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ABSTRACT

Chromatic Number of the Alphabet Overlap Graph, G(2, k, k − 2)

by

Brent Farley

A graph G(a, k, t) is called an alphabet overlap graph where a, k, and t are positive

integers such that 0 ≤ t < k and the vertex set V of G is defined as, V = {v : v =

(v1v2...vk); vi ε {1, 2, ..., a}, (1 ≤ i ≤ k)}. That is, each vertex, v, is a word of length

k over an alphabet of size a. There exists an edge between two vertices u, v if and

only if the last t letters in u equal the first t letters in v or the first t letters in u equal

the last t letters in v. We determine the chromatic number of G(a, k, t) for all k ≥ 3,

t = k − 2, and a = 2; except when k = 7, 8, 9, and 11.
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1 INTRODUCTION TO ALPHABET OVERLAP GRAPHS

The alphabet overlap graph, G(a, k, t) is an underlying simple graph of the de Bruijn

graph where t = k − 1. The de Bruijn graph, β(a, k), is a directed graph with order

n = ak, where each vertex is a word of length k over an alphabet of size a. There is

an arc from vertex u = u1u2...uk to vertex v = v1v2...vk if and only if ui = vi−1 for

i = 2, ..., k [2]. Therefore, the underlying simple graph is G(a, k, k − 1) where k − 1

is the overlap.

The alphabet graph is denoted by G(a, k, t). Let a, k, and t be positive integers

with 0 ≤ t ≤ k. The vertex set of G is the set of all k-letter words over an alphabet

of size a. Adjacency between two words, say u and v, occurs if and only if the first

t letters of u equal the last t letters of v or if the last t letters of u equal the first

t letters of v. More specifically, we will be dealing with the cases of a = 2 and t =

k − 2, that is G(2, k, k − 2).

In this paper, we emphasize coloring G(2, k, k−2) and determining the chromatic

number for G(2, k, k − 2). Now we define a coloring of a graph G as an assignment

of colors to the vertices of G, where each vertex gets exactly one color. A coloring

is known as proper if no two adjacent vertices are assigned the same color. A set of

vertices consisting of all vertices assigned the same color is known as a color class. If

a graph can be colored using k or fewer colors, then G is said to be k-colorable. The

minimum number k for which a vertex is k-colorable is the chromatic number of G,

denoted χ(G) [1].

Other notations appearing are those of “ ∗ ”, “ ∗ ∗”, and “#”. So, “ ∗ ” means

any symbols from {0,1,2,...,a − 1} can appear, “ ∗ ∗” simply means we have two
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placeholders for the same symbols, and “#” will be seen as #ii...i where “#” means

any symbol except i.
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2 FIRST 7 GRAPHS OF G(2, k, k − 2)

In this chapter, we will disuss the first 7 specific cases in our G(2, k, k − 2) graph.

In general, it can be shown that as k increases the chromatic number of our graph

decreases and eventually becomes constant at a value of 3. We will try to find the

first value of k that allows for this chromatic number of 3. We begin with the first

case, that is when k = 3.

2.1 k = 3...6

Theorem 2.1 χ(G(2, 3, 1)) = 4

Proof:

G(2, 3, 1) contains eight vertices. Next, we partition these vertices into color classes

making sure not to violate adjacency:

A: 000, 111

B: 010, 101

C: 110, 100

D: 011, 001

Thus, χ(G(2, 3, 1)) ≤ 4 by construction.

Now, the graph of G(2, 3, 1) contains a K4 sub-graph, refer to Figure 1. K4 is the

largest clique in G(2, 3, 1) so we have χ(G(2, 3, 1)) ≥ 4.
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Figure 1: K4 Sub-Graph of (2,3,1)

Therefore, χ(G(2, 3, 1)) = 4. �

Let us look at a few examples of how quickly alphabet graphs can become complex

to draw, even though they have but only a few vertices.

Figure 2 is a simple graph with 4 vertices and only 5 edges.
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Figure 2: Graph of G(2, 2, 1)

Now notice in Figure 3 we have increased the letter length by 1 and the overlap stays

the same.

Now we proceed into the next case, that of k = 4. In solving the chromatic number

of G(2, 4, 2) we will use an Isomophism Lemma.

Lemma 2.2 Isomorphism Mapping: G(a, 2m, 2m− 2) ∼= G(a2, m, m− 1).

Proof:

Take the graph G(2, 2m, 2m − 2) where a = 2, let v be an arbitrary vertex in

G(2, 2m, 2m − 2) so, v : a1a2a3a(2m−1)a2m. In G(4, m, m − 1), we associate this ar-

bitrary vertex v = (a1a2)(a3a4)(a(2m−1)a2m). Notice that ai = {0, 1} for i = {1,

2,...2m}. That is exactly two symbols in G(2, 2m, 2m − 2). Now in G(4, m, m − 1),

we have exactly four symbols, {00, 01, 10, 11} and we re-label these as {0, 1, 2, 3},

respectively. Next, if u and v are adjacent vertices in G(2, 2m, 2m−2), then the same

13



Figure 3: Graph of G(2, 3, 1)

vertices are adjacent in G(4, m, m− 1), the same is true for the opposite direction. �

Theorem 2.3 χ(G(2, 4, 2)) = 5

Proof:

From Figure 4 notice that there is a wheel subgraph on 6 vertices, denoted W5.

From the W5 subgraph we know that χ(W5) ≥ 4. Next we show that G(2, 4, 2) is not

4 colorable, we do so by assuming 4 colorability and reach a contradiction.

Assume χ(G(2, 4, 2)) = 4. We know that G(2, 4, 2) ∼= G(4, 2, 1) by Isomorphism

Lemma. G(4, 2, 1) has an alphabet consisting of four symbols, a = {0, 1, 2, 3}. We

will begin with a subgraph, G(3, 2, 1), which has an alphabet consisting of a = {0, 1,

2}.

Now we will color G(3, 2, 1), refer to Figure 4 for coloring. We begin by coloring

the wheel subgraph W5 with hub {01} and W5 has a unique 4-coloring. Then the

remaining vertices {21}, {22}, and {02} have a forced coloring. With the sub-graph

14



Figure 4: (3,2,1) Subgraph

colored we need to focus now on the remaining vertices of G(4, 2, 1). Let us call the

graph of these remaining vertices G*3, refer to Figure 5. So, G*3 consists of all ver-

tices with the form {3*} and {*3}, note that G*3 contains 7 vertices since each set

contains the vertex {33} so we need to only count that vertex once. Notice that each

vertex in G*3 is adjacent to at least one vertex in our G(3, 2, 1) subgraph. So when

we begin coloring the vertices of G*3, we must take into account the colors that each

vertex is adjacent to in the G(3, 2, 1) subgraph.

Now let’s color G*3. To do so we choose vertices and see what colors they are

adjacent to and determine what color they are forced to be colored. We start with

{03}, which is adjacent to {00, 10, 20} ⇒ {A, B, B}, so the choice of color C is given

to vertex {03}. (We could have given {03} color D, it wouldn’t change the following

result.)

15



Figure 5: Remaining vertices of G(4, 2, 1)

Next we color vertex {30}, which is adjacent to {00, 01, 02, 03} ⇒ {A, D, C, C},

so this forces {30} to be color B since we do not want more than four colors.

Next we color vertex {23}, which is adjacent to {02, 12, 22, 30} ⇒ {C, C, A, B},

so this forces {23} to be color D.

Now, {31} is adjacent to {10, 11, 12, 03, 23} ⇒ {B, A, C, C, D}, so this means

{31} is adjacent to all four colors. Thus, {31} must be colored with color E, a fifth

color.

Contradiction, we assumed G(4, 2, 1) was 4 chromatic. Therefore, G(4, 2, 1) has a

minimum coloring of 5. Thus, χ(G(2, 4, 2)) ∼= χ(G(4, 2, 1)) = 5.�

Theorem 2.4 χ(G(2, 5, 3)) = 4

Proof:
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Since χ(G(2, 3, 1) = 4, then we know χ(G(2, 5, 3) ≤ 4. We will assume G(2, 5, 3) is

3 colorable and reach a contradiction. First, we will separate the vertices of G(2, 5, 3)

into two subgroups, one starting with 0’s, label it G*0, and 1’s, label it G*1. Since

G(2, 5, 3) is 3-colorable we have a triangle in G*0 and G*1. Now in G*0, we have the

vertices {00000, 00010, 01000}, each with a different color, (A, B, C) respectively.

Next, take vertex {01010}, it’s adjacent to {00010, 01000}, so {01010} is forced to

be the same as {0000}, A.

Now, look at {00001, 00011}. These two vertices are adjacent to {00000}, A, and

{01000}, C, so this forces {00001, 00011} to be colored B.

Next, look at {01001, 01011}. These two are forced to be colored C since they

are both adjacent to {01010}, A, and {00010}, B. Thus far we have the following

coloring:

A: {0000, 01010}

B: {00010, 00001, 00011}

C: {01000, 01001, 01011}

Finally, we have {00100, 00101, 00110, 00111} and let’s call these four vertices

subgroup G3. All of these vertices are adjacent to a vertex from color classes B and

C. This forces these vertices to be colored A.

Now look at G*1. We have a triangle in G*1 between the three vertices {11111,

11110, 10111}. Here we need to notice that {00111, 00101} are adjacent to the triangle

in G*1. Recall that {00111, 00101} are color A. Since these vertices are adjacent to

the triangle in G*1, no vertices of the triangle can have color A. So, we are forced to

have a fourth color, which is a contradiction, refer to Figure 6 for illustration. Thus
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G(2, 5, 3) has a minimum coloring of 4. Therefore, χ(G(2, 5, 3)) = 4.�

Figure 6: Subgraph of (2,5,3) 4-coloring

18



Theorem 2.5 χ(G(2, 6, 4)) = 4

Proof:

The Isomorphism Lemma gives, G(2, 6, 4) ∼= G(4, 3, 2). Now, G(3, 3, 2) is a sub-

graph of G(4, 3, 2). It is easy to verify χ(G(3, 3, 2)) 6= 3, thus χ(G(3, 3, 2)) = 4. Table

1 is the 4 coloring of G(3, 3, 2), it is straight forward and left to the reader to verify.

Now, we need to add the remaining vertices of G(4, 3, 2) to finish the coloring. We

Table 1: 4-coloring of G(3, 3, 2).

A B C D

0*0 1*1 2*2 11#
#11 00# #00 021
#22 22# 012 201
102 120

need to add vertices containing the symbol ”3”, refer to Table 2 for the 4-coloring of

G(4, 3, 2).
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Table 2: 4-coloring of G(4, 3, 2).

A B C D
0*0 1*1 2*2 11#
#11 00# #00 021
#22 22# 012 201
102 120
#33 33# 032 3*3
320 132 031 012
310 123 201 013
210 102 213 021
230 103 231 023
120 301 203
130 302 312

321

�

2.2 k = 7, 8, 9

The next case is when k = 7. This problem is quite difficult and we could not reach a

solution. The smallest coloring of G(2, 7, 5) obtained was a 4-coloring. This doesn’t

mean the chromatic number could not be 4, but it also means the chromatic number

could be 3. Thus we can make the following claim on the bounds of the chromatic

number of G(2, 7, 5):

Claim: 3 ≤ χ(G(2, 7, 5)) ≤ 4

We run into another unsuccessful attempt in finding the chromatic number when

k = 8. In attempting the coloring of G(2, 8, 6), we use the Isomorphism Lemma,

G(2, 8, 6) ∼= G(4, 4, 3). We now use a lemma to define a function, f , to map G(4, 4, 3)

to G(3, 3, 2).

20



Lemma 2.6 Homomorphism Mapping 1 [6]: If a ≤ k and k ≥ 3 then there

exists a homomorphism f : G(a, k, k − 1) → G(3, k − 1, k − 2).

Proof:

Let µ(a1a2) = sign(a2 − a1) mod 3, that is:

µ(a1a2) =


0, if a2 = a1

1, if a2 > a1

2, if a2 < a1

If φ(w1) = φ(w2) = 0...0 then both words are constant so if they are overlapping

then they are the same. If φ(w1) = φ(w2) = 1...1 then w1 = a1...ak and a1 < a2 <

... < ak. Therefore ak − a1 = k − 1. The assumption of the lemma is that a ≤ k.

If a < k than this is impossible so no such word w1 exists such that φ(w1) is the

constant 1 word. If a = k then the only possibility is that w1 = 12...k but the same

is true for w2 so w1 = w2. Similar arguments hold if φ(w1) = φ(w2) is the constant 2

word.�

We are able to map G(4, 4, 3) → G(3, 3, 2). We can show χ(G(3, 3, 2) = 4, refer

to the proof of χ(G(2, 6, 4)). So, we can get a 4-coloring of G(2, 8, 6). However, we

did not find a 3-coloring of G(2, 8, 6). We were unable to prove that χ 6= 3 so once

again we can make a claim on the bounds of the chromatic number:

Claim: 3 ≤ χ(G(2, 8, 6)) ≤ 4

Finally, the last case is when k = 9. Remember that we are attempting to find

the first value of k that will give a chromatic number of 3. The problem of finding

χ(G(2, 9, 7) is a more difficult problem than G(2, 7, 5). We are again able to make a

claim about the bounds of the graph:

Claim: 3 ≤ χ(G(2, 9, 7)) ≤ 4
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Thus, in our attempt to find a value for k to give us χ = 3 we were unsuccessful in the

first seven cases. Thus, we have three probems that still remain open and waiting to

be solved; G(2, 7, 5), G(2, 8, 6), and G(2, 9, 7). It might be possible that one of these

k values is the first value to result in χ = 3.
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3 REMAINING SIGNIFICANT GRAPHS OF G(2, k, k − 2)

In this chapter we will discuss the importance of three graphs in determining χ(G(2, k, k−

2)). We will look at G(2, 10, 8), G(2, 19, 17) and G(2, 13, 11).

3.1 G(2, 10, 8) and G(2, 19, 17)

We will first begin with a discussion of why G(2, 10, 8) and G(2, 19, 17) are important

in finding the chromatic number of G(2, k, k−2). We start first with G(2, 10, 8). It has

been shown by Knisley, Nigussie, and Pór that χ(G(2, 10, 8)) = 3 [6]. In proving this

theorem, the use of the Isomorphism Lemma was needed, along with the Homomor-

phism Mapping 1. So, we have G(2, 10, 8) ∼= G(4, 5, 4) by the Isomorphism Lemma.

Then G(4, 5, 4) → G(3, 4, 3) by Homomorphism Mapping 1. Now χ(G(3, 4, 3)) = 3.

The coloring is shown in table 3[6].

Table 3: 3-coloring of G(3, 4, 3).

A B C

*01* *21* *10*
*02* *20* *12*
#000 000# 0000
1111 111# #111
222# #222 2222
2112 1001 2002
1221 0110 0220
2110 1002 2001
1220 0112 0221

Thus, χ(G(2, 10, 8) ∼= χ(G(4, 5, 4) → χ(3, 4, 3) = 3. The value k = 10 holds

importance when coloring G(2, k, k − 2) for any even number greater than 10, and k
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= 10 serves as the base case for 3-coloring. So for any value of k ≥ 10 that is even, we

can begin with the coloring of G(2, 10, 8) which is 3-colorable and then we simply add

multiples of “∗∗” to the end of each vertex in G(2, 10, 8) until the desired word length

is reached, v = a1a2...a10(∗)(∗)...(∗)(∗). We need to leave out the vertices of constant

0’s and 1’s until last and place them in color sets where adjacency isn’t violated.

The next question we need to answer is for what odd value of k will we have χ

= 3? In applying the lemmas, we have that when k = 19 there exists a 3-coloring

of the graph. So, χ(G(2, 19, 17)) = 3. The coloring G(2, 19, 17) begins by using

Homomorphism Mapping 2. This lemma is as follows;

Lemma 3.1 Homomorphism Mapping 2: If a ≤ k and k ≥ 3 then there exists a

homomorphism f : G(a, k, k − 2) → G(3, k − 1, k − 3).

Thus, G(2, 19, 17) → G(3, 18, 16) by Homomorphism Lemma 2. By Isomorphism

Lemma we have G(3, 18, 16) ∼= G(9, 9, 8). From Homomorphism Lemma 1, G(9, 9, 8) →

G(3, 8, 7). Now, by deleting “∗” from each word we can map G(3, 8, 7) → G(3, 7, 6) →

G(3, 6, 5) → G(3, 5, 4) → G(3, 4, 3). And χ(G(3, 4, 3) = 3. The reason we are able to

delete “ ∗ ” from these vertices is similar to the argument above about adding “ ∗ ∗”

to the end of vertices. We know that χ(G(3, 4, 3)) = 3 and by adding “ ∗ ” we will

still have a 3-coloring, thus deleting ” ∗ ” allows us to eventually map back down to

G(3, 4, 3).

Now we have a lower bound on what value of k will give us the chromatic number

of our graph G(2, k, k − 2). Therefore, when k ≥ 19 we can map any graph to a

3-coloring based o the cases when k = 10 or k = 19, as shown above.

What happens for the cases between k = 10 and k = 19? These cases will be
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looked at in the next section.

3.2 χ(G(2, 13, 11))

We begin first by introducing a new lemma.

Lemma 3.2 Homomorphism Mapping 3 [6]: If a ≤ 3k and k ≥ 3 then there

exists a homomorphism φ : G(a, k, k − 2) → G(5, k − 1, k − 2).

Proof:

Let

µ(a1a2) =


0, if |a2 − a1| ≤ 2 and (a1 mod 3)=0
1, if |a2 − a1| ≤ 2 and (a1 mod 3)=1
2, if |a2 − a1| ≤ 2 and (a1 mod 3)=2
3, if a2 ≥ a1 + 3
4, if a2 ≤ a1 + 3

Let φ(w1) be a constant word. Obviously it cannot be a 1 or 2 word. If it is

constant 0 then w1 has to be a constant word as well. If it is a constant 3 word

then let’s say w1 = a1a2...ak and w2 = a2a3...a(k+1). In this case we know that

a(k+1) − a1 ≥ 3k but a ≤ 3k so that cannot be. Similarly if φ(w1) is a constant 4

word, this cannot be also. �

Previously, we’ve looked at cases when k = 3...10. What about when k = 11,

13, 15, and 17? If any of these remaining cases of k give us a 3-coloring then we’ve

found a new lowest bound for k when coloring G(2, k, k − 2). Beginning with k =

11, G(2, 11, 9) → G(3, 10, 8) by Homomorphism Lemma 2. G(3, 10, 8) ∼= G(9, 5, 4)

by Isomorphism Lemma. Now using Homomorphism Lemma 3 we have, G(9, 5, 4) →
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G(5, 4, 3). The chromatic number of G(2, 11, 9) is unknown using this method. So,

we have an open problem, χ(G(2, 11, 9) = ?.

The next case, k = 13 gives rise to an interesting result. We begin by mapping

G(2, 13, 11) → G(3, 12, 10) by Homomorphism Lemma 2. G(3, 12, 10) ∼= G(9, 6, 5)

by Isomorphism Lemma. Now from Homomorphism Lemma 3 we have, G(9, 6, 5) →

G(5, 5, 4). Finally, G(5, 5, 4) → G(3, 4, 3) by Homomorphism Lemma 1. And previ-

ously, we’ve shown that χ(G(3, 4, 3) = 3. Therefore, χ(G(2, 13, 11)) → χ(G(3, 4, 3))

= 3. Thus, we have found a new lower value of k that will give a 3-coloring of

G(2, k, k − 2) and a new theorem.

Theorem 3.3 χ(G(2, 13, 11) = 3.
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4 CONCLUSION

In this paper, we studied a special case of alphabet overlap graphs, that being

G(2, k, k − 2) where the alphabet is of size 2, word length k, and overlap size k − 2.

We have found that there is no clear cut method in solving the chromatic number

for each k-case. But when using homomorphism and isomorphism lemmas, the color-

ings, yet still difficult, become easier to work with. We discovered that when k = 10,

we have a 3-coloring. And for any even number greater than 10 we can map the

3-coloring of G(2, 10, 8) to that particular graph and again have a 3-coloring. We

initally found that when k = 19 we have a 3-coloring and again can have a 3-coloring

of any k ≥ 19 based off of the coloring of G(2, 19, 17). It was found that we have

a 3-coloring when k = 13, meaning that we now have a lower k-case from which we

can base our 3-color mappings. So, whenever k ≥ 13 we are able to color that graph

based on the colorings of G(2, 10, 8) and G(2, 13, 11). These two results combined tell

us that χ(G(2, k, k − 2)) = 3, when k ≥ 13. Thus our main result:

χ(G(2, k, k − 2)) = 3.

Recalling all open problems from the research, if any of these graphs can be shown

to have chromatic number equal to 3 then we would have a new lower k-case. The

following are my conjectures on the chromatic number of the graphs.

(1) χ(G(2, 7, 5)) = 4 ?

(2) χ(G(2, 8, 6)) = 4 ?

(3) χ(G(2, 9, 7)) = 4 ?

(4) χ(G(2, 11, 9)) = 4 ?
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