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ABSTRACT

Global Domination Stable Graphs

by

Elizabeth Harris

A set of vertices S in a graph G is a global dominating set (GDS) of G if S is a

dominating set for both G and its complement G. The minimum cardinality of a

global dominating set of G is the global domination number of G. We explore the

effects of graph modifications on the global domination number. In particular, we

explore edge removal, edge addition, and vertex removal.
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1 BACKGROUND

The concept of global domination was introduced in 1989 by Sampathkumar [8]

and since then, many of its properties have been explored. As with mathematics in

general, and graph theory in particular, the potential for expanding our knowledge is

unlimited. We investigate global domination in graphs.

1.1 Basic Graph Theory Terminology

Before we discuss advanced topics in domination we give some basic graph theory

definitions. As defined in [4], a graph G is a finite nonempty set of objects called

vertices (the singular is vertex) together with a (possibly empty) set of unordered

pairs of distinct vertices of G called edges. The vertex set of G is denoted by V (G),

while the edge set is denoted by E(G). The edge e = {u, v} is said to join the vertices

u and v. If e = {u, v} is an edge of a graph G, then u and v are adjacent vertices,

while u and e are incident, as are v and e. Furthermore, if e1 and e2 are distinct

edges of G incident with a common vertex, then e1 and e2 are adjacent edges. It

is sometimes convenient to denote an edge by uv or vu rather than by {u, v}. The

cardinality of, or number of elements contained in, the vertex set of a graph G is

called the order of G and is commonly denoted by n(G), or more simply by n when

the graph under consideration is clear. The cardinality of its edge set is the size of G

and is often denoted by m(G) or m. It is customary to define or describe a graph G

by means of a diagram in which each vertex of G is represented by a point (which we

draw as a small circle) and each edge e = uv of G is represented by a line segment or

curve joining the points corresponding to u and v. The degree of a vertex v in a graph
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G is the number of edges of G incident with v, which is denoted by deg(v). A vertex

of degree 0 in G is called an isolated vertex, while a vertex of degree of 1 is referred

to as a leaf or pendant. The minimum degree of G is the minimum degree among the

vertices of G and is denoted by δ(G). The maximum degree is defined similarly and

is denoted by ∆(G). If U is a nonempty subset of the vertex set V (G) of a graph G,

then the induced subgraph G[U ] is the graph having vertex set U and whose edge set

consists of those edges of G incident with two elements of U . A graph of n vertices is

complete if every two of its vertices are adjacent. This is denoted Kn. A graph G is k-

partite, k ≥ 1, if it is possible to partition V (G) into k subsets V1, V2, · · · , Vk (called

partite sets) such that every element of E(G) joins a vertex of Vi to a vertex of Vj,

i 6= j. For k = 2, such graphs are called bipartite graphs. A complete k-partite graph

G is a k-partite graph with partite sets V1, V2, · · · , Vk having the added property that

if u ∈ Vi and v ∈ Vj, i 6= j, then uv ∈ E(G). A complete bipartite graph with partite

sets V1 and V 2, where |V1| = r and |V2| = s, is then denoted by K(r, s). The graph

K1,s is called a star, often denoted Sk where the graph has one internal node and k

leaves. A graph is a complete multipartite graph if it is a complete k-partite graph for

some k ≥ 2.

The complement G of a graph G is the graph with vertex set V (G) such that two

vertices are adjacent in G if and only if these vertices are not adjacent in G. This

means that both G and its complement G have the same vertices, but G has precisely

the edges that G lacks. A graph G1 is isomorphic to a graph G2 if there exists a

one-to-one mapping φ, called an isomorphism, from V (G1) onto V (G2) such that φ

preserves adjacency; that is uv ∈ E(G1) if and only if φ(u)φ(v) ∈ E(G2). A graph G
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is self-complementary if G ∼= G. A u-v walk W of G is a finite, alternating sequence

W : u = u0, e1, u1, e2, . . . , uk−1, ek, uk = v of vertices and edges, beginning with vertex

u and ending with vertex v, such that ei = ui−1ui for i = 1, 2, . . . , k. The number k

(the number of occurrences of edges) is called the length of W .

A u-v walk is closed or open depending on whether u = v or u 6= v. A u-v trail is

a u-v walk in which no edge is repeated, while a u-v path is a u-v walk in which no

vertex is repeated. A nontrivial closed trail of a graph G is referred to as a circuit of

G, and a circuit v1, v2, . . . , vn, v1 (n ≥ 3) whose n vertices vi are distinct is called a

cycle. Paths on n vertices are denoted Pn and cycles on n vertices are denoted Cn.

An acyclic graph has no cycles. A tree is an acyclic connected graph. A graph is

called triangle-free if it contains no triangles. A wheel graph, Wn, on n vertices is a

graph consisting of a cycle Cn and a single vertex which is adjacent to all vertices in

the cycle. A vertex u is said to be connected to a vertex v in a graph G if there exists

a u-v path in G. A graph G is connected if every two vertices are connected. A graph

that is not connected is disconnected. The relation ‘is connected to’ is an equivalence

relation on the vertex set of every graph G. Each subgraph induced by the vertices

in a resulting equivalence class is called a component of G. For a connected graph

G, we define the distance d(u, v) between two vertices u and v as the minimum of

the lengths of the u-v paths of G. The eccentricity e(v) of a vertex v of a connected

graph G is the distance between v and a vertex farthest from v. The diameter of

G, denoted diam(G) is the maximum eccentricity. The open neighborhood N(v) of a

vertex v consists of the set of vertices adjacent to v, that is, N(v) = {u ∈ V |uv ∈ E},

and the closed neighborhood of v is N [v] = N(v) ∪ v. For a set S ⊆ V , the open
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neighborhood N(S) is defined to be ∪v∈SN(v), and the closed neighborhood of S is

N [S] = N(S) ∪ S. For a set S of vertices and u ∈ S, we say that a vertex v is a

private neighbor of u (with respect to S) if N [v] ∩ S = {u}. Furthermore, we define

the private neighbor set of u, called the private neighborhood of u, with respect to S,

to be pn[u, S] = {v : N [v] ∩ S = {u}}. The external private neighborhood of u with

respect to S is epn[u, S] = {v ∈ V \ S : N(v) ∩ S = {u}}.

1.2 Global Domination

Our main results are on global domination in graphs. According to [5] a subset

S ⊆ V is a dominating set of G if every vertex of V \ S is adjacent to at least one

vertex of S. The cardinality of a smallest dominating set of G, denoted γ(G), is the

domination number of G. A dominating set of G having cardinality γ(G) is called a

γ(G)-set.

Sampathkumar [8] introduced the idea of a global dominating set (GDS, for short)

in which a subset S ⊆ V is a dominating set of both G and its complement, G. The

global domination number, γg(G), of G (and of G) is the minimum cardinality of a

global dominating set of G, and a global dominating set of this size is a γg(G)-set.

The darkened vertices of Figure 1 illustrate a γg(C5)-set.

1.3 Prisms

We determine global domination number of prisms and complementary prisms.

First, the union G = G1∪G2 has V (G) = V (G1)∪V (G2) and E(G) = E(G1)∪E(G2).

For disjoint graphs G and H, the join K = G + H has V (K) = V (G) ∪ V (H) and

11



C5 C5

Figure 1: γg(C5) = 3

E(K) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G) and u ∈ V (H)}. A set of pairwise inde-

pendent edges of G is called a matching. If M is a matching in a graph G with the

property that every vertex of G is incident with an edge of M , then M is a perfect

matching in G. A prism GG of G is formed from the disjoint union of G and G by

adding the edges of a perfect matching between the corresponding vertices of the two

copies of G. Figure 2 illustrates an example of a prism where G = C5.

C5 C5

Figure 2: An example of the prism C5C5

The complementary prism GG of G is formed from the disjoint union of G and its

complement G by adding the edges of a perfect matching between the corresponding

12



vertices of G and its complement G. Figure 3 illustrates an example of a complemen-

tary prism where G = C5.

C5 C5

Figure 3: An example of the complementary prism C5C5

1.4 Criticality

In [5], Brigham and Dutton explored the effects of graph modifications on the

global domination number. They observed that when an edge e is removed from G,

it is added to G. When an edge is removed from G, the global domination number

can decrease, stay the same, or increase. They define the edge e to be minus global

domination edge critical, or simply minus critical, if γg(G− e) < γg(G). Similarly, e

is plus global domination edge critical, or simply plus critical, if γg(G − e) > γg(G).

If the same inequality holds for all edges of G, then G is called either minus critical

or plus critical as appropriate. They also define certain classes of graphs as follows:

1. Eγg = {H : γg(H − e) = γg(H)− 1 for all e ∈ E(H)} and

2. Vγg = {H : γg(H − v) = γg(H)− 1 for all v ∈ V (H)}.

We call a graph where the removal of any edge e does not effect the global domination

number a global domination edge minus stable graph, or simply EMS. We call a graph
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where the addition of any edge e does not effect the global domination number a

global domination edge plus stable graph, or simply EPS. We call a graph G in the

family Vγg a global domination vertex critical graph, or simply VC. A graph for which

the removal of any vertex v does not decrease the global domination number, we

call global domination vertex stable, or simply VS. If G is a global domination edge

critical graph and γg(G) = k, then we say G is a kg-edge critical graph. Similarly, we

call global domination edge minus stable graphs, global domination edge plus stable

graphs, global domination vertex stable graphs, and global domination vertex critical

graphs each with γg(G) = k, kg-edge minus stable graphs, kg-edge plus stable graphs,

kg-vertex stable graphs, and kg-vertex critical graphs, respectively.

14



2 LITERATURE SURVEY

In this section, we survey pertinent known results about global domination, di-

ameter, prisms, complementary prisms, and graph modification. We use the notation

and terminology of [6] unless stated otherwise.

2.1 Bounds on Global Domination

Sampathkumar [8] introduced the concept of global domination in graphs in 1989.

Since then, there have been many bounds defined for the global domination number

of families of graphs. Brigham and Carrington [2] state the following values of γg for

specific families:

Theorem 2.1 [2]

i ) For the complete graph Kn, γg(Kn) = n.

ii ) For the path Pn,

γg(Pn) =


2 if n = 2, 3

dn/3e if n ≥ 4.

iii ) For the cycle Cn,

γg(Cn) =


3 if n = 3, 5

dn/3e otherwise.
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iv ) For the wheel Wn,

γg(Wn) =


4 if n = 4

3 otherwise.

v ) For the complete multipartite graph,γg(Kn1,n2,...,nr) = r.

Next we present bounds on the global domination number.

Theorem 2.2 [5] For graph G,

1. max{γ(G), γ(G)} ≤ γg(G) = γg(G) ≤ γ(G) + γ(G), and

2. if G or G is disconnected, then γg(G) = γg(G) = max{γ(G), γ(G)}

Theorem 2.3 [6]For any graph G with a pendant vertex, γg(G) ≤ γ(G) + 1.

Theorem 2.4 [5]If G is a triangle-free graph, then γ(G) ≤ γg(G) ≤ γ(G) + 1.

Theorem 2.5 [1]Let G be a connected bipartite graph with bipartition X,Y and |X| ≤

|Y |. Then, γg(G) = γ(G) + 1 if and only if either G is isomorphic to K2 or every

vertex in X is adjacent to at least two pendant vertices and there exists a vertex in Y

which is adjacent to all vertices in X.

Theorem 2.6 [7]Let T be a tree. Then, γg(T ) = γ(T ) + 1 if and only if T is a star

or T is a tree of diameter 4 which is constructed from two or more stars, each having

at least two pendant vertices, by connecting the centers of these stars to a common

vertex.

A vertex and an edge are said to cover each other in G if they are incident in

G. A vertex cover of G is a set of vertices that covers all the edges. The minimum

cardinality of a vertex cover is α0(G).
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Theorem 2.7 [1]Let G be a connected bipartite graph with bipartition (X, Y ) and

|X| ≤ |Y |. Then, γg(G) = α0(G) + 1 if and only if either G = K2 or every vertex in

X is adjacent to at least two pendant vertices and there exists a vertex in Y which is

adjacent to all vertices in X.

Theorem 2.8 [7] Let G be a graph having diameter at least five, and let A be a subset

of vertices in G. A is a minimal dominating set of G if and only if A is a minimal

global dominating set of G.

2.2 Known Results on Criticality

In [5], Brigham and Dutton study the effects of graph modifications on global

domination. It is important to note that the removal of any edge of a graph G can

increase or decrease the global domination number by only 1. We list results from [5]

below and will refer to them as we need them in later chapters.

Theorem 2.9 [5] For any graph G = (V,E) and any edge e ∈ E, γg(G) − 1 ≤

γg(G− e) ≤ γg(G) + 1.

Theorem 2.10 [5] Let G = (V,E) be a graph such that γg(G − e) = γg(G) − 1 for

some edge e ∈ E. Then, γg(G− e) ≤ γg(G) for every edge e ∈ E.

Theorem 2.11 [5] If γg(G− e) = γg(G) + 1 for some edge e ∈ E, then γg(G− e) ≥

γg(G) for every edge e ∈ E.

Theorem 2.12 [5] If graph G = (V,E) is not connected, then γg(G− e) ≥ γg(G) for

any edge e ∈ E.
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Theorem 2.13 [5] Let G = (V,E) be a graph for which G is disconnected. Then,

G ∈ Eγg if and only if

1. G ∈ Eγg, and

2. when G has two componenets, one of which is an isolated vertex x, then γg(G +

xy) < γg(G) for every edge xy ∈ E.

Brigham and Dutton [5] characterized when edge removal increases the global

domination number.

Theorem 2.14 [5] Let G = (V,E) be a graph. Then, γg(G − e) = γg(G) + 1 for

every edge e ∈ E if and only if G is a collection of m ≥ 2 stars.

18



3 GLOBAL DOMINATION; PRISMS & COMPLEMENTARY PRISMS

To help distinguish the copies of G within the prism GG, we define them as G1

and G2. Also, let vertices of G1 be denoted {ui|i = 1, 2, ..., n(GG)/2} and vertices

of G2 be denoted {vj|j = 1, 2, ..., n(GG)/2}, where i = j represents corresponding

vertices within G1 and G2. Figure 2 is an example of a prism GG and Figure 4 is its

complement. The graph in Figure 5 is isomorphic to the graph in Figure 4, but it is

drawn with dashed lines to indicate the missing edge between the copies of G.

C5 C5

Figure 4: The complement of the prism C5C5

C5 C5

Figure 5: The complement of the prism C5C5

Note that the complement of a prism GG is the join G + G minus a perfect
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matching between the corresponding vertices of G and G. Since for a nontrivial

graph G, γ(GG) ≥ 2 and γ(GG) = 2, it follows max{γ(GG), γ(GG)} = γ(GG).

Theorem 3.1 Let GG be a prism. Then, γ(GG) ≤ γg(GG) ≤ γ(GG) + 1.

Proof. Since γ(GG) ≥ γ(GG), the lower bound follows directly from Theorem 2.2.

To establish the upper bound, let S be a γ(GG)-set. If |S ∩ V (G1)| ≥ 2 and |S ∩

V (G2) | ≥ 2 in GG, then S is a GDS of GG. Moreover, if |S| ≥ 2 and S ⊆ V (G1)

or S ⊆ V (G2) in GG, then |S| = |V (G1)| and S is a GDS of GG. Hence, in both

cases γg(GG) ≤ |S| = γ(GG) and so γg(GG) = γ(GG). Thus, we may assume that

at least one of G1 and G2 have exactly one vertex in S and the other has at least one.

Relabeling G1 and G2 if necessary, assume that S∩V (G1) = {ui}. If |S∩V (G2)| ≥ 2,

then S∪{vi} is a GDS of GG implying that γg(GG) ≤ |S∪{vi}| ≤ |S|+1 = γ(GG)+1,

as desired. Hence, we may assume that |S ∩ V (G2)| = 1. Let S ∩ V (G2) = {vj}. If

i = j, then ui dominates G1 and vj dominates G2 in GG, and {ui, vi} dominates GG.

Therefore, γg(GG) ≤ |S| = γ(GG). Assume i 6= j. In the complement, GG, ui and

vj dominate all vertices with the possible exception of vi and uj. Then, S ∪ {vi} or

S ∪ {uj} is a GDS of GG. In either case, γg(GG) ≤ |S|+ 1 = γ(GG) + 1.

To distinguish the copies of G and G within the complementary prism GG,

we call them G and G respectively. Also, let vertices of G be denoted {ui|i =

1, 2, ..., n(GG)/2} and vertices of G be denoted {vj|j = 1, 2, ..., n(GG)/2}, where

i = j represents corresponding vertices within G and G. Figure 3 is an example of

a complementary prism GG and Figure 6 is its complement. Note that the com-

plement of a complementary prism GG is the join G + G minus a perfect matching

between the corresponding vertices of G and G. It follows if G is nontrivial, then
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max{γ(GG), γ(GG)} = γ(GG).

C5 C5

Figure 6: The complement of the complementary prism C5C5

Theorem 3.2 Let G be a nontrivial graph, and let GG be a complementary prism.

Then, γ(GG) ≤ γg(GG) ≤ γ(GG) + 1.

Proof. Since γ(GG) ≥ γ(GG), the lower bound follows directly from Theorem 2.2.

To establish the upper bound, let S be a γ(GG)-set. If |S∩V (G)| ≥ 2 and |S∩V (G)| ≥

2 in GG, then S is a DS of GG. Hence S is a GDS of GG. Moreover, if |S| ≥ 2 and

S ⊆ V (G) or S ⊆ V (G) in GG, then |S| = |V (G)| and S is a DS of GG. Hence, S is

a GDS of GG. Thus, in both cases γg(GG) ≤ |S| = γ(GG) and so γg(GG) = γ(GG).

Thus, we may assume that at least one of G and G have exactly one vertex in S,

and that the other has at least one. Relabeling G and G if necessary, assume that

S ∩ V (G) = {ui}. If |S ∩ V (G)| ≥ 2, then S ∪ {vi} is a GDS of GG. This implies

that γg(GG) ≤ |S ∪ {vi}| ≤ |S|+ 1 = γ(GG) + 1, as desired. Hence, we may assume

that |S ∩ V (G)| = 1. Let S ∩ V (G) = {vj}. If i = j, then ui dominates G and vi

dominates G, a contradiction. Thus, i 6= j. Then, S dominates the complement of
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GG with the possible exception of uj and vi in GG. Then, S ∪ {uj} or S ∪ {vi} is a

GDS of GG. Thus γg(GG) ≤ |S|+ 1 = γ(GG) + 1.
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4 BASIC RESULTS

Using some basic results about diameter, we investigate its effect on the global

domination number. Because we look at both a graph and its complement, we need

the following results.

Theorem 4.1 [9] If diam(G) ≥ 4, then diam(G) ≤ 2.

Theorem 4.2 [6] If γ(G) ≥ 3, then diam(G) ≤ 2.

Theorem 4.3 [6] If a graph G has no isolated vertices and diam(G) ≥ 3, then

γ(G) = 2.

Using these three theorems, an obvious proposition follows.

Proposition 4.4 Let G and G be connected, nontrivial graphs. If diam(G) ≥ 3,

then γg(G) ≤ γ(G) + 2.

Proof. Let G and G be connected and diam(G) ≥ 3. It follows directly from

Theorem 2.2 and Theorem 4.3 that γg(G) ≤ γ(G) + γ(G) = γ(G) + 2.

Theorem 4.5 Let G be a graph such that γ(G) ≥ γ(G). For any graph G, γg(G) =

γ(G) if and only if there exists some γ(G)-set not contained in the open neighborhood

of any vertex of G.

Proof. Assume γg(G) = γ(G). Let S be any γg(G)-set. Clearly S is a γ(G)-

set. If there exists some vertex v ∈ V (G) such that S ⊆ NG(v), then in G, v is

not adjacent to any vertex of S, a contradiction. Thus, S is not contained in the
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open neighborhood of any vertex of V (G). This proves the necessary condition. For

the sufficiency, assume that there exists some γ(G)-set S not contained in the open

neighborhood of any vertex of G. It is easy to see that S is a dominating set for G.

Hence γg(G) ≤ γ(G). By Theorem 2.2 the result follows.

Corollary 4.6 For any graph G, if γ(G) ≥ ∆(G), then γg(G) = γ(G).

Corollary 4.7 If G is a graph of order n and γ(G) ≤ ∆(G), then

n ≤ ∆(G)(∆(G) + 1).

Proof. Let S be a γ(G)-set. Then, each vertex dominates at most itself and ∆(G)

vertices in N(v). Since |S| = γ(G) ≤ ∆(G), the result follows.

Corollary 4.8 Let G be a graph of order n. If γg(G) > γ(G),

then n ≤ ∆(G)(∆(G) + 1).

Proof. If γg(G) > γ(G), then Corollary 4.7 implies γ(G) ≤ ∆(G). Thus,

Corollary 4.8 implies our result.

Theorem 4.9 If diam(G) ≥ 3 and diam(G) ≥ 3, then 2 ≤ γg(G) ≤ 4.

Proof. Since diam(G) ≥ 3 and diam(G) ≥ 3, no vertex dominates both G and G,

so γg(G) ≥ 2 and we have the lower bound. Theorem 4.3 implies that γ(G) = 2 and

γ(G) = 2. Then, by Theorem 2.2, γg(G) ≤ γ(G) + γ(G) = 4.
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5 GLOBAL DOMINATION STABLE GRAPHS

In this section we explore the effects of edge deletion, vertex deletion, and edge

addition on the global domination number of a graph. We focus on graphs having

global domination number 2 or 3. For simplicity purposes, we let S = {a, b} or

S = {a, b, c} be a γg(G)-set for the graph G under consideration. We let A be the

external private neighborhood of a with respect to S, that is A = epnG[a, S]. We

define B and C similarly, and so B = epnG(b, S) and C = epnG(c, S), respectively.

Also, let AB = NG(a) ∩ NG(b) ∩ (V \ S), AC = NG(a) ∩ NG(c) ∩ (V \ S), BC =

NG(b)∩NG(c)∩ (V \S), and ABC = NG(a)∩NG(b)∩NG(c)∩ (V \S). Furthermore,

let A = epnG(a, S). When γg(G) = 3, note that A = BC. Define B = AC and

C = AB similarly. Define AB, AC, BC, as expected.

Lemma 5.1 For any graph G and γg(G)-set S, there is no vertex adjacent to all the

vertices of S.

Proof. This follows from Theorem 4.5.

By Lemma 5.1 we see that ABC = ∅.

Lemma 5.2 Let T be a tree with global dominating set S = {a, b}. Then, |AB| ≤ 1.

Proof. Assume to the contrary, that |AB| ≥ 2. A cycle C4 is formed with the vertices

a, b, and any 2 vertices in AB, which is a contradiction to T being a tree.

Lemma 5.3 Let T be a tree with global dominating set S = {a, b, c}. Then, |AB| ≤ 1,

|AC| ≤ 1, and |BC| ≤ 1.
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Proof. Assume to the contrary, that any of |AB|, |AC|, or |BC| is greater than 1.

Without loss of generality, say |AB| ≥ 2. A cycle C4 is formed with the vertices a, b,

and any 2 vertices in AB, which is a contradiction to T being a tree.

For the remainder of this thesis, we characterize the stable trees T having γg(T ) =

2 or γg(T ) = 3. First, we consider edge removal.

5.1 Edge Removal

In this section, we consider graphs whose global domination number does not

change when any arbitrary edge is removed. We call such graphs kg-edge minus

stable. We focus on when k = 2 and when k = 3 and call those graphs 2g-edge minus

stable or 3g-edge minus stable, 2g-EMS or 3g-EMS respectively, for short. We first

consider 2g-EMS trees. In this thesis, all of the theorems for γg(T ) = 2 trees are

proved using cases. Case 1 explores the possibilities for when S is an independent

set. We look at what happens to the global domination number of the tree when a has

no private neighbors, one private neighbor, two private neighbors, or many private

neighbors. Similarly for b, we consider the effects of it’s private neighbors on the global

domination number. We also consider any combination of the private neighbors of a

and the private neighbors of b. Case 2 explores the possibilities for when S is not an

independent set. We, again, look at the effects of the private neighborhoods of a and

b on the global domination number.

Theorem 5.4 Let T be a tree. The tree T is a 2g-EMS graph if and only if T is one

of the paths P2, P3, P4 or the star Sn.
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Proof. See Figures 7, 8, 9, and 10 to see that the paths P2, P3, P4, and the star Sn

are 2g-EMS graphs. The darkened vertices are the global dominating set while the

dashed lines are the removed edges. To prove the necessary condition, assume that

T is a 2g-EMS tree. Let S = {a, b} be a γg(T )-set. Define the sets A, B, and AB as

before.

Figure 7: P2 − e

Figure 8: P3 − e

Figure 9: P4 − e

By Lemma 5.1, |AB| ≤ 1. Note also that since T is a tree, each of A and B is an

independent set.

We consider the cases.

Case 1 S is an independent set.

See Figure 11. If |AB| 6= ∅, then the vertex in AB dominates S, contradicting

Lemma 5.1. Hence AB = ∅. Since T is connected and AB = ∅, there must be an

edge between a vertex in A and a vertex in B. Without loss of generality, say that

a′ ∈ A is adjacent to b′ ∈ B. Also note that since T is a tree, the only edge with both
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Figure 10: Sn − e

a b

x

Figure 11: γg=2

its endpoints in A ∪ B is the edge a′b′. Thus, every vertex in (A ∪ B) \ {a′, b′} is a

leaf in T . See Figure 12.

a

a′ b′

b

Figure 12: γg=2

We show that |A| = |B| = 1. By symmetry it suffices to show that |A| = 1.

Note that A 6= ∅ because a′ ∈ A. Assume to the contrary that |A| ≥ 2, and delete a

pendant edge e incident to a, say aa′′. Since T is 2g-EMS and a′′ is in every γg(T −e)-

set, only one vertex dominates a, a′, b, b′, a contradiction. Therefore, |A| = |B| = 1

and T = P4 as desired.
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Case 2 S is not independent.

We note that since T is a tree, T [S] has exactly one edge and AB = ∅. Figure 13

illustrates Case 2.

a b

Figure 13: γg=2 Case 2

If |A| ≥ 2 and B = ∅ (respectively, A = ∅ and |B| ≥ 2), then T = Sn as desired.

Assume,without loss of generality, that |A| ≥ 2 and |B| 6= ∅. Then, delete a pendant

edge e incident to a, say aa′. Since T is 2g-EMS and a′ is in every γg(T − e)-set, only

one vertex dominates a,A \ {a′}, b, and B, a contradiction. Hence, we may assume

that 0 ≤ |A| ≤ 1 and 0 ≤ |B| ≤ 1. If A = B = ∅, then T = P2 as desired. If

|A| = 1 and B = ∅ (respectively, A = ∅ and |B| = 1), then T = P3 as desired. If

|A| = |B| = 1, then T = P4 as desired.

For the remainder of this section we focus on 3g-EMS trees. Similarly to how we

proved theorems for 2g-EMS trees, all of the theorems for γg(T ) = 3 trees are proved

using cases. Case 1 explores the possibilities for when S is an independent set. There

are three subcases, in which we consider the possibilities of the sizes of AB, AC, and

BC and their effects on the global domination number. In each subcase we look at

what happens to the global domination number of the tree when a has no private

neighbors, one private neighbor, two private neighbors, or many private neighbors.

Similarly for b and c. We also consider all combinations of the private neighborhoods

of a, b, and c. Case 2 explores the possibilities for when S is not an independent set.

There are two subcases, in which we consider the possibilities; T [S] = 1 or T [S] = 2.
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For our results for 3g-EMS trees we need to define a caterpillar. A caterpillar is

a tree C for which the removal of all leafs leaves a path, which is called the spine,

(v1, v2, · · · , vk), of C. We represent its code by (x1, x2, · · · , xk), where xi is the number

of leaves adjacent to vi, 1 ≤ i ≤ k. Figure 14 is an example of a caterpillar with code

(1, 0, 3, 2).

Figure 14: Caterpillar (1, 0, 3, 2)

Theorem 5.5 Let T be a tree. The tree T is a 3g-EMS graph if and only if T is the

path P7 or the caterpillar (1, 1, 1).

Proof. See Figure 15 and Figure 16 to see that P7 and the caterpillar (1, 1, 1) are

3g-EMS graphs. To prove the necessary condition, assume that T is a 3g-EMS tree.

Let S = {a, b, c} be a γg(T )-set. Define the sets A, B, C, AB, AC, BC, and ABC

as before.

Figure 15: P7 − e
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Figure 16: caterpillar (1, 1, 1)− e

Since S is a γg(T )-set, Theorem 4.5 implies that ABC = ∅. Since T is a tree,

at least one of AB, AC, and BC is empty. Without loss of generality, assume that

AC = ∅. By Lemma 5.3, |AB| ≤ 1 and |BC| ≤ 1. Note also that since T is a tree,

each of A, B, and C is an independent set.

We consider the cases.

Case 1 S is an independent set.

Case 1(a) |AB| = |BC| = 1.

Since T is a tree, A∪B∪C is an independent set, that is, each vertex in A∪B∪C

is a leaf in T . Figure 17 shows the set up for Case 1(a).

a b c

Figure 17: γg=3 Case 1(a)

Claim 1 |A| ≤ 1 and |C| ≤ 1.

Proof of Claim 1. By symmetry, it suffices to show that |A| ≤ 1. Assume to the

contrary that |A| ≥ 2, and let a′ ∈ A. Then, a′ is an isolated vertex in T ′ = T − aa′,

and so a′ ∈ S for every γg(T
′)-set S. Moreover, at least one additional vertex from

{a} ∪ A is in S. But then one vertex must dominate both b and c implying that
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x ∈ BC is in S, and so B = C = ∅. But then {x, a} is a GDS of T with cardinality

less than γg(T ), a contradiction. (�)

Thus, we may assume that |A| ≤ 1 and |C| ≤ 1.

Claim 2 |B| ≤ 1.

Proof of Claim 2. Assume to the contrary, that |B| ≥ 2, and let b′ ∈ B. Then, b′

is an isolated vertex in T − bb′ and so b′ ∈ S for every γg(T − bb′)-set S. Also another

vertex from {b} ∪ B is in S to dominate the leaf neighbors of b in T − bb′. But then

no single vertex will dominate both a and c, a contradiction. (�)

Henceforth, we have |A| ≤ 1, |B| ≤ 1, and |C| ≤ 1. If |A| = |B| = |C| = 1, then

T is the caterpillar (1, 0, 1, 0, 1), and T is not 3g(T )-EMS. If A = B = C = ∅, then

T = P5 and γg(T ) = 2, a contradiction. Hence, at least one of A, B, and C is empty,

and at least one has cardinality one. We consider the two possibilities for set B.

Assume first that |B| = 1. If |A| = 1 and C = ∅, then T is the caterpillar (1,

0, 1, 1), which is not 3g-EMS, a contradiction. Similarly, we have a contradiction if

|C| = 1 and A = ∅. Thus we may assume that A = C = ∅. Then, T is the caterpillar

with code (1, 1, 1) as desired.

Next, assume that B = ∅. Then, at least one of A and C has cardinality one. If

A or C is empty, then T = P6 and γg(T ) = 2, a contradiction. Hence, |A| = |C| = 1,

and so T = P7, as desired. (�)

Case1(b) |AB| = 1 and BC = ∅.

Since T is connected and BC = ∅, there must be an edge between a vertex in

C and a vertex in A ∪ B. Without loss of generality, say that b′ ∈ B is adjacent to

c′ ∈ C. Also note that since T is a tree, the only edge with both its endpoints in
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A ∪B ∪ C is the edge b′c′. Thus, every vertex in (A ∪B ∪ C) \ {b′, c′} is a leaf in T .

Figure 18 shows the set up for Case 1(b).

a b c

b′ c′

Figure 18: γg=3 Case 1(b)

Claim 3 |B| = 1.

Proof of Claim 3. Assume |B| ≥ 2, and delete a pendant edge e incident to b, say

bb′′. Then, since T is 3g-EMS and b′′ is in every γg(T − e)-set, it follows that A = ∅

and C = {c′}. Thus, T is the caterpillar with code (1, k, 0, 1) where k ≥ 1, which is

not 3g-EMS, a contradiction. Hence, |B| = 1. (�)

Hence, B = {b′}. If |C| ≥ 3 or |A| ≥ 2, or if |C| = 2 and |A| = 1, then removing

a pendant edge incident to either a or c causes the global domination number to

increase, contradicting the fact that T is 3g-EMS. Hence, 1 ≤ |C| ≤ 2 and |A| ≤ 1.

Moreover, we may assume that we do not have |A| = 1 and |C| = 2. If A = ∅ and

|C| = 1, then T = P6 and γg(P6) = 2, a contradiction. If A = ∅ and |C| = 2, or if

|A| = 1 and |C| = 1, then T = P7, as desired.

Case1(c) AB = BC = ∅.

Because T is a tree, it must be connected via edges between vertices in A∪B∪C.

Without loss of generality, assume that a′b′ ∈ E(T ), where a′ ∈ A and b′ ∈ B.
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Furthermore, we may assume that b′′c′ ∈ E(T ), where b′′ ∈ B (note b′′ can be b′) and

c′ ∈ C. Figures 19 and 20 show the two possibilities for this case.

a b c

a′ b′ c′

Figure 19: γg=3 Case 1(c), b′ = b′′

a b c

a′ b′ b′′ c′

Figure 20: γg=3 Case 1(c), b′ 6= b′′

Now all vertices of (A∪B ∪C) \ {a′, b′, b′′, c′} are leaves of T , otherwise a cycle is

formed. But the removal of any pendant edge incident to one of a, b, and c, increases

the global domination number, contradicting that T is 3g-EMS. Hence, A = {a′},

B = {b′, b′′}, and C = {c′}. If b′ = b′′, then T is the caterpillar (1, 1, 1) and if b′ 6= b′′,

then T = P7, as desired.

Case 2 S is not independent.

We note that since T is a tree, T [S] has at most two edges.

Case 2(a) T [S] has two edges, without loss of generality, let ab and bc be the edges

of T [S]. Figure 21 shows the set up for Case 2(a).
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a b c

Figure 21: γg=3 Case 2(a)

Then, A∪B∪C is an independent set, and so A∪B∪C is a set of leaves in T . If

either of A or C is empty, then γg(T ) = 2. Thus we may assume |A| ≥ 1 and |C| ≥ 1.

If |A| = |B| = |C| = 1, then we have the caterpillar (1, 1, 1) as desired. If B = ∅ and

(|A| = 1 or |C| = 1), then γg(T ) = 2, a contradiction. If B = ∅, |A| ≥ 2, and |C| ≥ 2,

then T is the caterpillar (k, 0, t), where k ≥ 2 and t ≥ 2. To see that this graph is not

3g-EMS, note that removing an edge incident to b decreases the global domination

number. Thus, assume that B ≥ 1 and that at least one of A and C, say A, has at

least two elements. Removing a pendant edge incident to a creates an isolated vertex

that must be in every γg(T −e)-set S. Moreover, at least three additional vertices are

in S, one each from {a} ∪ A, {b} ∪B, and {c} ∪ C, contradicting that T is 3g-EMS.

Case 2(b) T [S] has exactly one edge, without loss of generality, assume that ab ∈

E(T ).

Since T is a tree AB = ∅, and either BC 6= ∅ or there is an edge between a vertex

in C and a vertex in A ∪B. Figures 22 and 23 show the two possibilities for

Case 2(b).

a b c

Figure 22: γg=3 Case 2(b), BC 6= ∅
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a b c

b′ c′

Figure 23: γg=3 Case 2(b), BC = ∅

Assume first that BC 6= ∅. Now the vertices of A ∪ B ∪ C are leaves in T . If

B = ∅, then {a, c} is a GDS of T , again a contradiction. Hence, |B| ≥ 1.

If A = ∅, then T is the caterpillar with code (j, 0, k) where j ≥ 2 and k ≥ 0. If

k = 1, then {b, c′} is a GDS of T and γg(T ) = 2, a contradiction. If k = 0, then {b, x}

where BC = {x}, is a GDS, again a contradiction. Hence, k ≥ 2. But then T is not

3g-EMS, a contradiction.

Thus, assume that |A| ≥ 1. If |A| ≥ 2 (respectively, |B| ≥ 2), then removing a

pendant edge incident to a (respectively, b) increases the global domination number,

contradicting that T is 3g-EMS. Thus |A| = |B| = 1. If c = ∅, then T is the caterpillar

(1, 1, 1), and the result holds. Assume |C| ≥ 1. But now removing a pendant edge

incident to c increases the global domination number, a contradiction.

Finally, assume that BC = ∅. Since T is connected c′ ∈ C has a neighbor in A∪B.

Without loss of generality, let b′ ∈ B be a neighbor of c′. Since T is a tree, it follows

that b′c′ is the only edge in T [V \ S]. If A = ∅, then γg(T ) = 2, a contradiction.

Hence, |A| ≥ 1. If |A| ≥ 2 and (|B| ≥ 2 or |C| ≥ 2), then removing a pendant edge

incident to a increases the global domination number. If |A| ≥ 2 and |B| = |C| = 1,

then {a, c′} is a GDS of T , a contradiction. Thus, |A| = 1. If C \ {c′} = ∅, then

S ′ = {a, b, c′} is a γg(T )-set with properties of a previous case, namely, one edge in
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T [S ′] and BC ′ 6= ∅. Hence, C \ {c′} 6= ∅. Now if b has a leaf neighbor, then removing

a pendant edge incident to b increases the global domination number. Thus, we may

assume that B = {b′}. If |C \ {c′}| = 1, then T = P7, as desired. Assume that

|C \ {c′}| ≥ 2. But then removing a pendant edge incident to c increases the global

domination number of T , contradicting that T is a 3g-EMS.

5.2 Vertex Removal

In this subsection, we consider graphs whose global domination number stays the

same upon the removal of any arbitrary vertex. We call such graphs kg-vertex stable

graphs. We focus on when k = 2 and when k = 3 and call those graphs 2g-vertex

stable graphs or 3g-vertex stable graphs, 2g-VS or 3g-VS respectively, for short. We

first consider 2g-VS trees. Proofs are constructed as previously described.

Theorem 5.6 Let T be a tree. The tree T is a 2g-vertex stable tree if and only if T

is one of the paths P3, P4, or P5.

Figure 24: P3 − v

Proof. See Figures 24, 25, and 26 to see that the paths P3, P4, and P5 are 2g-VS

trees. To prove the necessary condition, assume that T is a 2g-VS tree. Let S = {a, b}

be a γg(T )-set. Define the sets A, B, and AB as before.
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Figure 25: P4 − v

Figure 26: P5 − v

By Lemma 5.1, |AB| ≤ 1. Note also that since T is a tree, each of A and B is an

independent set.

We consider the cases.

Case 1 S is an independent set.

See Figure 11. If |AB| 6= ∅, then the vertex in AB dominates S, contradicting

Lemma 5.1. Hence, AB = ∅. Since T is connected and AB = ∅, there must be an

edge between a vertex in A and a vertex in B. Without loss of generality, say that

a′ ∈ A is adjacent to b′ ∈ B. Also note that since T is a tree, the only edge with both

its endpoints in A ∪ B is the edge a′b′. Thus, every vertex in (A ∪ B) \ {a′, b′} is a

leaf in T . See Figure 12.

Note that A 6= ∅ because a′ ∈ A and that B 6= ∅ because b′ ∈ B. Assume that

|A| ≥ 3. Then, all the leaves adjacent to a are isolated vertices in T−a, and so A ⊆ S

for every γg(T − a)-set S ′. Moreover, exactly one vertex is in S ′ to dominate a′, b′, b
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and B, which is impossible. Hence, 1 ≤ |A| ≤ 2 and 1 ≤ |B| ≤ 2. If |A| = |B| = 1,

then T = P4 as desired. If |A| = 2 and |B| = 1 (or |A| = 1 and |B| = 2), then T = P5

as desired.

Case 2 S is not independent.

We note that since T is a tree, T [S] has exactly one edge and AB = ∅. Figure 13

illustrates Case 2.

Without loss of generality, assume that |A| ≥ 2. Then, all the leaves adjacent to

a are isolated vertices in T − a, and so A ⊆ S for every γg(T − a)-set S ′. Moreover,

exactly one additional vertex is in S ′ to dominate b and B, a contradiction. Hence,

0 ≤ |A| ≤ 1 and 0 ≤ |B| ≤ 1. Assume that A = B = ∅. The removal of either

vertex, say a, results in an isolated vertex that can be globally dominated with only

one vertex, a contradiction. If |A| = 1 and B = ∅ (or A = ∅ and |B| = 1), then

T = P3 as desired. If |A| = |B| = 1, then T = P4 as desired.

For the remainder of this section we focus on 3g-VS trees. Proofs are constructed

as previously described.

Observation 5.7 If G is a 3g-vertex stable graph and S is a γg(G)-set, then for each

x ∈ S, pnG(x, S) 6= ∅ or pnG(x, S) 6= ∅.

Lemma 5.8 Let G be a 3g-vertex stable graph and S be a γg(G)-set. If x ∈ S,

pnG(x, S) = ∅ and |NG(x) ∩ S| = 1, then |pnG(x, S)| ≥ 2.

Proof. Let G be a 3g-VS graph and S be a γg(G)-set. Assume that x ∈ S and

pnG(x, S) = ∅ and |NG(x) ∩ S| = 1. Then, |NG(x) ∩ S| = 1 and Observation 5.7

implies that pnG(x, S) 6= ∅. If pnG(x, S) = {y}, then S − {x} is a GDS of G − y,

contradicting that G is 3g-VS. Hence, |pnG(X,S)| ≥ 2.
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For the following theorem we need a new definition. A subdivision of a graph G is

a graph resulting from the subdivision of edges in G. The subdivision of some edge e

with endpoints {u, v} yields a graph containing one new vertex w, and with an edge

set replacing e by two new edges, {u,w} and {w, v}. Figure 27 is the subdivided star

S3.

Figure 27: Subdivided star S3

Theorem 5.9 Let T be a tree. The tree T is a 3g-vertex stable tree if and only if T

is one of the path P8, the caterpillar (1, 0, 1, 0, 1), or the subdivided star S3.

Proof. See Figures 28, 29, and 30 to see that P8, the caterpillar (1, 0, 1, 0, 1), and the

subdivided star S3 are 3g-VS trees. To prove the necessary condition, assume that T

is a 3g-VS tree. Let S = {a, b, c} be a γg(T )-set. Define the sets A, B, C, AB, AC,

BC, and ABC and their complements as before.

Since S is a γg(T )-set, Theorem 4.5 implies that ABC = ∅. Moreover since T is

a tree, at least one of AB, AC, and BC is empty. Without loss of generality, assume

that AC = ∅. Moreover, by Lemma 5.3, |AB| ≤ 1 and |BC| ≤ 1. Note also that

since T is a tree, each of A, B, and C is an independent set.

We consider the cases.
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Figure 28: P8 − v

(1, 0, 1, 0, 1)− v1 (1, 0, 1, 0, 1)− v2

(1, 0, 1, 0, 1)− v3 (1, 0, 1, 0, 1)− v4 (1, 0, 1, 0, 1)− v5

Figure 29: (1, 0, 1, 0, 1)− v

Case 1 S is an independent set.

Case 1(a) |AB| = |BC| = 1.

Since T is a tree, A∪B∪C is an independent set, that is, each vertex in A∪B∪C

is a leaf in T . Figure 17 shows the set up for Case 1(a).

Claim 4 |A| = |C| = 1.

Proof of Claim 4. By symmetry, it suffices to show that |A| = 1. Assume to the

contrary, that |A| 6= 1. The removal of the vertex a results in all the leaves of A

becoming isolated vertices. Thus A ⊆ S ′ for every γg(T − a)-set S ′. Moreover, at

least one additional vertex is in S ′ to dominate b and c. Hence, |A| ≤ 2 and so we

may assume that |A| = 2 or A = ∅. If |A| = 2, then B = ∅ and C = ∅ implying that
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Figure 30: subdivided S3 − v

T is the caterpillar (2, 0, 0, 1), which has γg(T ) = 2, a contradiction. Next, assume

that A = ∅. If B = ∅, then γg(T − a) = 2, a contradiction. If |B| ≥ 1 and |C| = 1,

then again γg(T − a) = 2. Hence, |B| ≥ 1 and |C| ≥ 2. But γg(T − c) > γg(T ), a

contradiction.

Thus we may assume that |A| = |C| = 1. (�)

Claim 5 |B| = 1.

Proof of Claim 5. Assume to the contrary, that |B| 6= 1. Then, all the leaves

adjacent to b are isolated vertices in T − b, and so B ⊆ S for every γg(T − b)-set S ′.

If |B| = 2, then another vertex must dominate both a and c implying that x ∈ AC

is in S ′, but we assumed AC = ∅, a contradiction. If |B| ≥ 3, then |S ′| ≥ 4 > γg(T ),

a contradiction. If B = ∅, then T is the path P7, which is not a 3g-VS tree, a

contradiction. Hence, |B| = 1. (�)

Therefore, we have |A| = |B| = |C| = 1 and T is the caterpillar (1, 0, 1, 0, 1), as

desired.

Case 1(b) |AB| = 1 and BC = ∅.
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Since T is connected and BC = ∅, there must be an edge between a vertex in C

and a vertex in A ∪ B. Without loss of generality, say that b′ ∈ B is the neighbor

to c′ ∈ C. Also note that since T is a tree, the only edge with both its endpoints in

A ∪B ∪ C is the edge b′c′. Thus, every vertex in (A ∪B ∪ C) \ {b′, c′} is a leaf in T .

Figure 18 shows the set up for Case 1(b).

Claim 6 1 ≤ |B| ≤ 2.

Proof of Claim 6. Assume |B| ≥ 3. The removal of the vertex b results in at least

two isolated vertices. If |B| = 3, then the two isolated vertices, say b′′ and b′′′, must be

in every γg(T − b)-set. Then, one other vertex must dominate both a and c, implying

that x ∈ AC, but we assumed AC = ∅, again a contradiction. If |B| > 3, then there

are at least 3 isolated vertices and T is not a 3g- VS tree. Hence, 1 ≤ |B| ≤ 2. (�)

Claim 7 |A| = 1.

Proof of Claim 7. Assume to the contrary, that |A| 6= 1. The removal of the vertex

a results in all the leaves of A becoming isolated vertices, so A is a subset of every

γg(T − a)-set S ′. Moreover, at least two additional vertices are in S ′ to dominate

T − (A ∪ {a}). If follows that |A| ≤ 1. If A = ∅, then {b, c} is a GDS of T − a,

contradicting that T is a 3g-VS tree. (�)

Claim 8 1 ≤ |C| ≤ 2.

Proof of Claim 8. First, C 6= ∅ because we already said c′ ∈ C. Next, assume

to the contrary, that |C| ≥ 3. The removal of the vertex c results in all the leaves
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of C becoming isolated vertices that are in every γg(T − c)-set. If |C| ≥ 3, then

γg(T − c) > γg(T ), a contradiction. (�)

Thus, |A| = 1, 1 ≤ |B| ≤ 2, and 1 ≤ |C| ≤ 2.

Assume |B| = 2, where b′ is adjacent to c′ and b′′ is the pendant edge incident

to b. If |C| = 1, then T is the caterpillar (1, 0, 1, 0, 1), as desired. If |C| = 2, then

γg(T − c) > γg(T ), a contradiction.

Next, assume that |B| = 1, where b′ ∈ B. If |C| = 1, then T is the path P7, and

T is not a 3g-VS tree. If |C| = 2, then T is the path P8, as desired.

Case 1(c) AB = BC = ∅.

Because T is a tree, it must be connected via edges between vertices in A∪B∪C.

Without loss of generality, assume that a′b′ ∈ E(T ), where a′ ∈ A and b′ ∈ B.

Furthermore, we may assume that b′′c′ ∈ E(T ), where b′′ ∈ B (note b′′ can be b′) and

c′ ∈ C. Figures 19 and 20 show the two possibilities for this case. Now all vertices of

(A ∪B ∪ C) \ {a′, b′, b′′, c′} are leaves of T , otherwise a cycle is formed.

First consider when b′ = b′′.

Claim 9 1 ≤ |A| ≤ 2 and 1 ≤ |C| ≤ 2.

Proof of Claim 9. By symmetry it suffices to show that 1 ≤ |A| ≤ 2. Note that

A 6= ∅ because a′ ∈ A. Assume to the contrary that |A| ≥ 3. Then, γg(T−a) > γg(T ),

a contradiction. (�)

Assume |B| = 1. If |A| = |C| = 1, then {b′, c} is a GDS of T − a, contradicting

that T is 3g-VS. If, without loss of generality, |A| = 1 and |C| = 2, then γg(T−b) = 2,

a contradiction. If |A| = |C| = 2, then T is the caterpillar (1, 0, 1, 0, 1), as desired.
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If |B| ≥ 3, then γg(T − b) > γg(T ), a contradiction. Assume |B| = 2, where b′ is

adjacent to both a′ and c′ and b′′ is a pendant edge incident to b. If |A| = |C| = 1,

then T is the subdivided star S3, as desired. If |A| = 2 (respectively, |C| = 2), then

γg(T − a) > γg(T ) (respectively, γg(T − c) > γg(T )), a contradiction.

Next, consider b′ 6= b′′.

Claim 10 1 ≤ |A| ≤ 2 and 1 ≤ |C| ≤ 2.

Proof of Claim 10. By symmetry it suffices to show that 1 ≤ |A| ≤ 2. Note that

A 6= ∅ because a′ ∈ A. Assume to the contrary that |A| ≥ 3. Then, γg(T−a) > γg(T ),

a contradiction. (�)

Claim 11 2 ≤ |B| ≤ 3.

Proof of Claim 11. Note that |B| ≥ 2 because {b′, b′′} ∈ B. If |B| ≥ 4, then

γg(T − b) > γg(T ), a contradiction. (�)

Assume |B| = 2. If |A| = |C| = 1, then T is the path P7, and T is not 3g-VS. If

|A| = 1 and |C| = 2, (respectively, |A| = 2 and |C| = 1), then T is the path P8, as

desired. If |A| = |C| = 2, then T is the path P9 and T is not 3g-VS.

Now assume |B| = 3 where b′′′ ∈ B is a pendant edge incident to b. If |A| =

|C| = 1, then T is the caterpillar (1, 0, 1, 0, 1), as desired. If |A| = 2 or |C| = 2, then

γg(T − b) > γg(T ), a contradiction. This concludes the case where S is independent.

Case 2 S is not independent.

We note that since T is a tree, T [S] has at most two edges.

Case 2(a) T [S] has two edges, without loss of generality, let ab and bc be the edges

of T [S]. Figure 21 shows the set up for Case 2(a).
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Then, A∪B∪C is an independent set, and so A∪B∪C is a set of leaves in T . If

either of A or C is empty, then {b, c} (respectively, {a, b}) is a GDS and γg(T ) = 2, a

contradiction. Thus, we may assume |A| ≥ 1 and |C| ≥ 1. If |A| = 1, say A = {a′},

then {b, c} is a GDS of T −a′, so γg(T −a′) = 2, a contradiction. Similarly, if |C| = 1,

γg(T − c′) = 2, where C = {c′}, a contradiction. Thus, we may assume |A| ≥ 2

and |C| ≥ 2. If |B| ≥ 2, then γg(T − b) > γg(T ), a contradiction. If |B| = 1, then

γg(T − a) > γg(T ), a contradiction. If B = ∅, then γg(T − b) = 2, a contradiction.

Hence, if T [S] has two edges, then no 3g-VS tree exists.

Case 2(b) T [S] has exactly one edge, without loss of generality, assume that ab ∈

E(T ).

Since T is a tree AB = ∅, and either BC 6= ∅ or there is an edge between a vertex

in C and a vertex in A ∪ B. Figures 22 and 23 show the two possibilities for Case

2(b).

Assume first that BC 6= ∅. Now the vertices of A ∪ B ∪ C are leaves in T . If

B = ∅, then {a, c} is a GDS of T , a contradiction. Hence, |B| ≥ 1. If A = ∅, then

{b, c} is a GDS of T −x, where x ∈ AB, a contradiction. Hence, |A| ≥ 1 and |B| ≥ 1.

If |C| ≥ 2, then γg(T − c) > γg(T ), a contradiction. Hence, 0 ≤ |C| ≤ 1. If |A| ≥ 2,

(respectively, |B| ≥ 2), then γg(T − a) > γg(T ) (respectively γg(T − b) > γg(T )),

a contradiction. Hence, |A| = |B| = 1 and 0 ≤ |C| ≤ 1. If C = ∅, then T is

the caterpillar (1, 1, 1) which is not 3g-VS, a contradiction. If |C| = 1, then T is

the caterpillar (1, 1, 0, 1). But removing the leaf adjacent to b decreases the global

domination number, a contradiction.
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Finally, assume that BC = ∅. Since T is connected, c′ ∈ C has a neighbor in

A ∪ B. Without loss of generality, let b′ ∈ B be a neighbor of c′. Since T is a tree,

it follows that b′c′ is the only edge in T [V \ S]. If A = ∅, then {b, c} is a GDS of T

and γg(T ) = 2, a contradiction. If |A| = {a′}, then {b, c} is a GDS of T − a′ and

γg(T − a′) = 2, a contradiction. If |A| ≥ 2, then γg(T − a) > γg(T ) , a contradiction.

Hence, there are no 3g(T )-VS trees when T [S] has exactly one edge.

5.3 Edge Addition

In this subsection we consider graphs whose global domination number remains

the same upon the addition of any arbitrary edge. We call such graphs T with kg-

edge plus graphs. We focus on when k = 2 and when k = 3 and call those graphs

2g- edge plus graphs or 3g- edge plus graphs, 2g-EPS or 3g-EPS respectively, for short.

We first consider 2g-EPS trees. Proofs are constructed as previously described.

Theorem 5.10 Let T be a tree. The tree T is a 2g-EPS tree if and only if T is the

path P2 or P4 or the star Sn where n ≥ 3.

Proof. Vacuously T = P2 is a 2g-EPS tree. Henceforth, we assume that n ≥ 3. See

Figures 31 and 32, where the gray edges are the added edges, to see that the path P4

and the star Sn where n ≥ 3 is are 2g-EPS trees. To prove the necessary condition,

assume that T is a 2g-EPS tree. Let S = {a, b} be a γg(T )-set. Define the sets A, B,

and AB as before.

By Lemma 5.1, |AB| ≤ 1. Note also that since T is a tree, each of A and B is an

independent set.
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Figure 31: P4 + e

Figure 32: S5 + e

We consider the cases.

Case 1 S is an independent set.

See Figure 11. If |AB| 6= ∅, then the vertex in AB dominates S, contradicting

Lemma 5.1. Hence, AB = ∅. Since T is connected and AB = ∅, there must be an

edge between a vertex in A and a vertex in B. Without loss of generality, say that

a′ ∈ A is adjacent to b′ ∈ B. Also note that since T is a tree, the only edge with both

its endpoints in A ∪ B is the edge a′b′. Thus, every vertex in (A ∪ B) \ {a′, b′} is a

leaf in T . See Figure 12.

Note that A 6= ∅ because a′ ∈ A and that B 6= ∅ because b′ ∈ B. Assume that

|A| ≥ 2. Let e = ba′′, where a′′ ∈ A. Then, γg(T + e) ≥ 3, a contradiction. Hence,

|A| ≤ 1 and analogously, |B| ≤ 1, which implies |A| = |B| = 1. Thus, T = P4 as

desired.
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Case 2 S is not independent.

We note that since T is a tree, T [S] has exactly one edge and AB = ∅. Figure 13

illustrates Case 2.

Since AB = ∅ and n ≥ 3, at least one of A = ∅ and B = ∅ is true. Without

loss of generality, if |A| = {a′} = 1 and B = ∅, then T + a′b results in a complete

graph K3 and γg(K3) = 3, a contradiction. If |A| = |B| = 1, then T = P4 as desired.

Without loss of generality, if |A| ≥ 2 and B = ∅ (respectively, A = ∅ and |B| ≥ 2),

then T = Sn as desired. If |A| ≥ 2 and |B| = {b′} = 1 , then the addition of an edge

incident to b and any leaf in a forces a GDS of at least 3, a contradiction. Similarly,

if |A| ≥ 2 and |B| ≥ 2, then the addition of an edge incident to b and any leaf in a,

say a′, will result in a GDS of {a, a′, b}, a contradiction.

For the remainder of this section we focus on 3g-EPS trees. Proofs are constructed

as previously described.

We define families Ti, 1 ≤ i ≤ 7, of caterpillars with codes as follows:

T1: (i, 0, j), for i ≥ 3 and j ≥ 3,

T2: (i, j, k), for i ≥ 2, j ≥ 1, and k ≥ 2,

T3: (i, j, 0, k), for j ≥ 2 and i and k are positive integers, where i ≥ 2 or k ≥ 2,

T4: (i, 0, j, 0, k), for i ≥ 1, j ≥ 1, and k ≥ 1,

T5: (i, j, 0, 0, k), for i ≥ 2, j ≥ 1, and k ≥ 1,

T6: (i, 0, j, 0, 0, k), for i ≥ 1, j ≥ 0, and k ≥ 1,

T7: (i, 0, 0, j, 0, 0, k), for i ≥ 1, j ≥ 0, and k ≥ 1.
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Define H as the family of graphs obtained from the caterpillar (1, 1, 1) with spine

x, y, z, adjacent to leaves x′, y′, z′, respectively, by adding i ≥ 0 new vertices adjacent

to x′, j ≥ 1 new vertices adjacent to y′, and k ≥ 0 new vertices adjacent to z′. Figure

33 is an example of a tree H ∈ H with (i, j, k) = (0, 3, 2).

Let F =
⋃7
i=1 Ti ∪H.

Figure 33: H, (0, 3, 2)

Theorem 5.11 Let T be a tree. The tree T is a 3g-EPS tree if and only if T ∈ F .

Proof. See Figure 34 to see that T1 is 3g-EPS. It is straightforward to see that the

family F and the graph H are 3g-EPS trees. To prove the necessary condition, assume

that T is a 3g-EPS tree. Let S = {a, b, c} be a γg(T )-set. Define the sets A, B, C,

AB, AC, BC, and ABC and their complements as before.

Since S is a γg(T )-set, Theorem 4.5 implies that ABC = ∅. Moreover, since T is

a tree, at least one of AB, AC, and BC is empty. Without loss of generality, assume

that AC = ∅. Moreover, by Lemma 5.3, we have |AB| ≤ 1 and |BC| ≤ 1. Note also

that since T is a tree, each of A, B, and C is an independent set.

We note that since T is a tree, T [S] has at most two edges. We consider the cases

based on the number of edges in T [S].
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Case 1. T [S] has no edges, that is, S is an independent set.

Case 1(a). |AB| = |BC| = 1.

Since T is a tree, A∪B∪C is an independent set, that is, each vertex in A∪B∪C

is a leaf in T . If B = ∅, then {a, c} is a GDS of T + ab, contradicting that T is a

3g-EPS tree. Hence, |B| ≥ 1. If |A| ≥ 1 and |C| ≥ 1, then T is the caterpillar

(i, 0, j, 0, k), where i ≥ 1, j ≥ 1, and k ≥ 1, and so T ∈ T4 ⊆ F .

Therefore, we may assume that at least one of A and C is empty. Without loss of

generality, let A = ∅. If B = {b′}, then {x, c} is a GDS of G+ xb′ where AB = {x},

contradicting that T is a 3g-EPS tree. Thus, |B| ≥ 2. If C = ∅, then {x, b} is a

GDS of T + bc, a contradiction. If C = {c′}, then {b, c′} is a GDS of T + ba, again a

contradiction. Thus, |C| ≥ 2, and so T is the caterpillar (1, j, 0, k), where j = |B| ≥ 2

and k = |C| ≥ 2. Hence, T ∈ T3 ⊆ F .

Case 1(b). |AB| = 1 and BC = ∅.

Since T is connected and BC = ∅, there is an edge between a vertex in C and a

vertex in A ∪ B. Without loss of generality, say that b′ ∈ B is adjacent to c′ ∈ C.

Also note that since T is a tree, the only edge with both its endpoints in A∪B∪C is

the edge b′c′. Thus every vertex in (A∪B ∪C) \ {b′, c′} is a leaf in T . If A = ∅, then

{b, c} is a GDS of T + ab, contradicting that T is a 3g-EPS tree. Hence, |A| ≥ 1. If

|C| ≥ 2, then T is the caterpillar (i, 0, j, 0, 0, k), where i = |A| ≥ 1, j = |B| − 1 ≥ 0,

and k = |C| − 1 ≥ 1. Thus, T ∈ T6 ⊆ F .

Thus, we may assume that |C| = 1, that is, C = {c′}. If B = {b′}, then {a, b′} is

a GDS of G+ b′c, contradicting that T is a 3g-EPS tree. Thus, |B| ≥ 2. But then, T

is the caterpillar (i, 0, j, 0, k), where i = |A| ≥ 1, j = |B| − 1 ≥ 1, and k = 1, and so
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T ∈ T4 ⊆ F .

Case 1(c). AB = BC = ∅.

Since T is a tree, it is connected via edges between vertices in A∪B∪C. Without

loss of generality, assume that a′b′ ∈ E(T ), where a′ ∈ A and b′ ∈ B. Furthermore,

we may assume that b′′c′ ∈ E(T ), where b′′ ∈ B (note b′′ can be b′) and c′ ∈ C. Now

all vertices of (A∪B ∪C) \ {a′, b′, b′′, c′} are leaves of T , otherwise a cycle is formed.

Note that none of A, B, and C is empty because a′ ∈ A, b′ ∈ B, and c′ ∈ C.

First, consider when b′ = b′′. If |B| ≥ 2, then T ∈ H ⊆ F , and the result holds.

Thus, we may assume that |B| = 1. If |A| = 1 (respectively, |C| = 1), then {a′, c}

(respectively {c′, a}) is a GDS of T +a′b (respectively, T +c′b), a contradiction. Thus,

|A| ≥ 2 and |C| ≥ 2, and so, T is the caterpillar (i, 0, 1, 0, k), where i = |A| − 1 ≥ 1

and k = |C| − 1 ≥ 1. Hence, T ∈ T4 ⊆ F .

Next, assume b′ 6= b′′. Then, |B| ≥ 2. Assume that |B| = 2, that is, B = {b′, b′′}.

If |A| = |C| = 1, then T = P7, which is not a 3g-EPS tree. Thus, |A| ≥ 2 or |C| ≥ 2.

Assume, without loss of generality, that |A| ≥ 2. Then, depending on |C|, T is either

the caterpillar (i, 0, 0, 0, 0, 1) and T ∈ T6 ⊆ F , or the caterpillar (i, 0, 0, 0, 0, 0, k) and

T ∈ T7 ⊆ F .

Hence, we may assume that |B| ≥ 3. Depending on |A| and |C|, we have that

T is one of the following caterpillars: (1, 0, j, 0, 1), (1, 0, j, 0, 0, k), (i, 0, 0, j, 0, 1), or

(i, 0, 0, j, 0, 0, k), where i = |A| − 1 ≥ 1, j = |B| − 2 ≥ 1, and k = |C| − 1 ≥ 1. Hence,

T ∈ T4 ∪ T6 ∪ T7 ⊆ F .

Case 2(a). T [S] has exactly two edges.
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Without loss of generality, let ab and bc be the edges of T [S]. Since T is a tree,

A∪B ∪C is an independent set, and so A∪B ∪C is a set of leaves in T . If either of

A or C is empty, then {b, c} (respectively {a, b}) is a GDS of T with cardinality less

than γg(T ), a contradiction. Thus, we may assume |A| ≥ 1 and |C| ≥ 1. If |A| = 1,

say A = {a′}, then {b, c} is a GDS of T + ba′, contradicting that T is a 3g-EPS tree.

Thus, we may assume that |A| ≥ 2, and analogously, |C| ≥ 2. If |B| ≥ 1, then T is

the caterpillar (i, j, k), where i ≥ 2, j ≥ 1, and k ≥ 2, and so T ∈ T2 ⊆ F .

We may assume that B = ∅. If A = {a′, a′′}, then {a′, c} is a GDS of T + a′a′′,

a contradiction. Therefore, |A| ≥ 3, and analogously, |C| ≥ 3. Then, T is the

caterpillar (i, 0, j) where i ≥ 3 and j ≥ 3, and so T ∈ T1 ⊆ F .

Case 2(b). T [S] has exactly one edge.

Without loss of generality, assume that ab ∈ E(T ). Since T is a tree AB = ∅,

and either BC 6= ∅ or there is an edge between a vertex in C and a vertex in A ∪B.

Assume first that BC 6= ∅. Now the vertices of A ∪B ∪ C are leaves in T . If B = ∅,

then {a, c} is a GDS of T with cardinality less than γg(T ), a contradiction. Hence,

|B| ≥ 1. If B = {b′}, then {a, c} is a GDS of T +ab′, contradicting that T is a 3g-EPS

tree. Hence, |B| ≥ 2.

If C = ∅, then {a, b} is a GDS of G + bc, contradicting that T is a 3g-EPS tree.

Hence, C 6= ∅. Assume that A = ∅. If |C| ≥ 3, then T is the caterpillar (i, 0, j),

where i ≥ 3 and j ≥ 3. Thus, T ∈ T1 ⊆ F . Then, we may assume that 1 ≤ |C| ≤ 2.

If C = {c′}, then {b, x} is a GDS of T + bc′, a contradiction. Hence, we may assume

that C = {c′, c′′}. But then {b, c′} is a GDS of T + c′c′′, again contradicting that T

is a 3g-EPS tree.
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Hence, A 6= ∅ and C 6= ∅. If |A| = |C| = 1, then {b, c′} is a GDS of T + ba′, a

contradiction. We conclude that |A| ≥ 2 or |C| ≥ 2. Therefore, T is the caterpillar

(i, j, 0, k), where i, j, and k are positive integers satisfying j ≥ 2 and at least one of

i and j is at least two. Thus, T ∈ T3 ⊆ F .

Finally, assume that BC = ∅. Since T is connected, c′ ∈ C has a neighbor in

A ∪ B. Without loss of generality, let b′ ∈ B be a neighbor of c′. Since T is a tree,

it follows that b′c′ is the only edge in T [V \ S]. If A = ∅, then {b, c} is a GDS of

T with cardinality less than γg(T ), a contradiction. Hence, |A| ≥ 1. If A = {a′},

then {b, c} is a GDS of T + a′b, where a′ ∈ A, contradicting that T is a 3g-EPS tree.

Hence, |A| ≥ 2. If |B| = 1, then {a, c} is a GDS of T + b′c, again a contradiction.

Thus, |B| ≥ 2. If |B| = 2 and |C| = 1, then {a, c′} is a GDS of T + b′′c′, where

b′′ ∈ B \ {b′}, a contradiction. Thus, |B| ≥ 3 or |C| ≥ 2. If |C| ≥ 2, then T is the

caterpillar (i, j, 0, 0, k), where i = |A| ≥ 2, j = |B| − 1 ≥ 1, and k = |C| − 1 ≥ 1,

and so T ∈ T5 ⊆ F . If |B| ≥ 3, then depending on the |C|, T is either the caterpillar

(i, j, 0, 1) or the caterpillar (i, j, 0, 0, k), where i = |A| ≥ 2, j = |B| − 1 ≥ 2, and

k = |C| − 1 ≥ 1. Hence, T ∈ T3 ∪ T5 ⊆ F .
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Figure 34: T1+e
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6 CONCLUDING REMARKS

We have characterized the trees T with γg(T ) = and γg(T ) = 3 for which edge

addition, edge removal, and vertex removal had no effect on the global domination

number. This raises the question about trees for larger values of γg(T ) trees. We

conclude this thesis with the following open problems:

1. Characterize kg-VS trees, k ≥ 4.

2. Characterize kg-EMS trees, k ≥ 4.

3. Characterize kg-EPS trees, k ≥ 4.

4. Characterize kg-VS graphs, k ≥ 3.

5. Characterize kg-EMS graphs, k ≥ 3.

6. Characterize kg-EPS graphs, k ≥ 3.
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