 30, 11, 00; 20]} {(00, 01), (00, 11)}
(3, 3) K3,3 {[21, 20, 01, 10; 00]} {(10, 01)}
(3, 4) K4,3 {[01, 00, 31, 20; 10]} {(00, 01), (10, 01), (20, 31)}
(4, 4) K4,4 {[31, 00, 01, 30; 10]} {(00, 31), (00, 01), (30, 01), (30, 31)}
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Theorem 2.5 A minimal unrestricted H-covering of Km,n has padding P where

(1)when m > 1, and n > 1, |E(P )| = −|E(Km,n)|(mod 5), and

(2)when m = 1,

|E(P )| = (2/3)n for n ≡ 0 (mod 3),

|E(P )| = 2(n + 5)/3 for n ≡ 1 (mod 3),

|E(P )| = (2n + 5)/3 for n ≡ 2 (mod 3).

Proof. For m > 1 and n > 1, the necessary condition follows as in the proof of

Theorem 2.4. In this case, sufficiency also follows from Theorem 2.4.

When m = 1, a copy of H where V (H) ⊂ V (K1,n) has at most 3 edges in E(K1,n)

and at least 2 edges in the padding. So in an H-covering of K1.n there are at least

dn/3e copies of H. Now bn/3c copies of H can have at most 3bn/3c edges in E(K1,n)

and at least 2bn/3c edges in the padding. If n ≡ 1 (mod 3), then to completely cover

K1,n we must add one more copy of H which has at most 1 edge in E(K1,n) and at

least 4 edges in the padding. If n ≡ 2 (mod 3), then to completely cover K1,n we must

add one more copy of H which has at most 2 edges in E(K1,n) and at least 3 edges

in the padding. This yields the necessary conditions for m = 1. We now establish

sufficiency for m = 1.

Case 1. Suppose m = 1 and n ≡ 0 (mod 3), where n ≥ 6. Consider the blocks

{[00, 01, 31, 11; 21]}∪{[00, (3k)1, 21, (3k+1)1; (3k+2)1]|k = 1, 2, ..., (n/3)−1}. This is a

covering of Km,n with padding P = {(01, 31), (11, 31)}∪{(21, (3k)1), (21, (3k+1)1)|k =

1, 2, ..., (n/3) − 1}, where |E(P )| = 2 + 2((n/3) − 1) = (2/3)n.

Case 2. Suppose m = 1 and n ≡ 1 (mod 3), where n ≥ 4. From Case 1, there is a
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covering of K1,n−1, where the partite sets of K1,n−1 are {00}, and Mn \{(n−1)1} with

padding P1 where |E(P1)| = 2(n− 1)/3. This covering along with {[00, 01, 21, 11; 31]},

is an unrestricted of Km,n with padding P2 = P1 ∪ {(00, 01), (01, 21), (21, 11), (00, 11)}

and so |E(P2)| = 2(n − 1)/3 + 4 = 2(n + 5)/3.

Case 3. Suppose m = 1 and n ≡ 2 (mod 3), where n ≥ 5. From Case 1, there is

a covering of K1,n−2, where the partite sets of K1,n−2 are {00}, and Mn \ {(n − 2)1}

with padding P1 where |E(P1)| = 2(n − 2)/3. This covering along with {[00, (n −

1)1, 01, (n − 2)1; 11]}, is an unrestricted of Km,n with padding P2 = P1 ∪ {(01, (n −

1)1), (01, (n − 2)1), (00, 11)} and so |E(P2)| = 2(n − 2)/3 + 3 = (2n + 5)/3. �

In this chapter we have given necessary and sufficient conditions for an H-packing

of Kv (Theorem 2.1), an H-covering of Kv (Theorem 2.2), an H-packing of Km,n

(Theorem 2.3), a restricted covering of Km,n (Theorem 2.4), and an unrestricted

covering of Km,n (Theorem 2.5). Theorem 2.1 through 2.4 are due to Brandon Coker,

Gary Coker, and Robert Gardner [7] and are included for completeness.
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3 PACKINGS AND COVERINGS OF K(v, w)

In this chapter, we give necessary and sufficient conditions for H-packing and H-

covering (both restricted and unrestricted) of the complete graph on v vertices with

a hole of size w, K(v, w).

3.1 Packing K(v, w)

In this section, we assume the vertex set of K(v, w) is V (K(v, w)) = Vv−w ∪ vw as de-

scribed in Section 1, where Vv−w = {00, 10, . . . , (v−w−1)0} and Vw = {01, 11, . . . , (w−

1)1}.

Theorem 3.1 A maximal H-packing of K(v, w) has leave L where |E(L)| = |E(K(v, w))|

(mod 5), and v − w ≥ 2 is necessary.

Proof. When v = w + 1, H is not a subgraph of K(v, w) and so there is no packing.

Therefore, v − w ≥ 2 is necessary for the existence of a packing.

Case 1. If v − w = 6, then K(v, w) = K6 ∪ K6,w where the vertex set of K6

is Vv−w and the partite sets of K6,w are Vv−w and Vw. There exists a packing

K6,w with leave L2 such that |E(L2)| ∈ {1, 2, 3, 4}. Without loss of generality,

(00, 01) ∈ E(L2). Consider {[40, 50, 20, 30; 10], [00, 30, 10, 50; 20], [00, 10, 20, 40; 01]}, L =

{(30, 50)} ∪ E(L2) \ {(00, 01)}. So, |E(L)| = |E(L2)|.

Case 2. Suppose v ≡ 0 (mod 5) and w ≡ 2 (mod 5). Consider K(v, w) =

Kv−w ∪ Kv−w,w where V (Kv−w)=Vv−w and the partite sets of Kv−w,w are Vv−w and

Vw. We have v − w ≡ 3 (mod 5), and w ≡ 2 (mod 5). There is a maximal packing

of Kv−w where v − w ≡ 3 (mod 5) with |E(L1)| = 3 by Theorem 2.1 and a maximal
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packing of Kv−w,w with |E(L2)| = 1 by Theorem 2.3. Therefore, there is a maximal

packing of K(v, w) has leave L where |E(L)| = |E(K(v, w))| (mod 5) = 4.

Case 3. Suppose v ≡ 0 (mod 5) and w ≡ 3 (mod 5), or v ≡ 3 (mod 5) and w ≡ 4

(mod 5). Consider K(v, w) = Kv−w ∪Kv−w,w as in Case 2, where v −w ≡ 2 (mod 5)

and w ≡ 3 (mod 5), or v − w ≡ 4 (mod 5) and w ≡ 4 (mod 5). There is a maximal

packing of Kv−w where v − w ≡ 2 (mod 5) or v − w ≡ 4 (mod 5) with |E(L1)| = 1

by Theorem 2.1 and there is a maximal packing of Kv−w,w with |E(L2)| = 1 by

Theorem 2.3. Therefore, there is a maximal packing of K(v, w) with leave L where

|E(L)| = |E(K(v, w))|(mod 5) = 2.

Case 4. Suppose v ≡ 0 (mod 5) and w ≡ 4 (mod 5). When v − w ≥ 11, consider

K(v, w) = Kv−w ∪ Kv−w,w , as in Case 2, where v − w ≡ 1 (mod 5), and w ≡ 4 (mod

5). There is a maximal packing of Kv−w,w with |E(L2)| = 4 by Theorem 2.3 and

Kv−w where v − w ≡ 1 (mod 5) is decomposable [1]. Therefore, there is a maximal

packing of K(v, w) has leave L where |E(L)| = |E(K(v, w))|(mod 5) = 4.

Case 5. Suppose v ≡ 1 (mod 5) and w ≡ 2 (mod 5), or v ≡ 1 (mod 5) and w ≡ 4

(mod 5). Consider K(v, w) = Kv−w ∪Kv−w,w , as in Case 2, where v −w ≡ 4 (mod 5)

and w ≡ 2 (mod 5), or v − w ≡ 2 (mod 5) and w ≡ 4 (mod 5). There is a maximal

packing of Kv−w where v − w ≡ 4 (mod 5) or v − w ≡ 2 (mod 5) with |E(L1)| = 1

by Theorem 2.1 and there is a maximal packing of Kv−w,w with |E(L2)| = 3 by

Theorem 2.3. Therefore, there is a maximal packing of K(v, w) has leave L where

|E(L)| = |E(K(v, w))|(mod 5) = 4.

Case 6. Suppose v ≡ 1 (mod 5) and w ≡ 3 (mod 5). Consider K(v, w) =

Kv−w+1 ∪Kv−w,w−1 where V (Kv−w+1)=Vv−w ∪ {w1} and the partite sets of Kv−w,w−1
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are Vv−w∪{w1} and Vw \{w1}. Then there is a maximal packing of Kv−w+1 with leave

L1 where |E(L1)| = 1 by Theorem 2.1 and there is a maximal packing of Kv−w,w−1

with leave L2 where |E(L2)| = 1 by Theorem 2.3. Therefore, there is a maximal

packing of K(v, w) has leave L where |E(L)| = |E(K(v, w))| (mod 5) = 2.

Case 7. Suppose v ≡ 2 (mod 5) and w ≡ 0 (mod 5), or v ≡ 4 (mod 5) and w ≡ 0

(mod 5) . Consider K(v, w) = Kv−w ∪ Kv−w,w , as in Case 2, where v − w ≡ 2 (mod

5) and w ≡ 0 (mod 5), or v−w ≡ 4 (mod 5) and w ≡ 0 (mod 5). There is a maximal

packing of Kv−w where v−w ≡ 2 (mod 5) or v −w ≡ 4 (mod 5) with |E(L1)| = 1 by

Theorem 2.1 and Kv−w,w is decomposable [6]. Therefore, there is a maximal packing

of K(v, w) has leave L where |E(L)| = |E(K(v, w))| (mod 5) = 1.

Case 8. Suppose v ≡ 2 (mod 5) and w ≡ 1 (mod 5). When v − w ≥ 11, consider

K(v, w) = Kv−w ∪ Kv−w,w , as in Case 2, where v − w ≡ 1 (mod 5), and w ≡ 1 (mod

5). There is a maximal packing of Kv−w,w with |E(L2)| = 1 by Theorem 2.3 and

Kv−w where v − w ≡ 1 (mod 5) is decomposable [1]. Therefore, there is a maximal

packing of K(v, w) has leave L where |E(L)| = |E(K(v, w))| (mod 5) = 1.

Case 9. Suppose v ≡ 2 (mod 5) and w ≡ 3 (mod 5) or v ≡ 3 (mod 5) and w ≡ 1

(mod 5). Consider K(v, w) = Kv−w ∪Kv−w,w , as in Case 2, where v −w ≡ 4 (mod 5)

and w ≡ 3 (mod 5), or v − w ≡ 2 (mod 5) and w ≡ 1 (mod 5). There is a maximal

packing of Kv−w where v − w ≡ 4 (mod 5) or v − w ≡ 2 (mod 5) with |E(L1)| = 1

by Theorem 2.1 and there is a maximal packing of Kv−w,w with |E(L2)| = 2 by

Theorem 2.3. Therefore, there is a maximal packing of K(v, w) has leave L where

|E(L)| = |E(K(v, w))| (mod 5) = 3.

Case 10. Suppose v ≡ 3 (mod 5) and w ≡ 0 (mod 5). Consider K(v, w) =
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Kv−w ∪ Kv−w,w , as in Case 2, where v − w ≡ 3 (mod 5), and w ≡ 0 (mod 5).

There is a maximal packing of Kv−w where v − w ≡ 3 (mod 5) with |E(L1)| = 3 by

Theorem 2.1 and Kv−w,w is decomposable [6]. Therefore, there is a maximal packing

of K(v, w) has leave L where |E(L)| = |E(K(v, w))| (mod 5) = 3.

Case 11. Suppose v ≡ 3 (mod 5) and w ≡ 2 (mod 5). Similar to Case 4, when

v −w ≥ 11, consider K(v, w) = Kv−w ∪Kv−w,w where v −w ≡ 1 (mod 5), and w ≡ 2

(mod 5). There is a maximal packing of Kv−w,w with |E(L2)| = 2 by Theorem 2.3 and

Kv−w where v − w ≡ 1 (mod 5) is decomposable [1]. Therefore, there is a maximal

packing of K(v, w) has leave L where |E(L)| = |E(K(v, w))| (mod 5) = 2.

Case 12. Suppose v ≡ 4 (mod 5) and w ≡ 1 (mod 5). As in Case 6, we have

K(v, w) = Kv−w+1∪Kv−w,w−1. Then there is a maximal packing of Kv−w+1 with leave

L1 where |E(L1)| = 1 by Theorem 2.1 and Kv−w,w−1 is decomposable [6]. Therefore,

there is a maximal packing of K(v, w) has leave L where |E(L)| = |E(K(v, w))| (mod 5)

= 1.

Case 13. Suppose v ≡ 4 (mod 5) and w ≡ 3 (mod 5). Similar to Case 4, when

v −w ≥ 11, consider K(v, w) = Kv−w ∪Kv−w,w where v −w ≡ 1 (mod 5), and w ≡ 3

(mod 5). There is a maximal packing of Kv−w,w with |E(L2)| = 3 by Theorem 2.3 and

Kv−w where v − w ≡ 1 (mod 5) is decomposable [1]. Therefore, there is a maximal

packing of K(v, w) has leave L where |E(L)| = |E(K(v, w))| (mod 5) = 3. �

For the sake of illustration, as in Case 6, we have K(v, w) = Kv−w+1 ∪ Kv−w,w−1.

Then there is a maximal packing of Kv−w+1 with leave L1 where |E(L1)| = 1 by The-

orem 2.1 and there is a maximal packing of Kv−w,w−1 with leave L2 where |E(L2)| = 1

by Theorem 2.3. Therefore, there is a maximal packing of K(v, w) has leave L where
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|E(L)| = |E(K(v, w))| (mod 5) = 2. See Figure 8 for an H packing of K(v, w).

Figure 8: An H-packing of K(v, w) when v ≡ 1 (mod 5) and w ≡ 3 (mod 5)

3.2 Restricted Covering K(v, w)

As in the previous section, we assume the vertex set of K(v, w) is V (K(v, w)) =

Vv−w ∪ Vw, where Vv−w = {00, 10, . . . , (v − w − 1)0} and Vw = {01, 11, . . . , (w − 1)1}.

Theorem 3.2 A minimal restricted H-covering of K(v, w) has padding P where

|E(P )| = −|E(K(v, w))|(mod 5) when v −w > 2.

Proof. First, suppose v − w = 2. Consider the edge (00, 10). If (00, 10) is the

pendant edge of an H, say H = [00, a, b, c; 10], then 00, 10, and b must be distinct

vertices in Vv−w . But |Vv−w| = 2, so this cannot happen. If (00, 10) is an edge in the

4-cycle of some of H, then there must be an edge in the 4-cycle of the form (a1, b1),

a contradiction to the restricted covering. So, v − w > 2 is necessary.
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Similar to the argument in Theorem 2.2, an H-covering of K(v, w) with padding

P where |E(P )| = −|E(K(v, w)| (mod 5) would be minimal.

Case 1. Suppose v ≡ 0 (mod 5) and w ≡ 2 (mod 5). First, K(5, 2) can be cov-

ered with {[00, 01, 20, 10; 11], [20, 01, 10, 11; 00]} and this has a padding P with E(P ) =

{(20, 01)} and so |E(P )| = 1. In general, K(v, w) = K(5, 2) ∪ Kv−w−3,3 ∪ Kv−w,w−2

where the partite sets of K(5, 2) are {00, 10, 20} and {01, 11}, the partite sets of

Kv−w−3,3 are {30, 40, ..., (v−w−1)0} and {00, 10, 20}, and the partite sets of Kv−w,w−2

are Vv−w and {21, 31, ..., (w − 1)1}. Now, Kv−w−3,3 and Kv−w,w−2 can be decomposed

[6]. Taking these decompositions along with the above covering of K(5, 2) yields a

covering of K(v, w) with padding P where E(P ) = {(20, 01)} and so |E(P )| = 1.

Case 2. Suppose v ≡ 0 (mod 5) and w ≡ 3 (mod 5), or v ≡ 3 (mod 5) and w ≡ 4

(mod 5). Consider K(v, w) = Kv−w ∪Kv−w,w , where V (Kv−w)=Vv−w and the partite

sets of Kv−w,w are Vv−w and Vw, and v − w ≡ 2 (mod 5) and w ≡ 3 (mod 5), or

v − w ≡ 4 (mod 5) and w ≡ 4 (mod 5). There is a maximal packing of Kv−w where

v −w ≡ 2 (mod 5) or v −w ≡ 4 (mod 5) with |E(L1)| = 1 by Theorem 2.1. There is

a maximal packing of Kv−w,w with |E(L2)| = 1 by Theorem 2.3. Therefore, there is

a minimal covering of K(v, w) with padding P where |E(P )| = 3.

Case 3. Suppose v ≡ 0 (mod 5) and w ≡ 4 (mod 5). Consider K(v, w) =

Kv−w ∪ Kv−w,w , as in Case 2, where v − w ≡ 1 (mod 5), and w ≡ 4 (mod 5).

There is a minimal covering of Kv−w,w with padding P where |E(P )| = 1 by Theorem

2.4 and Kv−w where v − w ≡ 1 (mod 5) is decomposable [1]. Therefore, there is a

minimal covering of K(v, w) with padding P where |E(P )| = 1.

Case 4. Suppose v ≡ 1 (mod 5) and w ≡ 2 (mod 5). Consider K(v, w) =
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Kv−w ∪Kv−w,w , as in Case 2, where v−w ≡ 4 (mod 5) and w ≡ 2 (mod 5). There is a

maximal packing of Kv−w with leave L1 where |E(L1)| = 1 by Theorem 2.1. Without

loss of generality, assume E(L1)= {(00, 20)}. There is a maximal packing of Kv−w,w

with leave L2 where |E(L2)| = 3 and E(L2) = {(20, 01), (01, 30), (30, 11)} by Theorem

2.3. These two packings combined with {[20, 01, 30, 11; 00]} form a covering of K(v, w)

with padding P where |E(P )| = 1 and E(P ) = {(20, 11)}.

Case 5. Suppose v ≡ 1 (mod 5) and w ≡ 4 (mod 5). Consider K(v, w) =

Kv−w ∪Kv−w,w , as in Case 2, where v−w ≡ 2 (mod 5) and w ≡ 4 (mod 5). There is a

maximal packing of Kv−w with leave L1 where |E(L1)| = 1 by Theorem 2.1. Without

loss of generality, assume E(L1)= {(01, 21)}. There is a maximal packing of Kv−w,w

with leave L2 where |E(L2)| = 3 and E(L2) = {(20, 01), (01, 30), (30, 11)} by Theorem

2.3. These two packings combined with {[01, 30, 11, 20; 21]} form a covering of K(v, w)

with padding P where |E(P )| = 1 and E(P ) = {(20, 11)}.

Case 6. Suppose v ≡ 1 (mod 5) and w ≡ 3 (mod 5). Consider K(v, w) =

Kv−w+1 ∪Kv−w,w−1 where V (Kv−w+1)=Vv−w ∪ {w1} and the partite sets of Kv−w,w−1

are Vv−w∪{w1} and Vw\{w1}. Then, there is a maximal packing of Kv−w+1 with leave

L1 where |E(L1)| = 1 by Theorem 2.1, and there is a maximal packing of Kv−w,w−1

with leave L2 where |E(L2)| = 1 by Theorem 2.3. Therefore, we can add an additional

copy of H which includes the edges in L1 and L2. So, there is a minimal covering of

K(v, w) with padding P where |E(P )| = 3.

Case 7. Suppose v ≡ 2 (mod 5) and w ≡ 0 (mod 5), or v ≡ 4 (mod 5) and w ≡ 0

(mod 5) . Consider K(v, w) = Kv−w ∪ Kv−w,w , as in Case 2, where v − w ≡ 2 (mod

5) and w ≡ 0 (mod 5), or v −w ≡ 4 (mod 5) and w ≡ 0 (mod 5). There is a minimal
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covering of Kv−w with padding P where |E(P )| = 4 by Theorem 2.2 and Kv−w,w is

decomposable [6]. Therefore, there is a minimal covering of K(v, w) with padding P

where |E(P )| = 4.

Case 8. Suppose v ≡ 2 (mod 5) and w ≡ 1 (mod 5). Consider K(v, w) =

Kv−w ∪ Kv−w,w , as in Case 2, where v − w ≡ 1 (mod 5), and w ≡ 1 (mod 5).

There is a minimal covering of Kv−w,w with padding P where |E(P )| = 4 by Theorem

2.4 and Kv−w where v − w ≡ 1 (mod 5) is decomposable [1]. Therefore, there is a

minimal covering of K(v, w) with padding P where |E(P )| = 4.

Case 9. Suppose v ≡ 2 (mod 5) and w ≡ 3 (mod 5). Consider K(v, w) =

Kv−w ∪ Kv−w,w , as in Case 2, where v − w ≡ 4 (mod 5) and w ≡ 3 (mod 5).

There is a maximal packing of Kv−w with leave L1 where |E(L1)| = 1 by Theorem

2.1 and, without loss of generality, E(L1)= {(00, 10)}. There is a maximal packing of

Kv−w,w with leave L2 where |E(L2)| = 2 and E(L2) = {(00, 31), (20, 01)} by Theorem

2.3. These two packings combined with {[00, 01, 20, 31; 10]} form a covering of K(v, w)

with padding P where |E(P )| = 2 and E(P ) = {(00, 01), (20, 31)}.

Case 10. Suppose v ≡ 3 (mod 5) and w ≡ 1 (mod 5). Consider K(v, w) =

Kv−w ∪ Kv−w,w, as in Case 2, where v − w ≡ 2 (mod 5) and w ≡ 1 (mod 5). There

is a maximal packing of Kv−w with leave L1 where |E(L1)| = 1 by Theorem 2.1.

Without loss of generality, assume E(L1)= {(10, 20)}. There is a maximal packing of

Kv−w,w with leave L2 where |E(L2)| = 2 and E(L2) = {(20, 11), (30, 01)} by Theorem

2.3. These two packings combined with {[20, 01, 30, 11; 10]} form a covering of K(v, w)

with padding P where |E(P )| = 2 and E(P ) = {(20, 01), (30, 11)}.

Case 11. Suppose v ≡ 3 (mod 5) and w ≡ 0 (mod 5). Consider K(v, w) =
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Kv−w ∪ Kv−w,w , as in Case 2, where v − w ≡ 3 (mod 5), and w ≡ 0 (mod 5).

There is a minimal covering of Kv−w with padding P where |E(P )| = 2 by Theorem

2.2 and Kv−w,w is decomposable [6]. Therefore, there is a minimal covering of K(v, w)

with padding P where |E(P )| = 2.

Case 12. Suppose v ≡ 3 (mod 5) and w ≡ 2 (mod 5). Consider K(v, w) =

Kv−w ∪ Kv−w,w , as in Case 2, where v − w ≡ 1 (mod 5), and w ≡ 2 (mod 5).

There is a minimal covering of Kv−w,w with padding P where |E(P )| = 3 by Theorem

2.4 and Kv−w where v − w ≡ 1 (mod 5) is decomposable [1]. Therefore, there is a

minimal covering of K(v, w) with padding P where |E(P )| = 3.

Case 13. Suppose v ≡ 4 (mod 5) and w ≡ 1 (mod 5). As in Case 6, we have

K(v, w) = Kv−w+1 ∪ Kv−w,w−1 . Then there is a minimal covering of Kv−w+1 with

padding P where |E(P )| = 4 by Theorem 2.2 and Kv−w,w−1 is decomposable [6].

Therefore, there is a minimal covering of K(v, w) with padding P where |E(P )| = 4.

Case 14. Suppose v ≡ 4 (mod 5) and w ≡ 3 (mod 5). Consider K(v, w) =

Kv−w ∪ Kv−w,w , as in Case 2, where v − w ≡ 1 (mod 5), and w ≡ 3 (mod 5).

There is a minimal covering of Kv−w,w with padding P where |E(P )| = 2 by Theorem

2.4 and Kv−w where v − w ≡ 1 (mod 5) is decomposable [1]. Therefore, there is a

minimal covering of K(v, w) with padding P where |E(P )| = 2. �

For the sake of illustration, as in Case 1, we have K(v, w) = K(5, 2) ∪Kv−w−3,3 ∪

Kv−w,w−2 . First, K(5, 2) can be covered with {[00, 01, 20, 10; 11], [20, 01, 10, 11; 00]}

and this has a padding P with E(P ) = {(20, 01)} and so |E(P )| = 1. Kv−w−3,3

and Kv−w,w−2 can be decomposed [6]. Taking these decompositions along with the

above covering of K(5, 2) yields a covering of K(v, w) with padding P where E(P ) =
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{(20, 01)} and so |E(P )| = 1. See Figure 9 for a restricted H-covering of K(v, w).

Figure 9: A restricted H-covering of K(v, w) when v ≡ 0 (mod 5) and w ≡ 2 (mod

5)

3.3 Unrestricted Covering K(v, w)

We assume the same vertex set for K(v, w) as given previously.

Theorem 3.3 A minimal unrestricted H-covering of K(v, w) has padding P where

(1) when v − w > 2, |E(P )| = −|E(K(v, w))| (mod 5),

(2) when v − w = 1, |E(P )| = (2/3)w for w ≡ 0 (mod 3), |E(P )| = 2(w + 5)/3 for

w ≡ 1 (mod 3), |E(P )| = (2w + 5)/3 for w ≡ 2 (mod 3), and

(3) when v − w = 2, |E(P )| = 5 − ` where ` = |E(K(v, w)| (mod 5) for v 6= 6, and

|E(P )| = 6 for v = 6.

Proof. When v−w > 2, the necessary and sufficient conditions follow from Theorem

3.2. When v − w = 1, K(v, w) ∼= K1,w and the necessary and sufficient conditions
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follow from Theorem 2.5.

When v − w = 2, similar to the argument in Theorem 2.2, an H-covering of

K(v, w) with padding P must satisfy |E(P )| ≡ −|E(K(v, w)| (mod 5). Since an

H-decomposition of K(v, w) does not exist for w ≡ 2 (mod 5) [6], the necessary con-

ditions follow for v − w = 2 and v 6= 6. For v = 6, since |E(K(6, 4))| = 9, then an

unrestricted H-covering of K(6, 4) with padding P where |E(P )| = 1 would be mini-

mal. However, in such a covering, there are only two copies of H. Edge (00, 10) cannot

be the pendant edge of a copy of H in such a covering since this copy would have 2

edges in the padding. If edge (00, 10) is in a copy of H and is not the pendant edge,

then this copy of H must be of the form [00, 10, a1, b1; c1] for some distinct a1, b1, c1 ∈

{01, 11, 21, 31}. However, the complement of this graph in K(6, 4) is not a copy of

H. Therefore, no such H-covering of K(6, 4) exists, and a minimal unrestricted

H-covering of K(6, 4) with padding P where |E(P )| = 6 would be minimal. The

set {[10, 11, 01, 00; 21], [00, 21, 10, 31; 11], [10, 31, 00, 21; 01]} is an unrestricted H-covering

of K(6, 4) with padding P where E(P ) = {(01, 11), (10, 21), (00, 21), (10, 21), (10, 31),

(00, 31)}. So |E(P )| = 6 and the covering is minimal.

Case 1. Suppose v − w = 2, and w ≡ 0 (mod 5), w ≥ 5. Then K(v, w) =

K(7, 5) ∪ K2,w−5 where the vertex set of K(7, 5) is {00, 10, 01, 11, 21, 31, 41} and the

hole is on vertex set {01, 11, 21, 31, 41}, and the partite sets of K2,w−5 are {00, 10}

and {51, 61, . . . , (w − 1)1}. There is an H-decomposition of K2,w−5 [6], and the

set {[10, 11, 01, 00; 21], [00, 31, 10, 41; 21], [11, 01, 10, 21; 00]} is an unrestricted H-covering

of K(7, 5) with padding P where E(P ) = {(01, 11), (01, 11), (11, 21), (10, 21)} and

|E(P )| = 4. So, there is an unrestricted covering of K(v, w) with padding P where
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|E(P )| = 4.

Case 2. Suppose v − w = 2, and w ≡ 1 (mod 5), w ≥ 6. Then, as in Case 1,

K(v, w) = K(8, 2) ∪ K2,w−6. There is an H-decomposition of K2,w−6 [6], and the set

{[10, 11, 01, 00; 21], [10, 31, 00, 41; 01], [01, 21, 10, 51; 11]} is an unrestricted H-covering of

K(8, 6) with padding P where E(P ) = {(01, 11), (10, 21)} and |E(P )| = 2. So, there

is an unrestricted covering of K(v, w) with padding P where |E(P )| = 2.

Case 3. Suppose v − w = 2, and w ≡ 2 (mod 5), w ≥ 7. Then, as in Case 1,

K(v, w) = K(9, 7) ∪ K2,w−7. There is an H-decomposition of K2,w−7 [6], and the

set {[10, 11, 01, 00; 21], [10, 31, 00, 41; 01], [01, 21, 10, 51; 11], [00, 51, 10, 61; 01]} is an unre-

stricted H-covering of K(9, 7) with padding P where E(P ) = {(01, 11), (10, 21), (00, 01),

(00, 51), (10, 51)} and |E(P )| = 5. So, there is an unrestricted covering of K(v, w) with

padding P where |E(P )| = 5.

Case 4. Suppose v − w = 2, and w ≡ 3 (mod 5). Then, as in Case 1, K(v, w) =

K(5, 3)∪K2,w−3. There is an H-decomposition of K2,w−3 [6], and the set {[10, 00, 01, 11;

21], [01, 21, 00, 11; 10]} is an unrestricted H-covering of K(5, 3) with padding P where

E(P ) = {(01, 11), (01, 11), (01, 21)} and |E(P )| = 3. So, there is an unrestricted cov-

ering of K(v, w) with padding P where |E(P )| = 3.

Case 5. Suppose v − w = 2, and w ≡ 4 (mod 5), w ≥ 9. Then, as in Case 1,

K(v, w) = K(11, 9) ∪ K2,w−9. There is an H-decomposition of K2,w−9 [6], and the

set {[10, 11, 01, 00; 21], [00, 71, 10, 81; 11], [00, 51, 10, 61; 21], [00, 31, 10, 41; 01]} is an unre-

stricted covering of K(11, 9) with padding P where E(P ) = {(01, 11)} and |E(P )| = 1.

So, there is an unrestricted covering of K(v, w) with padding P where |E(P )| = 1. �
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See Figure 10 for an unrestricted H-covering of K(v, w) as in Case 5. As an

illustration of Case 5, we notice that K(v, w) = K(11, 9)∪K2,w−9, as given in Figure

10. The colored copies of H in Figure 10 illustrate the H-covering of K(11, 9). K2,w−9

is decomposable as mentioned above.

Figure 10: An unrestricted H-covering of K(v, w) when v − w = 2 and w ≡ 4 (mod

5), w ≥ 9

35



4 CONCLUSION

Motivated by experimental designs and comparisons of samples, we have given nec-

essary and sufficient conditions for H-packings and H-coverings of complete graphs,

complete bipartite graphs, and complete graphs with a hole, where H is a 4-cycle

with a pendant edge. For complete bipartite graphs and complete graphs with a hole,

we have given both restricted and unrestricted coverings. In summary we have:

Theorem 2.1 A maximal H-packing of Kv, v ≥ 5, has leave L where |E(L)| =

|E(Kv)| (mod 5), except when v ∈ {5, 6} in which cases |E(L)| = 5.

Theorem 2.2 A minimal H-covering of Kv, v ≥ 5, has padding P where |E(P )| =

−|E(Kv)| (mod 5), except when v ∈ {5, 6} in which cases |E(P )| = 5.

Theorem 2.3 A maximal H-packing of Km,n has leave L where

(1) |E(L)| = mn if m = 1 or n = 1, or if m = n = 2, or

(2) |E(L)| = |E(Km,n)| (mod 5) otherwise.

Theorem 2.4 A minimal restricted H-covering of Km,n, where neither m nor n

equals 1 and m + n ≥ 5, has padding P where |E(P )| = −|E(Km,n)| (mod 5).

Theorem 2.5 A minimal unrestricted H-covering of Km,n has padding P where

(1) when m > 1, and n > 1, |E(P )| = −|E(Km,n)|(mod 5), and

(2) when m = 1, |E(P )| = (2/3)n for n ≡ 0 (mod 3), |E(P )| = 2(n + 5)/3 for n ≡ 1

(mod 3), |E(P )| = (2n + 5)/3 for n ≡ 2 (mod 3).

Theorem 3.1 A maximal H-packing of K(v, w) has leave L where |E(L)| = |E(K(v, w))|

(mod 5), and v − w ≥ 2 is necessary.

Theorem 3.2 A minimal restricted H-covering of K(v, w) has padding P where

|E(P )| = −|E(K(v, w))|(mod 5) when v −w > 2.
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Theorem 3.3 A minimal unrestricted H-covering of K(v, w) has padding P where

(1) when v − w > 2, |E(P )| = −|E(K(v, w))| (mod 5),

(2) when v − w = 1, |E(P )| = (2/3)w for w ≡ 0 (mod 3), |E(P )| = 2(w + 5)/3 for

w ≡ 1 (mod 3), |E(P )| = (2w + 5)/3 for w ≡ 2 (mod 3), and

(3) when v − w = 2, |E(P )| = 5 − ` where ` = |E(K(v, w)| (mod 5) for v 6= 6, and

|E(P )| = 6 for v = 6.

We see future research concentrating on packings and coverings of various complete

graphs with other “small” graphs. In particular, existing research on restricted versus

unrestricted coverings is still limited.
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