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ABSTRACT

Solving the Differential Equation for the Probit Function Using a Variant of the

Carleman Embedding Technique

by

Kelechukwu Iroajanma Alu

The probit function is the inverse of the cumulative distribution function associated

with the standard normal distribution. It is of great utility in statistical modelling.

The Carleman embedding technique has been shown to be effective in solving first

order and, less efficiently, second order nonlinear differential equations. In this the-

sis, we show that solutions to the second order nonlinear differential equation for

the probit function can be approximated efficiently using a variant of the Carleman

embedding technique.
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1 INTRODUCTION AND BASIC DEFINITIONS

1.1 Introduction

Many important problems in engineering, the physical sciences, and the social

sciences, when formulated in mathematical terms, require the study of a function

satisfying a differential equation [9]. The theory of differential equations is therefore

an indispensable tool in mathematics and other mathematically dependent sciences.

Most physical systems are inherently nonlinear in nature, and many natural laws

and models of natural phenomena are described using nonlinear finite autonomous

systems of differential equations [34, 17]. These may be first order, second order, or

higher order differential equations. Examples of nonlinear differential equations are

the Navier-Stokes equations [14] in fluid dynamics, the Lotka-Volterra equations [14]

in biology, the Black-Scholes equation [16] in finance, the Van der Pol equation [19]

in physics, and the Duffing equation [19] in physics.

Second and higher order ordinary differential equations (generally, systems of non-

linear equations) seldom yield closed form solutions, although implicit solutions and

solutions involving nonelementary integrals are often obtained. In fact, finding the

closed form of the solutions of finite autonomous systems of differential equations is

nearly impossible [22]. There are a great variety of problems involving nonlinear dif-

ferential equations, and methods of solution or analysis are problem-dependent. Some

common methods for the qualitative analysis of nonlinear ordinary differential equa-

tions (ODE’s) are linearization [34, 55], bifurcation theory [31, 55], and perturbation

methods [30, 31, 55].
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One approach to working with second order differential equations involves rephras-

ing the problem in terms of a system of first order equations. When second and higher

order differential equations are transformed into a system of first order differential

equations, there is no loss of information or generality [12, 7]. This fact validates the

Carleman embedding technique and justifies the use of its modified version in this

research.

When a differential equation has a polynomial nonlinearity, the technique of lin-

ear embedding is sometimes preferred to perturbation and other techniques [25]. The

idea of applying the theory of linear integral equations in the study of nonlinear ordi-

nary differential equations was proposed by Henri Poincaré in 1908 [33, 17]. The first

attempt in this direction was made by Ivar Fredholm in 1920 [33]. The algorithm

of embedding of finite nonlinear dynamical systems, x
′

= P (x), where x ∈ Rk and

the P (x) is a k-tuple of polynomials in x, into an infinite system of linear differ-

ential equations, was introduced by Torsten Carleman in 1932 [13]. The Carleman

approach, which is known today as Carleman linearization or Carleman embedding,

has been successfully used to solve numerous nonlinear problems [33, 22]. The original

Carleman approach dealt with autonomous polynomial systems [34].

In 1982, Wong [52] showed that Carleman embedding can be viewed as a reduc-

tion of nonlinear dynamical systems, x
′

= F (x, t), where F is analytic in x, to a

linear evolution equation in Banach space. The Wong approach for the mathematical

foundations of Carleman embedding is of great significance. However, its formalism is

complicated and its practical application in the study of concrete nonlinear equations

is quite limited [33].
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Carleman embedding is a procedure that allows us to embed a finite dimensional

system of nonlinear differential equations, with analytic or polynomial data, into a

system of infinite dimensional linear differential equations [39, 17]. Thus, we trade

polynomials (or analytic functions) that describe the system for the infinite matrices

of the Carleman Linearization [39]. This technique works well when dealing with first

order nonlinear differential equations. However, for higher order nonlinear ordinary

differential equations, it is difficult to use the Carleman embedding method [17].

Azamed Gazaghane, in his master’s thesis [22], applied Carleman embedding on

the Van der Pol equation and the Fitzhugh Nagumo model. Gazaghane’s work ex-

posed the difficulty in using Carleman linearization on second order nonlinear differ-

ential equations. The Carleman embedding technique, when used on second order

nonlinear differential equations, has the following shortcomings: (i) the matrix of

the linear system is unbounded, thereby making truncation to a finite system nearly

impossible; (ii) it is difficult to extend this technique to higher order differential

equations [17].

A variant of the Carleman embedding technique, developed by Dr. Jeff Knisley

[17, 25], was successfully used by Charles Dzacka [17] to solve Duffing’s equation,

x
′′

+x = 2εx3. This variant of the Carleman embedding technique addressed some of

the deficiencies of the original Carleman embedding technique. It proved to be easier

and more efficient because the solution to the Duffing equation obtained using the

new method was bounded [17].

In this thesis, we apply a variant of the Carleman technique to a quantile function.

The quantile function of a probability distribution is the inverse F−1 of F , which is its
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cumulative distribution function (CDF) [24]. The first paper to systematically develop

quantile functions was by Parzen in 1979 [41]. Gilchrist systematically examined many

issues associated with the steps of the statistical modelling process, using an approach

based on what he termed quantile methods [24].

Quantile functions are used extensively in statistical modelling [51]. In stochas-

tic analysis as well as in traditional probability and statistics, the quantile function

provides a helpful way of characterizing a static or dynamic distribution [49]. The

quantile function provides benefits that are not available from the density or distribu-

tion function. For instance, the simplest way of simulating any non-uniform random

variable is applying its quantile function to uniform deviates [49]. To an increasing

degree, quantile functions are being used in Monte Carlo simulation. Quantile func-

tions also work well with copula methods and low-discrepancy sequences, for instance,

for sampling of the normal [49].

The quantile function or inverse cumulative distribution function associated with

the standard normal distribution is called the probit function. The probit function

is a nonlinear function for which no closed form solution exists. The function is

continuous, monotonically increasing, infinitely differentiable, and maps the open

interval (0,1) to the whole real line [2]. The probit function has several applications.

It provides benefits not available from the normal probability density function or

normal distribution [49]. The probit function is increasingly being used in Monte

Carlo simulation [49]. In addition, the probit function works very well with copula

methods and low-discrepancy sequences, for example, for sampling of the normal [49].

The use of differential equations and series methods for the analysis of quantile
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functions can be traced to the earlier work of Hill and Davis [28], as well as Abernathy

and Smith [1]. This earlier work developed differential recursions with emphasis

on Cornish-Fisher expansions [49]. Steinbrecher and Shaw [49] derived a nonlinear

differential equation for the probit function, the quantile function associated with the

normal distribution, and solved it using power series.

The aim of this research is to show that a variant of the Carleman embedding

technique can be used to solve the nonlinear differential equation for the probit func-

tion,

d2w

dp2
= w

(
dw

dp

)2

,

subject to the conditions

w(0.5) = 0, w′(0.5) =
√

2π,

where w = w(p) is the probit function, and 0 ≤ p ≤ 1.

This thesis is divided into five chapters. In this first introductory chapter, we

provide a preamble. We also give basic definitions and explanations of some terms

necessary for a proper understanding of this thesis. Following this introductory chap-

ter is Chapter 2 in which we discuss quantile functions, the probit function, and the

ordinary differential equation for the probit function. Also featured in this chapter is

the already published general power series solution of the ordinary differential equa-

tion for the probit function. In Chapter 3, we give a brief history of the Carleman

embedding technique and present an explanation of Carleman linearization.

In Chapter 4, we present a variant of the Carleman embedding technique. We
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review earlier work on a variant of the Carleman embedding technique for second

order systems. We then find approximate solutions to the second order nonlinear

ordinary differential equation for the probit function, using a variant of the Carleman

embedding technique. Afterwards, we compare our solutions with already published

power series solutions. We make significant use of the software Maple in this chapter.

In our last chapter, Chapter 5, we present our conclusion.

1.2 Basic Definitions

In this section, we define and explain some important terms, mostly from prob-

ability and statistics. A knowledge of these terms is essential for a proper under-

standing of this thesis. Most of the following definitions are, sometimes with minor

changes, from the STEPS Statistics Glossary v1.1 by Valerie J. Easton and John H.

McColl [18].

Probability: The probability p of an event E is a quantitative measure of the like-

lihood of occurrence of that event. The probability of an event occurring must have

a value between 0 and 1.

Random Variable: A random variable X is a function that associates a unique

numerical value with every outcome of an experiment. There are two types of ran-

dom variables, discrete and continuous. A discrete random variable has an associated

probability distribution, while a continuous random variable has an associated prob-
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ability density function.

Discrete Random Variable: A discrete random variable is one which may take on

only a countable number of distinct values such as 0, 1, 2, 3, .... Examples of discrete

random variables are the number of students in a class, the number of customers in

a grocery store, and the number of defective items in a box.

Continuous Random Variables: A continuous random variable is one which takes

on an infinite number of possible values. Continuous random variables are usually

measurements. An example of a continuous random variable is the time taken to

drive from one town to the other.

Expected value: The expected value (or population mean), E(X) or µ, of a ran-

dom variable X is a value (a number) that indicates the average or central value of

that random variable. It is a useful summary value of the variable’s distribution.

If X is a discrete random variable with possible values x1, x2, x3, ..., xn and P (xi)

denotes P (X = xi), then the expected value of X is defined by:

µ = E(X) =
n∑
i=1

xip(xi).

If X is a continuous random variable with probability density function f(x), then the

expected value of X is defined by:

µ = E(X) =

∫ ∞
−∞

xf(x)dx.

15



Variance: The (population) variance σ2 of a random variable X is a non-negative

number which gives us an idea of how widely spread the values of the random vari-

able are likely to be. The more the variance, the more scattered the observations are

on average. The variance gives us an idea of how closely concentrated around the

expected value (or mean) the distribution is. It is a measure of the “spread” of a

distribution about its average value.

The variance of a random variable X is given by:

σ2 = V ar(X) = E[(X − E(X)]2 = E(X2)− E(X)2 = E(X2)− µ2,

where µ = E(X) is the mean or expected value of the random variable X.

Standard Deviation: Standard deviation is a measure of the spread or dispersion

of a set of data. It is calculated by taking the square root of the variance.

Standard deviation =
√
V ar(X) =

√
σ2 = σ.

Probability Distribution: The probability distribution of a discrete random vari-

able X is a function which gives the probability P (xi) that the random variable equals

xi, for each value xi. That is, P (xi) = P (X = xi). The probability distribution of a

discrete random variable can also be defined as a list of probabilities associated with

each of the possible values of the random variable. The probability distribution of a
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discrete random variable satisfies the following conditions:

(a)0 ≤ p(xi) ≤ 1;

(b)
n∑
i=1

p(xi) = 1.

A probability distribution is sometimes called a probability function or probability

mass function.

Probability Density Function: The probability density function, pdf , of a contin-

uous random variable is a function which can be integrated to obtain the probability

that the random variable takes a value in a given interval.

The pdf , f(x), of a continuous random variable X is essentially the derivative of the

cumulative distribution function, F (x). That is,

f(x) =
d

dx
F (x).

Since F (x) = p(X ≤ x), it follows that:

∫ b

a

f(x)dx = F (b)− F (a) = p(a < X < b).

A probability density function f(x) must satisfy two conditions:

(a)

∫
f(x)dx = 1;

(b)f(x) > 0∀x.

Cumulative Distribution Function: The cumulative distribution function (CDF )

of a random variable X is a function giving the probability that the random variable

17



is less than or equal to x, for every value x. The cumulative distribution function

F (x) of a random variable X is given by:

F (x) = P (X ≤ x), (−∞ < x <∞).

In terms of the probability density function f(x), the CDF of X is given by:

F (x) =

∫ x

−∞
f(t)dt.

Normal Distribution: A continuous random variable X, taking all real values in

the range (−∞,∞), is said to follow a normal distribution with parameters µ and σ

if it has a probability density function

f(x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]

=
1

σ
√

2π
exp

[
−1

2

(x− µ)2

σ2

]
.

This probability density function is a symmetrical, bell-shaped curve that is centered

at its expected value (or mean), µ.

Standard Normal Distribution: This is the simplest case of the normal distribu-

tion, with expected value (or mean) 0 and variance 1. This is written as N(0, 1).

18



Hence, the standard normal distribution is given by:

1√
2π

exp

(
−x

2

2

)
, or

1√
2π
e−

x2

2 .

Standard Normal Cumulative Distribution Function: This is the cumulative dis-

tribution associated with the standard normal distribution function. It is given by:

Φ(x) =
2√
2π

∫ x

−∞
e−t

2

dt.

Error Function: The error function is a special function of sigmoid shape which

occurs in probability, statistics, and partial differential equations. It is essentially

identical to the standard normal cumulative distribution function, and differs from it

only in translation and scaling. The error function is given by:

erf(x) =
2√
2π

∫ x

0

e−t
2

dt.

The error function is an odd function. This means that:

erf(−x) = −erf(x).

When the results of a series of measurements are described by a normal distribu-

tion with standard deviation σ and expected value 0, then erf
(

a
σ
√
2

)
is the probability

19



that the error of a single measurement lies between −a and a, for positive a. This is

useful, for instance, in determining the bit error rate of a digital communication sys-

tem. The error function also occurs in solutions of the heat equation when boundary

conditions are given by the Heaviside step function.

The error function is related to the standard normal cumulative distribution func-

tion, Φ, by the following:

Φ(x) =
2√
2π

∫ x

−∞
e−t

2

dt =
1

2

[
1 + erf

(
x√
2

)]
or,

erf(x) = 2Φ(x
√

2)− 1.

The standard normal CDF is used more often in probability and statistics, and the

error function is used more often in other branches of mathematics.

Inverse Error Function: The inverse error function, erf−1, has the series:

erf−1(x) =
∞∑
k=0

ck
(2k + 1)

(√
π

2
x

)2k+1

,

where c0 = 1, and

ck =
k−1∑
m=0

cmck−1−m
(m+ 1)(2m+ 1)

[18, 46].
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2 THE PROBIT FUNCTION AND ITS DIFFERENTIAL EQUATION

2.1 Quantile Functions

The quantile function of a probability distribution is the inverse F−1 of its

cumulative distribution function (CDF), F . For a continuous and strictly monotonic

distribution function, F : R → (0, 1), the quantile function returns the value below

which random draws from the given distribution would fall, p · 100 percent of the

time. That is, it returns the value of x such that

F (x) = P (X ≤ x) = p. (1)

For discrete as well as continuous distributions, the quantile function is generally

given by

w(p) = F−1(p) = inf{x ∈ R : p ≤ F (x)} (2)

for a probability 0 < p < 1, and the quantile function returns the minimum value of

x for which the probability statement (1) holds [54, 23].

The first paper to systematically develop quantile functions was by Parzen in 1979

[41]. Gilchrist systematically examined many issues associated with the steps of the

statistical modelling process, using an approach based on what he termed quantile

methods [23].

Quantile functions are used extensively in statistical modelling [51]. In stochastic

analysis as well as in traditional probability and statistics, the quantile function pro-

vides a helpful way of characterizing a static or dynamic distribution. The quantile
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function provides benefits that are not available from the density or distribution func-

tion. For example, the simplest way of stimulating any non-uniform random variable

is applying its quantile function to uniform deviates [49]. To an increasing degree,

quantile functions are being used in Monte Carlo simulation. Monte Carlo simula-

tion methods are among the most powerful and widely applicable tools available for

valuing derivatives and other financial securities [37].

Quantile functions also work well with copula methods [49]. The term copula is

a Latin noun which means a link, tie, bond, referring to joining together [40, 35]. A

copula is therefore a function that joins multivariate distribution functions to their

one-dimensional marginal distribution functions. It is a multivariate distribution

function defined on the unit n − cube [0, 1]n, with uniformly distributed marginals

[35]. Quantile functions are also used for low-discrepancy sequences. Low-discrepancy

sequences in turn are used in quasi-Monte Carlo methods for numerical integration,

in simulation and optimization, and in related applications [10].

The quantile function or inverse cumulative distribution function associated with

the standard normal distribution is called the probit function.

2.2 The Probit Function

The term probit is an abbreviation for probability unit [3]. In probability and

statistics, the probit function is the inverse cumulative distribution function (CDF)

or quantile function associated with the standard normal distribution, Φ [43]. The

probit function is a nonlinear function for which no closed form solution exists. The
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function is continuous, monotonically increasing, infinitely differentiable, and maps

the open interval (0,1) to the whole real line [2].

The probit function may be expressed in terms of the inverse error function as

Probit(p) = w(p) = Φ−1(p) =
√

2erf−1(2p− 1),

for 0 ≤ p ≤ 1 [42].

The probit concept was published in 1934 by Chester Bliss in an article in Science

on how to treat data such as the percentage of a pest killed by a pesticide [8]. He

proposed converting the percentage killed into a probability unit (or probit). Bliss

included a table to help other researchers convert their kill percentages to his pro-

bit. They could then plot the probit values against the logarithm of the dose and,

hopefully, get a more or less straight line. Such a so-called probit model is still of

importance in toxicology and other fields. Bliss’s method was continued in an impor-

tant text on toxicological applications by D. J. Finney [20].

The cumulative distribution function (CDF) and the inverse cumulative distribu-

tion function (the probit function) associated with the standard normal distribution

are not available in closed form [15, 45]. Their computations are normally carried out

using numerical procedures. These functions can be found in statistics software, in

probability modeling software, and in spreadsheets. For example, the probit function

is available as normsinv(p) in Microsoft Excel. In computing environments where

numerical implementations of the inverse error function are available, the probit func-

tion may be obtained as prob(p) =
√

2erf−1(2p− 1), where p is a probability between

0 and 1 and erf−1 is the inverse error function. For example, MATLAB implements
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erfinv, while the language Mathematica implements InverseErf . An alternative

method of computation involves forming a nonlinear ordinary differential equation

for the probit function Steinbrecher and Shaw [49] derived a nonlinear differential

equation for the probit function and solved it using power series.

2.3 An Ordinary Differential Equation for the Probit Function

The use of differential equations and series methods for the analysis of quantile

functions originated from the earlier work of Hill and Davis [28], and Abernathy and

Smith [1]. Significant contributions have more recently been made by Steinbrecher

and Shaw [49]. Steinbrecher and Shaw derived non-linear ordinary differential equa-

tions for the quantile functions of some key distributions (the student, beta, normal,

and gamma distributions). They also gave power series solutions for these quantile

ODE’s.

Generally, we can express the derivative of a quantile function w as the reciprocal

of the usual density function expressed in terms of w, then keep differentiating until

we obtain a closed differential relation, which is generally nonlinear [49].

If f(x) is the probability density function, the first order quantile ODE is

dw

dp
=

1

f(w)
,

where w(p) is the quantile function considered as a function of p, with 0 ≤ p ≤ 1.

We then differentiate again to find a simple second order non-linear ODE [49].

Steinbrecher and Shaw [49] derived a nonlinear differential equation for the probit

function using the above procedure, and solved it using power series. We now give
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that derivation in greater detail.

We know that the standard normal distribution is given by:

f(x) =
1√
2π
e−

x2

2 .

If w(p) denotes the quantile function of p, then

f(w) =
1√
2π
e−

w2

2 .

Hence,

dw

dp
=

1

1√
2π
e−

w2

2

,

and the first order quantile ODE is given by,

dw

dp
=
√

2πe
w2

2 .

Differentiating again,

d2w

dp2
=
√

2πe
w2

2 · 2w

2

dw

dp

=
√

2πe
w2

2 · wdw
dp

=
dw

dp
· wdw

dp

= w

(
dw

dp

)2

.

We thus have the second order nonlinear ODE for the probit function, together with

its boundary conditions [49]:

d2w

dp2
= w

(
dw

dp

)2

, (3)

w(0.5) = 0, w′(0.5) =
√

2π,

where 0 ≤ p ≤ 1.
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2.4 General Power Series Solution of the Second Order ODE for the Probit

Function

The second order nonlinear ODE for the Probit Function can be solved using

various methods, including the power series approach used by Steinbrecher and Shaw

[49]. The general power series solution to this differential equation is:

w(p) =

√
π

2

∞∑
k=0

dk
(2k + 1)

(2p− 1)2k+1, (4)

where the coefficients dk satisfy the non-linear recurrence

dk+1 =
π

4

k∑
j=0

djdk−j
(j + 1)(2j + 1)

, (5)

with d0 = 1 [49]. In this form the ratio dk+1

dk
→ 1 as k → ∞. This implies slow

convergence.

We will compare this to solutions that we shall later obtain using a variant of the

Carleman embedding technique.
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3 THE CARLEMAN EMBEDDING TECHNIQUE

3.1 History of the Carleman Embedding Technique

The following history of the Carleman embedding technique was adapted, with

minor modifications, from the work of Gaude [21], Gazaghane [22], and Dzacka [17].

The mathematician Torsten Carleman, in the 1930’s, developed a theoretical

technique to globally linearize systems of nonlinear differential equations. His 1932

article, entitled “Application of the Theory of Linear Integral Equations to Systems

of Nonlinear Differential Equations”, introduced the linearization method [13]. Car-

leman’s ideas were motivated by remarks made by Henri Poincaré [21]. Poincaré

remarked at a 1908 conference in Rome, that one should be able to apply the theory

of linear integral equations to the study of ordinary nonlinear differential equations.

Motivated by that remark, Carleman worked on an approach to embed a system of

nonlinear differential equations into an infinite set of linear equations [22].

The Carleman technique basically remained unused for over thirty years before

Bellman and Richardson applied the method to approximate solutions of a nonlin-

ear ordinary differential equation [6]. Thirteen years later, Montroll and Hellman

[38] studied the embedding technique in relation to small denominators and secular

terms. In 1980, Steeb and Wilhelm [48] used Carleman embedding to approximate

the solution of the Lotka-Volterra problem. The Lotka-Volterra model is represented

by systems of nonlinear equations that have periodic solutions. The Carleman tech-

nique was successfully applied to solve the Lotka-Volterra problem [21].

In 1981, Kerner [32] studied the technique for embedding nonlinear systems into
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polynomial systems. Also in 1981, Andrade and Rauh [4], and Brenig and Fairen [11]

studied the Lorenz model and power series expansions for nonlinear systems, respec-

tively, using the Carleman Embedding technique. In 1982, Wong [52] showed that a

linear operator acting on a Banach space could be related to analytical vector fields.

This became known as the Carleman linearization or transformation of a vector field.

There were some other results with linearization. In 1987, Kowalski [34] related

finite dimensional nonlinear systems to problems in a Hilbert space. Tsiligiannis and

Lyberatos [50] studied steady state bifurcation and exact multiplicity conditions us-

ing the Carleman method. Finally, by 1989, Steeb showed that there is a one-to-one

correspondence between solutions of the infinite linear system and solutions of the

associated nonlinear finite system for the analytic solutions [21]. Kowalski and Steeb

summarized a large portion of this work into one book, A Note on Carleman Lin-

earization [47]. Most of the history of the Carleman method is outlined in that book.

3.2 Carleman Embedding

Carleman embedding or Carleman linearization is a procedure that allows us to

embed a finite-dimensional system of nonlinear differential equations, with analytic

or polynomial data, into a system of infinite-dimensional linear differential equations

[39, 17]. We therefore trade polynomials (or analytic functions) that describe the

system for the infinite matrices of the Carleman Linearization [39].

The following brief explanation of the Carleman linearization (or Carleman em-

bedding) procedure is from a paper by Gralewicz and Kowalski [26].
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Let us consider the system

ẋ = F (x), (6)

where

F : Rk → Rk

and F is analytic in x. Consider the case with k = 1, that is, the ordinary differential

equation (6). If we let

xj := xj, j = 1, 2, ... (7)

where x fulfills (6), then we arrive at the infinite linear system

ẋj =
∞∑
k=0

Ljkxk, (8)

with the constant coefficient matrix Ljk. In view of (7), the finite system (6) is em-

bedded into the infinite system (8). As shown by Steeb [47], Carleman embedding

can easily be generalized to the case with nonlinear recurrences of the form

xn+1 = f(xn), (9)

where f is analytic in xn. Similar to what we did in (7), we set

xjn := xjn, (10)
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where xn fulfills (9). This leads to the infinite-dimensional linear system of difference

equations such that

xjn+1 =
∞∑
k=0

Mjkxkn. (11)

Hence, the finite-dimensional recurrence (9) is embedded into the infinite linear sys-

tem (11), just as in the case of ordinary differential equations [26].
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4 A VARIANT OF THE CARLEMAN EMBEDDING TECHNIQUE FOR

SECOND ORDER SYSTEMS

4.1 Introduction

As noted in Section 1.1, nonlinear systems of second order or higher are diffi-

cult to solve with the original Carleman embedding method [17]. In an attempt to

overcome the earlier-mentioned problems associated with the original Carleman em-

bedding, a variant of the Carleman embedding technique was developed by Dr. Jeff

Knisley [17, 25] to solve second order nonlinear systems. This variant of Carleman

embedding was implemented by Dzacka [17] in his master’s research.

4.2 Review: Solution of the Duffing Equation Using a Variant of the Carleman

Embedding Technique

In Dzacka [17], the Duffing equation,

d2x

dt2
= −x+ 2εx3, x(0) = 1, x

′
(0) = 0, (12)

was solved using a variant of the Carleman embedding technique. The transformation

un(t) = [x(t)]n (13)

was used. An infinite-dimensional system of equations was generated by substituting

(13) and its derivatives in (12). Truncation was done at n = 10 and the resulting sys-
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tem of equations solved using matrix algebra. The result obtained using this variant of

Carleman embedding was compared to results obtained using classical perturbation

techniques as well as those obtained using perturbation combined with Carleman

embedding. The comparisons showed that classical perturbation and perturbation

combined with Carleman embedding produced similar approximations, which were

unbounded. In contrast, the approximation obtained using a variant of Carleman

embedding was bounded. This was an indication that the variant of Carleman em-

bedding used in solving the Duffing equation was better than other methods [17].

4.3 Solving the Second Order ODE for the Probit Function using a Variant of the

Carleman Embedding Technique

It might be difficult to solve the ODE for the probit function using the original

Carleman embedding technique. This is because the coefficient matrix of the linear

system generated using this technique may be too large and unbounded, thereby

making truncation to a finite system nearly impossible [17]. We aim to obtain a

better solution with the variant of the Carleman embedding technique.

Consider equation (3), the differential equation for the probit function:

w′′ = w(w′)2, w(0.5) = 0, w′(0.5) =
√

2π.

For our transformation, let

um,n = wm(w′)n. (14)
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We obtain the first derivative of um,n as follows:

u′m,n = wm · n(w′)n−1 · w′′ + (w′)n ·mwm−1 · w′

= nwm(w′)n−1w′′ +mwm−1(w′)n · w′.

But w′′ = w(w′)2. Hence,

u′m,n = nwm(w′)n−1 · w(w′)2 +mwm−1(w′)n+1.

We therefore have:

u′m,n = nwm+1(w′)n+1 +mwm−1(w′)n+1. (15)

Applying (14) on (15), the latter becomes:

u′m,n = num+1,n+1 +mum−1,n+1. (16)

We now derive several other important relations mainly from (14) and (16).

From (14), we have:

um,0 = wm(w′)0 = wm.

In other words, we have the relation:

um,0 = wm. (17)

Also from (14),

u0,n = w0(w′)n = (w′)n.

Hence, we have the relation:

u0,n = (w′)n. (18)
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From (17), we have:

u1,0 = w1 = w.

In other words, we have the relation:

u1,0 = w. (19)

From (18), we have:

u0,1 = (w′)1 = w′.

We therefore have the relation

u0,1 = w′. (20)

From (16), we have:

u′m,0 = 0 · um+1,0+1 +mum−1,0+1

= 0 +mum−1,1.

We therefore have the relation:

u′m,0 = mum−1,1. (21)

Also from (16),

u′0,n = n · u0+1,n+1 + 0 · u0−1,n+1

= nu1,n+1 + 0.

We therefore have:

u′0,n = nu1,n+1. (22)
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We can generate an infinite-dimensional system of equations from (16). For the

purpose of this thesis, we work with the truncated system in which 0 ≤ m ≤ M ,

0 ≤ n ≤ N . The order of truncation is MN . In our Maple code, CutOff is used for

M,N . For convenience, let us first truncate at m = 1, n = 1, and set the RHS (right

hand side) equal to zero whenever either m + 1 or n + 1 is greater than our cut-off

value, 1. We then have the following system of equations:

u′0,0(p) = 0;

u′0,1(p) = 0;

u′1,0(p) = u0,1(p);

u′1,1(p) = 0.

Our original initial conditions were w(0.5) = 0, w′(0.5) =
√

2π. In order to

obtain the initial conditions for our new system of equations, recall equations (19)

and (20), u1,0 = w, and u0,1 = w′, respectively. Our initial conditions therefore

become u1,0(0.5) = 0 and u0,1(0.5) =
√

2π. Solving the above system with the initial

conditions expressed as sequences, we have:

u0,0(p) = 1;

u0,1(p) =
√

2π;

u1,0(p) =
√

2πp− 1

2

√
2π;

u1,1(p) = 0.
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Recall that u1,0 = w. The value of u1,0 above therefore gives us a solution, which

we shall call w1:

w1(p) =
√

2πp− 1

2

√
2π.

When we evaluate w1 at the points p = 0, p = 0.5, and p = 1, we have its values

as −1
2

√
2π, 0, and 1

2

√
2π respectively. These approximate to −1.253314137, 0, and

1.253314137, respectively.

By changing the values of our cut-off (varying the values of m and n), we can

obtain other possible solutions. Suppose we let m = 4, n = 4, and set the RHS equal

to zero whenever either m+ 1 or n+ 1 is greater than the cut-off value, 4. We obtain

the following system of equations:

u′0,0(p) = 0;

u′0,1(p) = u1,2(p);

u′0,2(p) = 2u1,3(p);

u′0,3(p) = 3u1,4(p);

u′0,4(p) = 0;

u′1,0(p) = u0,1(p);

u′1,1(p) = u2,2(p) + u0,2(p);
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u′1,2(p) = 2u2,3(p) + u0,3(p);

u′1,3(p) = 3u2,4(p) + u0,4(p);

u′1,4(p) = 0;

u′2,0(p) = 2u1,1(p);

u′2,1(p) = u3,2(p) + 2u1,2(p);

u′2,2(p) = 2u3,3(p) + 2u1,3(p);

u′2,3(p) = 3u3,4(p) + 2u1,4(p);

u′2,4(p) = 0;

u′3,0(p) = 3u2,1(p);

u′3,1(p) = u4,2(p) + 3u2,2(p);

u′3,2(p) = 2u4,3(p) + 3u2,3(p);

u′3,3(p) = 3u4,4(p) + 3u2,4(p);

u′3,4(p) = 0;

u′4,0(p) = 4u3,1(p);

u′4,1(p) = 4u3,2(p);

u′4,2(p) = 4u3,3(p);

u′4,3(p) = 4u3,4(p);

u′4,4(p) = 0.
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Our original initial conditions were w(0.5) = 0, w′(0.5) =
√

2π. In order to

obtain the initial conditions for our new system of equations, recall equations (19) and

(20), u1,0 = w, and u0,1 = w′, respectively. Our initial conditions therefore become

u1,0(0.5) = 0, u0,1(0.5) =
√

2π. Solving the above system with the initial conditions

expressed as sequences, we have:

u0,0(p) = 1;

u0,1(p) = p2
√

2π3/2 −
√

2π3/2p+
1

4

√
2π3/2 +

√
2π;

u0,2(p) = 4p2π2 − 4π2p+ π2 + 2π;

u0,3(p) = 2
√

2π3/2;

u0,4(p) = 4π2;

u1,0(p) =
1

3

√
2π3/2p3 − 1

2
p2
√

2π3/2 + (
1

4

√
2π3/2 +

√
2π)p− 1

24

√
2π3/2 − 1

2

√
2π;

u1,1(p) =
8

3
p3π2 − 4p2π2 + π2p+ (π2 + 2π)p− 1

3
π2 − π;

u1,2(p) = 2
√

2π3/2p−
√

2π3/2;

u1,3(p) = 4π2p− 2π2;

u2,0(p) =
4

3
p4π2 − 8

3
p3π2 + p2π2 + p2(π2 + 2π) + 2(−1

3
π2 − π)p+

1

12
π2 +

1

2
π;

u2,1(p) = 2p2
√

2π3/2 − 2
√

2π3/2p+
1

2

√
2π3/2;

u2,2(p) = 4p2π2 − 4π2p+ π2;

u3,0(p) = 2
√

2π3/2p3 − 3p2
√

2π3/2 +
3

2

√
2π3/2p− 1

4

√
2π3/2;

u3,1(p) = 4p3π2 − 6p2π2 + 3π2p− 1

2
π2;

u4,0(p) = 4p4π2 − 8p3π2 + 6p2π2 − 2π2p+
1

4
π2.

The rest are zero.
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Recall that u1,0 = w. The value of u1,0 above therefore gives us a solution, which

we shall call w2:

w2(p) =
1

3

√
2π3/2p3 − 1

2
p2
√

2π3/2 +

(
1

4

√
2π3/2 +

√
2π

)
p− 1

24

√
2π3/2 − 1

2

√
2π.

When we evaluate w2 at the points p = 0, p = 0.5, and p = 1, we have its values

as − 1
24

√
2π3/2− 1

2

√
2π, 0, and 1

24

√
2π3/2 + 1

2

√
2π, respectively. These approximate to

−1.581431011, 0, and 1.581431011, respectively.

Figure 1 is a plot of w2, a solution obtained using the variant of the Carleman

embedding technique, for 0 ≤ p ≤ 1.

Figure 1: A second solution of the differential equation for the probit function using

a variant of Carleman embedding.
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Suppose we let m = 8, n = 8, and set the RHS equal to zero whenever either m + 1

or n+ 1 is greater than the cut- off value, 8. By the same process outlined above, we

obtain a system of equations and solve the system. As before, we are interested in

the value of u1,0. This time,

u1,0(p) =
1

3
p3
(

11

12

√
2π

7
2 +
√

2π
5
2

)
+

1

6

(
13

16

√
2π

7
2 +

3

2

√
2π

5
2 + 2

√
2π

3
2

)
p3

+
127

630
p7
√

2π
7
2 − 127

180
p6
√

2π
7
2 +

23

30
p5
√

2π
7
2 +

7

120
p5
(

5
√

2π
7
2 + 4

√
2π

5
2

)
+

7

24
p4
(
−13

6

√
2π

7
2 − 2

√
2π

5
2

)
− 1

4
p4
√

2π
7
2

+
1

2
p2
(
−127

480

√
2π

7
2 − 7

12

√
2π

5
2 −
√

2π
3
2

)
+

(
127

5760

√
2π

7
2 +

7

96

√
2π

5
2

)
+

(
1

4

√
2π

3
2 +
√

2π

)
p− 127

80640

√
2π

7
2 − 7

960

√
2π

5
2 − 1

24

√
2π

3
2 − 1

2

√
2π.

Hence, another possible solution, w3, is given by:

w3(p) =
1

3
p3
(

11

12

√
2π

7
2 +
√

2π
5
2

)
+

1

6

(
13

16

√
2π

7
2 +

3

2

√
2π

5
2 + 2

√
2π

3
2

)
p3

+
127

630
p7
√

2π
7
2 − 127

180
p6
√

2π
7
2 +

23

30
p5
√

2π
7
2 +

7

120
p5
(

5
√

2π
7
2 + 4

√
2π

5
2

)
+

7

24
p4
(
−13

6

√
2π

7
2 − 2

√
2π

5
2

)
− 1

4
p4
√

2π
7
2

+
1

2
p2
(
−127

480

√
2π

7
2 − 7

12

√
2π

5
2 −
√

2π
3
2

)
+

(
127

5760

√
2π

7
2 +

7

96

√
2π

5
2

)
+

(
1

4

√
2π

3
2 +
√

2π

)
p− 127

80640

√
2π

7
2 − 7

960

√
2π

5
2 − 1

24

√
2π

3
2 − 1

2

√
2π.
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When we evaluate w3 at the points p = 0, p = 0.5, and p = 1, we have its values

as − 127
80640

√
2π

7
2 − 7

960

√
2π

5
2 − 1

24

√
2π

3
2 − 1

2

√
2π, −2.6 · 10−11

√
2π

7
2 + 1.7 · 10−11

√
2π

5
2 ,

and 127
80640

√
2π

7
2 + 7

960

√
2π

5
2 + 1

24

√
2π

3
2 + 1

2

√
2π, respectively. These approximate to

−1.884225879, −1.600181154 · 10−9, and 1.884225879, respectively.

Figure 2 is a plot of w3, another solution obtained using the variant of the Car-

leman embedding technique, for 0 ≤ p ≤ 1.

Figure 2: A third solution of the differential equation for the probit function using a

variant of Carleman embedding.
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Finally, let m = 10, n = 10. Following the earlier- described procedure, we obtain

u1,0 and, by implication, another possible solution, w4. Here,

w4(p) =
1

5

√
2π

9
2p5 +

29

21

√
2π

9
2p7 − 163

180

√
2π

9
2p6 − 4369

5040
p8
√

2π
9
2

+
4369

22680
p9
√

2π
9
2 − 1

2

√
2π − 1

24

√
2π

3
2 − 4369

11612160

√
2π

9
2 − 7

960

√
2π

5
2

− 127

80640

√
2π

7
2 +

1

6
p3(

367

960

√
2π

9
2 +

13

16

√
2π

7
2 +

3

2

√
2π

5
2 + 2

√
2π

3
2 )

+
1

3

(
817

1440

√
2π

9
2 +

11

12

√
2π

7
2 +
√

2π
5
2

)
p3

+
1

2

(
− 4369

40320

√
2π

9
2 − 127

480

√
2π

7
2 − 7

12

√
2π

5
2 −
√

2π
3
2

)
p2

+
1

4

(
−5

4

√
2π

9
2 −
√

2π
7
2

)
p4 +

7

24

(
−367

240

√
2π

9
2 − 13

6

√
2π

7
2 − 2

√
2π

5
2

)
p4

+
127

720

(
−19

3

√
2π

9
2 − 4

√
2π

7
2

)
p6 +

7

120

(
95

24

√
2π

9
2 + 5

√
2π

7
2 + 4

√
2π

5
2

)
p5

+ p(
4369

645120

√
2π

9
2 +

127

5760

√
2π

7
2 +

7

96

√
2π

5
2 +

1

4

√
2π

3
2 +
√

2π)

+
127

5040

(
14
√

2π
9
2 + 8

√
2π

7
2

)
p7 +

23

60
p5
(

17

6

√
2π

9
6 + 2

√
2π

7
2

)
.

w4 evaluated at the points p = 0, p = 0.5 and p = 1, yields − 4369
11612160

√
2π

9
2 −

127
80640

√
2π

7
2− 7

960

√
2π

5
2− 1

24

√
2π

3
2− 1

2

√
2π, 1·10−11

√
2π

9
2 +2·10−11

√
2π

5
2−3·10−11

√
2π

7
2 ,

and 4369
11612160

√
2π

9
2 + 127

80640

√
2π

7
2 + 7

960

√
2π

5
2 + 1

24

√
2π

3
2 + 1

2

√
2π, respectively. These ap-

proximate to −1.976092652, 6.04836112 · 10−10, and 1.976092651, respectively.

Figure 3 is a plot of w4, for 0 ≤ p ≤ 1.
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Figure 3: A fourth solution of the differential equation for the probit function using

a variant of Carleman embedding.

The procedure discussed in this section not only gives us a value for w (our

main aim), but also gives us values for different powers of w. Recall (17), um,0 = wm,

or wm = um,0, which helped us pick our desired solution from the solution set (gotten

from solving the system of difference equations generated from (16)), since w = u1,0.

Likewise,

w2 = u2,0;

w3 = u3,0;

w4 = u4,0...

We can also immediately obtain values for w′, (w′)2, (w′)3, (w′)4, ..., from our
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solution set. To do this, recall (18), u0,n = (w′)n, or (w′)n = u0,n. From this, we have:

w′ = u0,1;

(w′)2 = u0,2;

(w′)3 = u0,3;

(w′)4 = u0,4...

Furthermore, we can also determine the values of w′′, w′′′, ..., at different points

(for different values of p). Recall our differential equation for the probit function,

w′′(p) = w(p)(w′(p))2.

Let us find the value of w′′(p) at, say, p = 0.5. Now, w(0.5) = 0 and w′(0.5) =
√

2π

are already given as initial conditions. Hence,

w′′(0.5) = w(0.5)(w′(0.5))2

= 0 · (
√

2π)2

= 0.

Similarly,

w′′′ = w · 2w′ · (w′′) + (w′)2 · w′ = 2ww′w′′ + (w′)3.

Hence,

w′′′(0.5) = 2w(0.5)w′(0.5)w′′(0.5) + (w′(0.5))3
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= 2 · 0 ·
√

2π · 0 + (
√

2π)3

= 2
√

2π3/2.

Finally, notice that we have some other interesting relationships from the pre-

ceding expressions. Notice, for instance, that

(w′(0.5))3 = w′′′(0.5).

Both equal 2
√

2π3/2.

4.4 Comparison of Solutions Obtained Using A Variant of the Carleman

Embedding Technique with Power Series Solutions

In this section, we compare our solutions obtained using a variant of the Car-

leman embedding technique with the power series solution of Steinbrecher and Shaw

[49]. For ease of comparison, let us denote the general power series solution by wpss(p),

and that obtained using a variant of the Carleman embedding technique by wvce(p).

Let us first obtain some particular solutions from the general power series solu-

tion. Recall the general power series solution, given by equations (4) and (5). With

our new notation, the general power series solution is given by:

wpss(p) =

√
π

2

∞∑
k=0

dk
(2k + 1)

(2p− 1)2k+1,

where the coefficients dk satisfy the nonlinear recurrence:

dk+1 =
π

4

k∑
j=0

djdk−j
(j + 1)(2j + 1)

,
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with d0 = 1.

If we stop at k = 0 when we expand the power series, we obtain a first degree solution:

wpss(p) = −1

2

√
2πd0 +

√
2πd0p

= −1

2

√
2π +

√
2πp.

We again expand the general power series solution, this time stopping at k = 1.

This time, we will need d1. Let us first find d1 from equation (5),

dk+1 =
π

4

k∑
j=0

djdk−j
(j + 1)(2j + 1)

.

d1 = d0+1 =
π

4

0∑
j=0

djd0−j
(j + 1)(2j + 1)

=
π

4

[
d0d0−0

(0 + 1)(2(0) + 1)

]
=

π

4

[
d0d0

(1)(0 + 1)

]
=

π

4

[
(1)(1)

(1)(1)

]
=

π

4
.
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When we expand the power series, stopping at k = 1, we have:

wpss(p) =

√
2π

2

(
−d0 −

d1
3

)
+

√
2π

2
(2d0 + 2d1)p− 2

√
2πd1p

2 +
4

3

√
2πd1p

3

=

√
2π

2

[
−1− 1

3

(π
4

)]
+

√
2π

2

[
(2(1) + 2

(π
4

)]
p− 2

√
2π
(π

4

)
p2

+
4

3

√
2π
(π

4

)
p3

=

√
2π

2

(
−1− π

12

)
+
√

2π
(

1 +
π

4

)
p− π

√
2π

2
p2 + π

√
2π

3
p3.

Figure 4 is a plot of wpss2, a third degree power series solution, for 0 ≤ p ≤ 1.

Figure 4: A Second Power Series Solution of the Differential Equation for the Probit

Function.
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Theorem 4.1: The solution u1,0 to the truncated system of order MN is the

Taylor polynomial of the probit function.

Proof: The truncated system of order MN can be written as:

v̇ = Av,

where v is an MN x 1 vector of ui,j and A is an MN x MN matrix.

The matrix A is a banded matrix. This is because none of the equations in our

truncated system involve more than two of the ui,j on the RHS. Also, ai,i = 0 ∀

i, since u′i,j is independent of ui,j ∀ i, j. Moreover, both terms on the RHS of the

equation

u′m,n = num+1,n+1 +mum−1,n+1

are dependent on n+ 1. We can therefore define the vector v in such a way that the

resulting matrix A is an upper triangular matrix.

Since A is upper triangular with zeros on its diagonal, the characteristic polyno-

mial of A is given by

X(A) = AMN .

Our truncated system is therefore a degenerate system of ordinary differential equa-

tions.

By setting X(A) = 0, we see that there is a single eigenvalue 0 with multiplicity

MN . Thus, the general solution is a polynomial of degree MN .

By applying the initial conditions for the vector v, we obtain a unique solution.

Furthermore, as M,N → ∞, the solution becomes the power series solution to the
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probit ODE.

Now, Taylor polynomials are unique. Also, the solution to the ODE is unique.

Therefore, the solution u1,0 to the truncated system of order MN is the Taylor poly-

nomial of the probit function. QED.

The above argument implies that un,o converges to the nth power of the probit,

so the solution to the system of equations yields Taylor Polynomials of powers of the

probit function.

We now compare our solutions obtained using a variant of the Carleman

embedding technique with the power series solution of Steinbrecher and Shaw [49].

To do this, we shall compare solutions of the same degree (those in which the highest

power of p is the same) from both methods. We shall compare constant terms and

coefficients of p in those solutions.

The power series solution of first degree is given by:

wpss(p) = −1

2

√
2π +

√
2πp.

From earlier results, the first degree solution obtained using the variant of Car-

leman embedding technique is given by:

wvce(p) =
√

2πp− 1

2

√
2π

= −1

2

√
2π +

√
2πp.

We see immediately that both solutions are identical.
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Let us consider third degree solutions from both methods. The third degree

power series solution is given by:

wpss(p) =

√
2π

2

(
−1− π

12

)
+
√

2π
(

1 +
π

4

)
p− π

√
2π

2
p2 + π

√
2π

3
p3.

The third degree solution using the variant of Carleman embedding is that ob-

tained with a cut-off of 4 (see Section 4.3 above). It is given by:

wvce(p) =
1

3

√
2π3/2p3 − 1

2
p2
√

2π3/2 +

(
1

4

√
2π3/2 +

√
2π

)
p− 1

24

√
2π3/2 − 1

2

√
2π.

Rearranging terms in increasing powers of p, we have:

wvce(p) = − 1

24

√
2π3/2 − 1

2

√
2π +

(
1

4

√
2π3/2 +

√
2π

)
p− 1

2

√
2π3/2p2 +

1

3

√
2π3/2p3.

We now compare constant terms and coefficients of p, p2, and p3 in wpss and wvce.

Let us first compare constant terms.

In wpss, the constant term =
√
2π
2

(
−1− π

12

)
≈ −1.58143101.

In wvce, the constant term =− 1
24

√
2π3/2 − 1

2

√
2π ≈ −1.58143101.

We see that the constant terms are equal in both solutions.

Next, we compare coefficients of p.

In wpss, the coefficient of p =
√

2π
(
1 + π

4

)
≈ 4.475329517.

In wvce, the coefficient of p =
(
1
4

√
2π3/2 +

√
2π
)
≈ 4.475329517.

Hence, the coefficients of p are the same in both solutions.
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Next, we compare coefficients of p2.

In wpss, the coefficient of p2 =−π
√
2π
2
≈ −3.937402486

In wvce, the coefficient of p2 =−1
2

√
2π3/2 ≈ −3.937402486

Hence, the coefficients of p2 are the same in both solutions.

Finally, we compare coefficients of p3.

In wpss, the coefficient of p3 =π
√
2π
3
≈ 2.624934990

In wvce, the coefficient of p3 =1
3

√
2π3/2 ≈ 2.624934990

We also see that the coefficients of p3 are the same in both solutions.

Since the constant terms and coefficients of powers of p are equal in solutions

obtained using either method, it follows that solutions obtained using either method

are equal for all values of p. We expect this to hold for solutions of any degree, for

both methods.

The third degree solutions from both methods are compared graphically in Figure

5:
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Figure 5: Comparison of third degree power series solution (red) with third degree

variant of Carleman embedding solution (blue).

It is clear that both the power series method and the variant of Carleman

embedding technique yield more or less the same results when used to solve the sec-

ond order ordinary differential equation for the probit function. Clearly also, our

solutions using the variant of the Carleman embedding technique are bounded and

continuous. This is because the solutions are polynomial in p.
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5 CONCLUSION

In this research, we used a variant of the Carleman embedding technique with an

appropriate transformation to approximate solutions to the second order nonlinear or-

dinary differential equation for the probit function. We obtained polynomial solutions

of different degrees by varying the cut-off values of the indices in our transformation.

Our solutions were bounded and continuous. We later compared our solutions with

the published power series solutions of Steinbrecher and Shaw [49].

Our comparisons showed that the variant of the Carleman embedding technique

used in this research yielded results that are in very good agreement with those of the

power series method of Steinbrecher and Shaw [49]. The variant of Carleman embed-

ding technique is especially convenient because we can obtain solutions of different

degrees by varying the values of our cut-off for the indices in our transformation. We

can also find different powers of the probit function w by varying the values of the

indices in our transformation.

Powers of the probit function, just like the probit itself, are important in appli-

cations. The method used in this research produces not only Taylor polynomials of

the probit function, but also Taylor polynomials of powers of the probit function.

In conclusion, the variant of Carleman embedding technique used in this research

is a convenient alternative to power series methods for approximating solutions to the

second order nonlinear ordinary differential equation for the probit function. This

technique merits further research, to determine its suitability in approximating solu-

tions to other second order and higher order nonlinear differential equations.
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APPENDIX: Maple Code

In the following Maple code, the value of “Cutoff” determines the size of the

truncated system of equations generated. Here, the Cutoff value, 10, is arbitrary.

U := proc(m,n,Cutoff)

if( m > Cutoff or n > Cutoff) then

return 0

else

return ( w(t) )^m * ( D(w)(t) ) ^ n

end if:

end proc:

CutOff:=10:

NewEqs := {}:

for n from 0 to CutOff by 1 do

for m from 0 to CutOff by 1 do

if( m+1 > CutOff ) then

Eq := Diff(u[m,n](p),p) = m*u[m-1,n+1](p)

end if:

if( n+1 > CutOff ) then

Eq := Diff(u[m,n](p),p) = 0

end if:

if( n+1 <= CutOff and m+1 <= CutOff ) then

Eq := Diff(u[m,n](p),p) = n*u[m+1,n+1](p) + m*u[m-1,n+1](p)
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end if:

NewEqs := NewEqs union {Eq}:

end do

end do:

NewEqs ;

for i in NewEqs do

print(i)

end do:

ANS := dsolve(NewEqs)

for i in ANS do

print(i)

end do:

IC1 := {seq( seq( u[m,n](0.5) = 0, m=1..10),n=0..10)};

IC2:={seq( seq( u[m,n](0.5) = (sqrt(2*Pi))^n, m=0..0),n=0..10)};

IC:=IC1 union IC2;

SOLN:=dsolve(NewEqs union IC);

for i in SOLN do

print(i)

end do:

## We pick the desired solution, u_{1,0}(p), from the solution set,
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## and use it in the next statement:

## u_{1,0}=...

## For convenience, we assign the value of u_{1,0}(p) (the RHS)

## to w(p), then plot the latter:

w(p):=rhs(%);

plot(w(p), p = 0..1)
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