SCHOOL of GRADUATE STUDIES

Liar's Domination in Grid Graphs

Christopher Kent Sterling
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd
Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Sterling, Christopher Kent, "Liar's Domination in Grid Graphs" (2012). Electronic Theses and Dissertations. Paper 1415.
https://dc.etsu.edu/etd/1415

Liar's Domination in Grid Graphs

A thesis
presented to the faculty of the Department of Mathematics
East Tennessee State University
In partial fulfillment
of the requirements for the degree
Master of Science in Mathematical Sciences
\qquad by
Christopher Sterling

May 2012

Teresa Haynes, Ph.D., Chair

Anant Godbole, Ph.D.

Debra Knisley, Ph.D.

Keywords: graph theory, liar's domination, grid graphs, ladders

ABSTRACT
Liar's Domination in Grid Graphs
by
\section*{Christopher Sterling}

As introduced by Slater in 2008, liar's domination provides a way of modeling protection devices where one may be faulty. Assume each vertex of a graph G is the possible location for an intruder such as a thief. A protection device at a vertex v is assumed to be able to detect the intruder at any vertex in its closed neighborhood $N[v]$ and identify at which vertex in $N[v]$ the intruder is located. A liar's dominating set can identify an intruder's location even when any one device in the neighborhood of the intruder vertex can misidentify any vertex in its closed neighborhood as the intruder location or fail to report an intruder in its closed neighborhood. In this thesis, we present the liar's domination number for the grid graphs $P_{2} \square P_{\infty}, P_{2} \square P_{c}, P_{3} \square P_{\infty}$, and give bounds for other grid graphs.

Copyright by Christopher Sterling 2012

CONTENTS

ABSTRACT 2
LIST OF FIGURES 5
1 BACKGROUND 6
1.1 Basic Graph Theory Definitions 6
1.2 Liar's Domination 7
1.3 Grid Graphs 10
2 LIAR'S DOMINATION 11
2.1 Important Properties 11
2.2 Previous Work 11
3 LIAR'S DOMINATION IN GRID GRAPHS 13
3.1 Ladders 13
$3.2 \quad P_{3} \square P_{\infty}$ 25
3.3 Bounds on Other Grids 31
BIBLIOGRAPHY 35
VITA 36

LIST OF FIGURES

1 The path P_{7} 6
2 House graph 9
3 The cartesian product of P_{2} and P_{7} 10
$4 \quad$ Pattern for $\gamma_{L R} \%\left(P_{2} \square P_{\infty}\right) \leq \frac{7}{12}$ 20
$5 \quad \gamma_{L R}\left(P_{2} \square P_{c}\right)$-sets for $c \leq 5$ 21
6 The block pattern 22
7 The internal ladder block pattern 25
8 Good block configurations 25
9 Reflected good block configurations 25
10 Upper bound for $\gamma_{L R}\left(P_{3} \square P_{\infty}\right)$ 31
11 Patterns for finite upper bound 32
12 An upper bound for $\gamma_{L R}$ for the infinite grid graph 34

1 BACKGROUND

Our main objective in this thesis is to investigate liar's domination in grid graphs. It is useful to our discussion of liar's domination to first understand the fundamentals of graph theory.

1.1 Basic Graph Theory Definitions

As defined in Haynes, Hedetniemi, and Slater [3], a graph $G=(V, E)$ consists of a nonempty set V, or $V(G)$, and a collection E, or $E(G)$, of unordered pairs $\{u v\}$ for $u, v \in V$. We call each element in V a vertex and each element in E an edge. If any two vertices have an edge between them, we say these vertices are adjacent. The number of vertices, or the cardinality of V, is called the order of G and is denoted $|V|$, and $|E|$ is called the size of G.

Figure 1: The path P_{7}

For example the graph in Figure 1, namely, the path P_{7} has vertex set $V=$ $\{a, b, c, d, e, f, g\}$, and the order of P_{7} is $|V|=7$. The edge set of P_{7} is $E=$ $\{a b, b c, c d, d e, e f, f g\}$, and the size of P_{7} is $|E|=6$.

The open neighborhood $N(v)$ of the vertex v consists of the set of vertices adjacent to v, that is, $N(v)=\{u \in V \mid u v \in E\}$, and the closed neighborhood of v is $N[v]=$ $N(v) \cup v$. In the graph in Figure 1, $N(a)=\{b\}$ and $N[a]=\{a, b\}$. For a set $S \subseteq V$,
the open neighborhood $N(S)$ is defined to be $\cup_{v \in S} N(v)$, and the closed neighborhood of S is $N[S]=N(S) \cup S$. The degree of a vertex v is the number of edges incident with v, or $|N(v)|$, and is denoted $\operatorname{deg}(v)$. The minimum and maximum degrees of vertices in $V(G)$ are denoted by $\delta(G)$ and $\Delta(G)$, respectively. In the graph in Figure 1, $\operatorname{deg}(a)=1, \delta\left(P_{7}\right)=1$, and $\Delta\left(P_{7}\right)=2$.

A set $S \subseteq V(G)$ is a dominating set of G if $N[S]=V(G)$, that is, a set S is a dominating set if every element in $V \backslash S$ is adjacent to an element in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A set $S \subseteq V(G)$ is a double dominating set of G if every element in $V \backslash S$ is adjacent to at least two elements in S and every element in S is adjacent to another element in S. The double domination number is the minimum cardinality of a double dominating set of G and is denoted $\gamma_{\times 2}(G)$. In general, as defined in Harary and Haynes [2], a set $S \subseteq V(G)$ is a k-tuple dominating set if $|N[v] \cap S| \geq k$ for every $v \in V(G)$, and the minimum cardinality of a k-tuple dominating set of G is denoted $\gamma_{\times k}(G)$.

1.2 Liar's Domination

As introduced by Slater in 2008, a graph $G=(V, E)$ may be used to model a building, network, or computer system with each vertex in $V(G)$ representing an area in the building, hub in a computer network, or processor in a computer system. The edges in $E(G)$ could represent connections such as hallways in a building, adjacent hubs in a network, or adjacent processors in a system. Each vertex in the graph is a possible location for a thief, saboteur, fire in a facility, or fault in a computer network, henceforth reffered to as an intruder. Protection devices are placed at certain
vertices, or locations, to protect them from intruders. A protection device at vertex v can detect intruders in adjacent areas and at v itself. Thus, if a protection device is placed at vertex v, then that protection device can detect an intruder in $N[v]$. A protection device at v serves two purposes: to correctly identify the intruder vertex in $N[v]$ and to correctly report the intruder location. We assume that each protection device at v is able to detect an intruder in $N[v]$, specify the location in $N[v]$ at which the intruder is located, and correctly report the intruder location.

To have some fault-tolerance in the system, at most one protection device is allowed to "lie", or misreport the vertex in its closed neighborhood at which the intruder is located. When there is an intruder in the closed neighborhood of a protection device, the device can misreport in two ways: it can report an incorrect vertex in its closed neighborhood as the intruder vertex, or it can fail to report any vertex in its closed neighborhood as the intruder vertex. It is also assumed that only detection devices that are in the closed neighborhood of the intruder vertex can report, so there can be no "false alarms".

As defined in Slater [7], a dominating set $S \subseteq V(G)$ is a liar's dominating set if for any vertex $v \in V(G)$ if all or all but one of the vertices in $N[v] \cap S$ report v as the intruder location, and at most one vertex w in $N[v] \cap S$ either reports a vertex $x \in N[w]$ or fails to report any vertex, then the vertex v can be correctly identified as the intruder vertex. In other words, if an intruder is at any vertex v, then the protection devices outside of $N[v]$ are assumed to not report any intruder, one vertex $w \in N[v] \cap S$ can report nothing or any vertex in $N[w]$ as the intruder vertex, every other element of $N[v] \cap S$ will correctly report vertex v as the intruder location, and
v will be correctly identified as the intruder vertex. The minimum cardinality of a liar's dominating set for graph G is called the liar's domination number and is denoted $\gamma_{L R}(G)$.

In order to detect an intruder in any graph, a dominating set is needed. But since any one device can fail to detect the intruder, a double dominating set is required. Let G be the graph in Figure 2.

Figure 2: House graph

Since no two vertices can double dominate this graph, we need at least 3 vertices in any double dominating set. Let $S=\{b, c, d\}$ and note that S is a double dominating set of G. We will check to see if S is also a liar's dominating set. Let us assume an intruder is at vertex a. The device at d will not report anything, because there are no false alarms. Let us say the device at correctly identifies vertex a as the intruder vertex and correctly reports it. The device at b, however, can "lie" and report vertex c as the intruder vertex. Since we cannot determine the location of the intruder with this set, it is not a liar's dominating set. Moreover, no double dominating set of cardinality 3 is a liar's dominating set, so $\gamma_{L R}(G) \geq 4$. If we let $S=\{a, b, c, d\}$ and
check all possible intruder locations and liars, we can determine that this is a liar's dominating set, and thus, $\gamma_{L R}(G)=4$.

1.3 Grid Graphs

Let P_{n} denote the path on n vertices. As defined in Klobucar [5], the cartesian product of two graph G and H, denoted $G \square H$, is a graph with the vertex set $V(G) \times$ $V(H)$ and $((u v),(w x)) \in E(G \square H)$ if and only if either $u=w$ and $v x \in E(H)$, or $u v \in E(G)$ and $v=x$. In other words, we replace every vertex in G with a copy of H, and then corresponding vertices in the different copies of H are made adjacent whenever the original vertices in G are adjacent.

A grid graph is created by taking the cartesian product between two paths, P_{r} and P_{c}. For example, the cartesian product between $G=P_{2}$ and $H=P_{7}$ is $P_{2} \square P_{7}$, which is shown in Figure 3.

Figure 3: The cartesian product of P_{2} and P_{7}

2 LIAR'S DOMINATION

In this section, we survey known results in liar's domination.

2.1 Important Properties

In general, we follow the notation and terminology of [3]. We will employ the following useful results from from Slater [7].

Theorem 1 [7] If $S \subseteq V(G)$ is an $L D S$ of G, then each component of the induced subgraph $G[S]$ contains at least three vertices.

Since every liar's dominating set of G must double dominate G and every triple dominating set of G is a liar's dominating set, we have the following result.

Theorem 2 [7] For every connected graph of order $n \geq 3$, we have $\gamma_{\times 2}(G) \leq \gamma_{L R}(G)$, and if G has minimum degree $\delta(G) \geq 2$, then $\gamma_{\times 2}(G) \leq \gamma_{L R}(G) \leq \gamma_{\times 3}(G)$.

Theorem 3 [7] A vertex set $S \subseteq V(G)$ is a LDS if and only if (1) S double dominates every $v \in V(G)$ and (2) for every pair of u, v of distinct vertices we have $\mid(N[u] \cup$ $N[v]) \cap S \mid \geq 3$.

2.2 Previous Work

Slater [7] introduced liar's domination in 2008. Since then there has been some progress in finding the liar's domination number of different graphs. While most results will not help us with finding the liar's domination number of grid graphs, we
do have some useful results from Slater [7] which serve as a starting point. Slater [7] states and proves the following results.

The following theorems give a lower bound on $\gamma_{L R}$ for all graphs G.

Theorem 4 [7] If a graph G of order $n=|V(G)|$ has maximum degree $\Delta(G)=r$ (in particular, if G is regular of degree r), then $\gamma_{L R}(G) \geq \frac{6}{3 r+2} n$.

Theorem 5 [7] For a graph G of order $n=|V(G)|$ and size $m=|E(G)|$, we have $\gamma_{L R}(G) \geq \frac{3}{4}(2 n-m)$.

The next result determines the liar's domination number for any path P_{n}.

Theorem $6[7]$ For a path P_{n} of order $n, \gamma_{L R}\left(P_{n}\right)=\left\lceil\frac{3}{4}(n+1)\right\rceil$, and $\gamma_{L R}\left(P_{n}\right)=$ $\frac{3}{4}(n+1)$ if an only if $n=4 k+3$.

3 LIAR'S DOMINATION IN GRID GRAPHS

We have seen that the liar's domination number has been determined for some graph families. We study liar's domination on grid graphs. We determine the liar's domination number for $P_{2} \square P_{c}$, give bounds for larger grid graphs, and determine the percentage of vertices in a $\gamma_{L R}(G)$-set for $G \in\left\{P_{2} \square P_{\infty}, P_{3} \square P_{\infty}\right\}$. To aid in our discussion about the cardinality of a liar's dominating set in an infinite graph, we need to define the liar's domination number in terms of a percentage. The parameter $\gamma_{L R} \%$ is defined by $\gamma_{L R} \%=\min \left\{\limsup \left|V\left(G_{k}\right) \cap S\right| /\left|V\left(G_{k}\right)\right|\right\}$, where G_{k} is the induced subgraph $P_{r} \square P_{k}$ of $P_{r} \square P_{\infty}$ for $r \geq 2$.

We will denote the vertices of a $P_{r} \square P_{c}$ grid by $v_{i, j}$ for $1 \leq i \leq r$ and $1 \leq j \leq c$. We refer to the set of vertices $R_{i}=\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, c}\right\}$ as the $i t h$ row; and the set of vertices $C_{j}=\left\{v_{1, j}, v_{2, j}, \ldots, v_{r, j}\right\}$ as the j th column of $P_{r} \square P_{c}$. For a set S of vertices, we say that a column C_{j} is S-empty if $C_{j} \cap S=\emptyset$; and we say that it is S-full if all the vertices of C_{j} are in S, that is, if $\left|C_{j} \cap S\right|=r$.

3.1 Ladders

We refer to the grid graph $P_{2} \square P_{c}$ and the infinite grid $P_{2} \square P_{\infty}$ as ladders. We will prove the following theorems on the liar's domination number of ladders.

Theorem 7 For the infinite ladder $P_{2} \square P_{\infty}, \gamma_{L R} \%\left(P_{2} \square P_{\infty}\right)=\frac{7}{12}$.

Theorem 8 For the finite ladder $P_{2} \square P_{c}$, where $c \geq 2$,

$$
\gamma_{L R}\left(P_{2} \square P_{c}\right)= \begin{cases}7\left\lfloor\frac{c}{6}\right\rfloor+k+1 & \text { if } c \neq 4 ; \\ 6 & \text { if } c=4 .\end{cases}
$$

A subgraph induced by $k \geq 2$ consecutive columns of the $P_{2} \square P_{\infty}$ or the $P_{2} \square P_{c}$ is called a k-block. We first prove four lemmas necessary to the proofs of Theorems 1 and 2.

In these lemmas, we let B be an arbitrary k-block of a ladder. Abusing notation for the ease of discussion in the proofs of these lemmas, we refer to the columns of this arbitrary block B as $C_{1}, C_{2}, \ldots, C_{k}$ and the vertex $v_{i, j}$ is in row i and column j, for $i \in\{1,2\}$ and $1 \leq j \leq k$.

Lemma 9 Let $G=P_{2} \square P_{c}$ for $c \geq 2$, S be $a \gamma_{L R}(G)$-set, and B be an arbitrarty k-block of G. Then $|V(B) \cap S| \geq k$; and if B is preceded or succeeded by an S-empty column, then $|V(B) \cap S| \geq k+1$.

Proof. If no column of B is S-empty, then clearly $|V(B) \cap S| \geq k$. Moreover, if B is preceded (respectively, succeeded) by an S-empty column, then C_{1} (respectively, C_{k}) is S-full. Since no column is S-empty, we have $|V(B) \cap S| \geq k+1$.

Hence, assume that at least one column of B is S-empty. We proceed by induction on k. If $k=2$ and C_{1} is S-empty, then, by Theorem $3, C_{2}$ is S-full. By symmetry, if C_{2} is S-empty, then C_{1} is S-full. Thus, $|V(B) \cap S| \geq 2=k$. If B is preceded (respectively, succeeded) by an S-empty column, then Theorem 1 implies that at least one vertex from C_{2} (respectively, C_{1}) is in S. In this case, $|V(B) \cap S| \geq 3=k+1$, as desired.

Let $k=3$. If C_{1} or C_{3} is S-empty, then C_{2} is S-full. Theorem 1 implies that at least one vertex from $C_{1} \cup C_{3}$ is in S. Hence, $|V(B) \cap S| \geq 3=k$. If C_{2} is S-empty, then both C_{1} and C_{3} are S-full, and so $|V(B) \cap S| \geq 4=k+1$. Suppose B is preceded (respectively, succeeded) by an S-empty column. Then C_{1} (respectively, $\left.C_{3}\right)$ is S-full and by Theorem $1, C_{2}$ has at least one vertex in S. Then at least one
additional vertex is in S from $C_{2} \cup C_{3}$ (respectively, $C_{1} \cup C_{2}$) in order to dominate C_{3} (respectively, C_{1}). Hence, $|V(B) \cap S| \geq 4=k+1$.

Thus the base case holds for $k \in\{2,3\}$. Assume the result is true for all k^{\prime}, where $2 \leq k^{\prime}<k$. Let $k \geq 4$, and consider the block B^{\prime} obtained by removing the last two columns of B. Since $k \geq 4, B$ has $k-2 \geq 2$ columns. By our inductive hypothesis, $\left|V\left(B^{\prime}\right) \cap S\right| \geq k-2$, and if B, and hence, B^{\prime}, is preceded by an S-empty column, then $\left|V\left(B^{\prime}\right) \cap S\right| \geq k-1$. By our inductive hypothesis, at least two additional vertices are in S from the final two columns of B, so $|V(B) \cap S| \geq k-2+2=k$, and if B is preceded by an S-empty column, $|V(B) \cap S| \geq k-1+2=k+1$. Finally, suppose B is succeeded by an S-empty column. Then by our inductive hypothesis, $\left|\left(C_{k-1} \cup C_{k}\right) \cap S\right| \geq 3$, implying that $|V(B) \cap S| \geq\left|V\left(B^{\prime}\right) \cap S\right|+3=k-2+3=k+1$, as desired.

Lemma 10 Let $G \in\left\{P_{2} \square P_{c}, P_{2} \square P_{\infty}\right\}$, B be an arbitrary 6-block in G, and S be a $\gamma_{L R}(G)$-set. If $|V(B) \cap S|=6$, then the first and last columns of B are S-empty.

Proof. Let $G \in\left\{P_{2} \square P_{c}, P_{2} \square P_{\infty}\right\}$, and let S be a $\gamma_{L R}(G)$-set. Let B be an arbitrary 6-block of G. By Lemma $9,|V(B) \cap S| \geq 6$. Assume that $|V(B) \cap S|=6$. To show that C_{1} and C_{4} are S-empty, we prove a series of claims.

Claim 1 At least one column of B is S-empty.

Proof. Assume that no column of B is S-empty. Since $|V(B) \cap S|=6$, it follows that each column of B has exactly one vertex in S. Without loss of generality, we may assume that $v_{1,1} \in S$.

If $v_{1,2} \in S$, then to double dominate $v_{2,2}$, we have $v_{2,3} \in S$. Since each column contributes exactly one vertex to S, Theorem 1 implies that $v_{2,4}$ and $v_{2,5}$ are in S. But then $v_{1,4}$ is not double dominated, a contradiction.

Thus, $v_{2,2} \in S$. Again, Theorem 1 implies that $v_{2,3}$ and $v_{2,4}$ are in S. But then $v_{1,3}$ is not double dominated by S, a contradiction. (ם).

By Claim 1, we may assume that at least one column, say C_{i}, of B is S-empty.

Claim 2 If column C_{i} is S-empty, then $i \notin\{2,3,4,5\}$.

Proof. By symmetry, it suffices to show that the result holds for $i \in\{2,3\}$. If $i=3$, then C_{2} and C_{4} are S-full to double dominate the vertices of C_{3}. Moreover, Theorem 1 implies that at least one vertex from each of C_{1} and C_{5} is in S. But then at least one more vertex from $C_{5} \cup C_{6}$ is in S to dominate the vertices of C_{6}, contradicting that $|V(B) \cap S|=6$. Thus, we may assume that C_{3} is not S-empty. If C_{2} is S-empty, then C_{1} and C_{3} are S-full to double dominate C_{2}, and by Theorem 1, at least one vertex of C_{4} is in S. Without loss of generality, let $v_{1,4} \in S$. Now, at least two vertices from $\left\{v_{2,4}, v_{1,5}, v_{2,5}, v_{2,6}\right\}$ are in S to double dominate the vertex $v_{2,5}$, and so $|V(B) \cap S| \geq 7$, again a contradiction. (ロ)

Hence, if $|V(B) \cap S|=6$ and C_{i} is S-empty, then $i \in\{1,6\}$. Thus, we may assume that S contains at least one vertex from each of columns 2 through 5 .

Claim 3 Both C_{1} and C_{6} are S-empty.

Proof. From previous claims, at least one of C_{1} and C_{6} is S-empty. Without loss of generality, assume that C_{1} is S-empty. Then C_{2} is S-full in order to dominate C_{1}. By Claim 2, S contains at least one vertex from each of columns 3, 4, and 5. Suppose
for the purpose of a contradiction that $C_{6} \cap S \neq \emptyset$. Then each of the columns 2 through 6 have exactly 1 vertex in S. Without loss of generality, we may assume that $v_{1,6} \in S$. Then $v_{2,6} \notin S$. If $v_{1,5} \in S$, then to double dominate $v_{2,5}$, we have $v_{2,4} \in S$. Theorem 1 implies that $v_{2,3} \in S$. But then $\left|\left(N\left[v_{1,4}\right] \cup N\left[v_{2,5}\right]\right) \cap S\right|=2$, contradicting Theorem 3. Hence, $v_{1,5} \notin S$, so $v_{2,5} \in S$. Since each of C_{3}, C_{4} and C_{5} have exactly one vertex in S, Theorem 1 implies that $v_{2,3} \in S$ and $v_{2,4} \in S$. But then $v_{1,4}$ is not double dominated by S, a contradiction. Thus, both C_{1} and C_{6} are S-empty. (口)

Our result follows directly from Claims 1,2 , and 3 .

Lemma 11 Let $G \in\left\{P_{2} \square P_{c}, P_{2} \square P_{\infty}\right\}$, B be an arbitrary 6-block in G, and S be a $\gamma_{L R}(G)$-set. If B is immediately preceded and succeeded by an S-empty column, then $|V(B) \cap S| \geq 9$.

Proof. Suppose B is preceded and succeeded by S-empty columns. Since S double dominates these S-empty columns, both C_{1} and C_{6} are full, and Theorem 1 implies that S contains at least one vertex from each of C_{2} and C_{5}. Without loss of generality, assume that $v_{1,2} \in S$.

If C_{3} is S-empty, then C_{2} and C_{4} are S-full, implying that $|V(B) \cap S| \geq 9$. Hence, we may assume that C_{3} has at least one vertex in S, and by symmetry, C_{4} has at least one vertex in S. If any C_{i}, for $2 \leq i \leq 5$, is S-full, then we are finished. Hence, assume that $\left|V\left(C_{i}\right) \cap S\right|=1$ for $2 \leq i \leq 5$.

If $v_{1,3} \in S$, then to double dominate $v_{2,3}$, we have $v_{2,4} \in S$. Further, Theorem 1 implies that $v_{2,5} \in S$. But then $\left|\left(N\left[v_{2,3}\right] \cup N\left[v_{1,4}\right]\right) \cap S\right|=2$, a contradiction to Theorem 3.

If $v_{2,3} \in S$, then Theorem 1 implies that $v_{2,4}$ and $v_{2,5}$ are in S. But then $v_{1,4}$ is not double dominated by S, again a contradiction. Hence, $|V(B) \cap S| \geq 9$.

Let $G \in\left\{P_{2} \square P_{c}, P_{2} \square P_{\infty}\right\}$ and S be a $\gamma_{L R}(G)$-set. It simplifies our discussion if we are able to discuss 6 -blocks of G by their "position" with respect to each other. Again, being loose with notation, if we begin with an arbitrary 6-block of G, we count the 6 columns immediately preceding B as its predecessor block and the 6 columns immediately following B as its successor block. We say that B is consecutive with its predecessor and successor blocks. If B^{\prime} and $B^{\prime \prime}$ are two 6 -blocks of G such that $B^{\prime}, B_{1}, B_{2}, \ldots, B_{k}, B^{\prime \prime}$ is a sequence of consecutive 6 -blocks, then we say that blocks $B_{1}, B_{2}, \ldots, B_{k}$ separate blocks B^{\prime} and $B^{\prime \prime}$. We have seen by Lemma 9 that for any 6 -block B, at least 6 vertices of B are in S. We call a 6 -block having exactly six vertices in S, a good block.

Lemma 12 Let $G \in\left\{P_{2} \square P_{c}, P_{2} \square P_{\infty}\right\}$ and S be $a \gamma_{L R}(G)$-set. If B^{\prime} and $B^{\prime \prime}$ are good blocks separated by blocks $B_{1}, B_{2}, \ldots, B_{k}$ in G, then either $\left|V\left(B_{i}\right) \cap S\right| \geq 9$ for some i, $1 \leq i \leq k$, or $\left|V\left(B_{i}\right) \cap S\right|=8=\left|V\left(B_{j}\right) \cap S\right|$ for some integers i and $j, 1 \leq i \neq j \leq k$,

Proof. Suppose B^{\prime} and $B^{\prime \prime}$ are good blocks separated by blocks $B_{1}, B_{2}, \ldots, B_{k}$ in G. It follows from Lemma 10 that every block has at least 6 vertices in S; and if B is a good block, then it begins and ends with S-empty columns. Since S must at least double dominate G, it follows that no two good blocks of G are consecutive. Hence, $k \geq 1$. We may assume that $\left|V\left(B_{i}\right) \cap S\right| \geq 7$ for otherwise, one of the B_{i} is a good block, and we let $B^{\prime \prime}=B_{i}$. By Lemma 11, our result holds if $k=1$, so we may assume that $k \geq 2$. We prove a claim.

Claim 1 If B_{i} is preceded by an S-empty column and $\left|V\left(B_{i}\right) \cap S\right|=7$, then the last column of B_{i} is S-empty.

Proof. Suppose B_{i} is preceded by an S-empty column and $\left|V\left(B_{i}\right) \cap S\right|=7$. Lemma 11 implies that B_{i} is not succeeded by an S-empty column. Label the columns of B_{i} as $C_{1}, C_{2}, \ldots, C_{6}$. Then C_{1} is S-full, and Theorem 1 implies that at least one vertex of C_{2} is in S, say $v_{1,2} \in S$. To double dominate the vertices of $C_{5} \cup C_{6}, S$ contains at least two vertices from $C_{5} \cup C_{6}$. Now to double dominate $v_{2,3}$, at least two vertices from $N\left[v_{2,3}\right]$ are in S. Since only 7 vertices from B_{i} are in S, it follows that exactly two vertices from $C_{5} \cup C_{6}$ are in S and exactly two vertices from $N\left[v_{2,3}\right]$ are in S. Hence, $v_{1,4} \notin S$.

If C_{5} is S-full, then C_{6} is S-empty, and the claim is proven. If C_{6} is S full, then C_{5} is S-empty. But then $v_{1,5}$ is not double dominated by S, a contradiction. Hence, we may assume that exactly one vertex from C_{5} and exactly one vertex from C_{6} is in S.

If $v_{1,5} \in S$, then since $v_{1,4} \notin S$, Theorem 1 implies that $v_{1,6} \in S$. To double dominate $v_{2,5}$, we have $v_{2,4} \in S$. But then no matter which vertex from $N\left[v_{2,3}\right]-\left\{v_{2,4}\right\}$ is in S, Theorem 1 is violated. Hence, $v_{1,5} \notin S$.

If $v_{2,5} \in S$, then $v_{1,6} \in S$ to double dominate $v_{1,5}$. Then Theorem 1 implies that $v_{2,3}$ and $v_{2,4}$ are in S to be in a component with $v_{2,5}$. Now $v_{1,4}$ is not double dominated, a contradiction. Hence, C_{6} is empty. (ם)

We now return to the proof of our lemma. By Claim 1, if every B_{i} has exactly 7 vertices in S, then B_{k} ends in an S-empty column. By Lemma $12, B^{\prime \prime}$ begins in an S-empty column. Thus, we have two consecutive S-empty columns, a contradiction.

Hence, at least one B_{i} has at least 8 vertices in S.
Beginning with B_{1}, let B_{i} be the first 6 -block that has at least 8 vertices in S. Then, by symmetry, beginning at B_{k} moving to the left, let B_{j} be the first block having at least 8 vertices in S. Hence, by Claim 1, B_{i-1} ends in an empty column and B_{j+1} begins in an empty column. If $i=j$, then by Lemma $11,\left|V\left(B_{i}\right) \cap S\right| \geq 9$. Hence, $i \neq j$, and so $\left|V\left(B_{i}\right) \cap S\right| \geq 8$ and $V\left(B_{j}\right) \cap S \mid \geq 8$.

Recall the statement of Theorem 1.
Theorem 1 For the infinite ladder $P_{2} \square P_{\infty}, \gamma_{L R} \%\left(P_{2} \square P_{\infty}\right)=\frac{7}{12}$.
Proof. For the infinite ladder $G=P_{2} \square P_{\infty}$, we show that the percentage of vertices in a $\gamma_{L R}(G)$-set is $\frac{7}{12}$. We first establish an upper bound by noting that the set S of darkened vertices shown by the pattern in Figure 4 is a liar's dominating set of G. In this pattern, the block of columns labeled a through f has exactly six darkened vertices, columns 1 through 6 have exactly seven darkened vertices, and there are exactly seven darkened vertices in columns 7 through 12. Repeating the pattern established in columns 7 through 12 infinitely to the right and the pattern in columns 1 through 6 infinitely to the left yields $7 / 12$ of the vertices in both directions. Hence, $\gamma_{L R} \%(G) \leq \frac{7}{12}$.

Figure 4: Pattern for $\gamma_{L R} \%\left(P_{2} \square P_{\infty}\right) \leq \frac{7}{12}$

To prove the lower bound, let S be a $\gamma_{L R}(G)$-set. By Lemma 9 , every 6 -block of G has at least 6 vertices in S. If there is a finite number of good blocks, then clearly
$\gamma_{L R} \%\left(P_{2} \square P_{\infty}\right) \geq \frac{7}{12}$. If there are two or more good blocks, then by Lemma 12 , between every pair of good blocks there exists a block B_{i} having $\left|V\left(B_{i}\right) \cap S\right| \geq 9$ for some i, or two blocks B_{i} and B_{j} for some integers i and $j, i \neq j$ such that $\left|V\left(B_{i}\right) \cap S\right|=8=\left|V\left(B_{j}\right) \cap S\right|$. Hence, if there are an infinite number of good blocks, $\gamma_{L R} \%\left(P_{2} \square P_{\infty}\right) \geq \frac{7}{12}$. In both cases the lower bound holds, so $\gamma_{L R} \%\left(P_{2} \square P_{\infty}\right)=\frac{7}{12}$.

We now turn our attention to the finite ladder.

Observation 13 For the finite ladder $P_{2} \square P_{c}$, any $\gamma_{L R}\left(P_{2} \square P_{c}\right)$-set S contains at least 3 vertices from the first two columns and at least 3 vertices from the last two columns, that is, $\left|\left(C_{1} \cup C_{2}\right) \cap S\right| \geq 3$ and $\left|\left(C_{c-1} \cup C_{c}\right) \cap S\right| \geq 3$.

Definition 14 We call the subgraph formed from $P_{2} \square P_{c}$ by removing the first two and last two columns an internal ladder. Thus, the internal ladder of $P_{2} \square P_{c}$ is the subgraph $P_{2} \square P_{c-4}$ beginning with column 3 and ending with column $c-2$ in the original $P_{2} \square P_{c}$.

Figure 5: $\gamma_{L R}\left(P_{2} \square P_{c}\right)$-sets for $c \leq 5$

Theorem 2 For the finite graph $P_{2} \square P_{c}$ where $c \geq 2$,

$$
\gamma_{L R}\left(P_{2} \square P_{c}\right)= \begin{cases}7\left\lfloor\frac{c}{6}\right\rfloor+k+1 & \text { if } c \neq 4 \\ 6 & \text { if } c=4 .\end{cases}
$$

Figure 6: The block pattern
where k is the remainder of $c / 6$.
Proof. We note that the darkened vertices illustrated in Figure 5 for the ladders $P_{2} \square P_{c}$ for $c \in\{2,3,4,5\}$ are liar's dominating set for $P_{2} \square P_{c}$. By Observation 13, the sets are $\gamma_{L R}\left(P_{2} \square P_{c}\right)$-sets for $2 \leq c \leq 5$, and our result holds. Hence, we may assume that $c \geq 6$.

We first establish the upper bound. Using the block pattern illustrated in Figure 6 , let S_{b} be the set of darkened vertices formed by repeating this pattern starting at column 1 and continuing on $\left\lfloor\frac{c}{6}\right\rfloor$ consecutive blocks of $P_{2} \square P_{c}$. For $c \equiv 0(\bmod 6)$, let $S=S_{b} \cup\left\{v_{1, c}\right\}$. For $c \equiv 1(\bmod 6)$, let $S=S_{b} \cup\left\{v_{1, c}, v_{2, c}\right\}$. For $c \equiv 2(\bmod 6)$, let $S=S_{b} \cup\left\{v_{1, c-1}, v_{2, c-1}, v_{1, c}\right\}$. For $c \equiv 3(\bmod 6)$, let $S=S_{b} \cup\left\{v_{1, c-2}, v_{1, c-1}, v_{1, c}, v_{2, c-1}\right\}$. For $c \equiv 4(\bmod 6)$, let $S=S_{b} \cup\left\{v_{1, c-3}, v_{2, c-3}, v_{1, c-1}, v_{2, c-1}, v_{1, c}\right\}$. For $c \equiv 5(\bmod 6)$, let $S=S_{b} \cup\left\{v_{1, c-4}, v_{1, c-3}, v_{1, c-1}, v_{1, c}, v_{2, c-3}, v_{2, c-1}\right\}$. In each case, it is straightforward to check that S is an liar's dominating set of $P_{2} \square P_{c}$, and hence, $\gamma_{L R}\left(G_{2, c}\right) \leq 7\left\lfloor\frac{c}{6}\right\rfloor+k+1$, where k is the remainder of $c / 6$.

To establish the necessary lower bound, let S be a $\gamma_{L R}\left(P_{2} \square P_{c}\right)$-set. By Observation 13, there are at least 6 vertices in S from $C_{1} \cup C_{2} \cup C_{c-1} \cup C_{c}$. We may assume that C_{2} and C_{c-1} are S-full vertices since they dominate at least as many vertices in $P_{2} \square P_{c}$ as the vertices in columns C_{1} and C_{c} do. We consider the internal ladder having $c-4$ columns, where the vertices in the first and last columns, namely, C_{3}
and C_{c-2} in $P_{2} \square P_{c}$, are dominated exactly once by $S \cap\left(C_{1} \cup C_{2} \cup C_{c-1} \cup C_{c}\right)$.
We begin with the first column of the internal ladder and group the columns into consecutive 6 -blocks, say $B_{1}, B_{2}, \ldots, B_{j}$, where $c-4=6 j+d$ and d is the remainder of $(c-4) / 6$. Thus, there are $j=\lfloor(c-4) / 6\rfloor 6$-blocks with d extra columns in the internal ladder. By Lemma $9,\left|V\left(B_{i}\right) \cap S\right| \geq 6$ for $1 \leq i \leq j$.

Assume that there are at least two good blocks in $B_{1}, B_{2}, \ldots, B_{j}$, say B_{a} and B_{b}, where $a<b$. Then by Lemma 12, $\left|V\left(B_{i}\right) \cap S\right| \geq 9$ for some $a<i<b$ or $\left|V\left(B_{i}\right) \cap S\right|=8$ and $\left|V\left(B_{p}\right) \cap S\right|=8$ for some $a<i \neq p<b$. This is the case between any pair of good blocks. Hence, if there are at least two good blocks or no good blocks, $\left|\bigcup^{j}{ }_{i=1} V\left(B_{i}\right) \cap S\right| \geq 7 j$. Moreover, if there is exactly one good block, $\left|\bigcup^{j}{ }_{i=1} V\left(B_{i}\right) \cap S\right| \geq 7(j-1)+6$. From Lemma 10 and the proof of Lemma 12, we deduce that if $\left|\bigcup^{j}{ }_{i=1} V\left(B_{i}\right) \cap S\right|=7(j-1)+6=7 j-1$, then exactly one of the B_{i} 's is a good block and that B_{j} ends in an S-empty column. Thus, to count the minimum number of vertices in S, we add $\left|\bigcup^{j}{ }_{i=1} V\left(B_{i}\right) \cap S\right|$ plus 6 for the vertices from the first two and last two columns of G plus the number of vertices in S from the remaining d columns of the internal ladder.

We consider six cases based on d.
Case 1: $d=0$. Then $c \equiv 4(\bmod 6)$, so $k=4$. It follows that $|S| \geq 7(j-1)+$ $6+6=7 j+5=7\left\lfloor\frac{c-4}{6}\right\rfloor+5=7\left\lfloor\frac{c}{6}\right\rfloor+k+1$.

Case 2: $d=1$. Then $c \equiv 5(\bmod 6)$, so $k=5$. If there are no good blocks in $\left\{B_{1}, B_{2}, \ldots, B_{j}\right\}$, then $|S| \geq 7 j+6=7\left\lfloor\frac{c-4}{6}\right\rfloor+6=7\left\lfloor\frac{c}{6}\right\rfloor+k+1$, as desired. If there is a good block, then B_{j} ends in an S-empty column, that is, C_{c-3} is an S-empty column, implying that C_{c-2} is S-full. Hence, $|S| \geq 7(j-1)+6+6+2=7\left\lfloor\frac{c-4}{6}\right\rfloor-7+14=$
$7\left\lfloor\frac{c}{6}\right\rfloor+k+1$.
Case 3: $d=2$. Then $c \equiv 0(\bmod 6)$, so $k=0$. By Lemma $9,\left|S \cap\left(C_{c-2} \cup C_{c-3}\right)\right| \geq$ 2. If there is no good block in $\left\{B_{1}, B_{2}, \ldots, B_{j}\right\}$, then $|S| \geq 7\left\lfloor\frac{c-4}{6}\right\rfloor+6+2=7\left\lfloor\frac{c}{6}\right\rfloor+1$. If there is a good block, then since B_{j} ends in an S-empty column, by Lemma 9 $\left|S \cap\left(C_{c-2} \cup C_{c-3}\right)\right| \geq 3$. Hence, $|S| \geq 7(j-1)+6+6+3=7\left\lfloor\frac{c-4}{6}\right\rfloor+8=7\left\lfloor\frac{c}{6}\right\rfloor+1$.

Case 4: $d=3$. Then $c \equiv 1(\bmod 6)$, so $k=1$. By Lemma $9, \mid S \cap\left(C_{c-4} \cup C_{c-3} \cup\right.$ $\left.C_{c-2}\right) \mid \geq 3$. Moreover, if there is a good block in $B_{1}, B_{2}, \ldots, B_{j}$, then B_{j} ends in an empty column, and so by Lemma $9,\left|S \cap\left(C_{c-4} \cup C_{c-3} \cup C_{c-2}\right)\right| \geq 4$. Hence, either $|S| \geq 7 j+6+3=7\left\lfloor\frac{c-4}{6}\right\rfloor+9$ or $|S| \geq 7(j-1)+6+6+4=7\left\lfloor\frac{c-4}{6}\right\rfloor+9$. In both cases, $|S| \geq 7\left\lfloor\frac{c}{6}\right\rfloor+k+1$.

Case 5: $d=4$. Then $c \equiv 2(\bmod 6)$, so $k=2$. By Lemma $9, \mid S \cap\left(C_{c-5} \cup\right.$ $\left.C_{c-4} \cup C_{c-3} \cup C_{c-2}\right) \mid \geq 4$, and using a similar argument as in previous cases, if there is a good block, then $\left|S \cap\left(C_{c-5} \cup C_{c-4} \cup C_{c-3} \cup C_{c-2}\right)\right| \geq 5$. If there is no good block, then $|S| \geq 7\left\lfloor\frac{c-4}{6}\right\rfloor+6+4=7\left\lfloor\frac{c}{6}\right\rfloor+k+1$. If there is a good block, $|S| \geq 7(j-1)+6+6+5=7\left\lfloor\frac{c}{6}\right\rfloor+k+1$.

Case 6: $d=5$. Then $c \equiv 3(\bmod 6)$, so $k=3$. By Lemma $9, \mid S \cap\left(C_{c-6} \cup C_{c-5} \cup\right.$ $\left.C_{c-4} \cup C_{c-3} \cup C_{c-2}\right) \mid \geq 5$, and using a similar argument as in previous cases, if there is a good block, then $\left|S \cap\left(C_{c-6} \cup C_{c-5} \cup C_{c-4} \cup C_{c-3} \cup C_{c-2}\right)\right| \geq 6$. If there is no good block, then $|S| \geq 7\left\lfloor\frac{c-4}{6}\right\rfloor+6+5=7\left\lfloor\frac{c}{6}\right\rfloor+k+1$. If there is a good block, $|S| \geq 7(j-1)+6+6+6=7\left\lfloor\frac{c-4}{6}\right\rfloor+11=7\left\lfloor\frac{c}{6}\right\rfloor+k+1$.

Thus, in every case, $\gamma_{L R}\left(P_{2} \square P_{c}\right) \geq 7\left\lfloor\frac{c}{6}\right\rfloor+k+1$, and so for $2 \leq c \neq 4$, we have $\gamma_{L R}\left(P_{2} \square P_{c}\right)=7\left\lfloor\frac{c}{6}\right\rfloor+k+1$.

Figure 7: The internal ladder block pattern

$$
3.2 \quad P_{3} \square P_{\infty}
$$

We now shift our focus to the $P_{3} \square P_{\infty}$ grid. Similar to the ladder, we define a 4-block as four consecutive columns of the $P_{3} \square P_{\infty}$. Our goal is to determine $\gamma_{L R} \%(G)$ for $P_{3} \square P_{\infty}$. We desire to prove the following theorem.

Figure 8: Good block configurations

Figure 9: Reflected good block configurations

Theorem 15 For the infinite graph $P_{3} \square P_{\infty}, \gamma_{L R} \%\left(P_{3} \square P_{\infty}\right)=\frac{1}{2}$.

Let B be an arbitrary 4-block, and let S be a $\gamma_{L R}\left(P_{3} \square P_{\infty}\right)$-set.

Lemma 16 Let $G=P_{3} \square P_{\infty}, B$ be any 4-block in G, and S be a $\gamma_{L R}$-set. Then $|S \cap V(B)| \geq 5$ and if $|S \cap V(B)|=5$, then the first or last column of B is S-empty.

If there exists a 4-block, B, such that $|S \cap V(B)|=5$, then we call B a good block. Every good block configuration is illustrated by one of the patterns in Figures 8 and 9.

Proof. Let $G=P_{3} \square P_{\infty}, B$ be any 4 -block in G, and S be a $\gamma_{L R}$-set. Label the columns of B as C_{1}, C_{2}, C_{3}, and C_{4}. Observe that in every block B, C_{2} and C_{3} must be at least double dominated by the vertices of $V(B) \cap S$ with C_{1} and C_{4} at least dominated. If $\left|\left(C_{2} \cup C_{3}\right) \cap S\right| \leq 1$, then C_{2} or C_{3} is not double dominated. Hence, $\left|\left(C_{2} \cup C_{3}\right) \cap S\right| \geq 2$. If $\left|\left(C_{2} \cup C_{3}\right) \cap S\right| \geq 6$, we are finished. Hence, assume that $2 \leq\left|\left(C_{2} \cup C_{3}\right) \cap S\right| \leq 5$, implying that at most one of C_{2} and C_{3} is S-full. If $\left|\left(C_{2} \cup C_{3}\right) \cap S\right|=5$, then at least one vertex of $C_{1} \cup C_{4}$ is not dominated by the vertices of $C_{2} \cup C_{3}$ implying that S contains a vertex from $C_{1} \cup C_{4}$ and so $|V(B) \cap S| \geq 6$.

Suppose $\left|\left(C_{2} \cup C_{3}\right) \cap S\right|=2$. If $\left|C_{2} \cap S\right|=2$, then C_{3} is not double dominated. Similarly, both vertices of S are not in C_{3}. Hence, $\left|C_{2} \cap S\right|=1$ and $\left|C_{3} \cap S\right|=1$. If $v_{1,2}$ and $v_{1,3}$, or $v_{3,2}$ and $v_{3,3}$ are in S, then C_{3} is not double dominated is not dominated by S. If $v_{2,2} \in S$ and $v_{2,3} \in S$, then $\left\{v_{1,1}, v_{3,1}, v_{1,4}, v_{3,4}\right\} \subseteq S$ to double dominate the vertices of $C_{2} \cup C_{3}$. Hence, $|V(B) \cap S| \geq 6$. If $v_{1,2} \in S$ and $v_{2,3} \in S$, then C_{2} is not double dominated. Similarly, if any of the pairs $v_{1,3}$ and $v_{2,2}, v_{3,2}$ and $v_{2,3}$, and $v_{2,2}$ and $v_{3,3}$ is in S, then S does not double dominate $C_{2} \cup C_{3}$. If $v_{1,2} \in S$ and $v_{3,3} \in S$, then C_{1} and C_{4} are S-full and $|V(B) \cap S| \geq 8$.

Let $\left|C_{2} \cup C_{3}\right|=3$. If C_{2} is S-full, then C_{3} is S-empty implying that C_{4} is S-full. Hence, $|V(B) \cap S| \geq 6$. Thus, C_{2} is not S-full. Similarly, C_{3} is not S-full. Without loss of generality, we may assume that exactly two vertices from C_{2} and one vertex from C_{3} are in S. We consider two cases depending on the vertices of C_{2}. Assume
the vertices of $C_{2} \cap S$ are adjacent. Without loss of generality, we may assume that $v_{1,2} \in S$ and $v_{2,2} \in S$. Then, if $v_{1,3} \in S$, then $v_{3,3}$ is not double dominated by S, a contradiction. If $v_{2,3} \in S$, then to double dominate $\left\{v_{3,2}, v_{3,3}, v_{3,1}, v_{1,4}\right\}, S$ requires at least three vertices from $C_{1} \cup C_{4}$. Thus, $|V(B) \cap S| \geq 6$. If $v_{3,3} \in S$, then Theorem 1 implies that $v_{4,4} \in S$ and at least one of $v_{1,1}$ and $v_{2,1}$ is in S. Moreover, to double dominate $v_{1,3}$, it follows that $v_{1,4} \in S$. Thus, $|V(B) \cap S| \geq 6$.

If the vertices in $C_{2} \cap S$ are not adjacent, then it must be that $v_{2,2} \notin S$. Hence, $v_{1,2} \in S$ and $v_{3,2} \in S$. If $v_{1,3} \in S$, then at least two vertices from C_{4} are in S to double dominate $\left\{v_{2,3}, v_{3,3}\right\}$, and at least one vertex from C_{1} is in S to double dominate $v_{2,1}$. Thus, $|V(B) \cap S| \geq 6$. Similarly, the result holds in $v_{3,3} \in S$. If $v_{2,3} \in S$, then Theorem 1 implies that $v_{2,4} \in S, v_{1,1} \in S$, and $v_{3,1} \in S$. Hence, $|V(B) \cap S| \geq 6$.

Thus, we may assume that $\left|\left(C_{2} \cup C_{4}\right) \cap S\right|=4$. If $\left|\left(C_{1} \cup C_{4}\right) \cap S\right| \geq 2$, then we are finished. Hence, let $\left|\left(C_{1} \cup C_{4}\right) \cap S\right|=1$, that is $|V(B) \cap S|=5$. It follows that one of C_{1} and C_{4} is S-empty. Without loss of generality, assume that C_{1} is S-empty. Then C_{2} is S-full. Now, $\left|C_{3} \cap S\right|=1$ and $\left|C_{4} \cap S\right|=1$. To double dominate $C_{3} \cup C_{4}$, each vertex of $C_{3} \cup C_{4}$ must be dominated by $\left|\left(C_{3} \cup C_{4}\right) \cap S\right|$. Hence, either $\left\{v_{1,2}, v_{3,4}\right\} \subseteq S$, $\left\{v_{1,4}, v_{3,3}\right\} \subseteq S$, or $\left\{v_{2,3}, v_{2,4}\right\} \subseteq S$. By symmetry, the same holds for C_{4} is S-empty. Since in all other cases, $|V(B) \cap S| \geq 6$, this establishes the block patterns (shown in Figures 8 and 9) necessary for a good 4-block. By symmetry, either C_{1} or C_{4} is S-empty and C_{2} or C_{3}, respectively, is S-full.

Lemma 17 If C_{1} and C_{4} are S-full in any 4-block B, then $|V(B) \cap S| \geq 8$.

Proof. Let B be an arbitrary 4-block, and let C_{1} and C_{4} be S-full. Then by Theorem 3, we must at least double dominate C_{2} and C_{4}, so $\left|\left(C_{2} \cup C_{3}\right) \cap S\right| \geq 2$. Thus,
$|V(B) \cap S| \geq 8$.

Lemma 18 If a 4-block B_{i} is preceded and succeeded by good blocks, then $\mid V\left(B_{i}\right) \cap$ $S \mid \geq 8$.

Proof. Label the columns in B_{i} as 1 through 4. Let S^{1} be the first configuration of vertices in Figure 8. Notice that the first block in Figure 9 is a reflection of S^{1}. Let the reflection of S^{1} be $S^{1 r}$. Let the second configuration of vertices in Figure 8 be labeled S^{2} and its reflection labeled $S^{2 r}$. Let the third configuration of vertices in Figure 8 be labeled S^{3} and its reflection labeled $S^{3 r}$. Let S be a $\gamma_{L R}$-set. We now consider cases based on good block configurations in B_{i-1} and B_{i+1}.

Case 1: Let B_{i-1} have any configuration in Figure 9 or S^{2} or S^{3} from Figure 8. If B_{i-1} has a configuration from Figure 9 , then Theorem 3 implies that C_{1} is S-full. If B_{i-1} has S^{2} or S^{3}, without loss of generality, say S^{2}, then Theorem 1 implies that $v_{1,1} \in S$. Moreover, to double dominate the vertices of the last column of $B_{i-1}, v_{2,1}$ and $v_{3,1}$ are in S. Thus, in any case, C_{1} is S-full.

If B_{i} is succeeded by any configuration in Figure 9 or $S^{2 r}$ or $S^{3 r}$ in Figure 8, then a similar argument to above shows that C_{4} is S-full. Then to double dominate the vertices of $C_{2} \cup C_{3}$ at least two vertices from $C_{2} \cup C_{3}$ are in S, implying that $\left|V\left(B_{i}\right) \cap S\right| \geq 8$ as desired.

Assume that B_{i} is succeeded by $S^{1 r}$. Then $v_{1,4} \in S$ and $v_{2,4} \in S$ to double dominate the vertices of B_{i+1}. If $v_{2,4} \in S$, then as before S contains 2 vertices from $C_{2} \cup C_{3}$ and we are finished.

Hence, assume that $v_{2,4} \notin S$. Then Theorem 1 implies that $v_{1,3}$ and $v_{3,3}$ are in S. Moreover, either $v_{2,3} \in S$ or both $v_{1,2}$ and $v_{3,2}$ are in S. In either case, $|V(B) \cap S| \geq 8$.

Case 2: Let B_{i-1} have configuration S^{1}. Using a symmetric argument to above, we are finished for all cases except when B_{i+1} has configuration $S^{1 r}$. Then to double dominate the vertices of B_{i-1} and B_{i+1}, we have that $v_{1,1}, v_{3,1}, v_{1,4}$, and $v_{3,4}$ are in S. By Theorem 1, either $v_{2,1} \in S$ or both $v_{1,2}$ and $v_{3,2}$ are in S. Similarly, either $v_{2,4} \in S$ or both $v_{1,3}$ and $v_{3,3}$ are in S. If $\left\{v_{1,2}, v_{3,2}, v_{1,3}, v_{3,3}\right\} \subseteq S$, then $\left|V\left(B_{i}\right) \cap S\right| \geq 8$, and we are finished.

Hence, without loss of generality, we may assume that $v_{2,1} \in S$, that is, C_{1} is S-full. If $v_{2,4} \in S$, then to double dominate $C_{2} \cup C_{3}$, at least two additional vertices from $C_{2} \cup C_{3}$ are in S, implying that $\left|V\left(B_{i}\right) \cap S\right| \geq 8$.

Thus, $v_{2,4} \notin S$, and so $v_{1,3}$ and $v_{3,3}$ are in S. Theorem 1 implies that at least one additional vertex from $C_{2} \cup C_{3}$ is in S. Again, $\left|V\left(B_{i}\right) \cap S\right| \geq 8$.

Lemma 19 If B_{i} is preceded by a good block and $\left|V\left(B_{i}\right) \cap S\right|=6$, then the last column in B_{i} is S-empty.

Proof. Label the columns in B_{i} as C_{1} through C_{4}, and suppose B_{i} is preceded by a good block and $\left|V\left(B_{i}\right) \cap S\right|=6$. If C_{4} is S-empty, we are finished, so assume that $\left|C_{4} \cap S\right| \geq 1$. If B_{i-1} has any configuration in Figure 9 , or S^{2}, or S^{3}, of Figure 8 then by Theorem 3, C_{1} is S-full. Theorem 18 implies that B_{i} is not succeeded by a good block. Then there are exactly three vertices from $C_{2} \cup C_{3} \cup C_{4}$ in S. But then the vertices of $C_{2} \cup C_{3}$ are not double dominated.

If B_{i-1} has the configuration S^{1}, then $v_{1,1} \in S$ and $v_{3,1} \in S$ to double dominate the vertices of B_{i-1}. If $v_{2,1} \in S$, then C_{1} is S-full and since C_{4} is not S-empty, there are exactly two vertices from $C_{2} \cup C_{3}$ in S. This is the same as the previous case where the vertices of $C_{2} \cup C_{3}$ are not double dominated. Hence, $v_{2,1} \notin S$. Theorem 1
implies that $v_{1,2}$ and $v_{3,2}$ are in S. Moreover, either $v_{2,2} \in S$ or both $v_{1,3}$ and $v_{3,3}$ are in S. For the latter, $v_{2,4}$ is double dominated by S, a contradiction. Hence, $v_{2,2} \in S$, and since $\left|V\left(B_{i}\right) \cap S\right|=6$, exactly one vertex of C_{4} is in S and C_{3} is S-empty. But then at least one vertex of C_{3} is not double dominated, a contradiction. Hence, we conclude that C_{4} is S-empty.

Lemma 20 Let $G=P_{3} \square P_{\infty}$, and let S be a $\gamma_{L R}(G)$-set. If B^{\prime} and $B^{\prime \prime}$ are good blocks separated by $B_{1}, B_{2}, \ldots, B_{k}$, then $\left|V\left(B_{i}\right) \cap S\right| \geq 8$ for some $i, 1 \leq i \leq k$ or $\left|V\left(B_{i}\right) \cap S\right|=7=\left|V\left(B_{j}\right) \cap S\right|$ for some integers $i, j, i \neq j$.

Proof. Let B^{\prime} and $B^{\prime \prime}$ be good blocks separated by blocks $B_{1}, B_{2}, \ldots, B_{k}$ in $P_{3} \square P_{\infty}$. Lemma 16 implies that $k \geq 1$. We assume that $\left|V\left(B_{i}\right) \cap S\right| \geq 6,1 \leq i \leq k$, otherwise one of the B_{i} 's is a good block, and we let it be $B^{\prime \prime}$. By Lemma 18, our result holds for $k=1$, so we assume that $k \geq 2$. By Lemma $16, B^{\prime}$ ends in an S-empty column or a column with 1 vertex in S, and $B^{\prime \prime}$ begins in an S-empty column or a column with 1 vertex in S. Assume for a contradiction that $\left|V\left(B_{i}\right) \cap S\right|=6$ for $1 \leq i \leq k$. By Lemma 19, B_{1} ends in an S-empty column and B_{k} ends in an S-empty column. But then at least one vertex of $B^{\prime \prime}$ is not double dominated by S. Hence, at least one B_{i} has at least 7 vertices in S.

Beginning with B_{1}, let B_{i} be the first 4 -block that has at least 7 vertices in S. By symmetry, beginning at B_{k} moving to the left, let B_{j} be the first block having at least 7 vertices in S. Hence, by Lemma $19, B_{i-1}$ ends in an empty column and B_{j+1} begins in an empty column. If $i=j$, then by Lemma $17,\left|V\left(B_{i}\right) \cap S\right| \geq 8$ and we are finished. Hence, $i \neq j$, and so $\left|V\left(B_{i}\right) \cap S\right| \geq 7$ and $\left|V\left(B_{j}\right) \cap S\right| \geq 7$ as desired. Theorem 15 For the infinite graph $P_{3} \square P_{\infty}, \gamma_{L R} \%\left(P_{3} \square P_{\infty}\right)=\frac{1}{2}$.

Figure 10: Upper bound for $\gamma_{L R}\left(P_{3} \square P_{\infty}\right)$
Proof. For the infinite graph $G=P_{3} \square P_{\infty}$, we show that the percentage of vertices in a $\gamma_{L R}\left(P_{3} \square P_{\infty}\right)$-set is $\frac{1}{2}$. We establish the upper bound by noting the set S of darkened vertices shown by the pattern in Figure 10 is a liar's dominating set of $P_{3} \square P_{\infty}$. We have that in every block, B, there are at least 6 vertices in S, except for possibly one block, B_{i}, which has 5 vertices is S. Repeating the pattern in columns 12 through 15 infinitely to the right and the pattern in columns 1 through 4 infinitely to the left yields $\frac{1}{2}$ of the vertices in both directions. Thus, $\gamma_{L R} \%\left(P_{3} \square P_{\infty}\right) \leq \frac{1}{2}$.

To prove the lower bound, let S be a $\gamma_{L R}(G)$-set. By Lemma 16 , every 4 -block of G has at least 5 vertices in S. If there is at most one good block, then clearly $\gamma_{L R} \%\left(P_{3} \square P_{\infty}\right) \geq \frac{1}{2}$. If there are two or more good blocks, then by Lemma 20 , between every pair of good blocks there exists a block $\left|V\left(B_{i}\right) \cap S\right| \geq 8$ for some i or $1 \leq i \leq k$ or $\left|V\left(B_{i}\right) \cap S\right|=7=\left|V\left(B_{j}\right) \cap S\right|$ for some integers $i, j, i \neq j$. Hence, if there is more than one good block, the average number in S is at least $\frac{1}{2}$. Thus, $\gamma_{L R} \%\left(P_{3} \square P_{\infty}\right)=\frac{1}{2}$.

3.3 Bounds on Other Grids

Next consider the finite grid graph $P_{3} \square P_{c}$.

Lemma 21 In the finite graph $P_{3} \square P_{c},\left|\left(C_{1} \cup C_{2}\right) \cap S\right| \geq 3$ and $\left|\left(C_{c} \cup C_{c-1}\right) \cap S\right| \geq 3$, where c is number of columns in $P_{3} \square P_{c}$.

Proof. Since every liar's dominating set must be a double dominating set, it follows that any liar's dominating set of $P_{3} \square P_{c}$ must have at least 3 vertices from the first two columns in order to double dominate the C_{1}. Similarly, every liar's dominating set requires 3 vertices from the last two columns.

Figure 11: Patterns for finite upper bound

Conjecture 22 For the finite grid $P_{3} \square P_{c}, \gamma_{L R}\left(P_{3} \square P_{c}\right)=\left\lceil\frac{n}{2}\right\rceil+1$.

Proposition 23 For the finite grid $P_{3} \square P_{c}, \gamma_{L R}\left(P_{3} \square P_{c}\right) \leq\left\lceil\frac{n}{2}\right\rceil+1$.

Proof. Let $B \equiv P_{3} \square P_{4}$ be the first 4-block pattern shown in Figure 11. Let S_{b} be the set of darkened vertices formed by repeating the first block pattern $\left\lfloor\frac{c}{4}\right\rfloor$ times on $P_{3} \square P_{c}$.

Let T_{b} be the set of darkened vertices formed by beginning with the second block pattern in Figure 11 and repeating the third block pattern shown in Figure 11, starting with the first column to the right of $C_{4},\left\lfloor\frac{c-4}{4}\right\rfloor$ times on $P_{3} \square P_{c}$.

For $c \equiv 0(\bmod 4)$, let $S=S_{b} \cup\left\{v_{2, c}\right\}$. For $c \equiv 1(\bmod 4)$, let $S=T_{b} \cup\left\{v_{2, c}\right\}$. For $c \equiv 2(\bmod 4)$, let $S=S_{b} \cup\left\{v_{1, c-1}, v_{2, c-1}, v_{3, c-1}, v_{2, c}\right\}$. For $c \equiv 3(\bmod 4)$, let $S=T_{b} \cup\left\{v_{1, c-1}, v_{2, c-1}, v_{3, c-1}, v_{2, c}\right\}$. In each case, S is a liar's dominating set of $P_{3} \square P_{c}$, and hence, $\gamma_{L R}\left(P_{3} \square P_{c}\right) \leq\left\lceil\frac{n}{2}\right\rceil+1$.

It remains an open problem to prove that $\gamma_{L R}\left(P_{3} \square P_{c}\right) \geq\left\lceil\frac{n}{2}\right\rceil+1$.

We attain an upper bound on grid graphs of the form $P_{n} \square P_{\infty}$, for $n \geq 4$.

Let S be any liar's dominating set. Let every other column of $P_{n} \square P_{\infty}$ be in S. We can easily check that S is a liar's dominating set and thus, $\gamma_{L R} \%\left(P_{n} \square P_{\infty}\right) \leq \frac{1}{2}$. Thus, we have the following proposition.

Proposition 24 For $G=P_{n} \square P_{\infty}$, where $n \geq 4, \gamma_{L R} \%(G) \leq \frac{1}{2}$.

It is an open problem to prove that $\gamma_{L R} \%\left(P_{n} \square P_{\infty}\right) \geq \frac{1}{2}$, for $n \geq 4$.

Conjecture 25 For $G=P_{n} \square P_{\infty}$, where $n \geq 4, \gamma_{L R} \%(G)=\frac{1}{2}$.

For the infinite grid $\mathbb{Z} \square \mathbb{Z}$, we give an upper bound for the percentage of vertices in a $\gamma_{L R}(\mathbb{Z} \square \mathbb{Z})$-set. Let S be the tiling showing in Figure 12. It is easy to check that the percentage of vertices in S is $\frac{9}{20}$ if we use this tiling on the entire grid. It remains an open problem to show that the percentage of vertices in S is at least $\frac{9}{20}$.

Figure 12: An upper bound for $\gamma_{L R}$ for the infinite grid graph

BIBLIOGRAPHY

[1] T. Y. Chang and W. E. Clark, The domination number of the $5 \times n$ and $6 \times n$ grid graphs, J. Graph Theory 17 (1993) 81-107.
[2] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213.
[3] T.W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc. (1998).
[4] M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs, Ars. Combin. 18 (1984) 33-44.
[5] A. Klobuar, On the k-dominating number of Cartesian products of two paths, Math. Slovaca 55 (2005)141-154.
[6] M. L. Roden and P. J. Slater, Liar's domination in graphs, Discrete Math. 309 (2008) 5884-5890.
[7] P. J. Slater, Liar's domination, Networks 54 (2009) 70-74.

VITA
 CHRISTOPHER STERLING

Education: B.S. Mathematics, Middle Tennessee State University, Murfreesboro, Tennessee 2009
M.S. Mathematics, East Tennessee State University
Johnson City, Tennessee 2012
Professional Experience: National Science Foundation GK-12 Fellow
East Tennessee State Univertsity,
Johnson City, Tennessee 2010-2012

