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ABSTRACT

Liar’s Domination in Grid Graphs

by

Christopher Sterling

As introduced by Slater in 2008, liar’s domination provides a way of modeling protec-

tion devices where one may be faulty. Assume each vertex of a graph G is the possible

location for an intruder such as a thief. A protection device at a vertex v is assumed

to be able to detect the intruder at any vertex in its closed neighborhood N [v] and

identify at which vertex in N [v] the intruder is located. A liar’s dominating set can

identify an intruder’s location even when any one device in the neighborhood of the

intruder vertex can misidentify any vertex in its closed neighborhood as the intruder

location or fail to report an intruder in its closed neighborhood. In this thesis, we

present the liar’s domination number for the grid graphs P2�P∞, P2�Pc, P3�P∞,

and give bounds for other grid graphs.
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1 BACKGROUND

Our main objective in this thesis is to investigate liar’s domination in grid graphs.

It is useful to our discussion of liar’s domination to first understand the fundamentals

of graph theory.

1.1 Basic Graph Theory Definitions

As defined in Haynes, Hedetniemi, and Slater [3], a graph G = (V,E) consists

of a nonempty set V , or V (G), and a collection E, or E(G), of unordered pairs {uv}

for u, v ∈ V . We call each element in V a vertex and each element in E an edge. If

any two vertices have an edge between them, we say these vertices are adjacent. The

number of vertices, or the cardinality of V , is called the order of G and is denoted

|V |, and |E| is called the size of G.

v v v v v v v
a b c d e f g

Figure 1: The path P7

For example the graph in Figure 1, namely, the path P7 has vertex set V =

{a, b, c, d, e, f, g}, and the order of P7 is |V | = 7. The edge set of P7 is E =

{ab, bc, cd, de, ef, fg}, and the size of P7 is |E| = 6.

The open neighborhood N(v) of the vertex v consists of the set of vertices adjacent

to v, that is, N(v) = {u ∈ V | uv ∈ E}, and the closed neighborhood of v is N [v] =

N(v) ∪ v. In the graph in Figure 1, N(a) = {b} and N [a] = {a, b}. For a set S ⊆ V ,
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the open neighborhood N(S) is defined to be ∪v∈SN(v), and the closed neighborhood

of S is N [S] = N(S)∪S. The degree of a vertex v is the number of edges incident with

v, or |N(v)|, and is denoted deg(v). The minimum and maximum degrees of vertices

in V (G) are denoted by δ(G) and ∆(G), respectively. In the graph in Figure 1,

deg(a) = 1, δ(P7) = 1, and ∆(P7) = 2.

A set S ⊆ V (G) is a dominating set of G if N [S] = V (G), that is, a set S is

a dominating set if every element in V \ S is adjacent to an element in S. The

domination number γ(G) is the minimum cardinality of a dominating set of G. A set

S ⊆ V (G) is a double dominating set of G if every element in V \ S is adjacent to at

least two elements in S and every element in S is adjacent to another element in S.

The double domination number is the minimum cardinality of a double dominating

set of G and is denoted γ×2(G). In general, as defined in Harary and Haynes [2], a

set S ⊆ V (G) is a k-tuple dominating set if |N [v] ∩ S| ≥ k for every v ∈ V (G), and

the minimum cardinality of a k-tuple dominating set of G is denoted γ×k(G).

1.2 Liar’s Domination

As introduced by Slater in 2008, a graph G = (V,E) may be used to model a

building, network, or computer system with each vertex in V (G) representing an area

in the building, hub in a computer network, or processor in a computer system. The

edges in E(G) could represent connections such as hallways in a building, adjacent

hubs in a network, or adjacent processors in a system. Each vertex in the graph

is a possible location for a thief, saboteur, fire in a facility, or fault in a computer

network, henceforth reffered to as an intruder. Protection devices are placed at certain
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vertices, or locations, to protect them from intruders. A protection device at vertex

v can detect intruders in adjacent areas and at v itself. Thus, if a protection device

is placed at vertex v, then that protection device can detect an intruder in N [v]. A

protection device at v serves two purposes: to correctly identify the intruder vertex

in N [v] and to correctly report the intruder location. We assume that each protection

device at v is able to detect an intruder in N [v], specify the location in N [v] at which

the intruder is located, and correctly report the intruder location.

To have some fault-tolerance in the system, at most one protection device is al-

lowed to “lie”, or misreport the vertex in its closed neighborhood at which the intruder

is located. When there is an intruder in the closed neighborhood of a protection de-

vice, the device can misreport in two ways: it can report an incorrect vertex in its

closed neighborhood as the intruder vertex, or it can fail to report any vertex in its

closed neighborhood as the intruder vertex. It is also assumed that only detection

devices that are in the closed neighborhood of the intruder vertex can report, so there

can be no “false alarms”.

As defined in Slater [7], a dominating set S ⊆ V (G) is a liar’s dominating set if

for any vertex v ∈ V (G) if all or all but one of the vertices in N [v] ∩ S report v as

the intruder location, and at most one vertex w in N [v] ∩ S either reports a vertex

x ∈ N [w] or fails to report any vertex, then the vertex v can be correctly identified

as the intruder vertex. In other words, if an intruder is at any vertex v, then the

protection devices outside of N [v] are assumed to not report any intruder, one vertex

w ∈ N [v] ∩ S can report nothing or any vertex in N [w] as the intruder vertex, every

other element of N [v] ∩ S will correctly report vertex v as the intruder location, and
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v will be correctly identified as the intruder vertex. The minimum cardinality of a

liar’s dominating set for graph G is called the liar’s domination number and is denoted

γLR(G).

In order to detect an intruder in any graph, a dominating set is needed. But since

any one device can fail to detect the intruder, a double dominating set is required.

Let G be the graph in Figure 2.

v

v v

v v

a

b c

d e

@
@
@
@
@@

�
�

�
�
��

Figure 2: House graph

Since no two vertices can double dominate this graph, we need at least 3 vertices in

any double dominating set. Let S = {b, c, d} and note that S is a double dominating

set of G. We will check to see if S is also a liar’s dominating set. Let us assume an

intruder is at vertex a. The device at d will not report anything, because there are

no false alarms. Let us say the device at c correctly identifies vertex a as the intruder

vertex and correctly reports it. The device at b, however, can ”lie” and report vertex

c as the intruder vertex. Since we cannot determine the location of the intruder with

this set, it is not a liar’s dominating set. Moreover, no double dominating set of

cardinality 3 is a liar’s dominating set, so γLR(G) ≥ 4. If we let S = {a, b, c, d} and
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check all possible intruder locations and liars, we can determine that this is a liar’s

dominating set, and thus, γLR(G) = 4.

1.3 Grid Graphs

Let Pn denote the path on n vertices. As defined in Klobucar [5], the cartesian

product of two graph G and H, denoted G�H, is a graph with the vertex set V (G)×

V (H) and ((uv), (wx)) ∈ E(G�H) if and only if either u = w and vx ∈ E(H), or

uv ∈ E(G) and v = x. In other words, we replace every vertex in G with a copy of

H, and then corresponding vertices in the different copies of H are made adjacent

whenever the original vertices in G are adjacent.

A grid graph is created by taking the cartesian product between two paths, Pr

and Pc. For example, the cartesian product between G = P2 and H = P7 is P2�P7,

which is shown in Figure 3.

Figure 3: The cartesian product of P2 and P7
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2 LIAR’S DOMINATION

In this section, we survey known results in liar’s domination.

2.1 Important Properties

In general, we follow the notation and terminology of [3]. We will employ the

following useful results from from Slater [7].

Theorem 1 [7] If S ⊆ V (G) is an LDS of G, then each component of the induced

subgraph G[S] contains at least three vertices.

Since every liar’s dominating set of G must double dominate G and every triple

dominating set of G is a liar’s dominating set, we have the following result.

Theorem 2 [7] For every connected graph of order n ≥ 3, we have γ×2(G) ≤ γLR(G),

and if G has minimum degree δ(G) ≥ 2, then γ×2(G) ≤ γLR(G) ≤ γ×3(G).

Theorem 3 [7] A vertex set S ⊆ V (G) is a LDS if and only if (1) S double dominates

every v ∈ V (G) and (2) for every pair of u, v of distinct vertices we have |(N [u] ∪

N [v]) ∩ S| ≥ 3.

2.2 Previous Work

Slater [7] introduced liar’s domination in 2008. Since then there has been some

progress in finding the liar’s domination number of different graphs. While most

results will not help us with finding the liar’s domination number of grid graphs, we
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do have some useful results from Slater [7] which serve as a starting point. Slater [7]

states and proves the following results.

The following theorems give a lower bound on γLR for all graphs G.

Theorem 4 [7] If a graph G of order n = |V (G)| has maximum degree ∆(G) = r

(in particular, if G is regular of degree r), then γLR(G) ≥ 6
3r+2

n.

Theorem 5 [7] For a graph G of order n = |V (G)| and size m = |E(G)|, we have

γLR(G) ≥ 3
4
(2n−m).

The next result determines the liar’s domination number for any path Pn.

Theorem 6 [7] For a path Pn of order n, γLR(Pn) =
⌈
3
4
(n+ 1)

⌉
, and γLR(Pn) =

3
4
(n+ 1) if an only if n = 4k + 3.
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3 LIAR’S DOMINATION IN GRID GRAPHS

We have seen that the liar’s domination number has been determined for some

graph families. We study liar’s domination on grid graphs. We determine the liar’s

domination number for P2�Pc, give bounds for larger grid graphs, and determine

the percentage of vertices in a γLR(G)-set for G ∈ {P2�P∞, P3�P∞}. To aid in our

discussion about the cardinality of a liar’s dominating set in an infinite graph, we

need to define the liar’s domination number in terms of a percentage. The parameter

γLR% is defined by γLR% = min{lim sup |V (Gk) ∩ S|/|V (Gk)|}, where Gk is the

induced subgraph Pr�Pk of Pr�P∞ for r ≥ 2.

We will denote the vertices of a Pr�Pc grid by vi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ c.

We refer to the set of vertices Ri = {vi,1, vi,2, ..., vi,c} as the ith row; and the set of

vertices Cj = {v1,j, v2,j, ..., vr,j} as the jth column of Pr�Pc. For a set S of vertices,

we say that a column Cj is S-empty if Cj ∩ S = ∅; and we say that it is S-full if all

the vertices of Cj are in S, that is, if |Cj ∩ S| = r.

3.1 Ladders

We refer to the grid graph P2�Pc and the infinite grid P2�P∞ as ladders. We

will prove the following theorems on the liar’s domination number of ladders.

Theorem 7 For the infinite ladder P2�P∞, γLR%(P2�P∞) = 7
12

.

Theorem 8 For the finite ladder P2�Pc, where c ≥ 2,

γLR(P2�Pc) =

{
7b c

6
c+ k + 1 if c 6= 4;

6 if c = 4.
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A subgraph induced by k ≥ 2 consecutive columns of the P2�P∞ or the P2�Pc

is called a k-block. We first prove four lemmas necessary to the proofs of Theorems 1

and 2.

In these lemmas, we let B be an arbitrary k-block of a ladder. Abusing notation

for the ease of discussion in the proofs of these lemmas, we refer to the columns of

this arbitrary block B as C1, C2, ..., Ck and the vertex vi,j is in row i and column j,

for i ∈ {1, 2} and 1 ≤ j ≤ k.

Lemma 9 Let G = P2�Pc for c ≥ 2, S be a γLR(G)-set, and B be an arbitrarty

k-block of G. Then |V (B)∩ S| ≥ k; and if B is preceded or succeeded by an S-empty

column, then |V (B) ∩ S| ≥ k + 1.

Proof. If no column of B is S-empty, then clearly |V (B)∩S| ≥ k. Moreover, if B is

preceded (respectively, succeeded) by an S-empty column, then C1 (respectively, Ck)

is S-full. Since no column is S-empty, we have |V (B) ∩ S| ≥ k + 1.

Hence, assume that at least one column of B is S-empty. We proceed by induction

on k. If k = 2 and C1 is S-empty, then, by Theorem 3, C2 is S-full. By symmetry, if C2

is S-empty, then C1 is S-full. Thus, |V (B)∩S| ≥ 2 = k. If B is preceded (respectively,

succeeded) by an S-empty column, then Theorem 1 implies that at least one vertex

from C2 (respectively, C1) is in S. In this case, |V (B) ∩ S| ≥ 3 = k + 1, as desired.

Let k = 3. If C1 or C3 is S-empty, then C2 is S-full. Theorem 1 implies that

at least one vertex from C1 ∪ C3 is in S. Hence, |V (B) ∩ S| ≥ 3 = k. If C2 is

S-empty, then both C1 and C3 are S-full, and so |V (B)∩S| ≥ 4 = k+ 1. Suppose B

is preceded (respectively, succeeded) by an S-empty column. Then C1 (respectively,

C3) is S-full and by Theorem 1, C2 has at least one vertex in S. Then at least one
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additional vertex is in S from C2 ∪ C3 (respectively, C1 ∪ C2) in order to dominate

C3 (respectively, C1). Hence, |V (B) ∩ S| ≥ 4 = k + 1.

Thus the base case holds for k ∈ {2, 3}. Assume the result is true for all k′, where

2 ≤ k′ < k. Let k ≥ 4, and consider the block B′ obtained by removing the last two

columns of B. Since k ≥ 4, B has k − 2 ≥ 2 columns. By our inductive hypothesis,

|V (B′)∩S| ≥ k−2, and if B, and hence, B′, is preceded by an S-empty column, then

|V (B′) ∩ S| ≥ k − 1. By our inductive hypothesis, at least two additional vertices

are in S from the final two columns of B, so |V (B) ∩ S| ≥ k − 2 + 2 = k, and if

B is preceded by an S-empty column, |V (B) ∩ S| ≥ k − 1 + 2 = k + 1. Finally,

suppose B is succeeded by an S-empty column. Then by our inductive hypothesis,

|(Ck−1∪Ck)∩S| ≥ 3, implying that |V (B)∩S| ≥ |V (B′)∩S|+3 = k−2+3 = k+1,

as desired. �

Lemma 10 Let G ∈ {P2�Pc, P2�P∞}, B be an arbitrary 6-block in G, and S be a

γLR(G)-set. If |V (B) ∩ S| = 6, then the first and last columns of B are S-empty.

Proof. Let G ∈ {P2�Pc, P2�P∞}, and let S be a γLR(G)-set. Let B be an arbitrary

6-block of G. By Lemma 9, |V (B) ∩ S| ≥ 6. Assume that |V (B) ∩ S| = 6. To show

that C1 and C4 are S-empty, we prove a series of claims.

Claim 1 At least one column of B is S-empty.

Proof. Assume that no column of B is S-empty. Since |V (B) ∩ S| = 6, it follows

that each column of B has exactly one vertex in S. Without loss of generality, we

may assume that v1,1 ∈ S.
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If v1,2 ∈ S, then to double dominate v2,2, we have v2,3 ∈ S. Since each column

contributes exactly one vertex to S, Theorem 1 implies that v2,4 and v2,5 are in S.

But then v1,4 is not double dominated, a contradiction.

Thus, v2,2 ∈ S. Again, Theorem 1 implies that v2,3 and v2,4 are in S. But then

v1,3 is not double dominated by S, a contradiction. (�).

By Claim 1, we may assume that at least one column, say Ci, of B is S-empty.

Claim 2 If column Ci is S-empty, then i 6∈ {2, 3, 4, 5}.

Proof. By symmetry, it suffices to show that the result holds for i ∈ {2, 3}. If i = 3,

then C2 and C4 are S-full to double dominate the vertices of C3. Moreover, Theorem 1

implies that at least one vertex from each of C1 and C5 is in S. But then at least one

more vertex from C5 ∪ C6 is in S to dominate the vertices of C6, contradicting that

|V (B)∩S| = 6. Thus, we may assume that C3 is not S-empty. If C2 is S-empty, then

C1 and C3 are S-full to double dominate C2, and by Theorem 1, at least one vertex

of C4 is in S. Without loss of generality, let v1,4 ∈ S. Now, at least two vertices from

{v2,4, v1,5, v2,5, v2,6} are in S to double dominate the vertex v2,5, and so |V (B)∩S| ≥ 7,

again a contradiction. (�)

Hence, if |V (B)∩S| = 6 and Ci is S-empty, then i ∈ {1, 6}. Thus, we may assume

that S contains at least one vertex from each of columns 2 through 5.

Claim 3 Both C1 and C6 are S-empty.

Proof. From previous claims, at least one of C1 and C6 is S-empty. Without loss

of generality, assume that C1 is S-empty. Then C2 is S-full in order to dominate C1.

By Claim 2, S contains at least one vertex from each of columns 3, 4, and 5. Suppose
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for the purpose of a contradiction that C6 ∩ S 6= ∅. Then each of the columns 2

through 6 have exactly 1 vertex in S. Without loss of generality, we may assume that

v1,6 ∈ S. Then v2,6 6∈ S. If v1,5 ∈ S, then to double dominate v2,5, we have v2,4 ∈ S.

Theorem 1 implies that v2,3 ∈ S. But then |(N [v1,4]∪N [v2,5])∩S| = 2, contradicting

Theorem 3. Hence, v1,5 6∈ S, so v2,5 ∈ S. Since each of C3, C4 and C5 have exactly

one vertex in S, Theorem 1 implies that v2,3 ∈ S and v2,4 ∈ S. But then v1,4 is not

double dominated by S, a contradiction. Thus, both C1 and C6 are S-empty. (�)

Our result follows directly from Claims 1, 2, and 3. �

Lemma 11 Let G ∈ {P2�Pc, P2�P∞}, B be an arbitrary 6-block in G, and S be a

γLR(G)-set. If B is immediately preceded and succeeded by an S-empty column, then

|V (B) ∩ S| ≥ 9.

Proof. Suppose B is preceded and succeeded by S-empty columns. Since S double

dominates these S-empty columns, both C1 and C6 are full, and Theorem 1 implies

that S contains at least one vertex from each of C2 and C5. Without loss of generality,

assume that v1,2 ∈ S.

If C3 is S-empty, then C2 and C4 are S-full, implying that |V (B)∩S| ≥ 9. Hence,

we may assume that C3 has at least one vertex in S, and by symmetry, C4 has at

least one vertex in S. If any Ci, for 2 ≤ i ≤ 5, is S-full, then we are finished. Hence,

assume that |V (Ci) ∩ S| = 1 for 2 ≤ i ≤ 5.

If v1,3 ∈ S, then to double dominate v2,3, we have v2,4 ∈ S. Further, Theorem 1

implies that v2,5 ∈ S. But then |(N [v2,3] ∪ N [v1,4]) ∩ S| = 2, a contradiction to

Theorem 3.
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If v2,3 ∈ S, then Theorem 1 implies that v2,4 and v2,5 are in S. But then v1,4 is

not double dominated by S, again a contradiction. Hence, |V (B) ∩ S| ≥ 9. �

Let G ∈ {P2�Pc, P2�P∞} and S be a γLR(G)-set. It simplifies our discussion if

we are able to discuss 6-blocks of G by their “position” with respect to each other.

Again, being loose with notation, if we begin with an arbitrary 6-block of G, we count

the 6 columns immediately preceding B as its predecessor block and the 6 columns

immediately following B as its successor block. We say that B is consecutive with

its predecessor and successor blocks. If B′ and B′′ are two 6-blocks of G such that

B′, B1, B2, ..., Bk, B
′′ is a sequence of consecutive 6-blocks, then we say that blocks

B1, B2, ..., Bk separate blocks B′ and B′′. We have seen by Lemma 9 that for any

6-block B, at least 6 vertices of B are in S. We call a 6-block having exactly six

vertices in S, a good block.

Lemma 12 Let G ∈ {P2�Pc, P2�P∞} and S be a γLR(G)-set. If B′ and B′′ are good

blocks separated by blocks B1, B2, ..., Bk in G, then either |V (Bi)∩ S| ≥ 9 for some i,

1 ≤ i ≤ k, or |V (Bi)∩S| = 8 = |V (Bj)∩S| for some integers i and j, 1 ≤ i 6= j ≤ k,

Proof. Suppose B′ and B′′ are good blocks separated by blocks B1, B2, ..., Bk in G.

It follows from Lemma 10 that every block has at least 6 vertices in S; and if B is

a good block, then it begins and ends with S-empty columns. Since S must at least

double dominate G, it follows that no two good blocks of G are consecutive. Hence,

k ≥ 1. We may assume that |V (Bi) ∩ S| ≥ 7 for otherwise, one of the Bi is a good

block, and we let B′′ = Bi. By Lemma 11, our result holds if k = 1, so we may

assume that k ≥ 2. We prove a claim.
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Claim 1 If Bi is preceded by an S-empty column and |V (Bi)∩ S| = 7, then the last

column of Bi is S-empty.

Proof. Suppose Bi is preceded by an S-empty column and |V (Bi)∩S| = 7. Lemma 11

implies that Bi is not succeeded by an S-empty column. Label the columns of Bi as

C1, C2, ..., C6. Then C1 is S-full, and Theorem 1 implies that at least one vertex of C2

is in S, say v1,2 ∈ S. To double dominate the vertices of C5 ∪ C6, S contains at least

two vertices from C5 ∪ C6. Now to double dominate v2,3, at least two vertices from

N [v2,3] are in S. Since only 7 vertices from Bi are in S, it follows that exactly two

vertices from C5 ∪C6 are in S and exactly two vertices from N [v2,3] are in S. Hence,

v1,4 6∈ S.

If C5 is S-full, then C6 is S-empty, and the claim is proven. If C6 is S full, then

C5 is S-empty. But then v1,5 is not double dominated by S, a contradiction. Hence,

we may assume that exactly one vertex from C5 and exactly one vertex from C6 is in

S.

If v1,5 ∈ S, then since v1,4 6∈ S, Theorem 1 implies that v1,6 ∈ S. To double

dominate v2,5, we have v2,4 ∈ S. But then no matter which vertex from N [v2,3]−{v2,4}

is in S, Theorem 1 is violated. Hence, v1,5 6∈ S.

If v2,5 ∈ S, then v1,6 ∈ S to double dominate v1,5. Then Theorem 1 implies that

v2,3 and v2,4 are in S to be in a component with v2,5. Now v1,4 is not double dominated,

a contradiction. Hence, C6 is empty. (�)

We now return to the proof of our lemma. By Claim 1, if every Bi has exactly 7

vertices in S, then Bk ends in an S-empty column. By Lemma 12, B′′ begins in an

S-empty column. Thus, we have two consecutive S-empty columns, a contradiction.
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Hence, at least one Bi has at least 8 vertices in S.

Beginning with B1, let Bi be the first 6-block that has at least 8 vertices in S.

Then, by symmetry, beginning at Bk moving to the left, let Bj be the first block

having at least 8 vertices in S. Hence, by Claim 1, Bi−1 ends in an empty column

and Bj+1 begins in an empty column. If i = j, then by Lemma 11, |V (Bi) ∩ S| ≥ 9.

Hence, i 6= j, and so |V (Bi) ∩ S| ≥ 8 and V (Bj) ∩ S| ≥ 8. �

Recall the statement of Theorem 1.

Theorem 1 For the infinite ladder P2�P∞, γLR%(P2�P∞) = 7
12

.

Proof. For the infinite ladder G = P2�P∞, we show that the percentage of vertices

in a γLR(G)-set is 7
12

. We first establish an upper bound by noting that the set S of

darkened vertices shown by the pattern in Figure 4 is a liar’s dominating set of G.

In this pattern, the block of columns labeled a through f has exactly six darkened

vertices, columns 1 through 6 have exactly seven darkened vertices, and there are

exactly seven darkened vertices in columns 7 through 12. Repeating the pattern

established in columns 7 through 12 infinitely to the right and the pattern in columns

1 through 6 infinitely to the left yields 7/12 of the vertices in both directions. Hence,

γLR%(G) ≤ 7
12

.

1 2 3 4 5 6 7 8 9 10 11 12a b c d e fttt tt t tt ttt t ttt ttt t t
. . . . . .

Figure 4: Pattern for γLR%(P2�P∞) ≤ 7
12

To prove the lower bound, let S be a γLR(G)-set. By Lemma 9, every 6-block of

G has at least 6 vertices in S. If there is a finite number of good blocks, then clearly
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γLR%(P2�P∞) ≥ 7
12

. If there are two or more good blocks, then by Lemma 12,

between every pair of good blocks there exists a block Bi having |V (Bi) ∩ S| ≥ 9

for some i, or two blocks Bi and Bj for some integers i and j, i 6= j such that

|V (Bi)∩S| = 8 = |V (Bj)∩S|. Hence, if there are an infinite number of good blocks,

γLR%(P2�P∞) ≥ 7
12

. In both cases the lower bound holds, so γLR%(P2�P∞) = 7
12

.

�

We now turn our attention to the finite ladder.

Observation 13 For the finite ladder P2�Pc, any γLR(P2�Pc)-set S contains at

least 3 vertices from the first two columns and at least 3 vertices from the last two

columns, that is, |(C1 ∪ C2) ∩ S| ≥ 3 and |(Cc−1 ∪ Cc) ∩ S| ≥ 3.

Definition 14 We call the subgraph formed from P2�Pc by removing the first two

and last two columns an internal ladder. Thus, the internal ladder of P2�Pc is the

subgraph P2�Pc−4 beginning with column 3 and ending with column c − 2 in the

original P2�Pc.

u
u

u u
u
u u u

u
u u

u
u u

u
u u

u
u

P2�P2 P2�P3 P2�P4 P2�P5

Figure 5: γLR(P2�Pc)-sets for c ≤ 5

Theorem 2 For the finite graph P2�Pc where c ≥ 2,

γLR(P2�Pc) =

{
7b c

6
c+ k + 1 if c 6= 4;

6 if c = 4.
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1 2 3 4 5 6u u
u

u
u u u

Figure 6: The block pattern

where k is the remainder of c/6.

Proof. We note that the darkened vertices illustrated in Figure 5 for the ladders

P2�Pc for c ∈ {2, 3, 4, 5} are liar’s dominating set for P2�Pc. By Observation 13, the

sets are γLR(P2�Pc)-sets for 2 ≤ c ≤ 5, and our result holds. Hence, we may assume

that c ≥ 6.

We first establish the upper bound. Using the block pattern illustrated in Figure

6, let Sb be the set of darkened vertices formed by repeating this pattern starting at

column 1 and continuing on b c
6
c consecutive blocks of P2�Pc. For c ≡ 0 (mod 6), let

S = Sb ∪ {v1,c}. For c ≡ 1 (mod 6), let S = Sb ∪ {v1,c, v2,c}. For c ≡ 2 (mod 6), let

S = Sb∪{v1,c−1, v2,c−1, v1,c}. For c ≡ 3 (mod 6), let S = Sb∪{v1,c−2, v1,c−1, v1,c, v2,c−1}.

For c ≡ 4 (mod 6), let S = Sb∪{v1,c−3, v2,c−3, v1,c−1, v2,c−1, v1,c}. For c ≡ 5 (mod 6), let

S = Sb ∪ {v1,c−4, v1,c−3, v1,c−1, v1,c, v2,c−3, v2,c−1}. In each case, it is straightforward to

check that S is an liar’s dominating set of P2�Pc, and hence, γLR(G2,c) ≤ 7
⌊
c
6

⌋
+k+1,

where k is the remainder of c/6.

To establish the necessary lower bound, let S be a γLR(P2�Pc)-set. By Observa-

tion 13, there are at least 6 vertices in S from C1 ∪ C2 ∪ Cc−1 ∪ Cc. We may assume

that C2 and Cc−1 are S-full vertices since they dominate at least as many vertices

in P2�Pc as the vertices in columns C1 and Cc do. We consider the internal ladder

having c − 4 columns, where the vertices in the first and last columns, namely, C3
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and Cc−2 in P2�Pc, are dominated exactly once by S ∩ (C1 ∪ C2 ∪ Cc−1 ∪ Cc).

We begin with the first column of the internal ladder and group the columns into

consecutive 6-blocks, say B1, B2, ..., Bj, where c− 4 = 6j + d and d is the remainder

of (c − 4)/6. Thus, there are j = b(c − 4)/6c 6-blocks with d extra columns in the

internal ladder. By Lemma 9, |V (Bi) ∩ S| ≥ 6 for 1 ≤ i ≤ j.

Assume that there are at least two good blocks in B1, B2, ..., Bj, say Ba and

Bb, where a < b. Then by Lemma 12, |V (Bi) ∩ S| ≥ 9 for some a < i < b or

|V (Bi) ∩ S| = 8 and |V (Bp) ∩ S| = 8 for some a < i 6= p < b. This is the case

between any pair of good blocks. Hence, if there are at least two good blocks or no

good blocks, |
⋃

j
i=1V (Bi) ∩ S| ≥ 7j. Moreover, if there is exactly one good block,

|
⋃

j
i=1V (Bi) ∩ S| ≥ 7(j − 1) + 6. From Lemma 10 and the proof of Lemma 12, we

deduce that if |
⋃

j
i=1V (Bi) ∩ S| = 7(j − 1) + 6 = 7j − 1, then exactly one of the

Bi’s is a good block and that Bj ends in an S-empty column. Thus, to count the

minimum number of vertices in S, we add |
⋃

j
i=1V (Bi) ∩ S| plus 6 for the vertices

from the first two and last two columns of G plus the number of vertices in S from

the remaining d columns of the internal ladder.

We consider six cases based on d.

Case 1: d = 0. Then c ≡ 4 (mod 6), so k = 4. It follows that |S| ≥ 7(j − 1) +

6 + 6 = 7j + 5 = 7
⌊
c−4
6

⌋
+ 5 = 7

⌊
c
6

⌋
+ k + 1.

Case 2: d = 1. Then c ≡ 5 (mod 6), so k = 5. If there are no good blocks in

{B1, B2, ..., Bj}, then |S| ≥ 7j+6 = 7b c−4
6
c+6 = 7b c

6
c+k+1, as desired. If there is a

good block, then Bj ends in an S-empty column, that is, Cc−3 is an S-empty column,

implying that Cc−2 is S-full. Hence, |S| ≥ 7(j − 1) + 6 + 6 + 2 = 7b c−4
6
c − 7 + 14 =
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7b c
6
c+ k + 1.

Case 3: d = 2. Then c ≡ 0 (mod 6), so k = 0. By Lemma 9, |S∩ (Cc−2∪Cc−3)| ≥

2. If there is no good block in {B1, B2, ..., Bj}, then |S| ≥ 7
⌊
c−4
6

⌋
+ 6 + 2 = 7

⌊
c
6

⌋
+ 1.

If there is a good block, then since Bj ends in an S-empty column, by Lemma 9

|S ∩ (Cc−2 ∪Cc−3)| ≥ 3. Hence, |S| ≥ 7(j − 1) + 6 + 6 + 3 = 7
⌊
c−4
6

⌋
+ 8 = 7

⌊
c
6

⌋
+ 1.

Case 4: d = 3. Then c ≡ 1(mod 6), so k = 1. By Lemma 9, |S ∩ (Cc−4 ∪ Cc−3 ∪

Cc−2)| ≥ 3. Moreover, if there is a good block in B1, B2, ..., Bj, then Bj ends in an

empty column, and so by Lemma 9, |S ∩ (Cc−4 ∪ Cc−3 ∪ Cc−2)| ≥ 4. Hence, either

|S| ≥ 7j + 6 + 3 = 7
⌊
c−4
6

⌋
+ 9 or |S| ≥ 7(j − 1) + 6 + 6 + 4 = 7

⌊
c−4
6

⌋
+ 9. In both

cases, |S| ≥ 7
⌊
c
6

⌋
+ k + 1.

Case 5: d = 4. Then c ≡ 2(mod 6), so k = 2. By Lemma 9, |S ∩ (Cc−5 ∪

Cc−4 ∪ Cc−3 ∪ Cc−2)| ≥ 4, and using a similar argument as in previous cases, if

there is a good block, then |S ∩ (Cc−5 ∪ Cc−4 ∪ Cc−3 ∪ Cc−2)| ≥ 5. If there is no

good block, then |S| ≥ 7b c−4
6
c + 6 + 4 = 7b c

6
c + k + 1. If there is a good block,

|S| ≥ 7(j − 1) + 6 + 6 + 5 = 7b c
6
c+ k + 1.

Case 6: d = 5. Then c ≡ 3 (mod 6), so k = 3. By Lemma 9, |S ∩ (Cc−6 ∪ Cc−5 ∪

Cc−4 ∪ Cc−3 ∪ Cc−2)| ≥ 5, and using a similar argument as in previous cases, if there

is a good block, then |S ∩ (Cc−6 ∪ Cc−5 ∪ Cc−4 ∪ Cc−3 ∪ Cc−2)| ≥ 6. If there is no

good block, then |S| ≥ 7
⌊
c−4
6

⌋
+ 6 + 5 = 7

⌊
c
6

⌋
+ k + 1. If there is a good block,

|S| ≥ 7(j − 1) + 6 + 6 + 6 = 7
⌊
c−4
6

⌋
+ 11 = 7

⌊
c
6

⌋
+ k + 1.

Thus, in every case, γLR(P2�Pc) ≥ 7
⌊
c
6

⌋
+ k + 1, and so for 2 ≤ c 6= 4, we have

γLR(P2�Pc) = 7
⌊
c
6

⌋
+ k + 1. �
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Figure 7: The internal ladder block pattern

3.2 P3�P∞

We now shift our focus to the P3�P∞ grid. Similar to the ladder, we define a

4-block as four consecutive columns of the P3�P∞. Our goal is to determine γLR%(G)

for P3�P∞. We desire to prove the following theorem.

u
u
u

u u
u
u
u

u
u

u
u
u

u
u

S1 S2 S3

Figure 8: Good block configurations

u
u
u

uu
u
u
uu

u u
u
u

u
u

S1r S2r S3r

Figure 9: Reflected good block configurations

Theorem 15 For the infinite graph P3�P∞, γLR%(P3�P∞) = 1
2
.

Let B be an arbitrary 4-block, and let S be a γLR(P3�P∞)-set.

Lemma 16 Let G = P3�P∞, B be any 4-block in G, and S be a γLR-set. Then

|S ∩ V (B)| ≥ 5 and if |S ∩ V (B)| = 5, then the first or last column of B is S-empty.
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If there exists a 4-block, B, such that |S ∩ V (B)| = 5, then we call B a good block.

Every good block configuration is illustrated by one of the patterns in Figures 8 and

9.

Proof. Let G = P3�P∞, B be any 4-block in G, and S be a γLR-set. Label the

columns of B as C1, C2, C3, and C4. Observe that in every block B, C2 and C3

must be at least double dominated by the vertices of V (B) ∩ S with C1 and C4 at

least dominated. If |(C2 ∪ C3) ∩ S| ≤ 1, then C2 or C3 is not double dominated.

Hence, |(C2 ∪ C3) ∩ S| ≥ 2. If |(C2 ∪ C3) ∩ S| ≥ 6, we are finished. Hence, assume

that 2 ≤ |(C2 ∪ C3) ∩ S| ≤ 5, implying that at most one of C2 and C3 is S-full. If

|(C2∪C3)∩S| = 5, then at least one vertex of C1∪C4 is not dominated by the vertices

of C2 ∪ C3 implying that S contains a vertex from C1 ∪ C4 and so |V (B) ∩ S| ≥ 6.

Suppose |(C2 ∪ C3) ∩ S| = 2. If |C2 ∩ S| = 2, then C3 is not double dominated.

Similarly, both vertices of S are not in C3. Hence, |C2∩S| = 1 and |C3∩S| = 1. If v1,2

and v1,3, or v3,2 and v3,3 are in S, then C3 is not double dominated is not dominated

by S. If v2,2 ∈ S and v2,3 ∈ S, then {v1,1, v3,1, v1,4, v3,4} ⊆ S to double dominate the

vertices of C2 ∪ C3. Hence, |V (B) ∩ S| ≥ 6. If v1,2 ∈ S and v2,3 ∈ S, then C2 is not

double dominated. Similarly, if any of the pairs v1,3 and v2,2, v3,2 and v2,3, and v2,2

and v3,3 is in S, then S does not double dominate C2 ∪ C3. If v1,2 ∈ S and v3,3 ∈ S,

then C1 and C4 are S-full and |V (B) ∩ S| ≥ 8.

Let |C2 ∪ C3| = 3. If C2 is S-full, then C3 is S-empty implying that C4 is S-full.

Hence, |V (B) ∩ S| ≥ 6. Thus, C2 is not S-full. Similarly, C3 is not S-full. Without

loss of generality, we may assume that exactly two vertices from C2 and one vertex

from C3 are in S. We consider two cases depending on the vertices of C2. Assume
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the vertices of C2 ∩ S are adjacent. Without loss of generality, we may assume that

v1,2 ∈ S and v2,2 ∈ S. Then, if v1,3 ∈ S, then v3,3 is not double dominated by S, a

contradiction. If v2,3 ∈ S, then to double dominate {v3,2, v3,3, v3,1, v1,4}, S requires at

least three vertices from C1 ∪C4. Thus, |V (B)∩ S| ≥ 6. If v3,3 ∈ S, then Theorem 1

implies that v4,4 ∈ S and at least one of v1,1 and v2,1 is in S. Moreover, to double

dominate v1,3, it follows that v1,4 ∈ S. Thus, |V (B) ∩ S| ≥ 6.

If the vertices in C2 ∩ S are not adjacent, then it must be that v2,2 6∈ S. Hence,

v1,2 ∈ S and v3,2 ∈ S. If v1,3 ∈ S, then at least two vertices from C4 are in S to double

dominate {v2,3, v3,3}, and at least one vertex from C1 is in S to double dominate v2,1.

Thus, |V (B) ∩ S| ≥ 6. Similarly, the result holds in v3,3 ∈ S. If v2,3 ∈ S, then

Theorem 1 implies that v2,4 ∈ S, v1,1 ∈ S, and v3,1 ∈ S. Hence, |V (B) ∩ S| ≥ 6.

Thus, we may assume that |(C2∪C4)∩S| = 4. If |(C1∪C4)∩S| ≥ 2, then we are

finished. Hence, let |(C1 ∪C4)∩S| = 1, that is |V (B)∩S| = 5. It follows that one of

C1 and C4 is S-empty. Without loss of generality, assume that C1 is S-empty. Then

C2 is S-full. Now, |C3 ∩ S| = 1 and |C4 ∩ S| = 1. To double dominate C3 ∪ C4, each

vertex of C3∪C4 must be dominated by |(C3∪C4)∩S|. Hence, either {v1,2, v3,4} ⊆ S,

{v1,4, v3,3} ⊆ S, or {v2,3, v2,4} ⊆ S. By symmetry, the same holds for C4 is S-empty.

Since in all other cases, |V (B) ∩ S| ≥ 6, this establishes the block patterns (shown

in Figures 8 and 9) necessary for a good 4-block. By symmetry, either C1 or C4 is

S-empty and C2 or C3, respectively, is S-full. �

Lemma 17 If C1 and C4 are S-full in any 4-block B, then |V (B) ∩ S| ≥ 8.

Proof. Let B be an arbitrary 4-block, and let C1 and C4 be S-full. Then by Theo-

rem 3, we must at least double dominate C2 and C4, so |(C2 ∪ C3) ∩ S| ≥ 2. Thus,
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|V (B) ∩ S| ≥ 8. �

Lemma 18 If a 4-block Bi is preceded and succeeded by good blocks, then |V (Bi) ∩

S| ≥ 8.

Proof. Label the columns in Bi as 1 through 4. Let S1 be the first configuration

of vertices in Figure 8. Notice that the first block in Figure 9 is a reflection of S1.

Let the reflection of S1 be S1r. Let the second configuration of vertices in Figure 8

be labeled S2 and its reflection labeled S2r. Let the third configuration of vertices in

Figure 8 be labeled S3 and its reflection labeled S3r. Let S be a γLR-set. We now

consider cases based on good block configurations in Bi−1 and Bi+1.

Case 1: Let Bi−1 have any configuration in Figure 9 or S2 or S3 from Figure 8.

If Bi−1 has a configuration from Figure 9, then Theorem 3 implies that C1 is S-full.

If Bi−1 has S2 or S3, without loss of generality, say S2, then Theorem 1 implies that

v1,1 ∈ S. Moreover, to double dominate the vertices of the last column of Bi−1, v2,1

and v3,1 are in S. Thus, in any case, C1 is S-full.

If Bi is succeeded by any configuration in Figure 9 or S2r or S3r in Figure 8,

then a similar argument to above shows that C4 is S-full. Then to double dominate

the vertices of C2 ∪ C3 at least two vertices from C2 ∪ C3 are in S, implying that

|V (Bi) ∩ S| ≥ 8 as desired.

Assume that Bi is succeeded by S1r. Then v1,4 ∈ S and v2,4 ∈ S to double

dominate the vertices of Bi+1. If v2,4 ∈ S, then as before S contains 2 vertices from

C2 ∪ C3 and we are finished.

Hence, assume that v2,4 6∈ S. Then Theorem 1 implies that v1,3 and v3,3 are in S.

Moreover, either v2,3 ∈ S or both v1,2 and v3,2 are in S. In either case, |V (B)∩S| ≥ 8.
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Case 2: Let Bi−1 have configuration S1. Using a symmetric argument to above,

we are finished for all cases except when Bi+1 has configuration S1r. Then to double

dominate the vertices of Bi−1 and Bi+1, we have that v1,1, v3,1, v1,4, and v3,4 are in S.

By Theorem 1, either v2,1 ∈ S or both v1,2 and v3,2 are in S. Similarly, either v2,4 ∈ S

or both v1,3 and v3,3 are in S. If {v1,2, v3,2, v1,3, v3,3} ⊆ S, then |V (Bi) ∩ S| ≥ 8, and

we are finished.

Hence, without loss of generality, we may assume that v2,1 ∈ S, that is, C1 is

S-full. If v2,4 ∈ S, then to double dominate C2 ∪ C3, at least two additional vertices

from C2 ∪ C3 are in S, implying that |V (Bi) ∩ S| ≥ 8.

Thus, v2,4 6∈ S, and so v1,3 and v3,3 are in S. Theorem 1 implies that at least one

additional vertex from C2 ∪ C3 is in S. Again, |V (Bi) ∩ S| ≥ 8. �

Lemma 19 If Bi is preceded by a good block and |V (Bi) ∩ S| = 6, then the last

column in Bi is S-empty.

Proof. Label the columns in Bi as C1 through C4, and suppose Bi is preceded by a

good block and |V (Bi) ∩ S| = 6. If C4 is S-empty, we are finished, so assume that

|C4 ∩S| ≥ 1. If Bi−1 has any configuration in Figure 9, or S2, or S3, of Figure 8 then

by Theorem 3, C1 is S-full. Theorem 18 implies that Bi is not succeeded by a good

block. Then there are exactly three vertices from C2 ∪ C3 ∪ C4 in S. But then the

vertices of C2 ∪ C3 are not double dominated.

If Bi−1 has the configuration S1, then v1,1 ∈ S and v3,1 ∈ S to double dominate

the vertices of Bi−1. If v2,1 ∈ S, then C1 is S-full and since C4 is not S-empty, there

are exactly two vertices from C2 ∪ C3 in S. This is the same as the previous case

where the vertices of C2 ∪C3 are not double dominated. Hence, v2,1 6∈ S. Theorem 1
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implies that v1,2 and v3,2 are in S. Moreover, either v2,2 ∈ S or both v1,3 and v3,3 are

in S. For the latter, v2,4 is double dominated by S, a contradiction. Hence, v2,2 ∈ S,

and since |V (Bi) ∩ S| = 6, exactly one vertex of C4 is in S and C3 is S-empty. But

then at least one vertex of C3 is not double dominated, a contradiction. Hence, we

conclude that C4 is S-empty. �

Lemma 20 Let G = P3�P∞, and let S be a γLR(G)-set. If B′ and B′′ are good

blocks separated by B1, B2, ..., Bk, then |V (Bi) ∩ S| ≥ 8 for some i, 1 ≤ i ≤ k or

|V (Bi) ∩ S| = 7 = |V (Bj) ∩ S| for some integers i, j, i 6= j.

Proof. Let B′ and B′′ be good blocks separated by blocks B1, B2, ..., Bk in P3�P∞.

Lemma 16 implies that k ≥ 1. We assume that |V (Bi)∩S| ≥ 6, 1 ≤ i ≤ k, otherwise

one of the Bi’s is a good block, and we let it be B′′. By Lemma 18, our result holds

for k = 1, so we assume that k ≥ 2. By Lemma 16, B′ ends in an S-empty column or

a column with 1 vertex in S, and B′′ begins in an S-empty column or a column with

1 vertex in S. Assume for a contradiction that |V (Bi) ∩ S| = 6 for 1 ≤ i ≤ k. By

Lemma 19, B1 ends in an S-empty column and Bk ends in an S-empty column. But

then at least one vertex of B′′ is not double dominated by S. Hence, at least one Bi

has at least 7 vertices in S.

Beginning with B1, let Bi be the first 4-block that has at least 7 vertices in S.

By symmetry, beginning at Bk moving to the left, let Bj be the first block having at

least 7 vertices in S. Hence, by Lemma 19, Bi−1 ends in an empty column and Bj+1

begins in an empty column. If i = j, then by Lemma 17, |V (Bi)∩ S| ≥ 8 and we are

finished. Hence, i 6= j, and so |V (Bi) ∩ S| ≥ 7 and |V (Bj) ∩ S| ≥ 7 as desired. �

Theorem 15 For the infinite graph P3�P∞, γLR%(P3�P∞) = 1
2
.
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Figure 10: Upper bound for γLR(P3�P∞)

Proof. For the infinite graph G = P3�P∞, we show that the percentage of vertices in

a γLR(P3�P∞)-set is 1
2
. We establish the upper bound by noting the set S of darkened

vertices shown by the pattern in Figure 10 is a liar’s dominating set of P3�P∞. We

have that in every block, B, there are at least 6 vertices in S, except for possibly one

block, Bi, which has 5 vertices is S. Repeating the pattern in columns 12 through

15 infinitely to the right and the pattern in columns 1 through 4 infinitely to the left

yields 1
2

of the vertices in both directions. Thus, γLR%(P3�P∞) ≤ 1
2
.

To prove the lower bound, let S be a γLR(G)-set. By Lemma 16, every 4-block

of G has at least 5 vertices in S. If there is at most one good block, then clearly

γLR%(P3�P∞) ≥ 1
2
. If there are two or more good blocks, then by Lemma 20,

between every pair of good blocks there exists a block |V (Bi) ∩ S| ≥ 8 for some i or

1 ≤ i ≤ k or |V (Bi) ∩ S| = 7 = |V (Bj) ∩ S| for some integers i, j, i 6= j. Hence,

if there is more than one good block, the average number in S is at least 1
2
. Thus,

γLR%(P3�P∞) = 1
2
. �

3.3 Bounds on Other Grids

Next consider the finite grid graph P3�Pc.

Lemma 21 In the finite graph P3�Pc, |(C1∪C2)∩S| ≥ 3 and |(Cc∪Cc−1)∩S| ≥ 3,

where c is number of columns in P3�Pc.
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Proof. Since every liar’s dominating set must be a double dominating set, it follows

that any liar’s dominating set of P3�Pc must have at least 3 vertices from the first

two columns in order to double dominate the C1. Similarly, every liar’s dominating

set requires 3 vertices from the last two columns. �
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Figure 11: Patterns for finite upper bound

Conjecture 22 For the finite grid P3�Pc, γLR(P3�Pc) = dn
2
e+ 1.

Proposition 23 For the finite grid P3�Pc, γLR(P3�Pc) ≤ dn2 e+ 1.

Proof. Let B ≡ P3�P4 be the first 4-block pattern shown in Figure 11. Let Sb be

the set of darkened vertices formed by repeating the first block pattern b c
4
c times on

P3�Pc.

Let Tb be the set of darkened vertices formed by beginning with the second block

pattern in Figure 11 and repeating the third block pattern shown in Figure 11, starting

with the first column to the right of C4, b c−44 c times on P3�Pc.

For c ≡ 0(mod4), let S = Sb ∪ {v2,c}. For c ≡ 1(mod4), let S = Tb ∪ {v2,c}.

For c ≡ 2(mod4), let S = Sb ∪ {v1,c−1, v2,c−1, v3,c−1, v2,c}. For c ≡ 3(mod4), let

S = Tb ∪ {v1,c−1, v2,c−1, v3,c−1, v2,c}. In each case, S is a liar’s dominating set of

P3�Pc, and hence, γLR(P3�Pc) ≤ dn2 e+ 1. �

It remains an open problem to prove that γLR(P3�Pc) ≥ dn2 e+ 1.

We attain an upper bound on grid graphs of the form Pn�P∞, for n ≥ 4.
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Let S be any liar’s dominating set. Let every other column of Pn�P∞ be in S.

We can easily check that S is a liar’s dominating set and thus, γLR%(Pn�P∞) ≤ 1
2
.

Thus, we have the following proposition.

Proposition 24 For G = Pn�P∞, where n ≥ 4, γLR%(G) ≤ 1
2
.

It is an open problem to prove that γLR%(Pn�P∞) ≥ 1
2
, for n ≥ 4.

Conjecture 25 For G = Pn�P∞, where n ≥ 4, γLR%(G) = 1
2
.

For the infinite grid Z�Z, we give an upper bound for the percentage of vertices

in a γLR(Z�Z)-set. Let S be the tiling showing in Figure 12. It is easy to check that

the percentage of vertices in S is 9
20

if we use this tiling on the entire grid. It remains

an open problem to show that the percentage of vertices in S is at least 9
20

.
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Figure 12: An upper bound for γLR for the infinite grid graph
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