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ABSTRACT

Non-Classical Symmetry Solutions to the Fitzhugh Nagumo Equation

by

Arash Mehraban

In Reaction-Diffusion systems, some parameters can influence the behavior of other

parameters in that system. Thus reaction diffusion equations are often used to model

the behavior of biological phenomena. The Fitzhugh Nagumo partial differential

equation is a reaction diffusion equation that arises both in population genetics and

in modeling the transmission of action potentials in the nervous system. In this paper

we are interested in finding solutions to this equation. Using Lie groups in particular,

we would like to find symmetries of the Fitzhugh Nagumo equation that reduce this

non-linear PDE to an Ordinary Differential Equation. In order to accomplish this

task, the non-classical method is utilized to find the infinitesimal generator and the

invariant surface condition for the subgroup where the solutions for the desired PDE

exist. Using the infinitesimal generator and the invariant surface condition, we reduce

the PDE to a mildly nonlinear ordinary differential equation that could be explored

numerically or perhaps solved in closed form.
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1 FINDING SOLUTIONS TO DIFFERENTIAL EQUATIONS

1.1 Differential Equations

Many of the principles, or laws, underlying the behavior of the natural world

are statements or relations involving rates at which things change. When expressed

in mathematical terms, the relations are equations and the rates are derivatives [1].

Equations containing derivatives are differential equations. A differential equation

that describes some physical process is often called a mathematical model of the

process [1] .

Differential equations are of interest to non-mathematicians primarily because of

the possibility of using them to investigate a wide variety of problems in the physical,

biological, and social sciences. One reason for this is that mathematical models and

their solutions lead to equations relating the variables and parameters in the problem.

These equations often enable one to make predictions about how the natural process

will behave in various circumstances.

Differential Equations can be classified in different ways. One of the more ob-

vious classifications is based on whether the unknown function depends on a single

independent variable or on several independent variables [1] . In the first case, only

ordinary derivatives appear in the differential equation, and it is said to be an ordi-

nary differential equation (ODE). In the second case, the derivatives are partial

derivatives, and the equation is called a partial differential equation (PDE).

The set of equations (1) are examples of ordinary differential equations known as
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Lotka-Volterra [1], or predator-prey, equations

dx

dt
= ax− αxy (1)

dy

dt
= −cy + γxy

where x (t) and y (t) are the respective populations of the prey and predator species

and the constants of a, α, c, and γ are based on empirical observations and depend

on the particular species being studies.

On the other hand, equation (2) is an example of a partial differential equation

known as the heat equation that describes how heat energy spreads out if the heat

energy is initially concentrated in one place, where k is a constant [5]:

∂u

∂t
= k

∂2u

∂x2
(2)

The order of a differential equation is the order of the highest derivative that appears

in the equation. For example, equations (1) are both first order ordinary differential

equations, whereas, (2) is a second order partial differential equation.

A crucial classification of the differential equations is whether they are linear or

nonlinear [1] . The ordinary differential equation

F (t, y, y′, . . . , y(n)) = 0

is said to be linear if F is a linear function of the variables, y, y′, . . . , y(n); a similar

definition applies to partial differential equations. Thus, the general linear ordinary

differential equation of order n is

a0 (t) y(n) + a1 (t) y(n−1) + · · ·+ an (t) y = g (t) (3)

8



An equation that is not of the form (3) is nonlinear. Equation (4) is an example of

a nonlinear equation known as Fitzhugh Nagumo equation

ut = uxx − u3 + (a+ 1)u2 − au (4)

[2].

1.2 Reaction Diffusion

As mentioned earlier, if the heat energy is initially concentrated in one place,

equation (2) describes how the heat energy spreads out, a physical process known as

diffusion [5]. Other physical quantities besides temperature smooth out in much the

same manner, satisfying (2) [5]. For this reason, (2) is also known as the diffusion

equation . The diffusion equation can be applied in biomedical sciences. For example

the behavior of axon in a cell which is a component along which output electrical

signals propagate [6] is treated as a diffusion equation. The output signal is called an

action potential [6]. Electric signaling or firing by individual nerve cells or neurons

is particularly common [6]. The seminal and now classical work by Hodgkin and

Huxley on this aspect of nerve membranes was on the nerve axon of the giant squid.

Basically the axon is a long cylindrical tube which extends from each neuron

and electrical signals propagate along its outer membrane, about 50 to 70 Angstrom

thick [4]. Electrical pulses arise because the membrane is preferentially permeable to

various chemical ions with the permeabilities affected by the currents and potentials

present. The deviation in the potential across the membrane, measured from resting

state, is observable in experiments. The membrane permeability properties change

when subjected to a stimulating electrical current I; they also depend on potential.
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Such a current can be generated, for example, by local depolarization relative to the

rest state.[4]

Hodgkin and Huxley formulated a system of equations

Cm
∂V

∂t
=

a

2ρi

∂2V

∂x2
+ gkn

4 (Vk − V ) + gNam
3h (VNa − V ) + gl (Vl − V ) + IA (5)

∂n

∂t
= αn (1− n)− βnn (6)

∂m

∂t
= αm (1−m)− βmm (7)

∂h

∂t
= αh (1− h)− βhh (8)

wherein Cm is the membrane capacitance per unit area, ρi is the intracellular resis-

tivity, gk, gNa, gl, and IAare conductance and applied current density per unit area

[4].

This system is often called the full or complete Hodgkin-Huxley system [4]. The

second space derivative in (5) enables the depolarization at one set of space points to

initiate changes at neighboring space points. The possibility arises of a local response

(solutions of an equation known as the cable equation), but there is also the possibility

of propagating action potentials [6].

The Hodgkin-Huxley equations (5)-(8) are in the form of a reaction diffusion

system. An example of the form of a such system when there is just one dependent

variable u(x, t) is

ut = Duxx + F (u) (9)

where D > 0 is the diffusion coefficient (in square distance per time). The quantity u

may represent the concentration of a chemical, which, in the absence of other effects,
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diffuses according to the diffusion (heat) equation

ut = Duxx (10)

The terminology for reaction-diffusion equations comes from the chemical literature

[4].

1.3 Fitzhugh Nagumo Equation

The analysis of the Hodgkin-Huxley equations (5)-(8) is extremely difficult because

of the nonlinearities and the large number of variables [4]. Although there are efficient

numerical methods for some forms of these systems of equations, it is a formidable task

to compute solutions with all different sets of parameters, different applied currents,

and different boundary conditions of interest [4]. Mathematical analysis would be

helpful even if it were performed on simpler equations whose solutions shared the

qualitative properties of those of the Hodgkin-Huxley equations. Analysis of such

simpler systems may lead to the discovery of new phenomena, which may then be

searched for in the original system and also in experimental preparations.

Such a simplified system of equations has its origins in the works of Fitzhugh

(1961) and Nagumo, Arimoto, and Yoshizawa (1962) and has become known as the

Fitzhugh-Nagumo equations [4]. In the Hodgkin-Huxley system the variable V

(voltage) and m (sodium activation) have similar (mostly fast) time courses and the

variables n (potassium activation) and h (sodium inactivation) have similar (slower)

time courses. Heuristically speaking, in the Fitzhugh-Nagumo systems, V and m are

regarded as mimicked by a single variable v(x, t) which we will call voltage, and a

and h are mimicked by a single variable w(x, t), which is called the recovery variable
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[4]. The Fitzhugh-Nagumo equations in their general form are

vt = vxx + f(v)− w (11)

wt = b (v − γw) (12)

where f(v) is the cubic

f (v) = v (1− v) (v − a) (13)

where 0 < a < 1, and where a and γ are positive constants. A term I = I(x, t)

representing an applied current may be inserted on the right-hand side of (11) [4].

Often, γ is set equal to zero in which case we will refer to the simplified Fitzhugh-

Nagumo equations

vt = vxx + f(v)− w (14)

wt = bv (15)

which are sometimes combined into the single equation

vt = vxx + f (v)− b

∫ t

0

v (x, t′) dt′ (16)

where the last term takes the form of a killing term. If we set b = 0, we obtain the

reduced Fitzhugh-Nagumo equation with just one component

vt = vxx + f (v) (17)

with kinetic (space clamped) equation

dv

dt
= f (v) (18)

[4]. It is this form of the Fitzhugh-Nagumo equations that we will be working with

in the remainder of this thesis.
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2 SYMMETRY ANALYSIS OF PDES

The Fitzhugh-Nagumo equation is a non-linear PDE which is still difficult to

solve [7]. Numerical methods could be utilized to obtain approximate solutions of

this equation, but we are interested in symmetry reduction of this equation to be

able to find its exact analytical solutions. Symmetry group techniques provide one

method for obtaining such solutions and, furthermore, they do not depend on whether

or not the equation is integrable.

Symmetry groups and associated reductions and exact solutions have several dif-

ferent applications in the context of non-linear differential equations:

1. Derive new solutions from old solutions. Applying the symmetry group of a

differential equation to a known solution yields a family of new solutions. Quite

often, interesting solutions could be obtained from trivial ones.

2. Integration of ODEs. Symmetry groups of ODEs can be used to reduce the order

of the equation, for example, to reduce a second-order equation to a first-order

one.

3. Reduction of PDE’s. Symmetry groups of PDE’s are used to produce the total

number of dependent and independent variables; for example, from a PDE with

two independent and one dependent variable to an ODE.

4. Linearization of PDE’s. Symmetry groups can be used to discover whether or

not a PDE can be linearized and to construct an explicit linearization when one

exists.
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5. Classification of equations. Symmetry groups can be used to classify differential

equations into equivalence classes and to choose simple representatives of such

classes.

6. Asymptotics of solutions of PDEs. It is known that as solutions of PDEs asymp-

totically tend to solutions of lower-dimensional equations obtained by symmetry

reduction, some of these special solutions will illustrate important physical phe-

nomena. In particular, exact solutions arising from symmetry methods can

often be effectively used to study properties such as asymptotics and ’blow up’.

7. Numerical methods and testing computer coding. Symmetry groups and ex-

act solutions of physically relevant PDEs are used in the design, testing, and

evaluation of numerical algorithms.

8. Conservation laws. The application of symmetries to conservation laws dates

back to the work of Noether, who proved the remarkable result that, for systems

arising from a variational principle, every conservation law of the system comes

from a corresponding symmetry property.

9. Further applications. There are several other important applications of symme-

try groups, including bifurcation theory, control theory, special function theory,

boundary value problems and free boundary problems.

[7].

In the mid-nineteenth century, Sophus Lie was searching for a general theory for

solving differential equations [7]. He made the profound and far-reaching discovery
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that many special methods for first order ODEs – such as separable equations, ho-

mogeneous equations, exact equations, and integrating factors – were, in fact, special

cases of a general integration method based on the invariance of differential equations

under a continuous group of symmetries, known as the Lie group [7]. Lie developed

a theory of for symmetry groups of differential equations which is highly algorithmic

[7]. This method is now known as classical Lie method for finding group-invariant

solutions.

Subsequently, there have been many applications in numerous areas of mathe-

matics, physics, chemistry, engineering, and elsewhere [7] . However, the method is

often quite difficult because the task of finding the symmetry group of a given system

of differential equations is often exceedingly cumbersome. Despite the fact that the

method is entirely algorithmic, it usually involves a large amount of tedious algebra

and the associated calculations can be virtually unmanageable if attempted manually

[7].

In this paper we are interested in applying the Lie method to the Fitzhugh Nagumo

equation to find its symmetry solutions and reduce it to an ordinary differential

equation. The method of point symmetry analysis involves looking for a Lie group

of invertible transformations that map every solution of the differential equation to

another solution of the differential equation [9].

We elaborate on the concept of symmetry solutions of the Lie method by applying

this method to much simpler ordinary differential equations (ODE) as an example.

We start with solving an ODE by finding its integrating factor. Then, for the same

ODE, we find the symmetry group that the ODE is invariant over. This is known as

15



classical method [7]. Next, we compare the results of applying the classical method

with integrating factor method to support the notion that the integrating factor is a

special case of the general integration method based on the invariance of differential

equations under a continuous group of symmetries as mentioned above. As the final

step, we introduce the nonclassical method and apply it to Fitzhugh Nagumo equation

to reduce it to an ODE that could be solved numerically or analytically.
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3 SOLVING AN ODE BY FINDING ITS INTEGRATING FACTOR

Suppose we have a differential equation of the form

dy

dx
=
−M(x, y)

N(x, y)
(19)

to solve. For simplicity, we refer to M(x, y) by M and N(x, y) by N and rewrite

equation (19) in the form

Mdx+Ndy = 0 (20)

This is called the differential form of equation (19) [1].

Given any differential equation of the form (20), there exists a µ(x, y) such that

µMdx+ µNdy = 0 (21)

Equation of the form (21) is called the exact form for the differential form (20) and

µ is called an integrating factor for it [1]. Exact means there exists an ω(x, y) such

that

M =
∂ω

∂x
and N =

∂ω

∂y

For example, let us find solutions to the equation

2ydx+ xdy = 0 (22)

by finding an integrating factor. From equation (22) we have

∂ω

∂x
= 2y (23)

∂ω

∂y
= x (24)

17



Equations (23) and (24) result in

∂2ω

∂x∂y
= 2

∂2ω

∂y∂x
= 1

so this equation is not exact.

However, if we multiply both sides of equation (22) by an x, we have

x(2ydx+ xdy) = 0

or equivalently

2xydx+ x2dy = 0

It then follows that

ωx = 2xy

ωy = x2

which results in

ωxy = 2x and ωxy = 2x

So if ω = k then x2y = k and

y =
k

x2
(25)

We can verify the results in (25) by finding solutions to (22) with the separation by

parts method:

2ydx+ xdy = 0

dy

y
=
−2dx

x

ln(y) = −2 ln(x) + C

18



Therefore

y =
k

x2
(26)

So ω(x, y) = x is an integrating factor for 2ydx+ xdy = 0.

It follows that Mdx + Ndy = 0 is exact if My = Nx. It also follows that the

integrating factor µ(x, y) satisfies

µMdx+ µNdy = 0

where

∂

∂y
(µM) =

∂

∂y
(µN)

or

µyM + µMy = µxN + µNx (27)

Finding solutions to equation of the form (27) is in general more difficult than finding

solutions to equations of the form (19).

Thus, in order to find solutions to first order differential equations, we often use

invariance over a group for the differential equation to determine an integrating factor

for it. For that purpose we start with definition of a Group [3].

Definition 3.1 [3]A Group is a set G equipped with a binary operation ∗ such that

1) for every x, y, z ∈ G : x ∗ (y ∗ z) = (x ∗ y) ∗ z

2) there is an element e ∈ G, the identity, with e ∗ x = x = x ∗ e for all x ∈ G

3) every x ∈ G has an inverse, there is a x
′ ∈ G with x ∗ x′

= e = x
′ ∗ x

The properties in the definition of a group depict the shared properties of two

nonempty sets in general, furnished with a binary operator. Such shared properties
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could provide a model describing how elements in a group look like. For example, a

square can be rotated through a certain angle and then reflected about a line, and

the square will end up with its original shape. Thus, the rotation and reflection

are the symmetries of the square that will not cause a change in form for a square.

Groups could be discrete or continuous. We are interested in finding such symmetries

for a differential equation. We would like to know if certain symmetries applied to

the solutions of a differential equation, how will the solution differ? In order to do

that, we need to limit the desired groups to certain groups known as Lie groups

which are continuous groups. The solutions for a differential equation could be a set

that depicts a line, a surface or a sphere. Lines and circles are one-dimensional

manifolds and planes and spheres are two-dimensional manifolds [2]. In order

to understand what a manifold is we need to know what a chart is.

Definition 3.2 [2] Let M be a topological space. A local chart on M is a pair (U,Φ)

where U is an open set in M and Φ is a homomorphism of U onto an open set Φ(U)

in Rn for some n.

The definition of the chart depicts that a transition that maps the compatibility of

change from one set of coordinates to another set of coordinates is continuous. Having

defined a chart we can move to a smooth manifold definition. A smooth manifold is

defined as follows:

Definition 3.3 [2] A smooth manifold M is a topological space together with a

collection of local charts (Φ, Uα) (called an atlas) such that {Uα} cover M and for

20



each pair, α, β the mapping Φβ ◦Φ−1
α is a C∞ mapping from Φα(Uα∩Uβ) to Φβ(Uα∪

Uβ).

That is, if two charts overlap, the transition map between them is still smoothly

compatible. This notion is very important in solving differential equations. This is

why we are interested in the symmetry solutions of a differential equation. To solve

differential equations, we need the combination of the concept of group with that of

a differentiable manifold. This leads to the following:

Definition 3.4 [2] A Lie group is an algebraic group that forms a manifold in

which the multiplication is differentiable and each point in there has a tangent.

For example, the set of all 2-dimensional rotations matrices Rθ through an angle

θ forms the group

SO(2) =

{[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
| θ ∈ [−π, π]

}
where S means the determinant is 1 and the letter O indicates orthogonality.
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4 CLASSICAL METHOD

4.1 Invariance Over a Group

To explain what invariance over a group for a differential equation means, we start

with the equation

x′′ = −x (28)

as an example and show that invariance over certain groups does not change the

properties of this equation. In order to do that we rewrite equation (28) as

x′ = y

y′ = −x

or [
dx
dt
dy
dt

]
=

[
0 1
−1 0

] [
x
y

]
so that [

dx
dt
dy
dt

]
= Rπ

[
x
y

]
Suppose we transform x and y to new positions u and v using the rotation matrix

as follows [
u
v

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
x
y

]
where

G = {Rθ| such that θ ∈ [−π, π]}

Therefore, [
x
y

]
= R−θ

[
u
v

]
(29)
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because (Rθ)
−1 = R−θ.

We take the derivative of both sides of the equation (29)[
dx
dt
dy
dt

]
= R−θ

[
du
dt
dv
dt

]
Consequently, in terms of u and v variables we have

R−θ

[
du
dt
dv
dt

]
=

[
0 1
−1 0

] [
x
y

]
=

[
0 1
−1 0

]
R−θ

[
u
v

]
Therefore, [

du
dt
dv
dt

]
= RθRπR−θ

[
u
v

]
= Rθ+π−θ

[
u
v

]
= Rπ

[
u
v

]
Finally, we obtain [

du
dt
dv
dt

]
= Rπ

[
u
v

]
Therefore, we have shown that equation (28) is invariant over the rotation group,

Rθ, and how a differential equation does not necessarily change form under a change

of variable for a family of coordinate transformations, like a rotation group. If that

is the case, the differential equation is called invariant over G.

4.2 Classical Method

In order to explain what the classical method for invariance over a group means,

we revisit the equation x′′ = −x in the previous section. We showed that this equation

is invariant over the rotation group G = Rθ.
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Note that,

dG

dθ
=

[
− sin(θ) − cos(θ)
cos(θ) − sin(θ)

]

=

[
0 −1
1 0

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
Thus, formally we have

Gθ = eΓθ

where

Γ =

[
0 −1
1 0

]
We call Γ the infinitesimal generator of Gθ [7].

Let us also define eΓθ formally by

∑ Γnθn

n!
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In terms of our example, we can rewrite eΓθ as

eΓθ = e

24 0 −1
1 0

35θ

= I +

[
0 −1
1 0

]
θ +

[
0 −1
1 θ

]2
θ2

2!
+

[
0 −1
1 0

]3
θ3

3!
+ . . .

=

 1− θ2

2!
+ θ4

4!
− θ6

6!
+ . . . 0− θ + θ3

3!
− θ5

5!
+ . . .

0 + θ − θ3

3!
+ θ5

5!
− . . . 1− θ2

2!
+ θ4

4!
− θ6

6!
+ . . .



=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

= Rθ

In general, if Gθ is a 1-parameter group, then

Γ =
dG

dε

∣∣∣∣
ε=0

is the infinitesimal generator. Then

GεGθ = Gε+θ

Therefore,

dGε

dε

Gθ =
dGε

dεθ

dεθ

dε

Thus

dGε

dεθ

∣∣∣∣
ε=0

Gθ =
dεθ

dε+θ

∣∣∣∣
ε=0

= 0

so

ΓGθ =
dGθ

dθ
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It then follows that

Gθ = eΓθ

In order to determine if a differential equation,

Mdx+Ndy = 0

is invariant over a group

Gt(x, y),

we need to verify that the differential equation remains unchanged under transforma-

tions defined by such Gt. If we can verify the invariance over a group Gt, then the

differential equation can be solved with the following steps:

1) Compute

d

dt
Gt

∣∣∣∣
t=0

= G′0 =

[
P
Q

]
2) Solve

dx

dy
=
P (x, y)

Q(x, y)

and denote the solution by u(x, y). It can be shown that u(x, y) is also invariant over

the group.

3) Substitute u(x, y) into the equation. The equation becomes separable.

This is known as the Classical Method for first order ordinary differential equa-

tions.

Example: Solve

dx

dy
=
x2 + y2

xy
(30)
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where

Gt(x, y) = (etx, ety)T

Solution:

1)

G0

[
x
y

]
=

[
e0x
e0y

]
=

[
x
y

]
So G0 is identity because it maps (x, y) to (x, y). Also

GsGt

[
x
y

]
= Gs

[
etx
ety

]
=

[
esetx
esety

]
=

[
es+tx
es+ty

]
= Gs+t

[
x
y

]
So if

Gt

[
x
y

]
=

[
etx
ety

]
=

[
x1

y1

]
Then

x1 = etx⇒ x = e−tx1

y1 = ety ⇒ y = e−ty1

Therefore

dy

dx
=
ety1

etx1

=
dy1

dx1

So

dy

dx
=
x2 + y2

xy
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could be translated to

dy1

dx1

=
(e−tx1)

2 + (e−ty1)
2

(e−tx1)2(e−ty1)2

=
e−2t(x2

1 + y2
1)

e−2t(x2
1y

2
1)

=
x2

1 + y2
1

x2
1y

2
1

2) Now we find

d

dt
Gt

∣∣∣∣
t=0

= G′0

dy

dx
=
y

x
⇒ dx

x
=
dy

y

We let u = eC and integrate both sides:

ln(x) = ln(y) + C

y = ux

u =
y

x
(31)

If we substitute the result (31) in the differential equation, we get a sep-

arable differential equation

dy

dx
=
du

dx
x+ u

d

dx
x

3) So we substitute the above in

dx

dy
=
x2 + y2

xy
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Then

x

du
dx+ u =

x2 + u2x2

x(ux)

=
1 + u2

u

=
1

u
+ u

So

x
du

dx
=

1

u
⇒ udu =

dx

x

and

u2

2
= ln(x) + C

and

u2 =
y2

x2

y2

2x2
= ln(x) + C

Therefore we showed how we could find solutions to a first order differential equation

by using group invariance.

We would like to elaborate on the properties of such groups to be able to find

solutions to more complex differential equations such as partial differential equations.
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5 THE NON-CLASSICAL METHOD

Using the classical method to find solutions to ordinary differential equations is

ideal in many cases. However, the classical method applied to partial differential

equations (PDE) sometimes produces trivial solutions only. That is because the sym-

metry group of non-trivial solutions to the PDE is a subgroup of the group produced

by the classical method (and the larger the group, the fewer its invariant solutions)

[7].

To find the non-trivial solutions we would have to set up new conditions for the

PDE. Before proceeding with this notion we need to introduce several definitions.

We start with the point-transformation definition of a 1-parameter continuous group.

Here, we formally define the 1-parameter continuous group as the solutions of PDE’s

exist in such groups.

Definition 5.1 A set G of point transformations in the (x, y) plane R2,

x∗ = f(x, y, a) (32)

y∗ = g(x, y, a) (33)

depending on the parameter a is called a one-parameter continuous group, if

• x = f(x, y, 0) and y = g(x, y, 0) (identity).

• x = f(x∗, y∗,−a) and y = g(x∗, y∗,−a) (inverse).

• If x∗ = f(x, y, a), y∗ = g(x, y, a) and x∗∗ = f(x∗, y∗, b), y∗∗ = g(x∗, y∗, b) then

x∗∗ = f(x, y, a+ b), y∗∗ = g(x, y, a+ b)
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Given a one-parameter continuous group, we would like to know if the solutions

to the desired differential equation remain invariant under such a group. That is, if

the solutions of the desired PDE is transformed to new positions, the transformations

(32) and (33) won’t get changed. Thus, we formally define a symmetry group for a

set of transformation in a continuous group.

Definition 5.2 It is said that the transformations (32) and (33) form a symmetry

group of a differential equations F (x, y, yx, yxx) = 0 if the equation is form invariant,

i.e. if F (x, y, yx, yxx) = 0, then F (x∗, y∗, y∗x∗ , y∗x∗∗) = 0.

Example:

x′′(t) = −x(t)

indicates

x′′(t+ s) = −x(t+ s)

which is invariant under translation in time. So

x∗(t) = x(t+ s)

y∗(t) = y(t+ s)

which result in Gs(x(t), y(t)). Therefore

Gs(x(t), y(t)) = (x(t+ s), y(t+ s))

is a 1-parameter symmetry group.
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These definitions allow us to generalize our earlier work with the classical method

to any ordinary differential equation of the form F (t, p, pt, ptt) = 0. Lie’s theory

relates the topological component of the symmetry group G containing the identity to

the infinitesimal transformations of its 1-parameter subgroups, where the infinitesimal

generator of a 1-parameter groupGε is the linear part of its Maclaurin series expansion

in ε,

t∗ = t+ εT (t, p) +O(ε2)

p∗ = p+ εP (t, p) +O(ε2)

It is convenient to represent an infinitesimal transformation of the above form by a

linear differential operator

Γ = T
∂

∂t
+ P

∂

∂p

and call it the infinitesimal generator or group generator.

In order to apply the theory to a differential equation, a Lie Group G which acts

on a set of functions {x(t), p(t)} that are solutions to a system of differential equations

must be extended to include the derivatives in t of those functions. That is, the rep-

resentation of the 1-parameter group Gε on the solutions is extended (i.e., prolonged)

to a representation G
(1)
ε acting on the solutions and their derivatives. The infinitesi-

mal generator of this extended representation is known as the first prolongation of Γ,

denoted by Γ(1). In general, suppose we have

(x∗, p∗) = (Q(p, u), η(p, u))

We apply G to px
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p∗x∗ =

dp∗

dx
dx∗

dx

=

∂η

∂x

∂x

∂x
+
∂η

∂p

∂p

∂p
∂Q

∂x

∂x

∂x
+
∂Q

∂p

∂p

∂x

=

∂

∂x
η + px

∂η

∂p
∂

∂x
Q+ px

∂Q

∂p

By cross multiplication we have

(
∂

∂x
Q+ px

∂Q

∂p
)p∗x∗ =

∂

∂x
η + px

∂η

∂p

To elaborate on this concept we revisit equation (28), x′′ = −x. The solutions to this

equation were invariant over Gε acting on the function[
x(t)
y(t)

]
, v : R → Rn where y = x′

For a Partial Differential Equation (PDE), we similarly want to extend Gε(x, t, p)

acting on its first prolongation

Gε
(1)(x, t, p, px, pt)

or second prolongation

Gε
(2)(x, t, p, px, pt, pxx, ptt)

or even further, up to any prolongation necessary without becoming intractable.

Thus,

Γ = T
∂

∂t
+X

∂

∂x
+ P

∂

∂p
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and its first prolongation

Γ = T
∂

∂t
+X

∂

∂x
+ P

∂

∂p
+ Φ1

∂

∂px

+ Φ2
∂

∂pt

Therefore the results change the representation of the group but not the group

itself (i.e, G
(1)
ε ≡ Gε) as shown in the following theorem. For that purpose, we first

introduce the Total Derivative Operator.

Definition 5.3 [8] Let F (x, p, px, . . . , p
(n)
x ) be a function. Then the total derivative

operator for x, denoted by Dx, is defined by

∂x+
∑

pi + ∂pi

where i ≥ 0.

Total derivative operator could be used to prolong the given transformations.

However, it is crucial to find out if the prolonged transformations are invariant un-

der the given one-parameter continuous group. Therefore, we prove that prolonged

transformations remain unchanged under a one-parameter continuous group in the

following theorem.

Theorem 5.4 [8] If transformations x∗ = f(x, y, a) and y∗ = g(x, y, a)) form a one-

parameter group, then their extensions to derivatives y′, y′′, . . . , y(n) of any order is

again a one-parameter group and is called an extended transformation group.
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Proof 1 [8] It suffices to prove the theorem for the first extension. Let a be a canon-

ical parameter. Then

x∗∗ = f(x∗, y∗, b) = f(x, y, a+ b)

y∗∗ = g(x∗, y∗, b) = g(x, y, a+ b)

Therefore

y∗∗′ = g(x, y, y′, a) =
Dx(g(x, y, a))

Dx(f(x, y, a))

To prove the theorem we have to show that

y∗∗′ = g(x∗, y∗, y∗′, b) = g(x, y, y′, a+ b)

The latter can be obtained by using the chain rule Dx = Dx(f(x, y, a))D∗
x and the

following simple calculations. We have

y∗∗′ = g(x∗, y∗, y∗′, b) =
D∗

x(g(x
∗, y∗, b))

Dx(f(x∗, y∗, b))

No we rewrite the last expression by multiplying its numerator and denominator by

Dx(f(x, y, a)) and invoking the group property of f and g, as follows:

Dx(f(x, y, a))D∗
x(g(x

∗, y∗, b))

Dx(f(x, y, a))D∗
xf(x∗, y∗, b)

=
Dx(g(x, y, a+ b))

Dx(f(x, y, a+ b))
= g(x, y, y′, a+ b)

Thus completing the proof. �

We are interested in a second order PDE which contains pxx in the equation

F (x, t, p, pt, pxx) = 0. If we apply the classical method to solve this PDE we either

find trivial solutions or the classical method becomes intractable. Recall that it is

possible that the classical method produces a trivial solution of this PDE because
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the actual symmetry group of the PDE solution is a subgroup of the group produced

by the classical method. Therefore, we can add a condition to the PDE to reduce

the size of the group produced by the classical method and allow possible non-trivial

solution(s) to be identified.

In order to derive this additional condition, we first notice that the goal is to find

a solution p = f(x, t) of

F (x, t, p, pt, pxx) = 0 (34)

that is, p a function of x and t, which is a surface in the xtp coordinate system. By

adding a condition we want the surface p = f(x, t) to be invariant under the group

with infinitesimal generator Γ(2).

Note that p = f(x, t) could be considered as a level surface u(x, t, p) = k. If

u(x, t, p) = k then

∂u

∂x

∂x

∂λ
+
∂u

∂t

∂t

∂λ
+
∂u

∂p

∂p

∂λ
= 0

If λ is a group parameter, then

X
∂u

∂x
+ T

∂u

∂t
+ P

∂u

∂p
= 0

However, if p = f(x, t), then u = f(x, t)− p. So

X
∂u

∂x
+ T

∂u

∂t
+ P (−1) = 0

or

X
∂u

∂x
+ T

∂u

∂t
= P

which is known as Invariant Surface Condition (ISC) [7].
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To reiterate, since p = f(x, t) is a form of a solution to equation (34) and the

differential form of p = f(x, t) or f(x, t)− p = 0 then

∂f

∂x

∂x

∂λ
+
∂f

∂t

∂t

∂λ
=
∂p

∂λ
(35)

So if Gλ = eΓλ then equation (17) becomes

X
∂f

∂x
+ T

∂f

∂t
= P (36)

where

Γ = X
∂

∂x
+ T

∂

∂t
+ P

∂

∂p
(37)
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6 SOLUTIONS TO FITZHUGH-NAGUMO USING THE NON-CLASSICAL

METHOD

We are interested in finding solution to the Fitzhugh Nagumo equation

pt = pxx − p3 + (a+ 1)p2 − ap (38)

where p is the dependent variable and x and t are independent variables. Consider

the Lie group transformations

x∗ = X(x, t, p, ε) (39)

t∗ = T (x, t, p, ε) (40)

p∗ = P (x, t, p, ε) (41)

where ε is the group parameter and ε = 0 results in the group identity. Expanding

the transformations above about ε = 0 we have

x∗ = x+ εX(x, t, p) +O(ε2) (42)

t∗ = t+ εT (x, t, p) +O(ε2) (43)

p∗ = p+ εP (x, t, p) +O(ε2) (44)

where

X(x, t, p) =
dx∗

dε

∣∣∣∣
ε=0

, T (x, t, p) =
dt∗

dε

∣∣∣∣
ε=0

, P (x, t, p) =
dp∗

dε

∣∣∣∣
ε=0

(45)

are the infinitesimals of the group. We can deduce the global form of the group from

the infinitesimal form. Therefore, given X(x, t, p), T (x, tp), and P (x, t, p), we can
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obtain x∗ = X(x, t, p, ε), t∗ = T (x, t, p, ε), and p∗ = P (x, t, p, ε) by integrating

dx∗

dε
= X(x∗, t∗, p∗) (46)

dt∗

dε
= T (x∗, t∗, p∗) (47)

dp∗

dε
= P (x∗, t∗, p∗) (48)

with initial conditions x∗|ε=0 = x, t∗|ε=0 = t, and p∗|ε=0 = p. Therefore, the prob-

lem of finding the invariance group is converted to the problem of determining the

infinitesimal generators X(x, t, p), T (x, t, p), and P (x, t, p).

Substituting the variables x, t and p with x∗, t∗ and p∗ respectively into equation

(38), yields to equation (49).

p∗t∗ = p∗x∗x∗ − p∗3 + (a+ 1)p∗2 − ap∗ (49)

As mentioned earlier, the infinitesimal generators of a group is used to reduce the

number of variables of the PDE. In order to find the infinitesimals, we need to extend

the group to figure out the derivative transformations. Using the chain rule, from

equation (49), we need to find

∂p∗

∂x∗
,

∂p∗

∂t∗
,

∂p∗

∂x∗x∗
(50)

Therefore we have,

∂p∗

∂x∗
=
∂p∗

∂x

∂x

∂x∗
+
∂p∗

∂t

∂t

∂x∗
(51)

and

∂p∗

∂t∗
=
∂p∗

∂x

∂x

∂t∗
+
∂p∗

∂t

∂t

∂t∗
(52)

Thus we need to calculate

∂x

∂x∗
,

∂x

∂t∗
,

∂t

∂x∗
,

∂t

∂t∗
(53)
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It follows that

∂x

∂x∗
=

∂

∂x∗
[
x∗ − εX(x, t, p(x, t)) +O(ε2)

]
(54)

= 1− ε

(
∂X

∂x
+
∂X

∂p

∂p

∂x

)
∂x

∂x∗
+O(ε2) (55)

= 1− ε

(
∂X

∂x
+
∂X

∂p

∂p

∂x

)
+O(ε2) (56)

Similarly it could be shown that

∂t

∂x∗
= −ε

(
∂T

∂x
+
∂T

∂p

∂p

∂x

)
+O(ε2) (57)

∂x

∂t∗
= −ε

(
∂X

∂t
+
∂X

∂p

∂p

∂t

)
+O(ε2) (58)

∂t

∂t∗
= 1− ε

(
∂T

∂t
+
∂T

∂p

∂p

∂t

)
+O(ε2) (59)

Therefore, we have

∂p∗

∂x∗
=

∂

∂x∗
[p(x, t) + εP (x, t, p(x, t))] +O(ε2)

=
∂

∂x
[p(x, t) + εP (x, t, p(x, t))]

∂x

∂x∗
+
∂p

∂t

∂t

∂x∗
+O(ε2)

=
∂p

∂x
+ ε

[
∂P

∂x
+

(
∂P

∂p
− ∂X

∂x

)
∂p

∂x
− ∂X

∂p

(
∂p

∂x

)2

−∂T
∂x

∂p

∂t
− ∂T

∂p

∂p

∂x

∂p

∂t

]
+O(ε2)

In short,

∂p∗

∂x∗
=
∂p

∂x
+ εΦ[x] +O(ε2) (60)

where Φ[x] is the infinitesimal for
∂p∗

∂x∗
given by

Φ[x] =
∂P

∂x
+

(
∂P

∂p
− ∂X

∂x

)
∂p

∂x
− ∂X

∂p

(
∂p

∂x

)2

− ∂T

∂x

∂p

∂t
− ∂T

∂p

∂p

∂x

∂p

∂t
(61)

Similarly we can compute
∂p∗

∂t∗
which yields to

∂p∗

∂t∗
=
∂p

∂t
+ εΦ[t] +O(ε2) (62)
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where Φ[t] is the infinitesimal for
∂p∗

∂t∗
and is given by

Φ[t] =
∂P

∂t
+

(
∂P

∂p
− ∂T

∂t

)
∂p

∂t
− ∂T

∂p

(
∂p

∂t

)2

− ∂X

∂t

∂p

∂x
− ∂X

∂p

∂p

∂x

∂p

∂t
(63)

Using the chain rule it can easily be shown that

p∗x∗x∗ = pxx + εΦ[xx] +O(ε2) (64)

where

Φ[xx] = Pxx + (2Pxp −Xxx) px − Txxpt + (Ppp − 2Xxp) p
2
x

−2Txppxpt −Xppp
3
x − Tppp

2
xpt + (Pp − 2Xx) pxx − 2Txpxt

−3Xppxpxx − Tppxxpt − 2Tppxtpx

is the infinitesimal for p∗x∗x∗ or
∂p∗

∂x∗x∗
.

Next, we substitute the p∗x∗ , p∗t∗ and p∗x∗x∗ into equation (49),

p∗t∗ = p∗x∗x∗ − p∗3 + (a+ 1)p∗2 − ap∗ or

p∗t∗ − p∗x∗x∗ + p∗3 − (a+ 1)p∗2 + ap∗ = 0

From this step on, we utilize Maple software to perform the necessary calculations.

A hard copy of the entire Maple code is attached to this paper in Appendix A.
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Thus

p∗t∗ − p∗x∗x∗ + p∗3 − (a+ 1)p∗2 + ap∗ = (65)

ε3P 3 +
(
−aP 2 + 3pP 2 − P 2

)
ε2 +

(
Pt − Pxx −Xppxpt −Xtpx − Tpp

2
t

+Txxpt +Xppp
3
x + Tppxxpt + Tppp

2
xpt + 2Txpxt + 2Txppxpt+

+3Xppxpxx + 2Tppxtpx + ptPp − ptTt − 2pxPxp + pxXxx − p2
xPpp

+2p2
xXxp − pxxPp + 2pxxXx − 2pP + 3p2P + aP − 2apP

)
ε+ ap+ p3

+pt− p2 − pxx − ap2 = 0

Therefore, from equation (65), the coefficients of the ε0 and ε must equal zero and

since ε is very small, we can ignore the coefficients of ε with higher powers.

We substitute the equation (38), pt = pxx−p3 +(a+1)p2−ap, into the coefficient

of ε0, ap+ p3 + pt− p2 − pxx − ap2 which results in

(a+ 1)p2 − p2 + ap2 = 0 (66)

Next, we substitute the Invariant Surface Condition, pt = P −X ∗ px into coefficient

of ε which yields to the equation (67).

AfterISC : (67)

Pt − Pxx −Xtpx +Xppp
3
x + 2Txpxt + 3Xppxpxx + 2Tppxtpx

−2pxPxp + pxXxx − p2
xPpp + 2p2

xXxp − pxxPp + 2pxxXx − 2pP

+3p2P + aP − 2apP + 2TpPXpx − TppxxXpx − TpP
2 + TxxP

+PpP − TtP − TpX
2p2

x − TxxXpx − PpXpx + TtXpx +Xpp
2
xX

−XppxP + TppxxP − Tppp
3
xX + Tppp

2
xP − 2Txpp

2
xX + 2TxppxP = 0
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Then we rearrange equation (67) in terms of px, p
2
x and p3

x factors which yields to

equation (68).

AfterISC in terms of coefficients of ε : (68)

(−TppX +Xpp) p
3
x +

(
2Xxp − TpX

2 − Ppp +XpX + TppP − 2TxpX
)
p2

x

+ (3Xppxx − TppxxX −Xt + 2TpPX + TtX + 2Tppxt − 2Pxp+Xxx

−TxxX − PpX −XpP + 2TxpP ) px+ Pt − Pxx + aP − 2apP + 2Txpxt

−TtP − TpP
2 + TxxP + PpP − 2pP + 3p2P − pxxPp + 2pxxXx

+TppxxP = 0

In equation (68) the coefficients of px, p
2
x and p3

x must be equal to 0. Therefore,

Coefficients of px : (69)

(3Xppxx − TppxxX −Xt + 2TpPX + TtX + 2Tppxt − 2Pxp+Xxx

−TxxX − PpX −XpP + 2TxpP ) = 0

Also

Coefficients of p2
x : (70)(

2Xxp − TpX
2 − Ppp +XpX + TppP − 2TxpX

)
= 0

and

Coefficients of p2
x : (71)

(−TppX +Xpp) = 0

Next we perform the following with Maple

AfterISC−
(
px ∗ Coefficient of px + p2

x ∗ Coefficient of p2
x + p3

x ∗ Coefficient of p3
x

)
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which, after simplification, results in

Pt − Pxx + aP − 2apP + 2Txpxt − TtP − TpP
2 + TxxP + PpP − 2pP (72)

+3p2P − pxxPp + 2pxxPp + 2pxx + TppxxP = 0

Next, we substitute Tx = 0, Tp = 0, Tt = 0, Tpp = 0, Txx = 0, Txp = 0, in equations

(69), (70), (71), and (72) which yield to the following equations.

3Xppxx −Xt − 2Pxp +Xxx− PpX −XpP = 0 (73)

2Xxp − Ppp +XpX = 0 (74)

Xpp = 0 (75)

Pt − Pxx + aP − 2apP + PpP − 2pP + 3p2P − pxxPp + 3p2P = 0 (76)

In equation (73), 3Xp is the coefficient of pxx. Therefore

Xp = 0 (77)

Also, we rearrange equation (76) in terms of pxx factor which yields to

(−Pp + 2Xx) pxx + Pt − Pxx + aP − 2apP + PpP − 2pP + 3p2P = 0 (78)

Therefore,

− Pp + 2Xx = 0 (79)

Next, we subtract (pxx * coefficient of pxx) from equation (76) which after simpli-

fication results in equation (80)

Pt − Pxx + aP − 2apP + PpP − 2pP + 3p2P = 0 (80)
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We substitute Pp = 0, Xx = 0, Ppx = 0 and Xxx = 0 in equation (80) which results

in equation (81)

Pt − Pxx + aP − 2apP − 2pP + 3p2P = 0 (81)

Equation (81) could be rearranged as

(
a− 2p+ 3p2 − 2ap

)
P + PpP + Pt − Pxx = 0 (82)

Therefore, if P = ψ(p), then Pxx = 0 and Pt = 0 and

Pp = −a+ 2p− 3p2 + 2ap (83)

It then follows that

P = −ap+ p2 − p3 + ap2 (84)

From the equations (79) and (83) we have

2Xx = Pp (85)

2Xx = −
(
a− 2p+ 3p2 − 2ap

)
(86)

Therefore

X = −
(
a− 2p+ 3p2 − 2ap

) x
2

(87)

From results (84) and (87) we have

Γ =
(
−ap+ p2 − p3 + ap2

) ∂

∂P
−

(
a− 2p+ 3p2 − 2ap

) x
2

∂

∂X
+

∂

∂T
(88)

where Γ is an infinitesimal generator.

Next, we use the invariant surface condition in the form

pt = P −Xpx (89)

= −ap+ p2 − p3 + ap2 +
(
a− 2p+ 3p2 − 2ap

) x
2

(90)
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Substituting for pt from the original equation yields

pxx − p3 + (a+ 1) p2 − ap = −p3 + (a+ 1) p2 − ap
(
a− 2p+ 3p2 − 2ap

) x
2

(91)

which simplifies to

pxx =
(
a− 2p+ 3p2 − 2ap

) x
2

(92)

If we write differentiation by x using prime notation, then we have

p′′ =
(
a− 2p+ 3p2 − 2ap

) x
2

(93)

which is an ordinary differential equation. Solutions to this ordinary differential

equation are also solutions to the original Fitzhugh-Nagumo equation, given that the

parameters in solving the ordinary differential equation are dependent on t.
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7 CONCLUSION

We have utilized the Non-Classical Method to reduce the given partial differential

equation, pt = pxx − p3 + (a + 1)p2 − ap to an ordinary differential equation, p′′ =

(a− 2p+ 3p2 − 2ap) x
2
. Finding solutions to equation (93) could still be difficult

analytically, but the resulting ordinary differential equation can be solved numerically

using software.

For example, in a similar approach, solutions to

ut = uxx − (u−m1)(u−m2)(u−m3) (94)

have been found as follows

u(x, t) =
c1m1Ψ1 + c2m2Ψ2 + c3m3Ψ3

c1Ψ1 + c2Ψ2 + c3Ψ3

(95)

where

Ψj(x, t) = e
1
2

√
2mjx−mj(m1+m2+m3− 3

2
mj)t (96)

for j = 1, 2, 3, where c1, c2 and c3 are constants. In particular, if m1 = a, m2 = 1 and

m3 = 0, equation (94) produces the solutions to Fitzhugh Nagumo equation

u (x, t) =
ak1e

1

2
(±
√

2ax+a2t)
+ k2e

1

2
(±
√

2x+t)

k1e

1

2
(±
√

2ax+a2t)
+ k2e

1

2
(±
√

2x+t)
+ k3e(at)

(97)

Our approach is similar, but features a Maple worksheet, a copy of which could be

found in Appendix A. In this worksheet, in steps (1)-(3), we defined and implemented

a set of transformations x∗ denoted, xStar, t∗ denoted, tStar, and p∗ denoted, pStar.

Then we implemented the infinitesimal generators for p∗t∗ denoted pStar tStar, p∗x∗
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denoted pStar xStar, and p∗x∗x∗ denoted pStar xStarxStar in steps (4)-(6). Next we

substituted the transformations xStar, tStar, and pStar into the desired equation,

pStar tStar − pStar xStarxStar + (pStar)3 − (a+ 1)(pStar)2 + apStar = 0 (98)

pStar xStar, pStar tStar, and pStar xStarxStar introduced an ε term into equa-

tion (98). So we expanded (98) and collected its terms with respect to coefficients

of ε0, ε, ε2, and ε3. The coefficients of all the powers of ε needs to be zero. Due to

linearity and also ε being very small, we ignored the coefficients of ε2 and ε3 and set

the coefficients of ε0, ε equal to zero, in steps (9)-(13). Then, in steps (14) and (15)

we substituted the invariant surface condition (ISC) into the coefficient of ε. In steps

(16)- (19) we collected the coefficients of px, p
2
x, and p3

x in the coefficient of ε and set

them equal to zero. Next, we performed the following and simplified the equation to

find the remaining of the of the original equation after ISC substitution.

AfterISC− pxCoeffpx − p2
xCoeffp2

x − p3
xCoeffp3

x = 0 (99)

in steps (20) and (21). Next, we substituted the Tx = 0, Tp = 0, Tt = 0, Tpp = 0,

Txx = 0, Tpp = 0, and Txp = 0 into the coefficients of px, p
2
x, and p3

x which yielded to

the equations produced by Maple in step (22). Then, in step (23) we collected the

coefficients of pxx in the AfterISC equation and set it equal to zero which yielded to

equation (23) and (24). Then, in steps (25) and (26) we implemented the following

equation and simplified it and then set it equal to zero.

AfterISC = AfterISC− pxx ∗ (Coeffpxx) (100)

Then, as the last step, we substituted Pp = 0, Xx = 0, Ppx = 0, and Xxx = 0 into

the simplified equation produced in step (26) and it resulted in equation (27). Then,
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we used equation produced in steps (22), (24) and (27) to deduce the infinitesimal

generator by find P and X. Then we used the infinitesimal generator to reduce the

desired PDE to an ODE.
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8 FUTURE RESEARCH

We could apply the method implemented in this Maple worksheet to other equa-

tions to find their symmetry solutions. Depending on the infinitesimal generators

produced by this method, the reduced ODEs could still be hard to solve. Thus, it is

possible to apply this worksheet to the Fitzhugh-Nagumo equation again to find other

symmetry solutions for it. In this case, we reduced the Fitzhugh-Nagumo equation to

an ODE that could be solved numerically, but in future attempts we might be able

to find analytical solutions to this equation.
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(3)(3)
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(2)(2)
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O O 

(5)(5)

O O 

APPENDICES

APPENDIX A: Nonclassical Method Maple Worksheet

The following is the calculations to find the coeffecients of like derivatives of p. 
restart;

xStar := x + epsilon * X(x, t, p) + 0*O(epsilon^2);
xStar := xCε X x, t, p

tStar := t + epsilon ; #* #T(x, t, p) + 0*O(epsilon^2);
tStar := tCε

pStar := p + epsilon * P(x, t, p)+ 0*O(epsilon^2);
pStar := pCε P x, t, p

pStar_tStar := pt+ epsilon* (
   Pt + (Pp - Tt)*pt
 - Tp * (pt)^2 - Xt* px
 - Xp * px * pt) +  0*O(epsilon^2);

pStar_tStar := ptCε PtC PpKTt  ptKTp pt2KXt pxKXp px pt

pStar_xStar:= px+ epsilon* (
   Px + (Pp - Xx)*px
 - Xp * (px)^2 - Tx* pt
 - Tp * px * pt) +  0*O(epsilon^2);

pStar_xStar := pxCε PxC PpKXx  pxKXp px2
KTx ptKTp px pt

pStar_xStarxStar := pxx + epsilon*(
   Pxx + (2*Pxp - Xxx)*px 
 - Txx*pt
 + (Ppp - 2*Xxp)*(px)^2
 - 2*Txp*px*pt
 - Xpp*(px)^3
 - Tpp*((px)^2)*pt
 + (Pp-2*Xx)*pxx
 - 2*Tx*pxt
 - 3*Xp*px*pxx
 - Tp*pxx*pt
 - 2*Tp*pxx*px
 ) + 0*O(epsilon^2);

pStar_xStarxStar := pxxCε PxxC 2 PxpKXxx  pxKTxx ptC PppK2 Xxp  px2

K2 Txp px ptKXpp px3
KTpp px2 ptC PpK2 Xx  pxxK2 Tx pxtK3 Xp px pxx

KTp pxx ptK2 Tp pxx px
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(12)(12)

O O 

(7)(7)

(11)(11)

(13)(13)

(9)(9)

O O 

O O 

(8)(8)

O O 

O O 

O O 

(10)(10)

O O 

pStar_tStar - pStar_xStarxStar + (pStar)^3 - (a+1)*(pStar)^2 + 
a*pStar;

ptCε PtC PpKTt  ptKTp pt2KXt pxKXp px pt KpxxKε PxxC 2 PxpKXxx  px

KTxx ptC PppK2 Xxp  px2
K2 Txp px ptKXpp px3

KTpp px2 ptC PpK2 Xx  pxx

K2 Tx pxtK3 Xp px pxxKTp pxx ptK2 Tp pxx px C pCε P x, t, p
3
K a

C1  pCε P x, t, p
2
Ca pCε P x, t, p

subs(P(x,t,p)=P,%);
ptCε PtC PpKTt  ptKTp pt2KXt pxKXp px pt KpxxKε PxxC 2 PxpKXxx  px

KTxx ptC PppK2 Xxp  px2
K2 Txp px ptKXpp px3

KTpp px2 ptC PpK2 Xx  pxx

K2 Tx pxtK3 Xp px pxxKTp pxx ptK2 Tp pxx px C pCε P
3
K aC1  pCε P

2

Ca pCε P

myEqn:=expand(%);
myEqn := Kε pt TtCp3

Cε Tp pxx ptCε pt PpK2 ε px PxpC2 ε px2 XxpCε px XxxCε Txx pt

K2 p ε PKε Xt pxKε Tp pt2Cε Xpp px3
C3 p ε

2
 P2

C2 ε Tx pxtKa ε
2
 P2

Kε px2 Ppp

C3 p2 ε PKε pxx PpC2 ε pxx XxCε PtKε PxxKp2
Kε

2
 P2

Cε
3
 P3

Ka p2
Ca p

K2 a p ε PC2 ε Tp pxx pxC3 ε Xp px pxxCε Tpp px2 ptKε Xp px ptC2 ε Txp px ptCpt
KpxxCa ε P

collect(myEqn,epsilon);

ε
3
 P3

C Ka P2
C3 p P2

KP2  ε
2
C KTp pt2KXt pxCTxx ptKXp px ptC2 Tx pxtCXpp px3

CTpp px2 ptCTp pxx ptC2 Txp px ptC3 Xp px pxxC2 Tp pxx pxCpt PpKpt Tt
K2 px PxpCpx XxxKpx2 PppC2 px2 XxpKpxx PpC2 pxx XxK2 p PK2 a p P
C3 p2 PCa PKPxxCPt  εKp2

Cp3
CptKpxxCa pKa p2

epsilon0Coeff := pt-p^2-a*p^2+p^3-pxx+a*p;
epsilon1Coeff := Pt+Xpp*px^3-Pxx-Tp*pt^2-Xt*px+Txx*pt-Xp*px*pt+
Tpp*px^2*pt+Tp*pxx*pt+2*Txp*px*pt+3*Xp*px*pxx+2*Tp*pxx*px+2*Tx*
pxt+pt*Pp-pt*Tt-2*px*Pxp+px*Xxx-px^2*Ppp+2*px^2*Xxp-pxx*Pp+2*
pxx*Xx-2*p*P+3*p^2*P+a*P-2*a*p*P ;

epsilon0Coeff := Kp2
Cp3

CptKpxxCa pKa p2

epsilon1Coeff := KTp pt2KXt pxCTxx ptKXp px ptC2 Tx pxtCXpp px3
CTpp px2 pt

CTp pxx ptC2 Txp px ptC3 Xp px pxxC2 Tp pxx pxCpt PpKpt TtK2 px PxpCpx Xxx
Kpx2 PppC2 px2 XxpKpxx PpC2 pxx XxK2 p PK2 a p PC3 p2 PCa PKPxxCPt

subs(pt = pxx - p^3+(a+1)*p^2-a*p, epsilon0Coeff);
Kp2

C aC1  p2
Ka p2

simplify(%);
0
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O O 

(15)(15)

(20)(20)

(17)(17)

O O 

(21)(21)

(16)(16)

O O 

O O 

(19)(19)

O O 

(18)(18)

(14)(14)

O O 

O O 

O O 

AfterISC := subs(pt = P - X*px, epsilon1Coeff);
AfterISC := KXt pxC2 Tx pxtCXpp px3

C3 Xp px pxxC2 Tp pxx pxK2 px PxpCpx Xxx
Kpx2 PppC2 px2 XxpKpxx PpC2 pxx XxK2 p PK2 a p PC3 p2 PCa PK P
KX px  TtC PKX px  PpCTxx PKX px KTp PKX px 2

KXp px PKX px
CTpp px2 PKX px CTp pxx PKX px C2 Txp px PKX px KPxxCPt

simplify(%);
KXt pxC2 Tx pxtCXpp px3

C3 Xp px pxxC2 Tp pxx pxK2 px PxpCpx XxxKpx2 Ppp
C2 px2 XxpKpxx PpC2 pxx XxK2 p PK2 a p PC2 Tp P X pxKTp pxx X pxC3 p2 P
Ca PKTt PCPp PCTxx PKTp P2

CTt X pxKPp X pxKTxx X pxKTp X2 px2

KXp px PCXp px2 XCTp pxx PC2 Txp px PK2 Txp px2 XKPxxCPtCTpp px2 P
KTpp px3 X

collect(%, px);
XppKTpp X  px3

C KPppKTp X2
C2 XxpCTpp PK2 Txp XCXp X  px2

C KXtCTt X
C2 Txp PC3 Xp pxxC2 Tp P XCXxxKXp PKPp XKTxx XC2 Tp pxxKTp pxx X
K2 Pxp  pxKTt PC2 Tx pxtC3 p2 PCa PK2 a p PCPp PCTxx PKTp P2

Kpxx Pp
C2 pxx XxK2 p PKPxxCTp pxx PCPt

pxCoeff := -Xt+Tt*X+2*Txp*P+3*Xp*pxx+2*Tp*P*X+Xxx-Xp*P-Pp*X-Txx*
X+2*Tp*pxx-Tp*pxx*X-2*Pxp;

pxCoeff := KXtCTt XC2 Txp PC3 Xp pxxC2 Tp P XCXxxKXp PKPp XKTxx X
C2 Tp pxxKTp pxx XK2 Pxp

px2Coeff := -Ppp-Tp*X^2+2*Xxp+Tpp*P-2*Txp*X+Xp*X;
px2Coeff := KPppKTp X2

C2 XxpCTpp PK2 Txp XCXp X

px3Coeff := Xpp-Tpp*X;
px3Coeff := XppKTpp X

AfterISC := AfterISC-pxCoeff*px-px2Coeff*px^2-px3Coeff*px^3;
AfterISC := KXt pxC2 Tx pxtCXpp px3

C3 Xp px pxxC2 Tp pxx pxK2 px PxpCpx Xxx
Kpx2 PppC2 px2 XxpKpxx PpC2 pxx XxK2 p PK2 a p PC3 p2 PCa PK P
KX px  TtC PKX px  PpCTxx PKX px KTp PKX px 2

KXp px PKX px
CTpp px2 PKX px CTp pxx PKX px C2 Txp px PKX px K KXtCTt X
C2 Txp PC3 Xp pxxC2 Tp P XCXxxKXp PKPp XKTxx XC2 Tp pxxKTp pxx X
K2 Pxp  pxK XppKTpp X  px3

K KPppKTp X2
C2 XxpCTpp PK2 Txp X

CXp X  px2
KPxxCPt

AfterISC:= expand(%);
AfterISC := KTt PC2 Tx pxtC3 p2 PCa PK2 a p PCPp PCTxx PKTp P2

Kpxx Pp
C2 pxx XxK2 p PKPxxCTp pxx PCPt
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O O 

O O 

(23)(23)

(26)(26)

(27)(27)

O O 

(22)(22)

(24)(24)
O O 

O O 

O O 
(25)(25)

pxCoeff:= subs(Tx = 0, Tp = 0, Tt = 0, Tpp = 0, Txx = 0, Tpp = 
0, Txp=0, pxCoeff);
px2Coeff:= subs(Tx = 0, Tp = 0, Tt = 0, Tpp = 0, Txx = 0, Tpp = 
0, Txp=0, px2Coeff);
px3Coeff:= subs(Tx = 0, Tp = 0, Tt = 0, Tpp = 0, Txx = 0, Tpp = 
0, Txp=0, px3Coeff);
AfterISC:= subs(Tx = 0, Tp = 0, Tt = 0, Tpp = 0, Txx = 0, Tpp = 
0, Txp=0, AfterISC);

pxCoeff := KXtC3 Xp pxxCXxxKXp PKPp XK2 Pxp
px2Coeff := KPppC2 XxpCXp X

px3Coeff := Xpp
AfterISC := 3 p2 PCa PK2 a p PCPp PKpxx PpC2 pxx XxK2 p PKPxxCPt

collect(AfterISC,pxx);
2 XxKPp  pxxC3 p2 PCa PK2 a p PCPp PCPtK2 p PKPxx

pxxCoeff:=2*Xx-Pp;
pxxCoeff := 2 XxKPp

AfterISC:= AfterISC-pxx*pxxCoeff;
AfterISC := 3 p2 PCa PK2 a p PCPp PKpxx PpC2 pxx XxK2 p PKPxxCPtK 2 Xx

KPp  pxx

AfterISC:=simplify(%);
AfterISC := 3 p2 PCa PK2 a p PCPp PCPtK2 p PKPxx

AfterISC:=subs(Pp=0, Xx=0, Ppx=0,Xxx=0, AfterISC);
AfterISC := 3 p2 PCa PK2 a p PCPtK2 p PKPxx
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