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ABSTRACT

Packings and Coverings of Various Complete Digraphs with the Orientations of a

4-Cycle

by

Melody Cooper

There are four orientations of cycles on four vertices. Necessary and sufficient con-

ditions are given for covering complete directed digraphs Dv, packing and covering

complete bipartite digraphs, Dm,n, and packing and covering the complete digraph

on v vertices with hole of size w, D(v, w), with three of the orientations of a 4-cycle,

including C4, X, and Y .
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1 INTRODUCTION

Within the field of combinatorial mathematics exists a branch of mathematics

known as design theory. Design theory can be used in professions related to computer

science, telecommunications, traffic management, and environmental conservation [2].

More specifically, within design theory we can study decompositions, packings, and

coverings of graphs.

A graph is a mathematical representation of a relationship. There are finite and

infinite graphs. In this paper we only consider finite graphs. That is, a graph G

consists of two sets—a nonempty finite set V of vertices and a finite set E of edges

consisting of unordered pairs of distinct vertices from V . There also exist directed

graphs D called digraphs. In these digraphs, we no longer have edges but instead

we have arcs that are assigned a direction. In a non-directed graph, two vertices are

adjacent if they have an edge in common. A graph on v vertices in which every vertex

is adjacent to every other vertex is a complete graph on v vertices and is denoted Kv.

For directed complete graphs, Dv, we replace each edge with two arcs of opposite

orientations. The degree of a vertex, v, is defined as the number of edges adjacent

to v. In directed graphs, each vertex has an out degree, od(v), which is the number

of vertices that v is adjacent to and in degree, id(v), which is the number of vertices

that v is adjacent from. Equivalently, od(v) is the number of arcs that point away

from v and id(v) is the number of arcs that point toward v. The total degree of a

vertex in a directed graph is od(v)+id(v). In this paper, if we have two graphs, G

and H, G ∪ H is the graph with vertex set V (G)∪ V (H) and edge set E(G)∪ E(H).

A decomposition of a simple graph H with isomorphic copies of a graph G is a set

8



{G1, G2, . . . , Gn} where Gi
∼= G and V (Gi) ⊂ V (H) for all i, E(Gi)

⋂
E(Gj) = ∅ if

i 6= j,
n⋃

i=1

Gi ⊂ H. The vertex set of a graph G is denoted V (G) and the edge set of

graph G is denoted E(G). Figure 1 is an example of a basic graph decomposition. In

Figure 1, we have decomposed K5 into two 5-cycles.
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Figure 1: Decomposition of a K5 into 5−cycles

The first decompositions studied were the Steiner triple systems of order v [9],

which are decompositions of Kv into isomorphic copies of C ′
3s. The C ′

3s are non-

oriented three cycles. We denote these as STS (v). These systems exist if and only

if v ≡ 1 or 3 (mod 6). Decompositions also exist for directed digraphs. However,

instead of having an edge set, E(G), we have an arc set A(G). So orientations were

given to the edges of the C ′
3s. There are two orientations of C3, the 3−circuit and

the transitive triple as depicted in Figure 2.

This led to the study of Mendelsohn triple systems of order v, MTS(v) [10],

which are decompositions of Dv into 3−circuits, and directed triple system or or-

der v, DTS(v), which are decompositions of Dv into transitive triples [7]. A MTS(v)

exists if and only if v ≡ 0 or 1 (mod 3), v 6= 6 [10]. A DTS(v) exists if and only if

9
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Figure 2: Orientations of a 3−cycle

v ≡ 0 or 1 (mod 3) [7].

Then several other directed and non-directed graphs were decomposed, among

those the 4-cycle. In Figure 3, notice that there are 4 orientations of a 4-cycle.
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Figure 3: The Orientations of a 4-cycle.

These digraphs are denoted in the following way: [a,b,c,d]C , [a,b,c,d]X , [a,b,c,d]Y ,

and [a,b,c,d]Z respectively. In this paper, we will only be considering C4, X, and Y .

The following are the results of the decompositions of each of the orientations of

the four cycle:

An X- decomposition of Dv exists if and only if v ≡ 0 or 1 (mod 4), v 6= 5 [6];

A Y-decomposition of Dv exists if and only if v ≡ 0 or 1 (mod 4), v 6∈ {4, 5} [6];

A Z-decomposition of Dv exists if and only if v ≡ 1 (mod 4) [6]; and
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A C4-decomposition of Dv exists if and only if v ≡ 0 or 1(mod 4), v 6= 4 [12].

However, not all graphs can be decomposed. Now consider how close we can

get to a graph decomposition. One way is to pack a graph. That is, we remove

isomorphic copies of G without removing any repeated arcs until there are no more

copies of G left. The arcs that remain are known as the leave of the graph. Formally,

a maximal packing of a simple graph H with isomorphic copies of a graph G is a set

{G1, G2, . . . , Gn} where Gi
∼= G and V (Gi) ⊂ V (H) for all i, E(Gi)

⋂
E(Gj) = ∅ if

i 6= j,

n⋃

i=1

Gi ⊂ H, and

|E(L)| =

∣∣∣∣∣E(H) \
n⋃

i=1

E(Gi)

∣∣∣∣∣

is minimal. The set L is the leave of the packing. Figure 4 is an example of a graph

packing. In this figure, we have packed K5 with C ′
3s.
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Figure 4: Packing of a K5 with 3-cycles (C ′
3s)

Packings of the complete graph on v vertices of Kv, with a graph G, have been

studied when G is a 3-cycle [11], a 4-cycle [12], a K4[1] , and a 6-cycle [8]. Packings

of the orientations of a 3-cycle, that is DTS(v) and MTS(v) have also been studied
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[4].

We also know the packings of the orientations of a 4-cycle. They are as follows:

Theorem 1.1 An optimal packing of Dv with copies of C4 and leave L satisfies:

1. L=∅ if v ≡ 0 or 1 (mod 4), v 6= 4,

2. |A(L)|=4 if v=4,

3. L=D2 if v ≡ 2 or 3 (mod 4)[5].

Theorem 1.2 An optimal packing of Dv with copies of X and leave L satisfies:

1. L=∅ if v ≡ 0 or 1 (mod 4), v 6= 5,

2. |A(L)|=4 if v=5,

3. L=D2 if v ≡ 2 or 3 (mod 4)[5].

Theorem 1.3 An optimal packing of Dv with copies of Y and leave L satisfies:

1. L= ∅ if v ≡ 0 or 1 (mod 4), v 6∈ {4, 5},

2. |A(L)|=4 if v ∈ {4, 5},

3. L=D2 if v ≡ 2 or 3 (mod 4)[5].

Theorem 1.4 An optimal packing of Dv with copies of Z and leave L satisfies:

1. L=∅ if v ≡ 1 (mod 4),

2. |A(L)|=v and the arcs of L are arranged in a collection of disjoint circuits if

v ≡ 0 or 2 (mod 4),

3. |A(L)|=6 and the arcs of L are arranged in such a way that each vertex of the

leave has in-degree = out-degree ≡ 0 (mod 2) and v ≡ 3 (mod 4)[5].

Another option, if a graph cannot be decomposed, is to cover the graph. That is,

we cover the graph with isomorphic copies of G until all arcs are covered. The arcs that

12



are repeated are known as the padding of the graph. Formally, a minimal covering

of a simple graph H with isomorphic copies of a graph G is a set {G1, G2, . . . , Gn}

where Gi
∼= G and V (Gi) ⊂ V (H) and E(Gi) ⊂ E(H) for all i, H ⊂

n⋃

i=1

Gi, and

|E(P )| =

∣∣∣∣∣
n⋃

i=1

E(Gi) \ E(H)

∣∣∣∣∣

is minimal. However, the graph
n⋃

i=1

Gi may not be simple and
n⋃

i=1

E(Gi) may be a

multiset. The graph P is the padding of the covering. We can see what a graph

covering is in Figure 5. In this figure, we cover K5 with copies of C3.

Coverings of the complete graph on v vertices of, Kv with a graph G have been

studied when G is a 3-cycle [3], a 4-cycle [13], and a 6-cycle. Coverings of the ori-

entations of a 3-cycle [8], that is DTS(v) and MTS(v), have been studied as well

[4].

In this paper, we will cover complete directed digraphs Dv, pack and cover com-

plete bipartite digraphs, Dm,n, and pack and cover the complete digraph on v vertices

with hole of size w, D(v, w), with three of the orientations of a 4-cycle, including C4,

X, and Y .
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Figure 5: Covering a K5 with 3−cycles (C ′
3s)

2 PACKING AND COVERING Dm,n WITH THE C4, X, AND Y

ORIENTATIONS OF THE 4-CYCLE

A complete bipartite digraph is a graph that can be partitioned into two nonempty

subsets Vm and Vn, called the partite sets, such that (a, b) is an arc of Dm,n, if and

only if a and b belong to different partitions [2]. We use the notation Vm={01, 11,

. . ., (m − 1)1} and Vn={02, 12, . . ., (n − 1)2}. Decompositions of these graphs have

been studied in the past, with the following results, beginning with C4.

14



Theorem 2.1 [5] A C4 decomposition of Dm,n exists if and only if m, n ≥ 2 and

mn ≡ 0 (mod 2).

We now want to know the results of packing these graphs.

Theorem 2.2 A maximal C4 packing of Dm,n satisfies:

1. |A(L)|= 0 when mn ≡ 0 (mod 2), m, n ≥ 2,

2. |A(L)|= 2, otherwise.

For clarity, throughout this thesis we consider values of parameter m and n modulo

4. We do these modulo 4 because we are considering orientations of a 4-cycle.

Proof. Therefore, we present sixteen cases. Since |A(C4)| = 4, it is necessary that

the leave, L, satisfy |A(L)| ≡ |A(Dm,n)|(mod 4). Therefore, for m ≡ n ≡ 0 (mod 4),

|A(L)| ≥ 0 and for the other cases |A(L)| ≥ 2.

Case 1: If m ≡ n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). Therefore, by Theorem

2.1, a decomposition exists.

Case 2: If m ≡ 0 (mod 4) and n ≡ 1 (mod 4), then mn ≡ 0 (mod 2). Thus, by

Theorem 2.1, a decomposition exists.

Case 3: If m ≡ 0 (mod 4) and n ≡ 2 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.1, a decomposition exists.

Case 4: If m ≡ 0 (mod 4) and n ≡ 3 (mod 4), then mn ≡ 0 (mod 2). Thus, by

Theorem 2.1, a decomposition exists.

Case 5: If m ≡ 1 (mod 4) and n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.1, a decomposition exists.

Case 6: If m ≡ n ≡ 1 (mod 4), where m, n ≥ 2, Dm,n=D5,5 ∪ Dm−5,5 ∪ Dm,n−5

∪ Dm−5,n−5. Now pack each smaller graph with C4. For D5,5, the partite sets are

15



{01, 11, 21, 31, 41} and {02, 12, 22, 32, 42}. One possible way of packing D5,5 so that

the leave is minimal is: {[01, 02, 11, 12]C , [01, 12, 21, 22]C , [01, 22, 41, 42]C , [01, 32,

41, 02]C , [01, 42, 11, 32]C , [11, 02, 41, 12]C , [11, 42, 21, 32]C , [21, 02, 31, 22]C , [21, 12,

31, 02]C , [21, 42, 31, 32]C , [31, 12, 41, 32]C , [31, 42, 41, 22]C} and |A(L)|={(11, 22),(22,

11)}. The partite sets for Dm−5,5 are {51, 61, . . ., (m − 1)1} and {02, 12, 22, 32, 42}.

For Dm,n−5, the partite sets are {01, 11, 21, 31, 41} and {52, 62, . . ., (n−1)2}. Finally,

for Dm−5,n−5, the partite sets are {51, 61, . . ., (m − 1)1} and {52, 62, . . ., (n − 1)2}.

Since m ≡ 1 (mod 4) and n ≡ 1 (mod 4) and m, n ≥ 2, then m− 5 ≡ 0 (mod 2) and

n− 5 ≡ 0 (mod 2). Therefore, Dm−5,5, Dm,n−5, and Dm−5,n−5 can be decomposed by

Theorem 2.1. Thus, the leave L satisfies |A(L)|=2.

Case 7: If m ≡ 1 (mod 4) and n ≡ 2 (mod 4), then mn ≡ 0 (mod 2). By Theorem

2.1, it follows that a decomposition exists.

Case 8: If m ≡ 1 (mod 4) and n ≡ 3 (mod 4), where m, n ≥ 2, then Dm,n=D5,3 ∪

Dm−5,3 ∪ Dm,n−3 ∪ Dm−5,n−3. Now pack each smaller graph with C4. For D5,3, the

partite sets are {01, 11, 21, 31, 41} and {02, 12, 22}. One possible way of packing D5,3

so that the leave is minimal is: {[02, 01, 12, 41]C , [01, 02, 11, 22]C , [11, 02, 41, 12]C ,

[02, 21, 22, 31]C , [02, 31, 12, 21]C , [22, 21, 12, 01]C , [22, 11, 12, 31]C} and |A(L)|={(41,

22),(22, 41)}. The partite sets for Dm−5,3 are {51, 61, . . ., (m − 1)1} and {02, 12, 22}.

For Dm,n−3, the partite sets are {01, 11, 21, 31, 41} and {32, 42, . . ., (n−1)2}. Finally,

for Dm−5,n−3, the partite sets are {51, 61, . . ., (m − 1)1} and {32, 42, . . ., (n − 1)2}.

Since m ≡ 1 (mod 4) and n ≡ 3 (mod 4) and m, n ≥ 2, then m− 5 ≡ 0 (mod 2) and

n− 3 ≡ 0 (mod 2). Therefore, Dm−5,3, Dm,n−3, and Dm−5,n−3 can be decomposed by

Theorem 2.1. Thus, the leave L satisfies |A(L)|=2.
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Case 9: If m ≡ 2 (mod 4) and n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.1, a decomposition exists.

Case 10: If m ≡ 2 (mod 4) and n ≡ 1 (mod 4), then mn ≡ 0 (mod 2). By

Theorem 2.1, it follows that a decomposition exists.

Case 11: If m ≡ n ≡ 2 (mod 4), then mn ≡ 0 (mod 2). Therefore, by Theorem

2.1, a decomposition exists.

Case 12: If m ≡ 2 (mod 4) and n ≡ 3 (mod 4), then mn ≡ 0 (mod 2). Thus, by

Theorem 2.1, a decomposition exists.

Case 13: If m ≡ 3 (mod 4) and n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). By

Theorem 2.1, it follows that a decomposition exists.

Case 14: If m ≡ 3 (mod 4) and n ≡ 1 (mod 4), where m, n ≥ 2, then Dm,n=D3,5

∪ Dm−3,5 ∪ Dm,n−5 ∪ Dm−3,n−5. Now pack each smaller graph with C4. For D3,5, the

partite sets are {01, 11, 21} and {02, 12, 22, 32, 42}. One possible way of packing D3,5

so that the leave is minimal is: {[01, 02, 11, 42]C , [02, 01, 12, 21]C , [12, 01, 42, 11]C ,

[01, 22, 21, 32]C , [01, 32, 11, 22]C , [21, 22, 11, 02]C , [21, 12, 11, 32]C} and |A(L)|={(21,

42),(42, 21)}. The partite sets for Dm−3,5 are {31, 41, . . ., (m−1)1} and {02, 12, 22, 32,

42}. For Dm,n−5, the partite sets are {01, 11, 21} and {52, 62, . . ., (n − 1)2}. Finally,

for Dm−3,n−5, the partite sets are {31, 41, . . ., (m − 1)1} and {52, 62, . . ., (n − 1)2}.

Since m ≡ 3 (mod 4) and n ≡ 1 (mod 4) and m, n ≥ 2, then m− 3 ≡ 0 (mod 2) and

n− 3 ≡ 0 (mod 2). Therefore, Dm−3,5, Dm,n−5, and Dm−3,n−5 can be decomposed by

Theorem 2.1. Thus, the leave L satisfies |A(L)|=2.

Case 15: If m ≡ 3 (mod 4) and n ≡ 2 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.1 a decomposition exists.
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Case 16: If m ≡ n ≡ 3 (mod 4), where m, n ≥ 2, then decompose Dm,n. That

is Dm,n=D3,3 ∪ Dm−3,3 ∪ Dm,n−3 ∪ Dm−3,n−3. Now pack each smaller graph with

C4. For D3,3, the partite sets are {01, 11, 21} and {02, 12, 22}. One possible way of

packing D3,3 so that the leave is minimal is: {[01, 02, 11, 12]C , [01, 12, 21, 22]C , [01, 22,

21, 02]C , [11, 02, 21, 12]C} and |A(L)|={(11, 22),(22, 11)}. The partite sets for Dm−3,3

are {31, 41, . . ., (m − 1)1} and {02, 12, 22}. For Dm,n−3, the partite sets are {01, 11,

21} and {32, 42, . . ., (n − 1)2}. Finally, for Dm−3,n−3, the partite sets are {31, 41,

. . ., (m − 1)1} and {32, 42, . . ., (n − 1)2}. Since m ≡ 1 (mod 4) and n ≡ 1 (mod 4)

and m, n ≥ 2, then m − 3 ≡ 0 (mod 2) and n − 3 ≡ 0 (mod 2). Therefore, Dm−3,3,

Dm,n−3, and Dm−3,n−3 can be decomposed by Theorem 2.1 Thus, the leave L satisfies

|A(L)|=2. Q.E.D

Thus, each case for C4 satisfies the conditions of the theorem. Decomposing Dm,n

with copies of X has the following results.

Theorem 2.3 [5] An X decomposition of Dm,n exists if and only if either m ≡ n ≡

0 (mod 2) or m ≡ 1 (mod 2), m ≥ 3, and n ≡ 0 (mod 4).

Now we need to pack Dm,n with copies of X.

Theorem 2.4 A maximal X packing of Dm,n satisfies:

1. |A(L)|= 0 when m ≡ n ≡ 0 (mod 2) or m ≡ 1 (mod 2), m ≥ 3,

2. |A(L)|= 2, when m ≡ 1 (mod 2) and n ≡ 1 (mod 2), m ≥ 3.

3. |A(L)|= 4, when m ≡ 1 (mod 2) and n ≡ 2 (mod 4), m ≥ 3.

Proof. As in Theorem 2.2, it is necessary that |A(L)| ≡ |A(Dm,n)|(mod 4). So

for m ≡ n ≡ 0 (mod 2), we have that |A(L)| ≥ 0. For m ≡ n ≡ 1 (mod 2), we have
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Figure 6: Packing D3,3 with Copies of C4

|A(L)| ≥ 2. For the remaining cases, |A(Dm,n)| ≡ 0 (mod 4). However, by Theorem

2.3, a decomposition does not exist. Thus, |A(L)| ≥ 4 in these cases.

Case 1: If m ≡ n ≡ 0 (mod 4), then m ≡ n ≡ 0 (mod 2). Therefore, by Theorem

2.3, a decomposition exists.

Case 2: If m ≡ 0 (mod 4) and n ≡ 1 (mod 4), then m ≡ 0 (mod 4) and n ≡ 1

(mod 2). By Theorem 2.3, it follows that a decomposition exists.

Case 3: If m ≡ 0 (mod 4) and n ≡ 2 (mod 4), then m ≡ n ≡ 0 (mod 2). Therefore,

by Theorem 2.3, a decomposition exists.
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Case 4: If m ≡ 0 (mod 4) and n ≡ 3 (mod 4), then m ≡ 0 (mod 4) and n ≡ 1

(mod 2). Thus, by Theorem 2.3, a decomposition exists.

Case 5: If m ≡ 1 (mod 4) and n ≡ 0 (mod 4), then m ≡ 1 (mod 2) and n ≡ 0

(mod 4). Therefore, by Theorem 2.3, a decomposition exists.

Case 6: If m ≡ n ≡ 1 (mod 4), where m ≥ 3, then Dm,n=D5,5 ∪ Dm−5,5 ∪ Dm,n−5

∪ Dm−5,n−5. Now pack each smaller graph with X. For D5,5, the partite sets are {01,

11, 21, 31, 41} and {02, 12, 22, 32, 42}. One possible way of packing D5,5 so that the

leave is minimal is: {[01, 02, 11, 12]X , [22, 31, 42, 41]X , [12, 01, 42, 21]X , [21, 32, 31,

22]X , [02, 01, 32, 41]X , [32, 01, 22, 21]X , [41, 02, 21, 42]X [42, 11, 02, 31]X , [31, 12, 01,

32]X , [21, 12, 31, 02]X , [22, 11, 42, 01]X , [41, 32, 11, 22]X} and |A(L)|={(41, 12),(12,

41)}. The partite sets for Dm−5,5 are {51, 61, . . ., (m − 1)1} and {02, 12, 22, 32, 42}.

For Dm,n−5, the partite sets are {01, 11, 21, 31, 41} and {52, 62, . . ., (n−1)2}. Finally,

for Dm−5,n−5, the partite sets are {51, 61, . . ., (m − 1)1} and {52, 62, . . ., (n − 1)2}.

Since m ≡ 1 (mod 4), n ≡ 1 (mod 4), then m − 5 ≡ 0 (mod 2) and n − 5 ≡ 0 (mod

2). Therefore, Dm−5,5, Dm,n−5, and Dm−5,n−5 can be decomposed by Theorem 2.3.

Thus, the leave, L, satisfies |A(L)|=2.

Case 7: If m ≡ 1 (mod 4) and n ≡ 2 (mod 4), where m ≥ 3, then Dm,n=D5,2

∪ Dm−5,2 ∪ Dm,n−2 ∪ Dm−5,n−2. Now pack each smaller graph with X. For D5,2,

the partite sets are {01, 11, 21, 31, 41} and {02, 12}. One possible way of packing

D5,2 so that the leave is minimal is: {[01, 02, 11, 12]X , [21, 12, 41, 02]X , [31, 12, 11,

02]X , [02, 41, 12, 31]X} and |A(L)|={(02, 01), (02, 21), (12, 01), (12, 21)}. The partite

sets for Dm−5,2 are {51, 61, . . ., (m − 1)1} and {02, 12}. For Dm,n−2, the partite sets

are {01, 11, 21, 31, 41} and {22, 32, . . ., (n − 1)2}. Finally, for Dm−5,n−2, the partite
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sets are {51, 61, . . ., (m − 1)1} and {22, 32, . . ., (n − 1)2}. Since m ≡ 1 (mod 4)

and n ≡ 3 (mod 4), then m − 5 ≡ 0 (mod 2) and n − 2 ≡ 0 (mod 2). Therefore,

Dm−5,2, Dm,n−2, and Dm−5,n−2 can be decomposed by Theorem 2.3. Thus, the leave,

L, satisfies |A(L)|=4.

Case 8: If m ≡ 1 (mod 4) and n ≡ 3 (mod 4), where m ≥ 3, then Dm,n=D5,3 ∪

Dm−5,3 ∪ Dm,n−3 ∪ Dm−5,n−3. Now pack each smaller graph with X. For D5,3, the

partite sets are {01, 11, 21, 31, 41} and {02, 12, 22}. One possible way of packing D5,3

so that the leave is minimal is: {[02, 01, 12, 41]X , [22, 31, 42, 41]X , [12, 01, 42, 21]X ,

[21, 32, 31, 22]X , [02, 01, 32, 41]X , [32, 01, 22, 21]X , [41, 02, 21, 42]X} and |A(L)|={(41,

22),(22, 41)} The partite sets for Dm−5,3 are {51, 61, . . ., (m − 1)1} and {02, 12, 22}.

For Dm,n−3, the partite sets are {01, 11, 21, 31, 41} and {32, 42, . . ., (n−1)2}. Finally,

for Dm−5,n−3, the partite sets are {51, 61, . . ., (m − 1)1} and {32, 42, . . ., (n − 1)2}.

Now, note that since m ≡ 1 (mod 4) and n ≡ 3 (mod 4), then m − 5 ≡ 0 (mod 2)

and n− 3 ≡ 0 (mod 2). Therefore Dm−5,3, Dm,n−3, and Dm−5,n−3 can be decomposed

by Theorem 2.3. Therefore, the leave, L, satisfies |A(L)|=2.

Case 9: If m ≡ 2 (mod 4) and n ≡ 0 (mod 4), then m ≡ n ≡ 0 (mod 2). Therefore,

by Theorem 2.3, a decomposition exists.

Case 10: If m ≡ 2 (mod 4) and n ≡ 1 (mod 4), where m ≥ 3, then Dm,n=D2,5 ∪

Dm−2,5 ∪ Dm,n−5 ∪ Dm−2,n−5. Now pack each smaller graph with X. For D2,5, the

partite sets are {01, 11} and {02, 12, 22, 32, 42}. One possible way of packing D2,5 so

that the leave is minimal is: {[02, 01, 12, 11]X , [22, 11, 42, 01]X , [32, 11, 12, 01]X , [01,

42, 11, 32]X} and |A(L)|={(01, 02),(01, 22), (11, 02), (11, 22)}. The partite sets for

Dm−2,2 are {21, 31, . . ., (m−1)1} and {02, 12, 22, 32, 42}. For Dm,n−5, the partite sets
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are {01, 11} and {52, 62, . . ., (n− 1)2}. Finally, for Dm−2,n−5, the partite sets are {21,

31, . . ., (m − 1)1} and {52, 62, . . ., (n − 1)2}. Since m ≡ 2 (mod 4) and n ≡ 1 (mod

4), then m − 2 ≡ 0 (mod 2) and n − 5 ≡ 0 (mod 2). Therefore, Dm−2,5, Dm,n−5, and

Dm−2,n−5 can be decomposed by Theorem 2.3. Thus, the leave, L, satisfies |A(L)|=4.

Case 11: If m ≡ n ≡ 2 (mod 4), then m ≡ n ≡ 0 (mod 2). Therefore, by Theorem

2.3, a decomposition exists.

Case 12: If m ≡ 2 (mod 4) and n ≡ 3 (mod 4), where m ≥ 3, then Dm,n=D2,3 ∪

Dm−2,3 ∪ Dm,n−3 ∪ Dm−2,n−3. Now pack each smaller graph with X. For D2,3, the

partite sets are {01, 11} and {02, 12, 22}. One possible way of packing D2,3 so that

the leave is minimal is: {[02, 01, 12, 11]X , [11, 12, 01, 22]X} and |A(L)|={(22, 01), (22,

11), (01, 02), (11, 02)}. The partite sets for Dm−2,3 are {21, 31, . . ., (m− 1)1} and {02,

12, 22}. For Dm,n−3, the partite sets are {01, 11 } and {32, 42, . . ., (n− 1)2}. Finally,

for Dm−2,n−3, the partite sets are {21, 31, . . ., (m − 1)1} and {32, 42, . . ., (n − 1)2}.

Since m ≡ 2 (mod 4) and n ≡ 3 (mod 4), then m − 2 ≡ 0 (mod 2) and n − 3 ≡ 0

(mod 2). Therefore, Dm−2,3, Dm,n−3, and Dm−2,n−3 can be decomposed by Theorem

2.3. Thus, the leave, L, satisfies |A(L)|=4.

Case 13: If m ≡ 3 (mod 4) and n ≡ 0 (mod 4), then m ≡ 1 (mod 2) and n ≡ 0

(mod 4). Therefore, by Theorem 2.3, a decomposition exists.

Case 14: If m ≡ 3 (mod 4) and n ≡ 1 (mod 4), where m ≥ 3, then Dm,n=D3,5 ∪

Dm−3,5 ∪ Dm,n−5 ∪ Dm−3,n−5. Now pack each smaller graph with X. For D3,5, the

partite sets are {01, 11, 21} and {02, 12, 22, 32, 42}. One possible way of packing D3,5

so that the leave is minimal is: {[01, 02, 11, 42]X , [02, 01, 12, 21]X , [12, 01, 42, 11]X ,

[01, 22, 21, 32]X , [01, 32, 11, 22]X , [21, 22, 11, 02]X , [21, 12, 11, 32]X} and |A(L)|={(21,
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42),(42, 21)}. The partite sets for Dm−3,5 are {31, 41, . . ., (m−1)1} and {02, 12, 22, 32,

42}. For Dm,n−5, the partite sets are {01, 11, 21} and {52, 62, . . ., (n − 1)2}. Finally,

for Dm−3,n−5, the partite sets are {31, 41, . . ., (m − 1)1} and {52, 62, . . ., (n − 1)2}.

Since m ≡ 3 (mod 4) and n ≡ 1 (mod 4), then m − 3 ≡ 0 (mod 2) and n − 2 ≡ 0

(mod 2). Therefore, Dm−3,5, Dm,n−5, and Dm−3,n−5 can be decomposed by Theorem

2.3. Thus, the leave, L, satisfies |A(L)|=2.

Case 15: If m ≡ 3 (mod 4) and n ≡ 2 (mod 4), where m ≥ 3, then Dm,n=D3,2 ∪

Dm−3,2 ∪ Dm,n−2 ∪ Dm−3,n−2. Now pack each smaller graph with X. For D3,2, the

partite sets are {01, 11, 21} and {02, 12}. One possible way of packing D3,2 so that

the leave is minimal is: {[01, 02, 11, 12]X , [12, 11, 02, 21]X} and |A(L)|={(21, 02),(21,

12), (02, 01), (12, 01)}. The partite sets for Dm−3,2 are {31, 41, . . ., (m− 1)1} and {02,

12}. For Dm,n−2, the partite sets are {01, 11, 21} and {22, 32, . . ., (n − 1)2}. Finally,

for Dm−3,n−2, the partite sets are {31, 41, . . ., (m − 1)1} and {22, 32, . . ., (n − 1)2}.

Since m ≡ 3 (mod 4) and n ≡ 2 (mod 4), then m − 3 ≡ 0 (mod 2) and n − 2 ≡ 0

(mod 2). Therefore, Dm−3,2, Dm,n−2, and Dm−3,n−2 can be decomposed by Theorem

2.3. Thus, the leave, L, satisfies |A(L)|=4.

Case 16: If m ≡ n ≡ 3 (mod 4), where m ≥ 3, then Dm,n=D3,3 ∪ Dm−3,3 ∪ Dm,n−3

⋃
Dm−3,n−3. Now pack each smaller graph with X. For D3,3, the partite sets are

{01, 11, 21} and {02, 12, 22}. One possible way of packing D3,3 so that the leave is

minimal is: {[01, 02, 21, 12]X , [11, 02, 01, 22]X , [22, 21, 12, 11]X , [12, 21, 22, 01]X} and

|A(L)|={(21, 02),(02, 21)} The partite sets for Dm−3,3 are {31, 41, . . ., (m − 1)1} and

{02, 12, 22}. For Dm,n−3, the partite sets are {01, 11, 21} and {32, 42, . . ., (n − 1)2}.

Finally, for Dm−3,n−3, the partite sets are {31, 41, . . ., (m − 1)1} and {32, 42, . . .,
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(n−1)2}. Since m ≡ 3 (mod 4), n ≡ 3 (mod 4), then m−3 ≡ 0 (mod 2) and n−3 ≡

0 (mod 2). Therefore, Dm−3,3, Dm,n−3, and Dm−3,n−3 can be decomposed by Theorem

2.3. Thus, the leave, L, satisfies |A(L)|=2.Q.E.D

Thus, each case for X satisfies the conditions of the theorem. Decomposing Dm,n

with copies of Y has the following results.

Theorem 2.5 [5] A Y decomposition of Dm,n exists if and only if m, n ≥ 2 and

mn ≡ 0 (mod 2).

Theorem 2.6 A maximal Y packing of Dm,n satisfies:

1. |A(L)|= 0 when mn ≡ 0 (mod 2), m, n ≥ 2,

2. |A(L)|= 2, otherwise.

Proof. The necessary conditions follow as in Theorem 2.2.

Case 1: If m ≡ n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). Therefore, by Theorem

2.5, a decomposition exists.

Case 2: If m ≡ 0 (mod 4) and n ≡ 1 (mod 4), then mn ≡ 0 (mod 2). By Theorem

2.5, it follow that a decomposition exists.

Case 3: If m ≡ 0 (mod 4) and n ≡ 2 (mod 4), then mn ≡ 0 (mod 2). Thus, by

Theorem 2.5, a decomposition exists.

Case 4: If m ≡ 0 (mod 4) and n ≡ 3 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.5, a decomposition exists.

Case 5: If m ≡ 1 (mod 4) and n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). By Theorem

2.5, it follows that a decomposition exists.
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Case 6: If m ≡ n ≡ 1 (mod 4), where m, n ≥ 2, then Dm,n=D5,5 ∪ Dm−5,5 ∪

Dm,n−5 ∪ Dm−5,n−5. Now pack each smaller graph with Y . For D5,5, the partite sets

are {01, 11, 21, 31, 41} and {02, 12, 22, 32, 42}. One possible way of packing D5,5 so

that the leave is minimal is: {[31, 02, 21, 32]Y , [21, 32, 31, 42]Y , [32, 01, 22, 41]Y , [11,

12, 01, 22]Y , [42, 11, 02, 41]Y , [02, 01, 42, 11]Y , [42, 01, 02, 21]Y , [01, 12, 11, 32]Y , [22, 11,

32, 41]Y , [22, 21, 12, 31]Y , [02, 41, 42, 31]Y , [12, 21, 22, 31]Y } and |A(L)|={(41, 12),(12,

41)}. The partite sets for Dm−5,5 are {51, 61, . . ., (m − 1)1} and {02, 12, 22, 32, 42}.

For Dm,n−5, the partite sets are {01, 11, 21, 31, 41} and {52, 62, . . ., (n−1)2}. Finally,

for Dm−5,n−5, the partite sets are {51, 61, . . ., (m − 1)1} and {52, 62, . . ., (n − 1)2}.

Since m ≡ 1 (mod 4), n ≡ 1 (mod 4) and m, n ≥ 2, then m − 5 ≡ 0 (mod 2) and

n− 5 ≡ 0 (mod 2). Therefore, Dm−5,5, Dm,n−5, and Dm−5,n−5 can be decomposed by

Theorem 2.5. Thus, the leave, L, satisfies |A(L)|=2.

Case 7: If m ≡ 1 (mod 4) and n ≡ 2 (mod 4), then mn ≡ n ≡ 0 (mod 2).

Therefore, by Theorem 2.5, a decomposition exists.

Case 8: If m ≡ 1 (mod 4) and n ≡ 3 (mod 4), where m, n ≥ 2, then Dm,n=D5,3

∪ Dm−5,3 ∪ Dm,n−3 ∪ Dm−5,n−3. Now pack each smaller graph with Y . For D5,3, the

partite sets are {01, 11, 21, 31, 41} and {02, 12, 22}. One possible way of packing D5,3

so that the leave is minimal is: {[41, 02, 01, 12]Y , [31, 02, 41, 22]Y , [02, 31, 12, 21]Y ,

[02, 31, 12, 21]Y , [01, 02, 11, 12]Y , [11, 12, 31, 22]Y , [12, 21, 22, 41]Y } and |A(L)|={(01,

22),(22, 01)}. The partite sets for Dm−5,3 are {51, 61, . . ., (m − 1)1} and {02, 12, 22}.

For Dm,n−3, the partite sets are {01, 11, 21, 31, 41} and {32, 42, . . ., (n−1)2}. Finally,

for Dm−5,n−3, the partite sets are {51, 61, . . ., (m − 1)1} and {32, 42, . . ., (n − 1)2}.

Since m ≡ 1 (mod 4) and n ≡ 3 (mod 4) and m, n ≥ 2, then m− 5 ≡ 0 (mod 2) and
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n− 3 ≡ 0 (mod 2). Therefore, Dm−5,3, Dm,n−3, and Dm−5,n−3 can be decomposed by

Theorem 2.5. Thus, the leave, L, satisfies |A(L)|=2.

Case 9: If m ≡ 2 (mod 4) and n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). By Theorem

2.5, it follows that a decomposition exists.

Case 10: If m ≡ 2 (mod 4) and n ≡ 1 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.5, a decomposition exists.

Case 11: If m ≡ n ≡ 2 (mod 4), then mn ≡ 0 (mod 2). Thus, by Theorem 2.5, a

decomposition exists.

Case 12: If m ≡ 2 (mod 4) and n ≡ 3 (mod 4), then mn ≡ 0 (mod 2). By

Theorem 2.5, it follows that a decomposition exists.

Case 13: If m ≡ 3 (mod 4) and n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.5 a decomposition exists.

Case 14: If m ≡ 3 (mod 4) and n ≡ 1 (mod 4), where m, n ≥ 2, then Dm,n=D3,5

∪ Dm−3,5 ∪ Dm,n−5 ∪ Dm−3,n−5. Now pack each smaller graph with Y . For D3,5, the

partite sets are {01, 11, 21} and {02, 12, 22, 32, 42}. One possible way of packing D3,5

so that the leave is minimal is: {[42, 01, 02, 11]Y , [32, 01, 42, 21]Y , [01, 32, 11, 22]Y ,

[02, 01, 12, 11]Y , [12, 11, 32, 21]Y , [11, 22, 21, 42]Y , [21, 12, 01, 22]Y } and |A(L)|={(21,

02),(02, 21)}. The partite sets for Dm−3,5 are {31, 41, . . ., (m−1)1} and {02, 12, 22, 32,

42}. For Dm,n−5, the partite sets are {01, 11, 21} and {52, 62, . . ., (n − 1)2}. Finally,

for Dm−3,n−5, the partite sets are {31, 41, . . ., (m − 1)1} and {52, 62, . . ., (n − 1)2}.

Since m ≡ 3 (mod 4) and n ≡ 1 (mod 4) and m, n ≥ 2, then m− 3 ≡ 0 (mod 2) and

n− 5 ≡ 0 (mod 2). Therefore, Dm−3,5, Dm,n−5, and Dm−3,n−5 can be decomposed by

Theorem 2.5. Thus, the leave, L, satisfies |A(L)|=2.
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Case 15: If m ≡ 3 (mod 4) and n ≡ 2 (mod 4), then mn ≡ 0 (mod 2). By

Theorem 2.5, it follows that a decomposition exists.

Case 16: If m ≡ n ≡ 3 (mod 4), where m, n ≥ 2, then Dm,n=D3,3 ∪ Dm−3,3 ∪

Dm,n−3 ∪ Dm−3,n−3. Now pack each smaller graph with Y . For D3,3, the partite sets

are {01, 11, 21} and {02, 12, 22}. One possible way of packing D3,3 so that the leave is

minimal is: {[21, 02, 01, 12]Y , [12, 21, 22, 11]Y , [22, 11, 12, 01]Y , [01, 22, 21, 02]Y } and

|A(L)|={(11, 02),(02, 11)}. The partite sets for Dm−3,3 are {31, 41, . . ., (m− 1)1} and

{02, 12, 22}. For Dm,n−3, the partite sets are {01, 11, 21} and {32, 42, . . ., (n − 1)2}.

Finally, for Dm−3,n−3, the partite sets are {31, 41, . . ., (m − 1)1} and {32, 42, . . .,

(n − 1)2}. Now, note that since m ≡ 3 (mod 4), n ≡ 3 (mod 4) and m, n ≥ 2, then

m− 3 ≡ 0 (mod 2) and n− 3 ≡ 0 (mod 2). Therefore, Dm−3,3, Dm,n−3, and Dm−3,n−3

can be decomposed by Theorem 2.5. Thus, the leave, L, satisfies |A(L)|=2.Q.E.D

Thus, each case for Y satisfies the conditions of the theorem.

Now we will consider coverings of Dm,n.

Theorem 2.7 A minimal C4 covering of Dm,n satisfies:

1. |A(P )|= 0 when mn ≡ 0 (mod 2), m, n ≥ 2,

2. |A(P )|= 2, otherwise.

Proof. Since |A(C4)|=4, it is necessary that the padding P satisfy |A(Dm,n)| +

|A(P )| ≡ 0 (mod 4). Therefore, for m ≡ n ≡ 0 (mod 4), |A(P )| ≥ 0 and for the other

cases |A(P )| ≥ 2.

Case 1: If m ≡ n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). Therefore, by Theorem

2.1, a decomposition exists.

27



Case 2: If m ≡ 0 (mod 4) and n ≡ 1 (mod 4), then mn ≡ 0 (mod 2). Thus, by

Theorem 2.1, a decomposition exists.

Case 3: If m ≡ 0 (mod 4) and n ≡ 2 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.1, a decomposition exists.

Case 4: If m ≡ 0 (mod 4) and n ≡ 3 (mod 4), then mn ≡ 0 (mod 2). By Theorem

2.1, it follows that a decomposition exists.

Case 5: If m ≡ 1 (mod 4) and n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.1 a decomposition exists.

Case 6: If m ≡ n ≡ 1 (mod 4), where m, n ≥ 2, then Dm,n=D5,5 ∪ Dm−5,5 ∪

Dm,n−5 ∪ Dm−5,n−5. Now cover each smaller graph with C4. For D5,5, the partite sets

are {01, 11, 21, 31, 41} and {02, 12, 22, 32, 42}. One possible way of covering D5,5 so

that the padding is minimal is: {[01, 02, 11, 12]C , [01, 12, 31, 22]C , [01, 22, 21, 42]C ,

[01, 32, 41, 02]C , [11, 42, 21, 32]C , [11, 22, 31, 12]C , [01, 42, 11, 32]C , [11, 02, 41, 22]C ,

[21, 02, 31, 32]C , [21, 22, 41, 12]C , [31, 42, 41, 32]C , [21, 12, 41, 02]C , [41, 42, 31, 02]C}

and |A(P )|={(41, 02),(02, 41)}. The partite sets for Dm−5,5 are {51, 61, . . ., (m− 1)1}

and {02, 12, 22, 32, 42}. For Dm,n−5, the partite sets are {01, 11, 21, 31, 41} and {52,

62, . . ., (n − 1)2}. Finally, for Dm−5,n−5, the partite sets are {51, 61, . . ., (m − 1)1}

and {52, 62, . . ., (n − 1)2}. Since m ≡ 1 (mod 4), n ≡ 1 (mod 4) and m, n ≥ 2, then

m− 5 ≡ 0 (mod 2) and n− 5 ≡ 0 (mod 2). Therefore, Dm−5,5, Dm,n−5, and Dm−5,n−5

can be decomposed by Theorem 2.1. Thus, the padding, P , satisfies |A(P )|=2.

Case 7: If m ≡ 1 (mod 4) and n ≡ 2 (mod 4), then m ≡ n ≡ 0 (mod 2). Therefore,

by Theorem 2.1 a decomposition exists.
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Case 8: If m ≡ 1 (mod 4) and n ≡ 3 (mod 4), where m, n ≥ 2, then Dm,n=D5,3 ∪

Dm−5,3 ∪ Dm,n−3 ∪ Dm−5,n−3. Now cover each smaller graph with C4. For D5,3, the

partite sets are {01, 11, 21, 31, 41} and {02, 12, 22}. One possible way of covering D5,3

so that the padding is minimal is: {[02, 01, 12, 41]C , [02, 11, 22, 31]C , [12, 11, 02, 21]C ,

[12, 31, 22, 41]C , [22, 01, 02, 41]C , [12, 21, 22, 31]C , [22, 21, 02, 31]C , [12, 01, 22, 31]C}

and |A(P )|={(31, 22),(22, 31)}. The partite sets for Dm−5,3 are {51, 61, . . ., (m− 1)1}

and {02, 12, 22}. For Dm,n−3, the partite sets are {01, 11, 21, 31, 41} and {32, 42,

. . ., (n − 1)2}. Finally, for Dm−5,n−3, the partite sets are {51, 61, . . ., (m − 1)1} and

{32, 42, . . ., (n − 1)2}. Since m ≡ 1 (mod 4) and n ≡ 3 (mod 4) and m, n ≥ 2, then

m− 5 ≡ 0 (mod 2) and n− 3 ≡ 0 (mod 2). Therefore, Dm−5,3, Dm,n−3, and Dm−5,n−3

can be decomposed by Theorem 2.1. Thus, the padding, P , satisfies |A(P )|=2.

Case 9: If m ≡ 2 (mod 4) and n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.1, a decomposition exists.

Case 10: If m ≡ 2 (mod 4) and n ≡ 1 (mod 4), then mn ≡ 0 (mod 2). By

Theorem 2.1, it follows that a decomposition exists.

Case 11: If m ≡ n ≡ 2 (mod 4), then mn ≡ 0 (mod 2). Thus, by Theorem 2.1, a

decomposition exists.

Case 12: If m ≡ 2 (mod 4) and n ≡ 3 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.1, a decomposition exists.

Case 13: If m ≡ 3 (mod 4) and n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). By

Theorem 2.1, it follows that a decomposition exists.

Case 14: If m ≡ 3 (mod 4) and n ≡ 1 (mod 4), where m, n ≥ 2, then decompose

Dm,n. That is Dm,n=D3,5 ∪ Dm−3,5 ∪ Dm,n−5 ∪ Dm−3,n−5. Now cover each smaller
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graph with C4. For D3,5, the partite sets are {01, 11, 21} and {02, 12, 22, 32, 42}. One

possible way of covering D3,5 so that the padding is minimal is: {[01, 02, 11, 42]C , [01,

12, 21, 32]C , [11, 12, 01, 22]C , [11, 32, 21, 42]C , [21, 02, 01, 42]C , [11, 02, 21, 32]C , [11, 22,

21, 32]C , [21, 22, 01, 32]C} and |A(P )|={(21, 32),(32, 21)}. The partite sets for Dm−3,5

are {31, 41, . . ., (m − 1)1} and {02, 12, 22, 32, 42}. For Dm,n−5, the partite sets are

{01, 11, 21} and {52, 62, . . ., (n− 1)2}. Finally, for Dm−3,n−5, the partite sets are {31,

41, . . ., (m − 1)1} and {52, 62, . . ., (n − 1)2}. Since m ≡ 3 (mod 4) and n ≡ 1 (mod

4) and m, n ≥ 2, then m− 3 ≡ 0 (mod 2) and n− 5 ≡ 0 (mod 2). Therefore, Dm−3,5,

Dm,n−5, and Dm−3,n−5 can be decomposed by Theorem 2.1. Thus, the padding, P ,

satisfies |A(P )|=2.

Case 15: If m ≡ 3 (mod 4) and n ≡ 2 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.1, a decomposition exists.

Case 16: If m ≡ n ≡ 3 (mod 4), where m, n ≥ 2, then Dm,n=D3,3 ∪ Dm−3,3 ∪

Dm,n−3 ∪ Dm−3,n−3. Now cover each smaller graph with C4. For D3,3, the partite

sets are {01, 11, 21} and {02, 12, 22}. One possible way of covering D3,3 so that the

padding is minimal is: {[01, 02, 11, 12]C , [22, 21, 12, 01]C , [02, 01, 22, 11]C , [12, 11, 02,

21]C , [21, 02, 11, 22]C} and |A(P )|={(01, 22),(22, 01)}. The partite sets for Dm−3,3

are {31, 41, . . ., (m − 1)1} and {02, 12, 22}. For Dm,n−3, the partite sets are {01, 11,

21} and {32, 42, . . ., (n − 1)2}. Finally, for Dm−3,n−3, the partite sets are {31, 41,

. . ., (m − 1)1} and {32, 42, . . ., (n − 1)2}. Since m ≡ 3 (mod 4), n ≡ 3 (mod 4) and

m, n ≥ 2, then m− 3 ≡ 0 (mod 2) andn− 3 ≡ 0 (mod 2). Therefore Dm−3,3, Dm,n−3,

and Dm−3,n−3 can be decomposed by Theorem 2.1. Thus, the padding, P , satisfies

|A(P )|=2. Q.E.D.
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Thus, each case for C4 satisfies the conditions of the theorem.

Theorem 2.8 A minimal X covering of Dm,n satisfies:

1. |A(P )|= 0, when m ≡ n ≡ 0 (mod 2) or m ≡ 1 (mod 2), and m ≥ 3;

2. |A(P )|=2, when m ≡ 1 (mod 2) and n ≡ 1 (mod 2), and m ≥ 3;

3. |A(P )|=4, when m ≡ 1 (mod 2) and n ≡ 2 (mod 4), and m ≥ 3;

Proof. As in Theorem 2.9, for m ≡ n ≡ 0 (mod 4) we have |A(P )| ≥ 0. For

m ≡ n ≡ 1 (mod 2), we have |A(P )| ≥ 2. For m ≡ 1 (mod 2) and n ≡ 2 (mod 4), a

decomposition does not exist for |A(Dm,n)| ≡ 0 (mod 4). So |A(P )| ≥ 4 is necessary.

Case 1: If m ≡ n ≡ 0 (mod 4), then m ≡ n ≡ 0 (mod 2). Therefore, by Theorem

2.3, a decomposition exists.

Case 2: If m ≡ 0 (mod 4) and n ≡ 1 (mod 4), then m ≡ 0 (mod 4) and n ≡ 1

(mod 2). Thus, by Theorem 2.3, a decomposition exists.

Case 3: If m ≡ 0 (mod 4) and n ≡ 2 (mod 4), then m ≡ n ≡ 0 (mod 2). Therefore,

by Theorem 2.3, a decomposition exists.

Case 4: If m ≡ 0 (mod 4) and n ≡ 3 (mod 4), then m ≡ 0 (mod 4) and n ≡ 1

(mod 2). By Theorem 2.3, it follows that a decomposition exists.

Case 5: If m ≡ 1 (mod 4) and n ≡ 0 (mod 4), then m ≡ 1 (mod 2) and n ≡ 0

(mod 4). Therefore, by Theorem 2.3, a decomposition exists.

Case 6: If m ≡ n ≡ 1 (mod 4), where m ≥ 3, then Dm,n=D5,5 ∪ Dm−5,5 ∪ Dm,n−5

∪ Dm−5,n−5. Now cover each smaller graph with X. For D5,5, the partite sets are

{01, 11, 21, 31, 41} and {02, 12, 22, 32, 42}. One possible way of covering D5,5 so that

the padding is minimal is: {[01, 02, 11, 12]X , [01, 22, 21, 32]X , [22, 01, 42, 11]X , [02,

21, 12, 01]X , [32, 41, 42, 01]X , [31, 12, 41, 02]X , [31, 22, 41, 32]X , [42, 21, 02, 31]X , [42,
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41, 12, 11]X , [32, 31, 42, 11]X , [11, 21, 22, 31]X , [11, 32, 21, 42]X , [11, 02, 41, 22]X} and

|A(P )|={(11, 42),(42, 11)}. The partite sets for Dm−5,5 are {51, 61, . . ., (m− 1)1} and

{02, 12, 22, 32, 42}. For Dm,n−5, the partite sets are {01, 11, 21, 31, 41} and {52, 62,

. . ., (n − 1)2}. Finally, for Dm−5,n−5, the partite sets are {51, 61, . . ., (m − 1)1} and

{52, 62, . . ., (n − 1)2}. Since m ≡ 1 (mod 4), n ≡ 1 (mod 4) and m, n ≥ 5, then

m− 5 ≡ 0 (mod 2) and n− 5 ≡ 0 (mod 2). Therefore, Dm−5,5, Dm,n−5, and Dm−5,n−5

can be decomposed by Theorem 2.3. Thus, the padding, P , satisfies |A(P )|=2.

Case 7: If m ≡ 1 (mod 4) and n ≡ 2 (mod 4), where m ≥ 3, then Dm,n=D5,2 ∪

Dm−5,2 ∪ Dm,n−2 ∪ Dm−5,n−2. Now cover each smaller graph with X. For D5,2, the

partite sets are {01, 11, 21, 31, 41} and {02, 12}. One possible way of covering D5,2 so

that the padding is minimal is: {[01, 02, 11, 12]X , [21, 12, 41, 02]X , [31, 12, 11, 02]X ,

[02, 41, 12, 31]X , [12, 01, 02, 21]X , [02, 01, 12, 21]X} and |A(P )|={(01, 02),(01, 12), (02,

21), (12, 21)}. The partite sets for Dm−5,2 are {51, 61, . . ., (m−1)1} and {02, 12}. For

Dm,n−2, the partite sets are {01, 11, 21, 31, 41} and {22, 32, . . ., (n − 1)2}. Finally,

for Dm−5,n−2, the partite sets are {51, 61, . . ., (m − 1)1} and {22, 32, . . ., (n − 1)2}.

Since m ≡ 1 (mod 4) and n ≡ 2 (mod 4) and m, n ≥ 5, then m− 5 ≡ 0 (mod 2) and

n− 2 ≡ 0 (mod 2). Therefore, Dm−5,2, Dm,n−2, and Dm−5,n−2 can be decomposed by

Theorem 2.3. Thus, the padding, P , satisfies |A(P )|=4.

Case 8: If m ≡ 1 (mod 4) and n ≡ 3 (mod 4), where m ≥ 3, then Dm,n=D5,3 ∪

Dm−5,3 ∪ Dm,n−3 ∪ Dm−5,n−3. Now cover each smaller graph with X. For D5,3, the

partite sets are {01, 11, 21, 31, 41} and {02, 12, 22}. One possible way of covering D5,3

so that the padding is minimal is: {[01, 02, 11, 12]X , [22, 21, 02, 41]X , [41, 02, 21, 12]X ,

[31, 12, 11, 22]X , [12, 41, 22, 01]X , [12, 21, 22, 31]X , [22, 11, 02, 31]X , [31, 02, 01, 22]X}
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and |A(P )|={(31, 02),(02, 31)}. The partite sets for Dm−5,3 are {51, 61, . . ., (m− 1)1}

and {02, 12, 22}. For Dm,n−3, the partite sets are {01, 11, 21, 31, 41} and {32, 42,

. . ., (n − 1)2}. Finally, for Dm−5,n−3, the partite sets are {51, 61, . . ., (m − 1)1} and

{32, 42, . . ., (n − 1)2}. Since m ≡ 1 (mod 4) and n ≡ 3 (mod 4) and m, n ≥ 5, then

m− 3 ≡ 0 (mod 2) and n− 3 ≡ 0 (mod 2). Therefore, Dm−5,3, Dm,n−3, and Dm−5,n−3

can be decomposed by Theorem 2.2. Thus, the padding, P , satisfies |A(P )|=2.

Case 9: If m ≡ 2 (mod 4) and n ≡ 0 (mod 4) , then m ≡ n ≡ 0 (mod 2).

Therefore, by Theorem 2.3, a decomposition exists.

Case 10: If m ≡ 2 (mod 4) and n ≡ 1 (mod 4), where m ≥ 3, then Dm,n=D2,5 ∪

Dm−2,5 ∪ Dm,n−5 ∪ Dm−2,n−5. Now cover each smaller graph with X. For D2,5, the

partite sets are {01, 11} and {02, 12, 22, 32, 42}. One possible way of covering D2,5 so

that the padding is minimal is: {[02, 01, 12, 11]X , [22, 11, 42, 01]X , [32, 11, 12, 01]X ,

[01, 42, 11, 32]X , [11, 02, 01, 22]X , [01, 02, 11, 22]X} and |A(P )|={(02, 01),(02, 11), (01,

22), (11, 22)}. The partite sets for Dm−2,5 are {21, 31, . . ., (m − 1)1} and {02, 12, 22,

32, 42}. For Dm,n−5, the partite sets are {01, 11} and {52, 62, . . ., (n − 1)2}. Finally,

for Dm−2,n−5, the partite sets are {21, 31, . . ., (m − 1)1} and {52, 62, . . ., (n − 1)2}.

Since m ≡ 2 (mod 4) and n ≡ 1 (mod 4) and m, n ≥ 5, then m− 2 ≡ 0 (mod 2) and

n− 5 ≡ 0 (mod 2). Therefore, Dm−2,5, Dm,n−5, and Dm−2,n−5 can be decomposed by

Theorem 2.3. Therefore, the padding, P , satisfies |A(P )|=4.

Case 11: If m ≡ n ≡ 2 (mod 4), then m ≡ n ≡ 0 (mod 2). Therefore, by Theorem

2.3, a decomposition exists.

Case 12: If m ≡ 2 (mod 4) and n ≡ 3 (mod 4), where m ≥ 3, then Dm,n=D2,3

∪ Dm−2,3 ∪ Dm,n−3 ∪ Dm−2,n−3. Now cover each smaller graph with X. For D2,3,
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the partite sets are {01, 11} and {02, 12, 22}. One possible way of covering D2,3 so

that the padding is minimal is: {[02, 01, 12, 11]X , [11, 12, 01, 22]X , [22, 01, 02, 11]X ,

[22, 11, 02, 01]X} and |A(P )|={(22, 01),(22, 11), (01, 02), (11, 02)} The partite sets for

Dm−2,3 are {21, 31, . . ., (m − 1)1} and {02, 12, 22}. For Dm,n−3, the partite sets are

{01, 11} and {32, 42, . . ., (n− 1)2}. Finally, for Dm−2,n−3, the partite sets are {21, 31,

. . ., (m − 1)1} and {32, 42, . . ., (n − 1)2}. Since m ≡ 2 (mod 4) and n ≡ 3 (mod 4)

and m, n ≥ 5, then m − 2 ≡ 0 (mod 2) and n − 3 ≡ 0 (mod 2). Therefore, Dm−2,3,

Dm,n−3, and Dm−2,n−3 can be decomposed by Theorem 2.3. Thus, the padding, P ,

satisfies |A(P )|=4.

Case 13: If m ≡ 3 (mod 0) and n ≡ 0 (mod 4), then m ≡ n ≡ 0 (mod 2).

Therefore, by Theorem 2.3, a decomposition exists.

Case 14: If m ≡ 3 (mod 4) and n ≡ 1 (mod 4), where m ≥ 3, then Dm,n=D3,5 ∪

Dm−3,5 ∪ Dm,n−5 ∪ Dm−3,n−5. Now cover each smaller graph with X. For D3,5, the

partite sets are {01, 11, 21} and {02, 12, 22, 32, 42}. One possible way of covering D3,5

so that the padding is minimal is: {[01, 02, 11, 42]X , [01, 12, 21, 32]X , [11, 12, 01, 22]X ,

[11, 32, 21, 42]X , [21, 02, 01, 42]X , [11, 02, 21, 32]X , [11, 22, 21, 32]X , [21, 22, 01, 32]X}

and |A(P )|={(21, 32),(32, 21)}. The partite sets for Dm−3,5 are {31, 41, . . ., (m− 1)1}

and {02, 12, 22, 32, 42}. For Dm,n−5, the partite sets are {01, 11, 21} and {52, 62,

. . ., (n − 1)2}. Finally, for Dm−3,n−5, the partite sets are {31, 41, . . ., (m − 1)1} and

{52, 62, . . ., (n − 1)2}. Since m ≡ 3 (mod 4) and n ≡ 1 (mod 4) and m, n ≥ 5, then

m− 3 ≡ 0 (mod 2) and n− 5 ≡ 0 (mod 2). Therefore, Dm−3,5, Dm,n−5, and Dm−3,n−5

can be decomposed by Theorem 2.3. Thus, the padding, P , satisfies |A(P )|=2.
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Case 15: If m ≡ 3 (mod 4) and n ≡ 2 (mod 4), where m ≥ 3, then Dm,n=D3,2 ∪

Dm−3,2 ∪ Dm,n−2 ∪ Dm−3,n−2. Now cover each smaller graph with X. For D3,2, the

partite sets are {01, 11, 21} and {02, 12}. One possible way of covering D3,2 so that

the padding is minimal is: {[01, 02, 11, 12]X , [12, 11, 02, 21]X , [21, 02, 01, 12]X , [21,

12, 01, 02]X} and |A(P )|={(21, 02),(21, 12), (02, 01), (12, 01)}. The partite sets for

Dm−3,2 are {31, 41, . . ., (m − 1)1} and {02, 12}. For Dm,n−2, the partite sets are {01,

11, 21} and {22, 32, . . ., (n − 1)2}. Finally, for Dm−3,n−2, the partite sets are {31, 41,

. . ., (m − 1)1} and {22, 32, . . ., (n − 1)2}. Since m ≡ 3 (mod 4) and n ≡ 2 (mod 4)

and m, n ≥ 5, then m − 3 ≡ 0 (mod 2) and n − 2 ≡ 0 (mod 2). Therefore, Dm−3,2,

Dm,n−2, and Dm−3,n−2 can be decomposed by Theorem 2.3. Thus, the padding, P ,

satisfies |A(P )|=4.

Case 16: If m ≡ n ≡ 3 (mod 4), where m ≥ 3, then Dm,n=D3,3 ∪ Dm−3,3 ∪

Dm,n−3 ∪ Dm−3,n−3. Now cover each smaller graph with X. For D3,3, the partite

sets are {01, 11, 21} and {02, 12, 22}. One possible way of covering D3,3 so that the

padding is minimal is: {[01, 02, 21, 12]X , [22, 11, 12, 21]X , [11, 02, 01, 22]X , [12, 01, 02,

11]X , [21, 22, 01, 02]X} and |A(P )|={(01, 02),(02, 01)}. The partite sets for Dm−3,3

are {31, 41, . . ., (m − 1)1} and {02, 12, 22}. For Dm,n−3, the partite sets are {01, 11,

21} and {32, 42, . . ., (n − 1)2}. Finally, for Dm−3,n−3, the partite sets are {31, 41,

. . ., (m − 1)1} and {32, 42, . . ., (n − 1)2}. Since m ≡ 3 (mod 4), n ≡ 3 (mod 4) and

m, n ≥ 5, then m−3 ≡ 0 (mod 2) and n−3 ≡ 0 (mod 2). Therefore, Dm−3,3 , Dm,n−3,

and Dm−3,n−3 can be decomposed by Theorem 2.3. Thus, the padding, P , satisfies

|A(P )|=2. Q.E.D.

Thus, each case for X satisfies the conditions of the theorem.

35



Theorem 2.9 A minimal Y covering of Dm,n satisfies:

1. |A(P )|= 0, when mn ≡ 0 (mod 2), m, n ≥ 2,

2. |A(P )|=2, otherwise.

Proof. The necessary conditions follow as in Theorem 2.9.

Case 1: If m ≡ n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). Therefore, by Theorem 2.5

a decomposition exists.

Case 2: If m ≡ 0 (mod 4) and n ≡ 1 (mod 4), then mn ≡ 0 (mod 2). By Theorem

2.5, it follows that a decomposition exists.

Case 3: If m ≡ 0 (mod 4) and n ≡ 2 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.5, a decomposition exists.

Case 4: If m ≡ 0 (mod 4) and n ≡ 3 (mod 4), then mn ≡ 0 (mod 2). Thus, by

Theorem 2.5, a decomposition exists.

Case 5: If m ≡ 1 (mod 4) and n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.5, a decomposition exists.

Case 6: If m ≡ n ≡ 1 (mod 4), where m, n ≥ 2, then Dm,n=D5,5 ∪ Dm−5,5 ∪

Dm,n−5 ∪ Dm−5,n−5. Now cover each smaller graph with Y . For D5,5, the partite sets

are {01, 11, 21, 31, 41} and {02, 12, 22, 32, 42}. One possible way of covering D5,5 so

that the padding is minimal is: {[21, 02, 31, 12],Y [32, 01, 22, 41]Y , [11, 12, 21, 32]Y ,

[21, 22, 11, 32]Y , [01, 02, 11, 12]Y , [22, 31, 12, 41]Y , [31, 02, 21, 32]Y , [21, 32, 31, 42]Y ,

[02, 01, 32, 41]Y , [42, 41, 02, 11]Y , [11, 42, 01, 22]Y , [12, 01, 42, 41]Y , [31, 22, 21, 42]Y }

and |A(P )|={(21, 32),(32, 21)}. The partite sets for Dm−5,5 are {51, 61, . . ., (m− 1)1}

and {02, 12, 22, 32, 42}. For Dm,n−5, the partite sets are {01, 11, 21, 31, 41} and {52,

62, . . ., (n − 1)2}. Finally, for Dm−5,n−5, the partite sets are {51, 61, . . ., (m − 1)1}
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and {52, 62, . . ., (n − 1)2}. Since m ≡ 1 (mod 4), n ≡ 1 (mod 4) and m, n ≥ 2, then

m− 5 ≡ 0 (mod 2) and n− 5 ≡ 0 (mod 2). Therefore, Dm−5,5, Dm,n−5, and Dm−5,n−5

can be decomposed by Theorem 2.5. Thus, the padding, P , satisfies |A(P )|=2.

Case 7: If m ≡ 1 (mod 4) and n ≡ 2 (mod 4), then mn ≡ 0 (mod 2). By Theorem

2.5, it follows that a decomposition exists.

Case 8: If m ≡ 1 (mod 4) and n ≡ 3 (mod 4), where m, n ≥ 2, then Dm,n=D5,3

∪ Dm−5,3 ∪ Dm,n−3 ∪ Dm−5,n−3. Now cover each smaller graph with Y . For D5,3, the

partite sets are {01, 11, 21, 31, 41} and {02, 12, 22}. One possible way of covering D5,3

so that the padding is minimal is: {[02, 01, 12, 11]Y , [12, 31, 22, 41]Y , [22, 11, 02, 21]Y ,

[21, 22, 01, 12]Y , [41, 02, 21, 12]Y , [11, 02, 31, 22]Y , [31, 02, 11, 12]Y , [01, 22, 41, 02]Y }

and |A(P )|={(11, 02),(02, 11)}. The partite sets for Dm−5,3 are {51, 61, . . ., (m− 1)1}

and {02, 12, 22}. For Dm,n−3, the partite sets are {01, 11, 21, 31, 41} and {32, 42,

. . ., (n − 1)2}. Finally, for Dm−5,n−3, the partite sets are {51, 61, . . ., (m − 1)1} and

{32, 42, . . ., (n − 1)2}. Since m ≡ 1 (mod 4) and n ≡ 3 (mod 4) and m, n ≥ 2, then

m− 5 ≡ 0 (mod 2) and n− 3 ≡ 0 (mod 2). Therefore, Dm−5,3, Dm,n−3, and Dm−5,n−3

can be decomposed by Theorem 2.5. Thus, the padding, P , satisfies |A(P )|=2.

Case 9: If m ≡ 2 (mod 4) and n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.5, a decomposition exists.

Case 10: If m ≡ 2 (mod 4) and n ≡ 1 (mod 4), then mn ≡ 0 (mod 2). Thus, by

Theorem 2.5, a decomposition exists.

Case 11: If m ≡ n ≡ 2 (mod 4), then mn ≡ 0 (mod 2). Therefore, by Theorem

2.5, a decomposition exists.
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Case 12: If m ≡ 2 (mod 4) and n ≡ 3 (mod 4), then mn ≡ 0 (mod 2). By

Theorem 2.5, it follows that a decomposition exists.

Case 13: If m ≡ 3 (mod 4) and n ≡ 0 (mod 4), then mn ≡ 0 (mod 2). Therefore,

by Theorem 2.5, a decomposition exists.

Case 14: If m ≡ 3 (mod 4) and n ≡ 1 (mod 4), where m, n ≥ 2, then Dm,n=D3,5

∪ Dm−3,5 ∪ Dm,n−5 ∪ Dm−3,n−5. Now cover each smaller graph with Y . For D3,5, the

partite sets are {01, 11, 21} and {02, 12, 22, 32, 42}. One possible way of covering D3,5

so that the padding is minimal is: {[01, 02, 11, 12]Y , [11, 32, 21, 42]Y , [21, 12, 01, 22]Y ,

[22, 21, 02, 11]Y , [42, 01, 22, 11]Y , [02, 21, 42, 01]Y , [12, 01, 32, 21]Y , [32, 01, 12, 11]Y }

and |A(P )|={(01, 12),(12, 01)}. The partite sets for Dm−3,5 are {31, 41, . . ., (m− 1)1}

and {02, 12, 22, 32, 42}. For Dm,n−5, the partite sets are {01, 11, 21} and {52, 62,

. . ., (n − 1)2}. Finally, for Dm−3,n−5, the partite sets are {31, 41, . . ., (m − 1)1} and

{52, 62, . . ., (n − 1)2}. Since m ≡ 3 (mod 4) n ≡ and 1 (mod 4) and m, n ≥ 2, then

m− 3 ≡ 0 (mod 2) and n− 5 ≡ 0 (mod 2). Therefore, Dm−3,5, Dm,n−5, and Dm−3,n−5

can be decomposed by Theorem 2.5. Thus, the padding, P , satisfies |A(P )|=2.

Case 15: If m ≡ 3 (mod 4) and n ≡ 2 (mod 4), then m ≡ n ≡ 0 (mod 2).

Therefore, by Theorem 2.5, a decomposition exists.

Case 16: If m ≡ n ≡ 3 (mod 4), where m, n ≥ 2, then Dm,n=D3,3 ∪ Dm−3,3 ∪

Dm,n−3 ∪ Dm−3,n−3. Now cover each smaller graph with Y . For D3,3, the partite

sets are {01, 11, 21} and {02, 12, 22}. One possible way of covering D3,3 so that the

padding is minimal is: {[21, 02, 01, 12]Y , [01, 22, 11, 02]Y , [11, 02, 21, 22]Y , [12, 21, 22,

11]Y , [22, 11, 12, 01]Y } and |A(P )|={(11, 22),(22, 11)}. The partite sets for Dm−3,3

are {31, 41, . . ., (m − 1)1} and {02, 12, 22}. For Dm,n−3, the partite sets are {01, 11,
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21} and {32, 42, . . ., (n − 1)2}. Finally, for Dm−3,n−3, the partite sets are {31, 41,

. . ., (m − 1)1} and {32, 42, . . ., (n − 1)2}. Since m ≡ 3 (mod 4), n ≡ 3 (mod 4) and

m, n ≥ 2, then m−3 ≡ 0 (mod 2) and n−3 ≡ 0 (mod 2). Therefore, Dm−3,3, Dm,n−3,

and Dm−3,n−3 can be decomposed by Theorem 2.5. Thus, the padding, P , satisfies

|A(P )|=2.Q.E.D.

Thus, each case for Y satisfies the conditions of the theorem. Therefore, theorems

2.1-2.8 provide the necessary and sufficient conditions for maximal packings and min-

imal coverings of the complete bipartite graph with C4, X, and Y . Thus, packings

and coverings of Dm,n have been completed. Now we will pack and cover the complete

directed graphs.
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3 COVERING Dv WITH THE C4, X, AND Y ORIENTATIONS OF A

4−CYCLE

If {d1, d2, . . . , dn} is a covering of Dv with copies of d, then we define the digraph

Pv with arc set A(P ) =

n⋃

i=1

A(gi) \ A(G), as the padding of the covering. Therefore

a minimal covering of Dv minimizes |A(P )|. We will now give necessary and suffi-

cient conditions for minimizing |A(P )| with a minimal covering of Dv for the various

orientations of the 4−cycle. We need to only consider graphs where v ≥ 4. In this

chapter we denote V (Dv) as {0,1,. . ., v-1}.

Theorem 3.1 A minimal C4 covering of Dv satisfies:

1. |A(P )|=0 if v ≡ 0 or 1 (mod 4), v 6= 4,

2. |A(P )|=4 if v=4,

3. P=D2 if v ≡ 2 or 3 (mod 4).

Proof. Since |A(C4)|=4, it is necessary that the padding P satisfy |A(Dv)| +

|A(P )| ≡ 0 (mod 4). Therefore, for v ≡ 0 or 1 (mod 4) we have |A(P )| ≥ 0. For v ≡

2 or 3 (mod 4), we need |A(P )| ≥ 2. Since a decomposition does not exist for D4, it

is necessary that |A(P )| ≥ 4 when v= 4.

A C4-decomposition of Dv exists if and only if v ≡ 0 or 1 (mod 4), v 6= 4. [12].

If v = 4, then we have a covering of D4 with copies of C4: {[0,3,2,1]C , [0,2,1,3]C ,

[0,3,1,2]C , [0,1,2,3]C}. Then the padding is A(P )={(0, 3), (1, 2), (2, 1), (3, 0)} and

|A(P )|=4.

For v ≡ 2 (mod 4), we know Dv=Dv−6 ∪ Dv−6,6 ∪ D6. The vertex set for Dv−6 is

{0, 1, . . ., (v−5)}. The partite sets for Dv−6,6 are {0, 1, . . ., (v−5)} and {0, 1, . . ., 5}.
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For D6, the vertex set is {0, 1, . . ., 5}. Since v−6 ≡ 0 (mod 4), Dv−6 decomposes with

the exception of v=10. By Theorem 2.1, Dv−6,6 can be decomposed. If v = 6, then we

have a covering of D6 with copies of C4: {[0,1,2,3]C, [0,2,4,1]C, [0,3,1,4]C , [0,4,2,5]C ,

[0,5,3,2]C , [1,3,5,2]C , [1,3,4,5]C, [1,5,4,3]C}. The padding is then A(P )={(1, 3), (3, 1)}.

Thus |A(P )| = 2.

If v = 10, then we have a covering of D10 with copies of C4: {[0,1,3,4]C , [0,2,1,5]C ,

[0,3,1,6]C , [0,4,1,7]C , [0,5,1,8]C [0,6,1,9]C, [0,7,8,1]C, [0,9,1,2]C , [1,4,2,7]C , [2,3,5,9]C ,

[2,4,7,5]C , [2,5,3,8]C, [2,6,3,7]C , [2,8,9,3]C , [2,9,4,6]C , [3,6,4,8]C, [3,9,5,7]C , [4,5,8,7]C ,

[4,9,6,5]C , [5,6,9,8]C, [6,7,9,8]C , [6,8,9,7]C}. The padding is then A(P )={(8, 9), (9, 8)}

and |A(P )|=2.

For v ≡ 3 (mod 4), we know Dv=Dv−7 ∪ Dv−7,7 ∪ D7. The vertex set for Dv−7

is {0, 1, . . ., (v − 6)}. The partite sets for Dv−7,7 are {0, 1, . . ., (v − 6)} and {0,

1, . . ., 6}. For D7, the vertex set is {0, 1, . . ., 6}. Since v − 7 ≡ 0 (mod 4),

Dv−7 can be decomposed. By Theorem 2.1, Dv−7,7 can be decomposed. If v = 7,

then we have a covering of D7 with copies of C4: {[0,1,2,3]C, [0,2,4,6]C , [0,3,4,5]C ,

[0,4,3,2]C , [0,5,2,1]C, [0,6,1,4]C , [1,3,5,4]C , [1,5,6,3]C , [1,6,2,5]C , [2,6,5,3]C, [3,6,4,2]C}.

The padding is then A(P )={(2, 3), (3, 2)}. Then |A(P )| = 2. Q.E.D.

Thus, each case for C4 satisfies the conditions of the theorem.

Theorem 3.2 1. |A(P )|=0 if v ≡ 0 or 1 (mod 4), v 6= 5,

2. |A(P )|=4 if v = 5,

3. P=D2 if v ≡ 2 or 3 (mod 4).

Proof. There necessary conditions follow similar to those in Theorem 3.1.

An X- decomposition of Dv exists if and only if v ≡ 0 or 1 (mod 4), v 6= 5[6].
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If v = 5, then we have a covering of D5 with copies of X: {[3,0,1,4]X , [4,0,2,3]X ,

[2,0,3,1]X , [1,0,4,2]X , [4,1,3,2]X , [3,2,4,1]X}. The padding is then A(P )={(3, 1), (3, 2), (4, 1), (4, 2)}

and |A(P )|=4.

For v ≡ 2 (mod 4), we know Dv=Dv−6 ∪ Dv−6,6 ∪ D6. The vertex set for Dv−6

is {0, 1, . . ., (v − 5)}. The partite sets for Dv−6,6 are {0, 1, . . ., (v − 5)} and {0,

1, . . ., 5}. For D6, the vertex set is {0, 1, . . ., 5}. Since v − 6 ≡ 0 (mod 4),

Dv−6 decomposes except when v=10. By Theorem 2.3, Dv−6,6 can be decomposed.

If v=6, then we have a covering of D6 with copies of X: {[5,0,1,2]X, [4,0,2,3]X ,

[2,0,3,4]X , [1,0,4,5]X , [3,0,5,1]X , [4,1,3,2]X , [5,3,1,4]X, [2,1,3,5]X}. Then the padding

is A(P )={(1, 3), (3, 1)}. Then |A(P )|=2.

If v = 10, then we have a covering of D10 with copies of X: {[3,0,1,2]X, [6,0,4,5]X ,

[9,0,7,8]X , [8,0,2,4]X , [7,0,3,5]X , [2,0,5,7]X , [5,0,6,9]X , [1,0,8,3]X , [4,0,9,1]X , [2,1,4,9]X ,

[6,1,5,2]X , [5,1,6,8]X , [3,1,7,6]X , [7,1,8,9]X , [8,1,9,5]X , [9,2,5,3]X , [8,2,6,7]X , [4,2,8,6]X ,

[6,3,9,4]X , [7,2,3,4]X , [9,4,3,7]X , [5,4,9,6]X , [4,7,3,8]X}. Then the padding is A(P )={(4,9),

(9,4)} and |A(P )|=2.

For v ≡ 3 (mod 4), we know Dv=Dv−7 ∪ Dv−7,7 ∪ D7. The vertex set for Dv−7

is {0, 1, . . ., (v − 6)}. The partite sets for Dv−7,7 are {0, 1, . . ., (v − 6)} and {0,

1, . . ., 6}. For D7, the vertex set is {0, 1, . . ., 6}. Since v − 7 ≡ 0 (mod 4), Dv−7

can be decomposed. By Theorem 2.3, Dv−7,7 can be decomposed.If v = 7, then we

have a covering of D7 with copies of X: {[3,0,1,2]X , [6,0,2,3]X , [3,1,0,4]X , [3,5,0,6]X ,

[2,5,1,6]X , [4,5,2,0]X , [1,5,2,4]X , [0,5,4,3]X , [6,4,2,5]X , [5,6,1,3]X , [4,6,2,1]X}. The

padding is then A(P )={(2, 5), (5, 2)} and |A(P )|=2. Q.E.D

Thus, each case for X satisfies the conditions of the theorem.
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Figure 7: Covering D6 with Copies of X

Theorem 3.3 1. |A(P )|= 0 if v ≡ 0 or 1 (mod 4), v 6∈ {4, 5},

2. |A(P )|=4 if v ∈ {4, 5},

3. P=D2 if v ≡ 2 or 3 (mod 4).

Proof. The necessary conditions follow similar to those of Theorem 3.1.

A Y -decomposition of Dv exists if and only if v ≡ 0 or 1 (mod 4), v 6∈ [4, 5]. [6]

If v = 4, then we have a covering of D4 with copies of Y : {[0,1,2,3]Y , [2,3,0,1]Y ,

[2,1,3,0]Y , [3,1,2,0]Y }. The padding is then A(P )={(0, 3), (0, 2), (2, 0), (3, 0)} and

|A(P )|=4.
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If v = 5, then we have a covering of D5 with copies of Y : {[3,0,1,2]Y , [4,0,2,1]Y ,

[2,1,4,0]Y , [4,2,3,1]Y , [3,4,0,1]Y , [2,4,3,0]Y }. Then the padding is A(P )={(2, 0), (2, 1), (4, 0), (4, 1)}

and |A(P )|=4.

For v ≡ 2 (mod 4), we know Dv=Dv−6 ∪ Dv−6,6 ∪ D6. The vertex set for Dv−6 is

{0, 1, . . ., (v − 5)}. The partite sets for Dv−6,6 are {0, 1, . . ., (v − 5)} and {0, 1, . . .,

5}. For D6, the vertex set is {0, 1, . . ., 5}. Since v−6 ≡ 0 (mod 4), Dv−6 decomposes

except when v=10. By Theorem 2.5, Dv−6,6 can be decomposed. If v = 6, then we

have a covering of D6 with copies of Y : {[3,0,1,2]Y , [4,0,2,5]Y , [2,0,5,3]Y , [0,3,1,4]Y ,

[5,1,2,4]Y , [1,4,3,5]Y , [1,2,4,3]Y , [2,1,0,5]Y }. The padding is then A(P )={(1, 2), (2, 1)}

and |A(P )|=2.

If v = 10, then we have a covering of D10 with copies of Y : {[3,0,1,2]Y , [6,3,4,5]Y ,

[7,1,2,8]Y , [8,4,5,9]Y , [2,5,6,3]Y , [6,1,0,9]Y , [0,4,3,7]Y , [8,1,3,5]Y , [3,5,8,1]Y , [1,7,4,9]Y ,

[1,4,0,5]Y , [7,5,1,9]Y , [7,0,8,2]Y , [4,1,6,2]Y , [0,5,2,6]Y , [5,4,7,9]Y , [0,2,9,3]Y , [6,0,9,4]Y ,

[2,4,6,7]Y , [9,3,8,6]Y , [8,3,7,6]Y , [9,2,0,8]Y , [4,8,7,5]Y }. The padding is then A(P )=

{(4,5),(5,4)}and |A(P )|=2.

For v ≡ 3 (mod 4), we know Dv=Dv−7 ∪ Dv−7,7 ∪ D7. The vertex set for Dv−7

is {0, 1, . . ., (v − 6)}. The partite sets for Dv−7,7 are {0, 1, . . ., (v − 6)} and {0, 1,

. . ., 6}. For D7, the vertex set is {0, 1, . . ., 6}. Since v − 7 ≡ 0 (mod 4), Dv−7 can be

decomposed . By Theorem 2.5, Dv−7,7 can be decomposed.If v = 7, then we have a

covering of D7 with copies of Y : {[3,0,1,2]Y , [5,0,2,4]Y , [6,0,2,3]Y , [1,0,4,3]Y , [4,0,5,1]Y ,

[2,0,6,5]Y , [6,3,1,5]Y , [5,2,6,3]Y , [1,6,4,2]Y , [1,3,5,4]Y , [4,6,1,3]Y }. The padding is then

A(P )={(1, 3), (3, 1)} and |A(P )|=2. Q.E.D.
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Thus, each case for Y satisfies the conditions of the theorem. Therefore, Theo-

rems 3.1-3.3 provide the necessary and sufficient conditions for maximal packings and

minimal coverings of the complete directed graph with C4, X, and Y . Now we will

pack and cover the complete digraph on v vertices and a hole of size w.
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4 PACKING AND COVERING D(v, w) WITH THE C4, X, AND Y

ORIENTATIONS OF THE 4−CYCLE

With the completion of packings and coverings of the complete bipartite graph

and the complete directed graph, we can pack and cover complete directed graphs

with holes. The complete directed graph on v vertices with a hole of size w is a graph

with v vertices that are mutually adjacent and a set of w vertices that are adjacent

to the v vertices and incident to the w vertices. We will begin with the maximal

C4-packings.

Figure 8: Example of D(v, w)
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Theorem 4.1 [5] A C4-decomposition of Dv with a hole of size w exists if and only

if {v (mod 4), w (mod 4)} ⊂ {0, 1} or {v (mod 4), w (mod 4)} ⊂ {2, 3} and v −w >

3.

Theorem 4.2 [5] An optimal packing of Dv with copies of C4 and leave L satisfies:

1. L=∅ if v ≡ 0 or 1 (mod 4), v 6= 4,

2. |A(L)|=4 if v=4,

3. L=D2 if v ≡ 2 or 3 (mod 4).

Theorem 4.3 A maximal C4 packing of D(v, w) satisfies:

1. |A(L)|=0 if {v (mod 4), w (mod 4)} ⊂ {0, 1} or {v (mod 4), w (mod 4)} ⊂

{2, 3},v − w > 3,

2. |A(L)|=2, otherwise.

Proof. Since |A(C4)|=4, it is necessary that the leave, L, satisfy |A(L)| ≡

|A(D(v, w))|(mod 4). The necessary conditions on |A(L)| follow.

Case 1: If v ≡ w ≡ 0 (mod 4), then v ≡ w ≡ 0 (mod 2). Therefore, by Theorem

4.1, a decomposition exists.

Case 2: If v ≡ 0 (mod 4) and w ≡ 1 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{0,1}. Thus, by Theorem 4.1, a decomposition exists.

Case 3: If v ≡ 0 (mod 4) and w ≡ 2 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v − w − 1)1)} and {(02, 12, . . ., (w − 1)2}. Since v ≡ 0 (mod 4) and

w ≡ 2 (mod 4), Dv−w,w can be decomposed by Theorem 2.1. Dv−w can be packed

with leave L=D2 by Theorem 4.2. Thus |A(L)|=2.
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Case 4: If v ≡ 0 (mod 4) and w ≡ 3 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v − w − 1)1)} and {(02, 12, . . ., (w − 1)2}. It follows from Theorem

2.2, that Dv−w,w can be packed and |A(L)|=2. Thus Dv−w can be decomposed by

Theorem 4.1.

Case 5: If v ≡ 1 (mod 4) and w ≡ 0 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{0,1}. Therefore, by Theorem 4.1, a decomposition exists.

Case 6: If v ≡ w ≡ 1 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {0,1}. Thus, by

Theorem 4.1, a decomposition exists.

Case 7: If v ≡ 1 (mod 4) and w ≡ 2 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 1 (mod 4) and w ≡

2 (mod 4), then Dv−w,w can be decomposed by Theorem 2.1. Dv−w can be packed

with leave L=D2 by Theorem 4.2. Thus |A(L)|=2.

Case 8: If v ≡ 1 (mod 4) and w ≡ 3 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v −w − 1)1)} and {(02, 12, . . ., (w − 1)2}. Note that since, v ≡ 1 (mod

4) and w ≡ 3 (mod 4), then Dv−w,w can be decomposed by Theorem 2.1. Dv−w can

be packed with leave L=D2 by Theorem 4.2. Thus |A(L)|=2.
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Case 9: If v ≡ 2 (mod 4) and w ≡ 0 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v −w − 1)1)} and {(02, 12, . . ., (w − 1)2}. Note that since, v ≡ 2 (mod

4) and w ≡ 0 (mod 4), then Dv−w,w can be decomposed by Theorem 2.1. Dv−w can

be packed with leave L=D2 by Theorem 4.2. Then |A(L)|=2.

Case 10: If v ≡ 2 (mod 4) and w ≡ 1 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w− 1)1)} and {(02, 12, . . ., (w− 1)2}. By Theorem 2.2, Dv−w,w can

be packed and |A(L)|=2. Dv−w can be decomposed by Theorem 4.1.

Case 11: If v ≡ w ≡ 2 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {2,3}. Therefore,

by Theorem 4.1, a decomposition exists.

Case 12: If v ≡ 2 (mod 4) and w ≡ 3 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{2,3}. Thus, by Theorem 4.1, a decomposition exists.

Case 13: If v ≡ 3 (mod 4) and w ≡ 0 (mod 4), then the number of arcs is

v(v − 1) − w(w − 1) ≡ 2 (mod 4). Thus D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 3 (mod 4) and w ≡

0 (mod 4), then Dv−w,w can be decomposed by Theorem 2.1. Dv−w can be packed

with leave L=D2 by Theorem 4.2. Thus |A(L)|=2.

Case 14: If v ≡ 3 (mod 4) and w ≡ 1 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for
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Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 3 (mod 4) and w ≡

0 (mod 4), then Dv−w,w can be decomposed by Theorem 2.1. Dv−w can be packed

with leave L=D2 by Theorem 4.2. Thus |A(L)|=2.

Case 15: If v ≡ 3 (mod 4) and w ≡ 2 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{2,3}. Therefore, by Theorem 4.1, a decomposition exists.

Case 16: If v ≡ w ≡ 3 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {2,3}. Then, by

Theorem 4.1, a decomposition exists.Q.E.D

Thus, each case for C4 satisfies the conditions of the theorem.

Theorem 4.4 [5] An X decomposition of Dv with a hole of size w exists if and only

if {v (mod 4), w (mod 4)} ⊂ {0, 1} or {v (mod 4), w (mod 4)} ⊂ {2, 3} and v −w 6=

3 in the case of v ≡ 2 (mod 4) and w ≡ 3 (mod 4).

Theorem 4.5 [5] An optimal packing of Dv with copies of X and leave L satisfies:

1. L=∅ if v ≡ 0 or 1 (mod 4), v 6= 5,

2. |A(L)|=4 if v = 5,

3. L=D2 if v ≡ 2 or 3 (mod 4).

Theorem 4.6 A maximal X packing of D(v, w) satisfies:

1. L=∅ if {v (mod 4), w (mod 4)} ⊂ {0, 1} or {v (mod 4), w (mod 4)} ⊂ {2, 3},

2. |A(L)|=2, otherwise.

Proof. The necessary conditions follow similarly to that of Theorem 4.3.

Case 1: If v ≡ w ≡ 0 (mod 4), then v ≡ w ≡ 0 (mod 2). Thus, by Theorem 4.4,

a decomposition exists.
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Case 2: If v ≡ 0 (mod 4) and w ≡ 1 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{0,1}. Therefore, by Theorem 4.4, a decomposition exists.

Case 3: If v ≡ 0 (mod 4) and w ≡ 2 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v − w − 1)1)} and {(02, 12, . . ., (w − 1)2}. Since v ≡ 0 (mod 4) and

w ≡ 2 (mod 4), then Dv−w,w can be decomposed by Theorem 2.3. Then Dv−w can be

packed with leave L=D2 by Theorem 4.5. Thus |A(L)|=2.

Case 4: If v ≡ 0 (mod 4) and w ≡ 3 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w− 1)1)} and {(02, 12, . . ., (w− 1)2}. By Theorem 2.4, Dv−w,w can

be packed and |A(L)|=2. It follows that Dv−w can be decomposed by Theorem 4.5.

Thus |A(L)|=2.

Case 5: If v ≡ 1 (mod 4) and w ≡ 0 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{0,1}. Therefore, by Theorem 4.4 a decomposition exists.

Case 6: If v ≡ w ≡ 1 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {0,1}. Therefore,

by Theorem 4.4 a decomposition exists.

Case 7: If v ≡ 1 (mod 4) and w ≡ 2 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w−2 ∪ Dv−w−2,w+2 ∪ D2,w.

Note that the vertex set for Dv−w−2 is {01, 11, . . ., (v−w−3)1}. For Dv−w−2,w+2, the

partite sets are {01, 11, . . ., (v − w − 3)1} and {02, 12, . . ., (v − w + 1)2}. For D2,w,

the partite sets are {(v − 2)1, (v − 1)1} and {02, 12, . . ., (w − 1)2}. By Theorem 4.5,
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Dv−w−2 can be decomposed. Dv−w−2,w+2 can be decomposed by Theorem 2.3. D2,w

can be decomposed by Theorem 2.3. Therefore |A(L)|=2.

Case 8: If v ≡ 1 (mod 4) and w ≡ 3 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w−2 ∪ Dv−w−2,w+2 ∪ D2,w.

Note that the vertex set for Dv−w−2 is {01, 11, . . ., (v − w − 3)1}. For Dv−w−2,w+2,

the partite sets are {01, 11, . . ., (v − w − 3)1} and {02, 12, . . ., (v − w + 1)2}. For

D2,w, the partite sets are {(v− 2)1, (v− 1)1} and {02, 12, . . ., (w− 1)2}. Now note by

Theorem 4.5, Dv−w−2 can be decomposed. Dv−w−2,w+2 by Theorem 2.3. D(w + 2, 2)

can be packed by case 7 with L=D2. Therefore |A(L)|=2.

Case 9: If v ≡ 2 (mod 4) and w ≡ 0 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 2 (mod 4) and w ≡

0 (mod 4), then Dv−w,w can be decomposed by Theorem 2.3. Dv−w can be packed

with leave L=D2 by Theorem 4.5. Then |A(L)|=2.

Case 10: If v ≡ 2 (mod 4) and w ≡ 1 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v − w − 1)1)} and {(02, 12, . . ., (w − 1)2}. By Theorem 2.4, Dv−w,w

can be packed and |A(L)|=2. Thus Dv−w can be decomposed by Theorem 4.5. Then

|A(L)|=2.

Case 11: If v ≡ w ≡ 2 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {2,3}. Therefore,

by Theorem 4.4, a decomposition exists.
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Case 12: If v ≡ 2 (mod 4) and w ≡ 3 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{2,3}. Thus, by Theorem 4.4, a decomposition exists.

Case 13: If v ≡ 3 (mod 4) and w ≡ 0 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v − w − 1)1)} and {(02, 12, . . ., (w − 1)2}. Since v ≡ 3 (mod 4) and

w ≡ 0 (mod 4), then Dv−w,w can be decomposed by Theorem 2.3. Thus Dv−w can be

packed with leave L=D2 by Theorem 4.5. Then |A(L)|=2.

Case 14: If v ≡ 3 (mod 4) and w ≡ 1 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w−3 ∪ Dv−w−3,3 ∪ Dv−w−3,w

∪ D(w + 3, w)=Dv−w−3 ∪ Dv−w−3,w+3 ∪ D(w + 3, w). Note that the vertex set for

Dv−w−3 is {01, 11, . . ., (v−w− 4)1}. For Dv−w−3,w+3, the partite sets are {01, 11, . . .,

(v−w−4)1} and {02, 12, . . ., (v−w+2)2}. For D(w+3, w), the partite sets are {02,

12, . . . , (w + 2)2} and {02, 12, . . ., (w− 1)2}. Dv−w−3 can be packed by Theorem 4.4.

By Theorem 2.3, Dv−w−3,w+3 can be decomposed. D(w + 3, w) can be decomposed

by Theorem 4.5. Therefore |A(L)|=2.

Case 15: If v ≡ 3 (mod 4) and w ≡ 2 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{2,3}. Therefore, by Theorem 4.4 a decomposition exists.

Case 16: If v ≡ w ≡ 3 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {2,3}. Therefore,

by Theorem 4.4 a decomposition exists.Q.E.D

Thus, each case for X satisfies the conditions of the theorem.

Theorem 4.7 [5] A Y decomposition of Dv with a hole of size w exists if and only

if {v (mod4), w (mod4)} ⊂ {0, 1} or {v (mod4), w (mod4)} ⊂ {2, 3} and v−w 6= 3.
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Theorem 4.8 [5] An optimal packing of Dv with copies of Y and leave L satisfies:

1. L=∅ if v ≡ 0 or 1 (mod 4), v 6∈ {4, 5},

2. |A(L)|=4 if v ∈ {4, 5},

3. |A(L)|=2 if v ≡ 2 or 3 (mod 4).

Theorem 4.9 A maximal Y packing of D(v, w) satisfies:

1. |A(L)|=0 if {v (mod 4), w (mod 4)} ⊂ {0, 1} or {v (mod 4), w (mod 4)} ⊂

{2, 3},

2. |A(L)|=2, otherwise.

Proof. The necessary conditions follow similarly to those of Theorem 4.3.

Case 1: If v ≡ w ≡ 0 (mod 4), then v ≡ w ≡ 0 (mod 2). Therefore, by Theorem

4.7 a decomposition exists.

Case 2: If v ≡ 0 (mod 4) and w ≡ 1 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{0,1}. Therefore, by Theorem 4.7 a decomposition exists.

Case 3: If v ≡ 0 (mod 4) and w ≡ 2 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w− 1)1)} and {(02, 12, . . ., (w− 1)2}. Note that since , v ≡ 0 (mod

4) and w ≡ and 2 (mod 4), then Dv−w,w can be decomposed by Theorem 2.5. Dv−w

can be packed with leave L=D2 by Theorem 4.8. Then |A(L)|=2.

Case 4: If v ≡ 0 (mod 4) and w ≡ 3 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are
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{(01, 11, . . ., (v − w − 1)1)} and {(02, 12, . . ., (w − 1)2}.By Theorem 2.6, Dv−w,w can

be packed and |A(L)|=2. Dv−w can be decomposed by Theorem 4.8.

Case 5: If v ≡ 1 (mod 4) and w ≡ 0 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{0,1}. Therefore, by Theorem 4.7 a decomposition exists.

Case 6: If v ≡ w ≡ 1 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {0,1}. Therefore,

by Theorem 4.7 a decomposition exists.

Case 7: If v ≡ 1 (mod 4) and w ≡ 2 (mod 4), then we know the number of

arcs is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w−2 ∪ Dv−w−2,2 ∪

Dv−w−2,w=Dv−w−2 ∪ Dv−w−2,w+2 ∪ D2,w ∪ D2. Note that the vertex set for Dv−w−2 is

{01, 11, . . ., (v−w−3)1}. For Dv−w−2,w+2, the partite sets are {01, 11, . . ., (v−w−3)1}

and {02, 12, . . ., (v −w + 1)2}. For D2,w, the partite sets are {(v − 2)1, (v − 1)1} and

{02, 12, . . ., (w−1)2}. By Theorem 4.8, Dv−w−2 can be decomposed. Dv−w−2,w+2 can

be decomposed by Theorem 2.5. D2,w can be decomposed by Theorem 2.5. Therefore

|A(L)|=2.

Case 8: If v ≡ 1 (mod 4) and w ≡ 3 (mod 4), then we know the number of

arcs is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w−2 ∪ Dv−w−2,2 ∪

Dv−w−2,w=Dv−w−2 ∪ Dv−w−2,w+2 ∪ D2,w ∪ D2. Note that the vertex set for Dv−w−2

is {01, 11, . . ., (v − w − 3)1}. For Dv−w−2,w+2, the partite sets are {01, 11, . . .,

(v −w − 3)1} and {02, 12, . . ., (v −w + 1)2}. For D2,w, the partite sets are {(v − 2)1,

(v − 1)1} and {02, 12, . . ., (w − 1)2}. Now note by Theorem 4.8, Dv−w−2 can be

decomposed. Dv−w−2,w+2 can be decomposed by Theorem 2.5. D(w + 2, 2) can be

packed by Case 7 with L=D2. Therefore |A(L)|=2.
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Case 9: If v ≡ 2 (mod 4) and w ≡ 0 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 2 (mod 4) and w ≡

0 (mod 4), then Dv−w,w can be decomposed by Theorem 2.5. Dv−w can be packed

with leave L=D2 by Theorem 4.8. Then |A(L)|=2.

Case 10: If v ≡ 2 (mod 4) and w ≡ 1 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w− 1)1)} and {(02, 12, . . ., (w− 1)2}. By Theorem 2.6, Dv−w,w can

be packed and |A(L)|=2. Dv−w can be decomposed by Theorem 4.8.

Case 11: If v ≡ w ≡ 2 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {2,3}. Therefore,

by Theorem 4.7 a decomposition exists.

Case 12: If v ≡ 2 (mod 4) and w ≡ 3 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{2,3}. Thus, by Theorem 4.7 a decomposition exists.

Case 13: If v ≡ 3 (mod 4) and w ≡ 0 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the partite sets are {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets

are {(01, 11, . . ., (v−w− 1)1)} and {(02, 12, . . ., (w− 1)2}. Since v ≡ 3 (mod 4) w ≡

0 (mod 4), Dv−w,w can be decomposed by Theorem 2.5. Dv−w can be packed with

leave L=D2 by Theorem 4.8. Then |A(L)|=2.

Case 14: If v ≡ 3 (mod 4) and w ≡ 1 (mod 4), then we know the number of

arcs is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w−2 ∪ Dv−w−2,2 ∪
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Dv−w−2,w=Dv−w−2 ∪ Dv−w−2,w+2 ∪ D(w +2, w). Note that the vertex set for Dv−w−2

is {0, 1, . . ., (v−w−3)}. For Dv−w−2,w+2, the partite sets are {01, 11, . . ., (v−w−3)1}

and {02, 12, . . ., (v −w + 1)2}. For D2,w, the partite sets are {(v − 2)1, (v − 1)1} and

{02, 12, . . ., (w−1)2}. Dv−w−2 can be decomposed by Theorem 4.8. By Theorem 2.5,

Dv−w−2,w+2 can be decomposed. D(w + 2, w)=D2,w ∪ D2. D2,w can be decomposed

by Theorem 4.7. Therefore |A(L)|=2.

Case 15: If v ≡ 3 (mod 4) and w ≡ 2 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{2,3}. Therefore, by Theorem 4.7 a decomposition exists.

Case 16: If v ≡ w ≡ 3 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {2,3}. Therefore,

by Theorem 4.7 a decomposition exists.Q.E.D

Thus, each case for Y satisfies the conditions of the theorem. Now we want to

cover D(v, w) with C4.

Theorem 4.10 A minimal C4-covering of D(v, w) satisfies:

1. |A(L)|=0 if {v (mod 4), w (mod 4)} ⊂ {0, 1} or {v (mod 4), w (mod 4)} ⊂

{2, 3}, and v − w > 3,

2. |A(L)|=2, otherwise.

Proof. The necessary conditions follow similar to those of Theorem 2.9.

Case 1: If v ≡ w ≡ 0 (mod 4), then v ≡ w ≡ 0 (mod 2). Therefore, by Theorem

4.1, a decomposition exists.

Case 2: If v ≡ 0 (mod 4) and w ≡ 1 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{0,1}. Therefore, by Theorem 4.1, a decomposition exists.

Case 3: If v ≡ 0 (mod 4) and w ≡ 2 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for
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Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets

are {(01, 11, . . ., (v − w − 1)1)} and {(02, 12, . . ., (w − 1)2}. Since , v ≡ 0 (mod 4)

and w ≡ 2 (mod 4), then Dv−w,w can be decomposed by Theorem 2.1. Dv−w can be

covered with padding P=D2 by Theorem 3.2. Thus |A(P )|=2.

Case 4: If v ≡ 0 (mod 4) and w ≡ 3 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since, v ≡ 0 (mod 4) and w ≡

3 (mod 4), then Dv−w,w can be decomposed by Theorem 2.1. Dv−w can be covered

with padding P=D2 by Theorem 3.2. Thus |A(P )|=2.

Case 5: If v ≡ 1 (mod 4) and w ≡ 0 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{0,1}. Therefore, by Theorem 4.1 a decomposition exists.

Case 6: If v ≡ w ≡ 1 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {0,1}. Thus, by

Theorem 4.1 a decomposition exists.

Case 7: If v ≡ 1 (mod 4) and w ≡ 2 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the partite sets are {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets

are {(01, 11, . . ., (v − w − 1)1)} and {(02, 12, . . ., (w − 1)2}. Since v ≡ 1 (mod 4)

and w ≡ 2 (mod 4), then Dv−w,w can be decomposed by Theorem 2.1. Dv−w can be

covered with padding P=D2 by Theorem 3.2. Thus |A(P )|=2.

Case 8: If v ≡ 1 (mod 4) and w ≡ 3 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are
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{(01, 11, . . ., (v −w − 1)1)} and {(02, 12, . . ., (w − 1)2}. Note that since, v ≡ 1 (mod

4) and w ≡ 3 (mod 4), then Dv−w,w can be decomposed by Theorem 2.1. Dv−w can

be covered with padding P=D2 by Theorem 3.2. Then |A(P )|=2.

Case 9: If v ≡ 2 (mod 4) and w ≡ 0 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 2 (mod 4) and w ≡

0 (mod 4), then Dv−w,w can be decomposed by Theorem 2.1. Dv−w can be covered

with padding P=D2 by Theorem 3.2. Thus |A(P )|=2.

Case 10: If v ≡ 2 (mod 4) and w ≡ 1 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 2 (mod 4) and w ≡

1 (mod 4), then Dv−w,w can be decomposed by Theorem 2.1. Dv−w can be covered

with padding P=D2 by Theorem 3.2. Thus |A(P )|=2.

Case 11: If v ≡ w ≡ 2 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {2,3}. Therefore,

by Theorem 4.1, a decomposition exists.

Case 12: If v ≡ 2 (mod 4) and w ≡ 3 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{2,3}. Thus, by Theorem 4.1, a decomposition exists.

Case 13: If v ≡ 3 (mod 4) and w ≡ 0 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 3 (mod 4) and w ≡
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0 (mod 4), then Dv−w,w can be decomposed by Theorem 2.1. Dv−w can be covered

with padding P=D2 by Theorem 3.2. Thus |A(P )|=2.

Case 14: If v ≡ 3 (mod 4) and w ≡ 1 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 3 (mod 4) and w ≡

1 (mod 4), then Dv−w,w can be decomposed by Theorem 2.1. Dv−w can be covered

with padding P=D2 by Theorem 3.2. Thus |A(P )|=2.

Case 15: If v ≡ 3 (mod 4) and w ≡ 2 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{2,3}. Therefore, by Theorem 4.1, a decomposition exists.

Case 16: If v ≡ w ≡ 3 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {2,3}. Thus, by

Theorem 4.1, a decomposition exists.Q.E.D

Thus, each case for C4 satisfies the conditions of the theorem.

Theorem 4.11 A minimal X covering of D(v, w) satisfies:

1. |A(L)|=0 if {v (mod 4), w (mod 4)} ⊂ {0, 1} or {v (mod 4), w (mod 4)} ⊂

{2, 3},

2. |A(L)|=2, otherwise.

Proof. The necessary conditions follow similar to those of Theorem 2.9.

Case 1: If v ≡ w ≡ 0 (mod 4), then v ≡ w ≡ 0 (mod 2). Therefore, by Theorem

4.4 a decomposition exists.

Case 2: If v ≡ 0 (mod 4) and w ≡ 1 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{0,1}. Therefore, by Theorem 4.4 a decomposition exists.
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Case 3: If v ≡ 0 (mod 4) and w ≡ 2 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 0 (mod 4) and w ≡

2 (mod 4), then Dv−w,w can be decomposed by Theorem 2.3. Dv−w can be covered

with padding P=D2 by Theorem 3.1. Thus |A(P )|=2.

Case 4: If v ≡ 0 (mod 4) and w ≡ 3 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v − w − 1)1)} and {(02, 12, . . ., (w − 1)2}. Since v ≡ 0 (mod 4) and

w ≡ 3 (mod 4), Dv−w,w can be packed by Theorem 2.9 with padding P=D2. Dv−w

can be decomposed by Theorem 4.5. Thus |A(P )|=2.

Case 5: If v ≡ 1 (mod 4) and w ≡ 0 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{0,1}. Therefore, by Theorem 4.4, a decomposition exists.

Case 6: If v ≡ w ≡ 1 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {0,1}. Thus, by

Theorem 4.4, a decomposition exists.

Case 7: If v ≡ 1 (mod 4) and w ≡ 2 (mod 4), then we know the number of

arcs is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w−2 ∪ Dv−w−2,2 ∪

Dv−w−2,w=Dv−w−2 ∪ Dv−w−2,w+2 ∪ D2,w ∪ D2. Note that the vertex set for Dv−w−2

is {01, 11, . . ., (v − w − 3)1}. For Dv−w−2,w+2, the partite sets are {01, 11, . . .,

(v −w − 3)1} and {02, 12, . . ., (v −w + 1)2}. For D2,w, the partite sets are {(v − 2)1,

(v − 1)1} and {02, 12, . . ., (w − 1)2}. Now note by Theorem 4.5, Dv−w−2 can be

decomposed. Dv−w−2,w+2 by Theorem 2.3. D2,w can be decomposed by Theorem 2.3.
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When covering D2 the padding is D2. Therefore |A(P )|=2.

Case 8: If v ≡ 1 (mod 4) and w ≡ 3 (mod 4), then we know the number of

arcs is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w−2 ∪ Dv−w−2,2 ∪

Dv−w−2,w=Dv−w−2 ∪ Dv−w−2,w+2 ∪ D2,w ∪ D2. Note that the vertex set for Dv−w−2

is {01, 11, . . ., (v − w − 3)1}. For Dv−w−2,w+2, the partite sets are {01, 11, . . .,

(v −w − 3)1} and {02, 12, . . ., (v −w + 1)2}. For D2,w, the partite sets are {(v − 2)1,

(v − 1)1} and {02, 12, . . ., (w − 1)2}. By Theorem 4.5, Dv−w−2 can be decomposed.

Dv−w−2,w+2 can be decomposed by Theorem 2.3. D(w + 2, 2) can be covered by case

7 with P=D2. Therefore |A(P )|=2.

Case 9: If v ≡ 2 (mod 4) and w ≡ 0 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v − w − 1)1)} and {(02, 12, . . ., (w − 1)2}. Since v ≡ 0 (mod 4) and

w ≡ 2 (mod 4), Dv−w,w can be decomposed by Theorem 2.3. Dv−w can be covered

with padding P=D2 by Theorem 3.1. Thus |A(P )|=2.

Case 10: If v ≡ 2 (mod 4) and w ≡ 1 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 2 (mod 4) and w ≡

1 (mod 4), then Dv−w,w can be covered by Theorem 2.9 with padding P=D2. Dv−w

can be decomposed by Theorem 4.5. Thus |A(P )|=2.

Case 11: If v ≡ w ≡ 2 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {2,3}. Therefore,

by Theorem 4.4, a decomposition exists.
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Case 12: If v ≡ 2 (mod 4) and w ≡ 3 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{2,3}. Thus, by Theorem 4.4, a decomposition exists.

Case 13: If v ≡ 3 (mod 4) and w ≡ 0 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 3 (mod 4) and w ≡

0 (mod 4), then Dv−w,w can be decomposed by Theorem 2.3. Dv−w can be covered

with padding P=D2 by Theorem 3.1. Thus |A(P )|=2.

Case 14: If v ≡ 3 (mod 4) and w ≡ 1 (mod 4), then we know the number of

arcs is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w−3 ∪ Dv−w−3,3 ∪

Dv−w−3,w=Dv−w−3 ∪ Dv−w−3,w+3 ∪ D(w +3, w). Note that the vertex set for Dv−w−3

is {01, 11, . . ., (v − w − 4)1}. For Dv−w−3,w+3, the partite sets are {01, 11, . . .,

(v−w−4)1} and {02, 12, . . ., (v−w+2)2}. For D(w+3, w), the partite sets are {02,

12, . . . , (w+2)2} and {02, 12, . . ., (w− 1)2}. Dv−w−3 can be covered by Theorem 3.2.

By Theorem 2.3, Dv−w−3,w+3 can be decomposed. D(w + 3, w) can be decomposed

by Theorem 4.7. Therefore |A(P )|=2.

Case 15: If v ≡ 3 (mod 4) and w ≡ 2 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{2,3}. Therefore, by Theorem 4.4, a decomposition exists.

Case 16: If v ≡ w ≡ 3 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {2,3}. Thus, by

Theorem 4.4, a decomposition exists.Q.E.D

Thus, each case for X satisfies the conditions of the theorem.

Theorem 4.12 A minimal Y covering of D(v, w) satisfies:

1. |A(L)|=0 if {v (mod 4), w (mod 4)} ⊂ {0, 1} or {v (mod 4), w (mod 4)} ⊂
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{2, 3},

2. |A(L)|=2, otherwise.

Proof. The necessary conditions follow as in Theorem 2.9.

Case 1: If v ≡ w ≡ 0 (mod 4), then v ≡ w ≡ 0 (mod 2). Therefore, by Theorem

4.7 a decomposition exists.

Case 2: If v ≡ 0 (mod 4) and w ≡ 1 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{0,1}. Therefore, by Theorem 4.7 a decomposition exists.

Case 3: If v ≡ 0 (mod 4) and w ≡ 2 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 0 (mod 4) and w ≡

2 (mod 4), then Dv−w,w can be decomposed by Theorem 2.5. Dv−w can be covered

with padding P=D2 by Theorem 3.3. Thus |A(P )|=2.

Case 4: If v ≡ 0 (mod 4) and w ≡ 3 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v − w − 1)1)} and {(02, 12, . . ., (w − 1)2}. Since v ≡ 0 (mod 4) and

w ≡ 3 (mod 4), then Dv−w,w can be covered by Theorem 2.11 with padding P=D2.

Dv−w can be decomposed by Theorem 4.8. Thus |A(P )|=2.

Case 5: If v ≡ 1 (mod 4) and w ≡ 0 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{0,1}. Therefore, by Theorem 4.7, a decomposition exists.

Case 6: If v ≡ w ≡ 1 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {0,1}. Thus, by

Theorem 4.7, a decomposition exists.
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Case 7: If v ≡ 1 (mod 4) and w ≡ 2 (mod 4), then we know the number of

arcs is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w−2 ∪ Dv−w−2,2 ∪

Dv−w−2,w=Dv−w−2 ∪ Dv−w−2,w+2 ∪ D2,w ∪ D2. Note that the vertex set for Dv−w−2 is

{01, 11, . . ., (v−w−3)1}. For Dv−w−2,w+2, the partite sets are {01, 11, . . ., (v−w−3)1}

and {02, 12, . . ., (v −w + 1)2}. For D2,w, the partite sets are {(v − 2)1, (v − 1)1} and

{02, 12, . . ., (w − 1)2}. By Theorem 3.3, Dv−w−2 can be decomposed. Dv−w−2,w+2

by Theorem 2.5. D2,w can be decomposed by Theorem 2.5. When covering D2 the

padding is D2. Therefore |A(P )|=2.

Case 8: If v ≡ 1 (mod 4) and w ≡ 3 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). The D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v − w − 1)1)} and {(02, 12, . . ., (w − 1)2}. Since , v ≡ 2 (mod 4) and

w ≡ 1 (mod 4), then Dv−w,w can be covered by Theorem 2.11 with padding P=D2.

Dv−w can be decomposed by Theorem 4.8. Thus |A(P )|=2.

Case 9: If v ≡ 2 (mod 4) and w ≡ 0 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 2 (mod 4) and w ≡

0 (mod 4), then Dv−w,w can be decomposed by Theorem 2.5. Dv−w can be covered

with padding P=D2 by Theorem 3.3. Thus |A(P )|=2.

Case 10: If v ≡ 2 (mod 4) and w ≡ 1 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are
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{(01, 11, . . ., (v − w − 1)1)} and {(02, 12, . . ., (w − 1)2}. Since , v ≡ 2 (mod 4) and

w ≡ 1 (mod 4), then Dv−w,w can be covered by Theorem 2.11 with padding P=D2.

Dv−w can be decomposed by Theorem 4.8. Thus |A(P )|=2.

Case 11: If v ≡ w ≡ 2 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {2,3}. Therefore,

by Theorem 4.7, a decomposition exists.

Case 12: If v ≡ 2 (mod 4) and w ≡ 3 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{2,3}. Thus, by Theorem 4.7, a decomposition exists.

Case 13: If v ≡ 3 (mod 4) and w ≡ 0 (mod 4), then we know the number of arcs

is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w ∪ Dv−w,w. Note that for

Dv−w, the vertex set is {(01, 11, . . ., (v − w − 1)1)}. For Dv−w,w, the partite sets are

{(01, 11, . . ., (v−w−1)1)} and {(02, 12, . . ., (w−1)2}. Since v ≡ 3 (mod 4) and w ≡

0 (mod 4), then Dv−w,w can be decomposed by Theorem 2.5. Dv−w can be covered

with padding P=D2 by Theorem 3.3. Thus |A(P )|=2.

Case 14: If v ≡ 3 (mod 4) and w ≡ 1 (mod 4), then we know the number of

arcs is v(v − 1) − w(w − 1) ≡ 2 (mod 4). Then D(v, w)=Dv−w−2 ∪ Dv−w−2,2 ∪

Dv−w−2,w=Dv−w−2 ∪ Dv−w−2,w+2 ∪ D(w +2, w). Note that the vertex set for Dv−w−2

is {01, 11, . . ., (v − w − 3)1}. For Dv−w−2,w+2, the partite sets are {01, 11, . . .,

(v −w − 3)1} and {02, 12, . . ., (v −w + 1)2}. For D2,w, the partite sets are {(v − 2)1,

(v − 1)1} and {02, 12, . . ., (w − 1)2}. Dv−w−2 can be decomposed by Theorem 4.8.

By Theorem 2.5, Dv−w−2,w+2 can be decomposed. D(w + 2, w)=D2,w ∪ D2. D2,w can

be decomposed by Theorem 4.7. When covering D2 the padding is D2. Therefore

|A(P )|=2.
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Case 15: If v ≡ 3 (mod 4) and w ≡ 2 (mod 4), then {v (mod 4), w (mod 4)} ⊂

{2,3}. Therefore, by Theorem 4.7, a decomposition exists.

Case 16: If v ≡ w ≡ 3 (mod 4), then {v (mod 4), w (mod 4)} ⊂ {2,3}. Thus, by

Theorem 4.7, a decomposition exists.Q.E.D

Thus, each case for Y satisfies the conditions of the theorem. Therefore, Theorems

4.1-4.12 provide the necessary and sufficient conditions for maximal packings and

minimal coverings of the complete directed graph on v vertices with holes of size w

with C4, X, and Y .
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5 CONCLUSION

Within this paper we have considered C4, X, and Y orientations of the 4-cycle. For

C4 and Y packings and coverings of complete bipartite graphs, the leave or padding

of the graph was of size 0 or 2. If m and n were both even or both odd, then the

size of the leave or padding was 0 or 2. For X, we have found that if m was even

and n was odd or m was odd and n was even then the leave and padding was of

size 4. In packing and covering Dv with C4 our leave or padding was of size 0 or 2

unless v=4. If v=4 then the size of the leave or padding was 4. For X, our leave or

padding was of size 0 or 2 unless v=5. If v=5 then the size of the leave or padding

was 4. For Y , our leave or padding was of size 0 or 2 unless v=4 or 5. If v=4 or 5,

then the size of the leave or padding was 4. When we packed and covered D(v, w), if

a decomposition existed then the leave or padding was zero. If a decomposition did

not exist, then the leave or padding was of size 2. We have shown the necessary and

sufficient conditions for finding the maximal padding and minimal covering of the

complete bipartite graph, Dm,n, the complete directed graph, Dv, and the complete

directed graph on v vertices with a hole of size w, through several proofs.
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