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ABSTRACT

Comparison of Time Series and Functional Data Analysis for the Study of

Seasonality

by

Jake Allen

Classical time series analysis has well known methods for the study of seasonality. A

more recent method of functional data analysis has proposed phase-plane plots for the

representation of each year of a time series. However, the study of seasonality within

functional data analysis has not been explored extensively. Time series analysis is

first introduced, followed by phase-plane plot analysis, and then compared by looking

at the insight that both methods offer particularly with respect to the seasonal be-

havior of a variable. Also, the possible combination of both approaches is explored,

specifically with the analysis of the phase-plane plots. The methods are applied to

data observations measuring water flow in cubic feet per second collected monthly in

Newport, TN from the French Broad River. Simulated data corresponding to typical

time series cases are then used for comparison and further exploration.
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1 INTRODUCTION

A common question one may ask while conducting statistical analysis is: how

do the data change over time? This exact question has peaked the interests of many

statisticians and other inquiring minds while exploring potential research topics. How-

ever, the topic intended for research needed to involve some environmental charac-

teristic in order to integrate the researcher’s love for the outdoors. Thankfully, time

series analysis is often used to analyze environmental topics such as climate, hydrol-

ogy, and ozone level, just to name a few.

However, since time series plots often resemble combined curves of acceleration

and deceleration in either a positive or negative manner, one can conclude that some

of the variation among curves could be explained at some level by derivatives [9].

Now, if one becomes interested in derivatives, this gives good evidence to work with

the data as a function rather than simply vectors of measurements over time [9]. But,

what is the approach to visually analyze these derivatives? Functional data analysis

provides an extremely useful plot of velocity versus acceleration: phase plane plots.

Considering this new analytical approach raises a variety of questions, particularly:

what type of information do phase plane plots offer that traditional time series analysis

does not offer? Answering this, and questions about integrating both time series and

functional data analysis, is the primary goal of this work. Do the two methods

complement each other, and can they be used simultaneously?

Background information is the first essential component of this study. The French

Broad River was chosen as an environmental resource to provide certain seasonal data

for analysis. This river holds great value to people across western North Carolina
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and east Tennessee and its geographical implications, regional impacts, and physical

layout are all informatively mentioned.

Now, the data itself are expressed as a time series to prepare for analysis. From

given plots, a seasonal component is obviously present and thus extracted for study.

Also, an ARIMA model is discussed and a SARIMA model is presented and its pa-

rameters are stated, only to be followed by a decomposition approach to this analysis.

Using SAS, the X-11 method is then described and implemented as the considerable

choice for the decomposition.

The next step is a basic introduction into the inner workings of functional data

analysis–particularly with phase-plane plotting. Functional data analysis is a math-

ematical approach for which some statistical questions have not been addressed yet.

In this work, a typical statistical question such as sensitivity with respect to noise is

addressed with regard to the phase plane plots. Statistical software R is used and

thus explanations are given for command arguments. These plots are an important

graphical representation for this research and are integral to its conclusions.

Since functional data and time series analysis provide the bulk of statistical work,

it is only appropriate to combine the two and look at phase-plane plots of components

extracted from a time series approach. Comparatively, what conclusions can be drawn

and are there any implications from the findings? In the detection of seasonality, what

does each method offer analytically? Answering questions like these will conclude this

research.
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2 THE CASE STUDY

2.1 The French Broad River

Known by the Cherokee Indians as “Agiqua”, translated “Long Man”, the French

Broad River garners respect and thanksgiving from the inhabitants that line its flow-

ing 213 miles [7]. It provides a variety of resources to mostly rural communities as

it winds through a heavily forested yet breathtaking landscape. Many hours have

been spent treading the river’s banks or canoeing its rapids in search of the plenti-

ful resources that it contains. No doubt that the French Broad River also contains

valuable information to modern investigators as well.

Running into then French Territory, the name “French Broad” caught on quickly

to this wide river with substantial streams and watersheds [7]. It begins its journey

in Transylvania County, NC and winds through eight counties in North Carolina and

Tennessee, finally being dammed just before reaching Knoxville, TN by the Douglas

Dam [10]. Because of the regions’ diverse environmental impacts, the flow of the

French Broad River varies from year to year and month to month, providing an

essential data set to this work.

2.2 Exploratory Analysis

One of the most useful tools for statisticians is being allowed to view the behavior

of a variable over time. Time series applications are often found conveniently within

nature–one contributing factor to the choosing of this topic. The analysis begins with

the simplest of tasks: plotting.
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Figure 1: Time Series of French Broad River Flow

A time series plot such as that in Figure 1 can reveal significant information quickly

and efficiently. The United States Geological Survey collects data about water flow,

water quality, and many other factors from rivers all across the nation. Data from

the French Broad River at a site in Newport, TN has been collected since 1920. The

data being used here is from January 1955 to December 1984 in monthly averages of

water discharge measured in cubic feet per second. These years were chosen because

within them there was no missing data and these years are fairly recent. Missing data

would need to be replaced based on averages, a task worth avoiding if possible. The

most recent years had missing data from a few months and would also not allow for

such a large data set. By using 30 years worth of information, a greater diversity of

information is collected because of historical variation.
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2.3 Seasonal Behavior

The next big task in analyzing this series is looking at variation within each year.

A time series is said to have seasonal behavior if there is a pattern that lasts one year

and repeats, with some variations of course, year after year [6]. Seasonality stems

from changes in perhaps temperature, precipitation, etcetera [6]. Because our series

exhibits annual periodicity, we can further analyze it’s seasonal component to fully

define a specific model. By controlling for seasonality, it can be determined what

effects are confounded within this series’ seasonal attributes [6].

1 2 3 4 5 6 7 8 9 10 11 12

20
00

40
00

60
00

80
00

10
00

0

Boxplots of flow per month

Figure 2: Seasonal pattern

Graphical representation is particularly helpful in spotting seasonality–either with

the time series plot itself, boxplots per month, or a correlogram [6]. Figure 2 displays

twelve boxplots, one for each one of the twelve months. The medians of the boxplots

reveal the seasonal pattern of the river flow. A correlogram is simply the plot of
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autocorrelations against lag [5]. Autocorrelation of lag k is the correlation between

observations that are k units of time apart. The autocorrelation function can be

summarized as a way to identify explanatory relationships within a single time se-

ries, and is seen in figure 3 [5]. For instance, the river flow time series is composed

of 360 observations from January 1955 to December 1984. Let’s call observations

Y1, Y2, ..., Y360 the observed points at time periods 1, 2, ..., 360 respectively. Lagging

the series by one period creates 355 pairs of overlapping observations to compare in

order to calculate the autocorrelation of order 1 [5]. Now, we can compute the corre-

lation as if it were the comparison between two sets of quantitative data; but coming

from one time series, these statistics are known as autocorrelation [5].

0 5 10 15 20 25

−
0
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0

.0
0

.4
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Series  riverflow

Figure 3: Autocorrelation Function

Together this plot calculates autocorrelations at lags 1, 2, ..., to make up the

autocorrelation function (or ACF) [5]. Notice that the autocorrelation at lag 12 is
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much higher than that of others. This is a result of the seasonal pattern in the data,

showing that high (and thus low) levels of water flow in the French Broad River tend

to be 12 months apart. In other words, the observations that are 12 months apart are

correlated because they were done in similar times of different years. Figure 2 shows

how the river flow changes from January to December, with the wave-like appearance

indicating annual seasonal changes. Notice also the substantial variability among

years for the same month, something to be explored in functional data analysis as

well.
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Figure 4: Periodogram

Another useful display that extracts the possibility of a seasonal component is a

periodogram (Figure 4). The periodogram is a tool defined by Schuster in 1898 to look

for hidden periodicities [12]. More recent references to the periodogram include Cryer

and Chan [1]. The periodogram considers the angular frequencies in the interval [0, π],

or equivalently the frequencies in the interval [0, π]. The intensity of each angular
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frequency w is defined as I(w)

I(w) = [a(w)]2 + [b(w)]2 (1)

where a(w) = 2
N

∑
y∗t cos(tw), b(w) = 2

N

∑
y∗t sin(tw) are basically the covariances

of the time series (y∗t ), already adjusted for the mean, with the frequencies. The

periodogram is the plot of I(w) versus w, where w takes values from 0 to π. The

left side of Figure 4 displays the periodogram of the river flow using the frequencies

f in the interval [0,0.5] instead of the angular frequencies. The highest intensity

corresponds to the frequency 0.08 = 1/12 associated with seasonal behavior. Figure

4 also includes the cumulative periodogram on the right that indicates approximately

35% of the variability in the river flow is associated with seasonality.
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3 CLASSICAL TIME SERIES APPROACH

3.1 The Additive and Multiplicative Models

To fully understand time series analysis, it is crucial to appreciate the workings

of its component parts. Early studies of time series were often done by economists

interested in business cycle changes related to calendar effects, trends, cycles, seasonal,

and irregular components [6]. One way of compiling these components is to add them.

In our case, however, there is no need to analyze calendar effects components and so

the decomposition can be represented by

Yat = St + Tt + It

where Yat = additive time series, Tt = trend, St = seasonality, and It = irregularity

[6].

The additive model is more appropriate if seasonal fluctuations do not change

throughout the series [5]. If these fluctuations occur proportionally with increases

or decreases in the level of the series, then the multiplicative model would be more

appropriate [5]. Occasionally, one could use a transformation of the data rather than

having to choose between an additive or multiplicative model. Specifically, taking

logarithms turns a multiplicative relationship into an additive relationship, because

Yat = St × Tt × It

implies

log Yat = logSt + log Tt + log It.

18



3.2 Decomposing the Time Series

Due to the importance of seasonality in the river flow, it is useful to apply

decomposition methods that allow observations of the trend and seasonal components

of the time series separately. The X-11 process can be summarized in five stages:

(1) trading day adjustment, (2) trend cycle estimation, (3) preparation of seasonal

adjustment factors (4) treatment of extremes, and (5) create component tables and

summary statistics [6]. With the particular time series interest only in seasonal and

trend components, the trading day adjustment is of no concern since the nature of a

business cycle is irrelevant. Basically, the method iterates through the trend, seasonal,

and irregular components and smooths the data at each iteration, estimating the trend

component and dividing the data by the trend in order to estimate the seasonal and

irregular components [6]. More simply, the following equation is used as explanation:

ŜtÎt =
Yt

Ĉt

. (2)

Note that the hats over the terms indicate estimates.

Figure 5 is the resulting plot of the original time series and seasonal, trend, and

irregular components extracted from the X-11 process. The seasonal plot shows

obvious annual change, however also displaying significant variability among years.

Environmental impacts vary from year to year, and this is easily seen in this plot. The

seasonal component also indicates that the difference between low and high months

was highest in the late 1950s and early 1960s. The seasonal component seems to

diminish in the central observations, but eventually picks up pace in the 1980s. If

a longer data set was used, perhaps the recorded seasonality in the 1990s would
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eventually reach that of the 1950s. The trend cycle analysis shows that some trend

cycles last longer than one year. For instance, there appears to be a upward cycle

of at least two or three years in the early 1970s, perhaps because of drought in the

late 1960s requiring the river to recover from low water flow [4]. And the irregular

component simply shows that there is variability or noise from year to year and month

to month. Notice that the irregular component picks up the highest recorded crest,

occurring in 1977 [4].
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Figure 5: Components estimated with the X-11 method

3.3 A SARIMA Model

ARIMA (autoregressive integrated moving averages) and SARIMA models were

developed by G.E.P. Box and G. Jenkins in 1968 [1]. The basic idea behind Box &

Jenkins’ models is that the current value of a time series can be written in terms of the
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previous values. In the case of the French Broad river, due to the presence of season-

ality, a SARIMA model is needed. The identification of the specific SARIMA model

is done by looking at the pattern described by the serial autocorrelation function [1].

Figure 3 (autocorrelation function) indicates that it is necessary to calculate finite

differences of order 12 because the autocorrelations of order multiple of 12 do not

decline quickly enough. Figure 6 displays the finite differences of order 12 of the river

flow time series. Figure 7 contains the autocorrelations and partial autocorrelations

of the finite differences. The patterns observed in Figure 7 indicate that a SARIMA

model (2, 0, 0)(0, 1, 1)12 could be a candidate to represent the behavior of the river

flow under the Box & Jenkins approach. The evaluation of the model indicates that

it is an acceptable model and all the parameters in the model are necessary. The

p-values corresponding to the null hypotheses that the parameters can be made equal
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Figure 7: Autocorrelation and partial autocorrelation of finite differences

to 0 are small and those null hypotheses are rejected (Table I). The p-values of the

Box-Pierce statistics are small thus the null hypothesis that the residuals come from

a white noise process is not rejected (Table I).
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Table 1: Minitab Output for ARIMA Modeling

(a) Final Estimates of Parameters

Type Coef SE Coef T P
AR 1 0.2613 0.0527 4.96 0.000
AR 2 0.2048 0.0528 3.88 0.000

SMA 12 0.9428 0.0253 37.22 0.000

Differencing: 0 regular, 1 seasonal of order 12

Number of observations: Original series 360, after differencing 348

Residuals: SS = 640783175 (backforecasts excluded)

MS = 1857343 DF = 345

(b) Modified Box-Pierce Chi-Square Statistic

Lag 12 24 36 48
Chi-Square 8.6 28.5 42.7 55.8

DF 9 21 33 45
P-Value 0.477 0.127 0.120 0.129

Using coefficients from the MINITAB output, the SARIMA model for the river

flow is written as:

(1 − 0.2613B − 0.2048B2)(1 −B12)yt = (1 − 0.9428B12)at. (3)

Doing the algebra, the following expression is obtained for the current value of the

river flow:

yt = 0.2613yt−1+0.2048yt−2+yt−12−0.2613yt−13+0.2048yt−14+at−0.9428at−12. (4)
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Notice that the current value of the river flow can be expressed in terms of the river

flow that was observed months before plus certain purely random components.

24



4 FUNCTIONAL DATA ANALYSIS

4.1 Defining Functional Data Analysis

The concept of functions is something learned during the early algebra years of

mathematical education. However, the simple idea of plotting a function based on

some input/output rule should be further expanded for this case. Values that reflect

smooth variation can be expressed as functions, such as with the time series case. In

other words, consider the observation for each individual to be values through time

or space from an underlying stochastic process. Considering the case with river flow,

there is an uncertainty or noise in the measurement of cubic feet per second, and

although the measurements are discrete values, they reflect a smooth variation in

that measurement and could be assessed as a function of river flow [9].

Additionally, referencing Figure 1, it is easy to see strong evidence of acceleration

in the river’s flow followed by sharp deceleration. The conclusion can thus be made

that some of the variation between years can be explained at a level of derivatives [9].

Any time that derivatives play a role in analysis, it gives the researcher evidence to

think of the variable as a function rather than vectors of data in discrete time [9].

As in this case, the data work as a single long record measured from 1955 to

1984. As such, these data can show variation at several levels [9]. Many times there

is a tendency for a record to show exponential (or perhaps geometric) increase or

decrease over time [9]. This is particularly true for economic time series, which are

known to transition well into functional data analysis. However, in the case of the

French Broad River flow, a finer scale can be analyzed to notice departures from this
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trend attributed to years of drought, flooding, etcetera. Even more specifically, and

beneficial to the analysis of this research, a marked annual variation raises questions

of whether or not a seasonal trend shows some longer term changes [9].

Since it has been shown that the given data comes through a process that is

naturally described as functional, the next analytic question becomes: what are the

goals of analyzing functional data? Ramsay [9] summarizes them as follows:

• to represent the data in ways that aid further analysis

• to display the data so as to highlight various characteristics

• to study important sources of pattern and variation among the data

• to explain variation in an outcome or dependent variable by using input or

independent variable information

• to compare two or more sets of data with respect to certain types of varia-

tion, where two sets of data can contain different sets of replicates of the same

functions, or different functions for a common set of replicates.

4.2 Phase-Plane Plots

Much of the concentration for this research will be on the goal of displaying the

data so as to highlight various characteristics. One useful way to accomplish this in

functional data analysis is with phase-plane plotting [9]. Simply put, a phase-plane

plot is a depiction of acceleration versus velocity as a reflection of energy transfer,

with energy being the effort or work required to show change within a system over
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time [9]. Where the concepts of energy and functional data vary on more than one

time scale lead to this graphical technique [9]. The specified river flow data exhibits

variation on different time scales:

• The longest scale is the thirty year progression of the river’s water flow

• There are events that last a few years because of extended drought or flooding

or some other lengthy environmental factor

• The shortest scale shows seasonal variation over an annual cycle that typically

repeats

Keep in mind how the sine function changes over a one year period in Figure 8

before considering the phase-plane plot in Figure 9. Notice the similarities between

the medians of the boxplots in Figure 2 that suggested a seasonal pattern similar to
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Figure 8: Sine Function Wave for one Year
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what is seen here. This “smoothness” will be of particular interest when choosing a

smoothing parameter for later phase-plane plots.
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Figure 9: Sine Function Phase-Plane Plot

J. O. Ramsay depicts a very helpful image to describe how phase-plane plots show

energy transfer. Since the tool is a plot of acceleration against velocity, consider the

phase-plane plot of the function sin(2πt) in Figure 9 [9]. Note that since this study

compares time series, the months are labeled on the figure starting with January

(lowercase j) at the bottom and rotating clockwise. Ramsay describes this simple

function as a basic harmonic process that can be compared to the vertical position

of the end of a suspended spring [9]. The spring bounces with a period of one time

unit and starts at time t = 0, where the spring oscillates because there is an exchange
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between potential and kinetic energy [9]. When the spring is momentarily still at

either end of its trajectory its potential energy is maximized [9]. Vice versa, when

the spring passes through the position 0, the velocity is greatest but acceleration is

zero [9]. So it can be shown that potential energy is associated with acceleration

and kinetic energy with velocity [9]. For the purposes of this study, the involvement

of kinetic versus potential energy will focus the attention on the dynamics of the

seasonal component.

4.3 Obtaining the Phase-Plane Plots

The first step in obtaining these useful plots is to define a set of functional

building blocks called basis functions [3]. They can be created with mathematical

softwares R and MATLAB. R is chosen to do this analysis. The spline basis system

(and bsplines in particular) is what will be used for the creation of these phase-plane

plots. Start by using a set of these functional building blocks φk, k = 1, ..., K called

basis functions, combined linearly [3]. Now, each basis system requires a specific set

of K basis functions φk’s. Now, creating a basis object flowbasis by recalling the

create function in R yields:

flowbasis <- create.bspline.basis(rangeval, nbasis, norder, breaks)

Now, in each create function there is a set of arguments that must be clarified:

rangeval, nbasis, norder, and breaks. Rangeval specifies the lower and upper limits

of the values of the argument t and is a vector object of length 2 [3]. The values

of interest are the years in which data was collected, so rangeval=c(1955,1985).
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Next, nbasis is an integer specifying the number of K basis functions and norder

is an integer specifying the order of b-splines. So how are these values found?

Well, if the interval of observation is broken into subintervals, with boundary

points called breaks, splines can be more easily constructed [3]. And over these subin-

tervals, the spline function can be described as a polynomial of fixed degree (or order),

where the order of a polynomial is one higher than its degree or highest power within

the polynomial [3]. More precisely, a spline basis is defined in terms of a set of knots

[3]. Note that every knot has the same value as a break point, but multiple knots can

occur at certain breakpoints [3]. However, for this study, only one knot is placed at a

break point, forcing the number of derivatives to be two less than its order, ensuring

that the splines will be seen as smooth [3].

Now, the number K of basis functions in a spline basis system is given by the

relation number of basis functions = order + number of interior knots where interior

knots are those at break points not located at the beginning or end of the domain

defined by the function [3]. For this study, norder is chosen to be 8 because of the

smoothness it presents, and thus will consist of seventh degree polynomial segments.

Also, the number of interior knots will be like the majority of applications with only

a single knot at every breakpoint. There are 360 observations of data, simplifying the

equation to 366 = 8 + 358.

The basis object is then created:

flowbasis <- create.bspline.basis(rangeval=c(1955,1985), nbasis=366, norder=8)

The breaks command can be inferred from R since nbasis = nbreaks + norder -

2, where nbreaks = length(breaks)[8].
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Next, a function is created to turn an integer specifying an order of a derivative

into the equivalent linear differential operator object, call it m [8]. Use m = 4 when

the goal is to study velocity and acceleration, yielding LfdobjWater = int2Lfd(4).

Finally, the last steps create a smoothing parameter to be examined:

WaterSm <- smooth.basisPar(argvals=index(riverflow),

y=(coredata(riverflow)), fdobj=flowbasis,

Lfdobj=LfdobjWater, lambda=1e-11)

Recalling the function smooth.basis is done with arguments for argvals, y, fdobj,

Lfdobj, and the smoothing parameter lambda. argvals is simply the index of the

data itself and y is an array with values of curves at sampling points or argument

values [3]. coredata is used in this array to stip off the index/time attributes and

recall only the observations [8]. The basis object flowbasis will now be used to define

a functional data object–so a basis was first created and then recited in the form of

functional data. The linear differential operator object Lfdobj was created earlier

as LfdobjWater and is now replaced.

Finally, the smoothing parameter λ can be chosen. One way to accomplish this is

to minimize the generalized cross-validation measure GCV developed by Craven and

Wahba (1979) [3]. The criterion is

GCV (λ) =

(
n

n− df(λ)

)(
SSE

n− df(λ)

)
. (5)

The lambda2gcv function in R can be used to return the minimizing value for

certain values of lambda [3]. Instead of listing these values, a plot can be more helpful

in finding the proper value of lambda.
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Figure 10: GCV to find the best λ

From Figure 10 it can be seen that the minimizing value of λ is 1e−7 or 0.0000001.

However, Ramsay recommends caution when choosing the smoothing parameter, and

encourages an enlightenend approach to the decision rather than choosing λ based

solely on automatic methods like GCV minimization [3]. A look at phase-plane plots

with the GCV selected smoothing parameter will show why this is the case.

Notice from Figure 11 how, with this value of λ, that the phase plane plots show

very little information or exchange in energy. Obviously this is not a true depic-

tion, since it is known that natural water flow exhibits consistent change from a

seasonal standpoint. Perhaps this could be explained because this particular value

of λ smooths the series too much. Figure 12 shows that fits estimates to the se-

ries reveals just how extreme the jumps are from one month to the next, and how

over-smoothing is a potential hazard.
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Figure 11: λ = 1e− 7
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If these jumps are smoothed over, then the phase plane plots will have no room

to show the dynamics of the series. Therefore, Ramsay’s cautions are confirmed from

the phase-plane plots and a more reliable value for λ should be chosen. After much

experimentation, the value that reveals the most information and the best smoothing

procedure within the phase-plane plots is 1e − 11 or 0.00000000001. Values smaller

than this that approach zero will fit nearly exact values from the data, causing the

plots to be under smoothed and over complicated.
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Figure 13: λ = 1e− 11

Now in Figure 13 with λ = 1e− 11 the amount of smoothing seems to be appro-

priate for allowing further analysis. In terms of detecting seasonality, first notice how

each year contains cycles during particular seasons. Additionally, notice that cycles
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tend to occur in similar locations and with similar intensity, a pattern indicative of

seasonality. So noticing seasonality is fairly easy, but each individual year will not be

analyzed here. Rather, these plots will be used as reference or comparison with the

phase-plane plots obtained later.

So the question remains: do phase-plane plots offer something that traditional

time series plots do not offer? While many plots have been presented, a look at a

single year may be a good approach to fully answering this question.

The French Broad River had significant crests in 1977 in North Carolina and

eventually flowed into the measurement area in Newport [4]. However, this individual

year would be difficult to observe as a flood year from the time series plot. The time

series plot easily outlines severe crests and troughs, but causes difficulty spotting

entire years displaying uncommon river flow behavior. On the other hand, Figure 14

indicates more intensity on the velocity and acceleration scales, a good sign of large

amounts of water flow. Additionally, the phase-plane plot of 1977 seems to loop more

than other years starting in June, probably because of severe sporadic rainfall within

each month uncommon in the drier summer season. One large loop running from

January to May could be an effect of long, consistent snow melt in the mountain

regions eventually slowed by the coming of spring. This monthly, seasonal analysis is

much more vivid in the phase-plane plots.

Conversely, 1969 is known to be a year of drought in the region [4]. In this case,

the time series plot easily displays that this is a year of drought, with no small summer

cycles and a severe decrease in intensity. But unless the scale is changed to examine

this one year, phase-plane plots (Figure 15) do the analysis just as well.
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Figure 14: Flood Year
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Figure 15: Drought Year
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5 WORKING WITH SIMULATED DATA

5.1 The Additive Model Case
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Figure 16: Simulated Additive Model Time Series

Now the question becomes: what do the phase plane plots look like when the

data are simulated with a known seasonal pattern? The simulated data represent

regular patterns over the years without noise, and so one would expect each year to

have similar cycles within the plots. Examining the location and intensity of those

cycles will prove helpful in the interpretation of the phase plane plots. Let’s start

with the additive model case represented by

Yat = St + Tt + It

as mentioned earlier and simulated with Figure 16. Figure 17 shows by what co-

efficients that the simulated series has been changed, either with multiplication or
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addition. Notice that these patterns resemble the seasonal patterns reflected by the

original time series and similarities also exist with the sinusoidal pattern (although

more rigid than the sine function).
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Figure 17: Seasonal Pattern for Simulations

Analyzing the phase-plane plots in Figure 18, the end years of 1955 and 1984 are

included to show how the knot spacing affects these end values, however, our focus

will be on the interior years. Now, comparing the years 1960, 1965, 1970, and 1975,

each plot contains the same information. The intensity of each plot is basically the

same, as are the locations of each respective seasonal cycle. For instance, two large

cycles can be examined: the spring and fall cycles. Notice a large cycle beginning in

January with positive velocity or kinetic energy and near zero acceleration. Velocity
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Figure 18: Additive Model Phase Plane Plot

then decreases for three months heading into April. Two smaller cycles follow: early

summer with negative velocity and little acceleration, and late summer with the same

phenomena. Finally, the potential energy is maximized at the beginning of fall.

Since this study is predominantly focused on the analysis of seasonal factors, what

happens if the presence of a linear trend is eliminated? Will this change the phase-

plane plots?

One would expect these additive model plots with no trend to look similar to

Figure 18, however, this is not exactly the case. The resemblance between the additive

model time series with no trend (Figure 19) and the multiplicative time series is

probably the cause. Although the simulated additive model with a trend creates
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a seasonal pattern, it is small in scale and with less drastic changes. The shorter

periodicity of the additive series with no trend must cause the similarities between

Figure 20 (No Trend Additive Model Phase-Plane Plots) and the multiplicative phase-

plane plots, with the main difference persisting in the scales or intensity caused by

the trend existing in the multiplicative case.
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Figure 19: Simulated Additive Model with no Trend
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Figure 20: No Trend Additive Model Phase-Plane Plots

5.2 The Multiplicative Model Case

The multiplicative composed time series is simply a multiplication of the compo-

nents previously discussed, and now represented by

Yat = St × Tt × It

and having the same symbol representation. Our simulated case is seen in Figure 21.

The U.S. Bureau of the Census usually uses this multiplicative process and it is often

used within their research [6].

Again, the question arises concerning the effects of now multiplicative simulated

data on phase plane plots. Since cycles expand in measure, one would expect the
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Figure 21: Simulated Multiplicative Model Time Series

intensity of the plots to change with time. However, it is suspected that the location

of cycles will remain consistent throughout the years.

Examining, in Figure 22, the interior years of 1960, 1965, 1970, and 1975, the

greatest visible effect is the intensity seen in the scale of each plot. While loop

locations stay steady, the scale values seem to grow over the years, indicating the

growth in measure of each loop and consequently the entire plot.

The first noticeable object is the large cycle similar to the simulated additive

model phase-plane plot: positive velocity and zero acceleration in January followed

by a large cycle for three months losing velocity and picking up acceleration into April

and May. However, there is no small cycle indicating the end of summer, but rather

a short transition increasing in velocity from September into the Fall months. Still

yet, the similarities are striking.
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Figure 22: Multiplicative Model Phase Plane Plot

5.3 The Effect of the Smoothing Parameter Lambda

Another great way to explore the value of phase-plane plots is to play with values

of the smoothing parameter λ. For instance, the value used in the simulated plots is

1e− 11, but what happens if lower or higher values for the parameter are used?

From Figure 23, with λ = 1e − 9, it is easily seen that the series is still over

smoothed and reveals little information compared to the plot with λ = 1e − 11.

Potential energy or acceleration appears to be greatest in October and kinetic energy

or velocity is greatest around December–but past these facts not much analysis can

be done. Now, what if the value of λ is decreased?
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Figure 23: Simulated Additive Series, λ = 1e− 9

Not much change is observed from the plots in Figure 24 where λ = 1e−13 and the

original plots where λ = 1e− 11. So as λ approaches zero, the change in smoothing

does not seem beneficial.
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Figure 24: Simulated Additive Series, λ = 1e− 13

5.4 Effect of Noise

While the simulated data are useful for interpretation and understanding of such

complex objects as the phase-plane plots, they do not represent realistic or real-

world data. Therefore, by adding noise the plots of the contaminated data (Figure

25) can be easily compared to the noise free series. For simplicity’s sake, only the

multiplicative model will be analyzed here.

Now, analyzing the phase-plane plots in Figure 26 and starting from January,

each year still indicates a large cycle extending from January to around April. An-

other consistency is the small cycle with negative velocity and little acceleration
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Figure 25: Simulated Multiplicative Model with Noise Phase-Plane Plot

explained by the summer or early summer months. The main difference is that the

Fall months could create a large cycle of positive velocity because of environmental

factors expected during that time of year. While the presence of noise does affect

the phase-plane plots, overall it can be shown that even with noise there remains

consistencies within the plots, and small changes from those expectations could be

invaluably analyzed.
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Figure 26: Noise Series Phase Plane Plots

5.5 Other Effects

In efforts to fully understand the relationship between the seasonal pattern and

the shape of the phase plane plots, one must explore a variety of symmetric and non

symmetric seasonal patterns. First, examine the effect when the months are switched

(i.e. July-December and January-June flipped). Figure 27 gives resulting plots.

As compared with the years in its counterpart, Figure 22, the obvious difference

is the switching of the months on the plots. The overall layout is still the same, but

now the phase-plane plots have been flipped across the y-axis at velocity=0. Now
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Figure 27: Flipped Months Multiplicative Phase Plane Plots

it is valuable to notice the symmetry within phase-plane plotting, especially in the

“flipping” of data. So symmetry plays a rather small role concerning phase-plane

plots.
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6 COMBINING TIME SERIES AND FUNCTIONAL DATA ANALYSIS

The river flow of the French Broad river was analyzed in Chapter 3 using decom-

position methods from classical data analysis. In Chapter 4 the analysis was done

with the phase-plane plots from functional data analysis. Now the question is, what

happens if these two approaches are combined.

6.1 Smoothing with Moving Average

The process of doing phase-plane plots involves a smoothing process. However, it

has been seen in previous sections that phase-plane plots are pretty sensitive to noise.

Time series offers several ways of smoothing data, one of them is the application

of moving averages. The application of moving average becomes in this way a pre-

smoothing of the time series before doing the phase-plane plots. A moving average

is an average of a specified number of observations around each observation in that

series [2]:

x̄ =

∑1
k=−1 xi+k

3
(6)

For this monthly series seasonal effects must be estimated, so a moving average length

of 3 is used. Figure 28 indicates how this procedure uses average values to almost

smooth the series into one with less outliers or extreme values.

Now, the question remains, does this pre-smoothing procedure effect the original

phase-plane plots? Since the moving averages method cuts off the first and last

values, arbitrary values can be selected as placeholders for those positions as long as

the phase-plane plots are not considered for the end years of 1955 and 1984.
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Figure 28: Time series smoothed with moving average of length 3

Comparing the phase-plane plots of Figure 29 with the original plots reveals both

striking similarities and obvious contrasts. On one hand, since outliers were reduced,

the intensity of the years (noticed in the scale of the plots) has been reduced for most.

Also, particularly in the years of 1965, 1975, and 1980, the typical large cycle from

January to May is not dramatically changed. An approach toward zero acceleration in

1960, 1965, and 1975 around February and March seems to be a common consequence

of the moving averages within that large cycle, perhaps because crest periods can

easily be observed in these months and then severely reduced because of moving

averages. Also, the small cycle centered around zero acceleration and zero velocity

occurring in the months of October and November appears to remain consistent

despite the moving averages method. It seems almost certain that the method reduces

the drama within the plots. Large cycles seem to be easily reduced and the plots,
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Figure 29: Moving Average Phase-Plane Plots

since less congested without extreme values, may be easier to read. However, if cycles

and energy exchanges are reduced too much then the plots become simplistic and the

true character of the data could be downplayed. It’s important for the researcher to

understand how smoothing affects the plots here.

6.2 Seasonal Component Phase-Plane Plots

After using X-11 decomposition, time series plots of seasonal, trend, and irregular

components were obtained and examined earlier in Figure 5. So, to keep with common

analysis, a look at the phase-plane plots of those components seems appropriate. The

main focus is on the seasonal component, so the phase-plane plots in Figure 30 will
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be restricted to seasonality. Keep in mind that before, phase-plane plots were used

as a way to indicate or see seasonality. But now, the seasonal component is viewed

to see how it changes annually.
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Figure 30: Seasonal Component Phase-Plane Plots

The first obvious note is that each plot is different, a consequence of the variability

in river flow among the observed years. Because this is now a plot of the seasonal

component itself and not the actual data, the expectations change a bit. For instance,

the plot now tells when and with what intensity that the seasonality changes, not

when the river flow fluctuates. One would expect that heavy rain and perhaps snow

melt would contribute to large changing seasonal factors in winter and early spring.

Summer often brings consistencies or little changes, and fall tends to bring potential
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unpredictable changes that could contribute to large intensity seasonal factor within

these plots.

From analyzing Figure 30, one can see that the summer months bring a small

cycle with little to no acceleration and sometimes negative velocity. The seasonal

component sees its smallest variation within the summer. February, March, and April

seasonal factors seem to begin with positive velocity, decrease, and maintain negative

acceleration. However, because they usually lie within a large cycle, this indicates

large intensity or presence of the changes within seasonal component. Also, small

cycles are seen with positive velocity around October and November, a similarity

even to the phase-plane plots of simulated data.

So, although the goal is not to detect the seasonal factor, by plotting it we can

see that it changes in a similar fashion as the time series object itself. However,

the clarity of analysis within these phase plane plots is murky compared to Figure 5,

where the time series plot of seasonality marked an obvious repeated annual function.
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7 CONCLUSIONS

From a statistical standpoint, time series analysis is extremely beneficial. From

a mathematical standpoint, functional data analysis adds a modern twist on typical

analysis. While one method is not meant to replace the other, each has advantages

over the other. From this research, it appears that functional data analysis (particu-

larly with phase-plane plots) compliments time series analysis fairly well.

It should be noted that traditional time series plots do prove advantageous over

a longer time scale, particularly in examining the long term trend of data. While

phase-plane plots offer great yearly and monthly analysis, prediction based on past

events becomes much more difficult. One can see how and when typical years change

seasonally, but limitations arise concerning expectations of maximum and minimum

water flow in this case.

Also, a time series plot easily exposes outliers and extreme values, but this becomes

more difficult in phase-plane plotting. Since single values are not shown, only the

scale or intensity of the plots can be affected–and even that can be affected by more

than one outlier. This is where the moving averages method appears to prove useful.

Although a smoothing parameter λ is chosen to smooth the data, moving averages

reduces the scale and appears make the phase-plane plots easier to read, and with

their interpretation being difficult, this could be a wonderful tool. However, what is

lost with moving averages may be another area to explore.

One other explored area is the effect of noise on phase-plane plotting. A multiplica-

tive model is simulated and phase-plane plots created, showing consistent changes in

summer and late fall and slow changes in late winter and early spring. However, once
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a slight amount of simulated noise is added the sensitivity of the phase-plane plots is

revealed. Although the overall pattern of changes remains similar, the rate at which

velocity changes and the rate of acceleration differs dramatically.

Phase-plane plots compliment the research behind the time series approach, but

the plots cannot replace the valuable numerical information gained from that ap-

proach. Functional data analysis also provides methods for algebraic or numerical

interpretation, and those advantages could be explored from the context of detecting

seasonality by future researchers.

The pre-smoothing of our moving averages method may be a particular area for

other researchers to explore. It appeared that the early smoothing reduced the drama

and congestion within the phase-plane plots, but with occasional loops being mini-

mized or even eliminated. This could present problems, depending on the questions of

the researcher. However, the big picture of this analysis remained even with moving

averages. It did not as drastically alter the phase-plane plots like the small changes

in the smoothing parameter λ.

The analysis of the phase-plane plots of the seasonal component should be ap-

proached a little differently. First, the search was for obvious cycles indicating change

in the factor. Then, the timing of those seasonal factors is compared with what is

expected which corresponds to the phase-plane plots of the original data. The si-

nusoidal presence within the seasonal series plot caused resulting phase-plane plots

similar to the original series. However, phase-plane plots of seasonal components do

not present equal clarity of seasonal presence when compared to classical time series

analysis.
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Therefore, it can be shown that phase-plane plots are particularly useful in the

detection of seasonality. However, obtaining the right plots with the right amount of

detail is a very tedious task, more difficult than traditional time series plots. Choosing

the smoothing parameter λ is is difficult and the answer ambiguous. Although func-

tional data analysis alone can be useful for prediction and forecasting, the phase-plane

plots themselves do not seem to offer an advantage in predictive modeling. However,

the exchange in energy shown by these plots appears to be particularly useful in en-

vironmental/physical data analysis where energy transfer is constantly shifting, and

its applications should be explored more thoroughly in the future.

56



BIBLIOGRAPHY

[1] K. Chan and J. Cryer, Time Series Analysis with applications in R, Second

edition, Springer, New York (2008).

[2] P. Cowpertwait and A. Metcalfe, Introductory Time Series with R, Springer,

New York (2009).

[3] S. Graves, G. Hooker, and J. Ramsay, Functional Data Analysis with R and

MATLAB, Springer, New York (2009).

[4] HAMweather, a WeatherNation Company, [http://weather.hamweather.com/

rivers/gauge/AVLN7.html] (2011). Accessed June 2011.

[5] R. Hyndman, S. Wheelwright, and S. Madridakis, Forecasting Methods and Ap-

plications, 3rd edition, John Wiley & Sons, Inc. (1998).

[6] M. McGee and R. Yaffee, Introduction to Time Series Analysis and Forecasting,

Academic Press, Inc. (2000).

[7] N.C. Office of Environmental Education, [http://www.ee.enr.state.nc.

us/public/ecoaddress/riverbasins/frenchbroad.150dpi.pdf] (2007). Ac-

cessed June 2011.

[8] R Development Core Team, R: A Language and Environment for Statistical

Computing, Vienna, Austria, 2006. [http://www.R-project.org].

[9] J. Ramsay and B. Silverman, Functional Data Analysis, 2nd Edition, Springer,

New York (2005).

57

http://weather.hamweather.com/rivers/gauge/AVLN7.html
http://weather.hamweather.com/rivers/gauge/AVLN7.html
http://www.ee.enr.state.nc.us/public/ecoaddress/riverbasins/frenchbroad.150dpi.pdf
http://www.ee.enr.state.nc.us/public/ecoaddress/riverbasins/frenchbroad.150dpi.pdf
http://www.R-project.org


[10] RiverLink, Inc, [http://seris.info/RiverLink/main.shtml] (2002). Accessed

June 2011.

[11] United States Geological Survey, [http://waterdata.usgs.gov/tn/

nwis/monthly/?referred_module=sw&site_no=03455000&por_03455000_

1=1112466,00060,1,1900-11,2010-09&format=html_table&date_

format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_

selection_list] (2011). Accessed June 2011.

[12] G. Yule, An Introduction to the Theory of Statistics, C. Griffin, London (1950).

58

http://seris.info/RiverLink/main.shtml
http://waterdata.usgs.gov/tn/nwis/monthly/?referred_module=sw&site_ no=03455000&por_03455000_1=1112466,00060,1,1900-11,2010-09&format=html_ table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form= parameter_selection_list
http://waterdata.usgs.gov/tn/nwis/monthly/?referred_module=sw&site_ no=03455000&por_03455000_1=1112466,00060,1,1900-11,2010-09&format=html_ table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form= parameter_selection_list
http://waterdata.usgs.gov/tn/nwis/monthly/?referred_module=sw&site_ no=03455000&por_03455000_1=1112466,00060,1,1900-11,2010-09&format=html_ table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form= parameter_selection_list
http://waterdata.usgs.gov/tn/nwis/monthly/?referred_module=sw&site_ no=03455000&por_03455000_1=1112466,00060,1,1900-11,2010-09&format=html_ table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form= parameter_selection_list
http://waterdata.usgs.gov/tn/nwis/monthly/?referred_module=sw&site_ no=03455000&por_03455000_1=1112466,00060,1,1900-11,2010-09&format=html_ table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form= parameter_selection_list


APPENDICES

Appendix A: R Code

# Original Time Series Plot

river <- scan(‘‘f:/DATA.dat")

riverflow <- ts(river, start=c(1955,1), frequency=12)

ts.plot(riverflow)

# Periodogram

perioplot<-function(x){

adjx=x-mean(x);

tf=fft(adjx);

nf=length(tf); n2=nf/2+1;

pritf<-tf[c(1:n2)];

intensity<-(abs(pritf^2))/nf;

nyquist=1/2; pfreq<-seq(0,nf/2,by=1);

freq<-pfreq/(length(pfreq)-1)*nyquist;

intmax<-max(intensity)

posmax<-max.col(t(intensity))

freqmax<-(freq[posmax])

maxper<-1/freqmax

plot(freq,intensity,type="l")
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text(0.2,intmax, label= maxper)}

perioplot(riverflow)

# Phase-Plane Plots (fda package required)

flowbasis <- create.bspline.basis(rangeval=c(1955,1985),

nbasis=366, norder=8)

LfdobjWater <- int2Lfd(4)

WaterSm <- smooth.basisPar(argvals=index(riverflow),

y=(coredata(riverflow)), fdobj=flowbasis,

Lfdobj=LfdobjWater, lambda=1e-11)

par(mfrow=c(3,2))

phaseplanePlot(1956, WaterSm$fd, main=’1956’)

phaseplanePlot(1960, WaterSm$fd , main=’1960’)

phaseplanePlot(1965, WaterSm$fd , main=’1965’)

phaseplanePlot(1970, WaterSm$fd, main=’1970’)

phaseplanePlot(1975, WaterSm$fd, main=’1975’)

phaseplanePlot(1980, WaterSm$fd, main=’1980’)
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# Simulated Sine Function

t<-seq(1,12,by=0.1)

y<-sin(2*t*pi/12)

plot(t,y,’l’)
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Appendix B: SAS Code

options ps=1000;

data jake ;

infile ‘f:\data.dat’ ;

input flow ;

date=intnx(‘month’, ‘01jan1955’d,_n_-1);

format date monyyyy;

proc print;

proc x11 data=jake ;

monthly date=date;

var flow;

tables d10 d11 d12;

output out=comps b1=series d10=season d11=adjust d12=trend d13=irre ;

proc print data=comps;

run;
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