
East Tennessee State University
Digital Commons @ East

Tennessee State University

Electronic Theses and Dissertations Student Works

5-2013

Universal Cycles for Some Combinatorial Objects
Andre A. Campbell
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

Part of the Applied Mathematics Commons

This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State
University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Campbell, Andre A., "Universal Cycles for Some Combinatorial Objects" (2013). Electronic Theses and Dissertations. Paper 1130.
https://dc.etsu.edu/etd/1130

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F1130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fetd%2F1130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F1130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fetd%2F1130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F1130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=dc.etsu.edu%2Fetd%2F1130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Universal Cycles for Some Combinatorial Objects

A thesis

presented to

the faculty of the Department of Mathematics

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Mathematical Sciences

by

André Campbell

May 2013

Anant Godbole, Ph.D., Chair

Rick Norwood, Ph.D.

Debra Knisley, Ph.D.

Keywords: Universal Cycle, de Bruijn Cycle, Posets, Boolean Lattice

ABSTRACT

Universal Cycles for Some Combinatoral Objects

by

André Campbell

A de Bruijn cycle commonly referred to as a universal cycle (u-cycle), is a complete

and compact listing of a collection of combinatorial objects. In this paper, we show

the power of de Bruijn’s original theorem, namely that the cycles bearing his name

exist for n-letter words on a k-letter alphabet for all values of k, n, to prove that we

can create de Bruijn cycles for multi-sets using natural encodings and M -Lipschitz

n-letter words and the assignment of elements of [n] = {1, 2, ..., n} to the sets in any

labeled subposet of the Boolean lattice; de Bruijn’s theorem corresponds to the case

when the subposet in question consists of a single ground element. In this paper, we

also show that de Bruijn’s cycles exist for words with weight between s and t, where

these parameters are suitably restricted.

2

Copyright by André Campbell 2013

3

DEDICATION

I would like to dedicate this thesis to my grandfather Alphonso Alexander Tyn-

dale. He was a loving, caring man and a man of strong positive words. He always

mentioned that education is the key to success and explained to us (grandchildren)

how important it was to respect time because time waits on no man. I didn’t un-

derstand what he meant back then, but I surely do now. Finally, a special feeling of

gratitude to my loving parents, Owen and Ruth Campbell whose words of encourage-

ment and push for tenacity ring in my ears. My sister Krystina Campbell, who was

always asking about the progress of my thesis. I appreciate all that they have done

and thank you for being my best cheerleaders. Without you all, this would not be

possible.

4

ACKNOWLEDGMENTS

This thesis was done by André Campbell under the keen supervision of Anant

Godbole. I wish to thank my committee members, Dr. Anant Godbole, Dr. Rick

Norwood and Dr. Debra Knisley who were more than generous with their precious

time. Thank you Dr. Rick Norwood and Dr. Debra Knisley for agreeing to serve

on my committee and for proofreading the thesis. Finally, a special thank you to

Dr. Anant Godbole, my committee chairman, for his countless hours of reflecting,

proofreading and most of all patience throughout the entire thesis process, from the

introduction to the meetings over the summer break, winter break and spring break,

to the final defense.

5

TABLE OF CONTENTS

ABSTRACT . 2

DEDICATION . 4

ACKNOWLEDGMENTS . 5

1 INTRODUCTION . 7

2 POSETS . 16

3 WORDS . 28

4 CONCLUDING REMARKS . 44

BIBLIOGRAPHY . 45

VITA . 46

6

1 INTRODUCTION

A more rigorous definition of a u-cycle is a cyclic sequence which contains each

element of a collection of combinatorial objects exactly once. An example of such

a cycle is the de Bruijn cycle of order n. Let n = 3, then the binary cyclic string

11101000 contains all eight possible binary strings of length 3 exactly once (111 →

110 → 101 → 010 → 100 → 000 → 001 → 011). Another example of a u-cycle is

1234524135. This contains all 2-subsets of [5], where [n] = {1, 2, 3, ..., n}, exactly once

(12→ 23→ 34→ 45→ 52→ 24→ 41→ 13→ 35→ 51), where the notation ij (or

ji) is the shorthand for the set {i, j} for i < j. Do universal cycles of k-subsets of n

always exist? For k = 2, the answer is yes, if n ≥ 3 and is odd! For k ≥ 4, very little

is known. See the Hurlbert paper [5] for results along these lines. Now this brings us

to the de Bruijn Theorem.

Theorem 1 (de Bruijn) A u-cycle exists for n-letter words on a k-letter alphabet for

all k, n ∈ Z+.

Theorem 2 A connected digraph is Eulerian if and only if the in-degree of each

vertex is the same as its out-degree. More generally, a digraph G is Eulerian if it has

one non-trivial weakly connected component and if i(v) = o(v) for each v.

In order to prove the De Bruijn Theorem we use the above stated theorem in its weak

form.

de Bruijn Proof:

7

First we create a digraph, G, that has vertices that consist of all n−1 letter words on

a k-letter alphabet. In other words, vertices v have one less letter than the words we

are trying to u-cycle, which then appear as edge labels between vertices as follows: a

directed edge is drawn from v1 to v2 if the last n−2 letters of v1 are the same as the first

n− 2 letters of v2, and is then labelled with the corresponding concatenated n-letter

word. For example, let k = 5 and n = 5, then the edge from ANDR→ NDRE will

be labelled ANDRE. Therefore, it is then easy to see that the conditions of Theorem

2 are satisfied, and that the Eulerian circuit generates the required u-cycle. �

Now this bring us to one of the three main theorems of this thesis. We call this

theorem the Lipschitz Theorem.

Theorem 3 Given a modular k-letter alphabet, a u-cycle of M-Lipschitz n-letter

words exists if condition C holds.

Before presenting the proof of the Lipschitz Theorem, we define what a Lipschitz

word is, specify condition C, and show an example of a u-cycle of all Lipschitz words.

Firstly, a Lipschitz word can be defined as follows: a real-valued function φ is Lipschitz

if there exists a real number M such that for all numbers x and y, |φ(x) − φ(y)| ≤

M |x−y|. Or similarly, a word on an ordered alphabet such as (A,B,...,Z) is Lipschitz

if |fi−fj| ≤M |i− j| where fi is the ith letter of the word. We let M = 1, though the

definition of M -Lipschitz words still holds true even if M 6= 1. Secondly, condition

C is: |fi+1 − fi| ≤ M . This implies the M -Lipschitz condition since |fi − fj| ≤

8

|fi − fi+1|+ |fi+1 − fi+2|+ ...+ |fj−1 − fj| ≤M +M +M +M + ...+M = M |i− j|.

The converse however is not true. Finally, for example, let n = 2 and let k = 3, i.e.

A,B,C. Then the word AABCCBB contains all possible strings of length 2 exactly

once (AA → AB → BC → CC → CB → BB → BA). Note that AC and CA are

2-Lipschitz but not 1-Lipschitz which then explains why they were not included in

the u-cycle.

Proof of Theorem 3:

If n = 1, then all words are adjacent, then trivially a u-cycle exists. Suppose that

the alphabet is modular so that, e.g., |A− Y | = 2. First we create a graph G whose

vertices consist of M -Lipschitz words with one less letter than the word we are trying

to u-cycle, which then appears as an edge label between the vertices as follows: a

directed edge is drawn v1 to v2 if the last n− 2 letters of v1 are the same as the first

n−2 letters of v2, and is then labelled with the corresponding concatenated Lipschitz

n-letter word. For this to happen, the letters must be at most length M apart. For

example, let k = 5 and n = 5 as in the proof before and let M = 1. Then the edge

from ABCD → BCDE will be labelled ABCDE which is a legitimate Lipschitz

word. A graph is said to be connected if there exists a u − v path between any two

arbitrary vertices u, v. In the previous example, if the letters in the vertex word are

not at most length one apart, then the Lipschitz n-letter word does not exist as an

edge. For example, let k = 4 and n = 4, then the edge from BDA → DAC would

be labelled BDAC which is not a Lipschitz word with M = 1. Thus, the vertices

9

must be Lipschitz as well. We know that in order for the conditions of Theorem 1

to be satisfied, the in-degree of v and the out-degree of v must be equal for it to be

Eulerian and a u-cycle of M -Lipschitz n-letter words on an k-letter alphabet exists.

Notice that only condition C and the modularity of the alphabet makes this true;

i(v) = o(v) = 2M + 1 for every v. This finishes the proof. �

There are some very important references that must be mentioned. First, we have

the paper by Leitner and Godbole titled “Universal Cycles of Classes of Restricted

Words.” In this paper [3] they proved that Universal Cycles (U-Cycles) exists for sev-

eral restricted classes of words, which included non-bijections, equitable words (under

suitable restrictions), ranked permutations, and passwords. Leitner and Godbole in

[3] defined a word as equitable if for all letters i, j, ||i| − |j|| ≤ 1 where |i| is the

number of times i occurs. They also said that words formed must follow ordinary

rankings in a tournament. A trivial example to explain this is: the ranking 113 is

allowed, but the ranking 112 is not allowed since second place is already taken in

the tie with first. They also defined a password as an n-letter word of length k on

[n] where there are q distinct classes of symbols in [n], q ≤ k < n distinct classes

of symbols in n, and each word must contain at least one element of each class. In

other words, you can think of this as a security measure that protects one’s personal

accounts, where passwords must contain at least one number, one lower case letter,

one symbol, etc.

10

This brings us to our other key reference, Blanca and Godbole [4], one of the most

important references of this thesis. This paper is titled “On Univeral Cycles for new

Classes of Combinatorial Structures”. In this paper [4], the authors used natural

encodings of these objects to show that there exist u-cycles for collections of subsets,

matroids, restricted multisets, chains of subsets, multichains, and lattice paths. They

showed that for subsets, there exists a u-cycle for k-subsets of an n-set if we let the

k vary in a non-zero length interval. They also showed that there exists u-cycles for

all n− length words over some alphabet Γ, which contain all characters from A ⊂ Γ.

Blanca and Godbole mentioned that the subset {1, 2} does not have to be coded

as 12, {2, 5} does not have to be coded as 52, and so on. Before getting into the

different codings, let me first explain the two types of coding. The first type of

coding for multisets is called the k-coding and the second type of coding for multisets

is called the n-coding. The authors of [4] defined a universal cycle of a set A of

k-element multisets of [n] as a cyclic sequence of length |A| such that for all a ∈ A

its corresponding string appears exactly once in the sequence. For example, consider

the sequence 112233. This is a legal u-ycle of all the multisets of size k = 2 from

{1, 2, 3} ([n] = 3), namely {1, 1}, {1, 2}, {2, 2}, {2, 3}, {3, 3}, {3, 1}. This is a k-coding.

Throughout the next few pages, blue represents the k-coding and red represents n-

coding, then we proceed as follows:

11

{1,1} = < 2, 0, 0 >

↓

{1,2} = < 1, 1, 0 >

↓

{2,2} = < 0, 2, 0 >

↓

{2,3} = < 0, 1, 1 >

↓

{3,3} = < 0, 0, 2 >

↓

{3,1} = < 1, 0, 1 >

In the first case, for example, both representations indicate that the multiset contains

1 twice and does not contain 2 or 3. However, the first coding uses k = 2 letters and

the second uses n = 3 letters. For the same example, a u-cycle does not exist for the n-

coding since we get a cycle with < 1, 1, 0 >→ < 1, 0, 1 >→ < 0, 1, 1 >→ < 1, 1, 0 >.

In general, both k and n codings may give a u-cycle, or just one, or none. However,

the n-coding of multisets of any size between 0 and n(k − 1) of an n element set,

are words of weight k from an alphabet {1, 2, ..., k}, where the weight is the sum of

the elements in the n-coding. And the n-coding of sets of any size between 0 and

n(k−1) of an n element set are words of weight k from an alphabet {0, 1}. Let us look

at another example 1100011000, where we are attempting to use the n-coding for all

12

k-subsets of [n] with k = 2 and n = 5. We are forced into a cycle and hence there does

not exist a u-cycle using the types of n-codings mentioned above for n = 5 and k = 2.

< 1, 1, 0, 0, 0 > = {1,2}

↓

< 1, 0, 0, 0, 1 > = {1,5}

↓

< 0, 0, 0, 1, 1 > = {4,5}

↓

< 0, 0, 1, 1, 0 > = {3,4}

↓

< 0, 1, 1, 0, 0 > = {2,3}

↓

< 1, 1, 0, 0, 0 > = {1,2}

However, a u-cycle does exist for the k-coding as seen by 1234524135. However, the

{0,1} n-coding does work if we can change the question, and this is one of the main

contributions of [4].

Another important fact noticed in [4] was that a binary word of weight k is equiv-

alent to a subset of size k. They used n-coding to show that there exists a u-cycle of

all subsets of size between s and t, s < t, if it is constructed correctly, even though

13

it is not a trivial thing to do. For s = t there is no guarantee of a u-cycle in either

coding, and if one coding does produce a u-cycle, the other coding may not. For

example, given the binary coding 1110011010 with n = 4, s = 2, t = 3:

< 1, 1, 1, 0 > = {1,2,3}

↓

< 1, 1, 0, 0 > = {1,2}

↓

< 1, 0, 0, 1 > = {1,4}

↓

< 0, 0, 1, 1 > = {3,4}

↓

< 0, 1, 1, 0 > = {2,3}

↓

< 1, 1, 0, 1 > = {1,2,4}

↓

< 1, 0, 1, 0 > = {1,3}

↓

< 0, 1, 0, 1 > = {2,4}

↓

< 1, 0, 1, 1 > = {1,3,4}

↓

14

< 0, 1, 1, 1 > = {2,3,4}.

As can be seen once again, this is a complete list and there exists a u-cycle. Hopefully

theorem 5 will generalize all of the above for words with weights between s and t

(s < t) i.e., multisets of size between s and t, where t ≥ s + (d − 1), where d is the

size of the alphabet.

In the next two chapters (Posets and Words) we will be defining some very important

terminology that will be used to prove the main theorems of this thesis.

Theorem 4 There exists a u-cycle of all assignment of the elements of {1, 2, 3, ..., n}

to the sets in an ordered subposet of the Boolean Lattice whose Hasse Diagram has

any given shape.

Theorem 5 Given s < s+ (d− 1) ≤ t there exists a u-cycle of all words with weight

between s and t.

15

2 POSETS

In this chapter we analyze another very interesting set of combinatorial objects.

Blanca and Godbole in [4] talked about universal cycles of chains of subsets. They

mentioned that given any [n], where [n] = {1, 2, 3, ..., n}, a k-chain of [n] is a sequence

of sets A1 ⊆ A2 ⊆ A3 ⊆ ... ⊆ Ak ⊆ [n]. As can be seen, the number of distinct k-

chains of [n] is (k+1)n, where the 1 arises from the fact that a subset may be empty.

After figuring out the number of distinct k-chains, they created a natural encoding

for these distinct chains of [n], and then finally analyzed the existence of universal

cycles (u-cycles) [4].

In [4], let each Ai of some k-chain be coded by a binary string of length n. In

this case they thought of the binary string as an ordered binary n-tuple denoted by

si. They also defined an operation ⊕ as follows: si ⊕ sj = s′ if and only if s′(k) =

si(k) + sj(k) for all k such that 1 ≤ k ≤ n. For example, if a = {1, 2, 3}, b = {2, 2, 2},

and c = {1, 1, 1}. Then, a⊕ b⊕ c = {4, 5, 6}.

A Partially Ordered Set (P,<) commonly referred to as a Poset is a set P and a

relation < on P that satisfies the follwing properties:

(i) Reflexive, i.e. S < S,

(ii) Transitive, i.e., S < T and T < U , then S < U .

(iii) Antisymmetric, i.e. if S < T and T < S, then S = T .

A Hasse Diagram of P is a diagram that represents the transitive reduction

16

B

A

and it exists if A < B, A 6= B and there doesn’t exist a C such that A < C < B.

Now that we have defined a Poset and a Hasse Diagram, it is time to define what

the Boolean lattice is, and give an example of what one looks like. We denote the

Boolean Lattice (Bn) and we define it to be the collection of ALL subsets of [n],

where [n] = {1, 2, 3, 4, ..., n} and where A < B if A ⊆ B. For instance, look at the

Hasse Diagram of the Boolean Lattice (B3).

H = {1, 2, 3}

F = {1, 2}D = {1, 3}G = {2, 3}

B = {1} E = {2} C = {3}

A = ∅

Shown here are all the collections of subsets of [n] = [3] including the emptyset,

where A ⊆ B,E,C; B ⊆ F,D; E ⊆ F,G; C ⊆ D,G; and F,D,G ⊆ H. Notice that

for example B ⊆ H but there are no arrows from B → H since it follows from the

property of transitivity. Trivially, the ∅ is a subset of all sets {A,B,C, ..., H}. There

are many different subposets of B3. Before we get into subposets, we define what a

subposet is. A subposet Q consists of a Hasse diagram that is consistent with the

Boolean lattice, and an assignment of subsets of {1, 2, . . . , n} to the sets in Q. For

17

example, take the diamond subposet:

{1, 2, 3}

{1, 2} {2, 3}

{2}

This is the subposet {A,B,C,D} where A ⊆ B,C and B,C ⊆ D, and the sets

A,B,C,D follow the rules of inclusion dictated by the Hasse Diagram. In this example

A = {2}, B = {1, 2}, C = {2, 3} and D = {1, 2, 3}. Or we could have

{1, 3}

{1} {3}

∅

Alternately, the subposet could be any k-chain. For instance, we could have taken

any 2-chain:

{1, 2, 3}

{1, 2}

or 3-chain:

18

{1, 2, 3}

{1, 3}

{1}

or 4-chain:

{1, 2, 3}

{2, 3}

{3}

∅

It just depends on which subposet you choose from the Boolean Lattice. Now that

we have the general idea of what a subposet is, let’s look at an example of a u-cycle

of a 2-chain.

B

A

Given the above 2-chain, first we figure out all the allowable configurations for any

elements j ∈ {1, 2, 3, ..., n}. For instance,

19

B 0 1 1

A 0 0 1

are all allowable, where

1

0

indicates that j ∈ B but j /∈ A. Note, however, that we cannot have a configuration

of

B 0

A 1

because A ⊆ B and we cannot have j ∈ A, j /∈ B. Note that the allowable two

vectors of {A,B} are (0, 0), (0, 1), (1, 1). Since we have figured out all our allowable

configurations, it is time to code these configurations. C is used to denote the coding

for these allowable configurations.

B 0 1 1

A 0 0 1

C a b c

Hence, we are only allowed 3n possibilities, where n is length of the word. Notice that

we coded 00 as an a, 01 as a b and 11 as a c. Now, let n = 2 and we end up with all

2-chains which are listed below:

20

1

∅

∅

∅

2

∅

1, 2

∅

1

1

1, 2

1

2

2

1, 2

2

1, 2

1, 2

Now that we have all 2-chains, we use the binary coding to represent the sets as a

characteristic vector.

B 10 00 01 11 10 11 01 11 11

A 00 00 00 00 10 10 01 01 11

W ba aa ab bb ca cb ac bc cc

Given the above characteristic coding for each vector, we now have all 2-letter words

on a 3-letter alphabet and we can now use the de Bruijn Theorem to show the

existence of a u-cycle. Figuring out the u-cycle for such words isn’t always trivial.

However, for this above example, we get the u-cycle cc→ ca→ aa→ ab→ bb→ bc→

cb → ba → ac then back to cc where we started. This is a u-cycle of 2-letter words

on a 3-letter alphabet. Hence, ccaabbcba is the u-cycle of words formed. We could

have given our binary allowable configurations a different coding that would yield the

u-cycle of words 220011210. Notice that we coded c as a 2, a as a 0 and a b as a 1,

and the u-cycle would now be 22→ 20→ 00→ 01→ 11→ 12→ 21→ 10→ 02 then

back to 22 where we started. Given any allowable configuration, coding is strictly up

to the user.

B 11 10 00 01 11 11 11 10 01

A 11 10 00 00 00 01 10 00 01

21

Above we have the correspondence between the u-cycle of words and all binary coding

representing the sets as characteristic vectors. Notice that for example, if we take

11

01

it is equal to

{1, 2}

{2}

What does this poset mean? The above poset means that the element 1 does not

belong to A but it does belong to B and the element 2 belongs to both A and B and

the other posets can be created the same way. Notice that the 2-chain-lattice has 3

antichains, namely ∅, A and B.

A set S of elements in a subposet Q is an anti-chain if there does not exist x and

y in S with x < y and x 6= y. For instance, in the diamond poset below,

D

B C

A

22

{A}, {B}, {C}, {D}, {B,C}, yield all 5 antichains; and if we include one more case

representing the empty set, there are 6 possibilities for each j and thus 6n assignments

of elements to the subposet. Note that {B,D}, {C,D} and {A,D} are not antichains

as they violate the definition.

The same can be done for all subposets, no matter how complicated they are, such

as:

c d e

a b

We call this subposet the W -subposet mainly because it takes the shape of the letter

W . Given the W -subposet, now we have to find all the antichains. The antichains are

{a}, {b}, {c}, {d}, {e}, {a, b}, {c, d}, {a, e}, {b, c}, {c, e}, {d, e}, {c, d, e}+ 1 = 13 possi-

bilities. Thus there are 13n possible assignments of {1, 2, 3, ..., n} to the 5 sets, as

given below. Now that we have found all the anitchains, we can make a correspon-

dence between the assignments of the elements to a subposet P and all n-letter words

on a k-letter alphabet, where k is the number of antichains +1. Given that we have

the anitchains, we now have the freedom to choose whichever anitchain we want to

represent the element 1. For instance, say for the element 1 we choose the antichain

{a, e}. Then, we let a and e contain 1 and everything that is above it gets a 1 also,

otherwise it gets a 0 and we get the assignments of element 1 to the W subposet

23

1 1 1 = e

1 = a 0

This W subposet now tells us in what sets the element 1 goes.

Now for the element 2, let’s choose the set {b} to be the antichain. Then we let b be a

1, and everything above it gets a 1, everything else gets a 0 and we get the W subposet

0 1 1

0 1 = b

Now, this W subposet tells us in what sets the element 2 goes.

Also, for the element 3 suppose we choose the set {c} to be the antichain. Then we

let c be a 1, and everything above it gets a 1. However, there is nothing above {c} so

everything else gets a 0 and we get the W subposet

1 = c 0 0

0 0

This W subposet now tell us in what sets the element 3 goes. We repeat for elements

4, 5, ..., n. Finally, if we were to let [n] = [3], then we get the following assignment of

{1, 2, 3} to the 5 sets in the W subposet below.

24

{1, 3} {1, 2} {1, 2}

{1} {2}

Lemma There are (α+ 1)n assignments of the elements of [n] to the elements of P ,

where α is the number of antichains in P . Furthermore, there exists a de Bruijn cycle

of these assignments.

Proof: Given any element j ∈ [n] it is clear that if j ∈ A for some A ∈ P , we must

have j ∈ B for each B > A, since < is the inclusion relation. It thus follows that the

number of ways to assign element j to the sets in P is equal to the number of ways

of labeling the elements of P with zeros and ones so that if A is labeled by a 1, then

so is each B ⊇ A; this includes the case where all the elements of P are labeled with

zeros. We call a coloring c : P → {0, 1} unitarily up-closed if c(A) = 1 ⇒ c(B) = 1

for each B ∈ P with B > A. We will prove below that the set of unitarily up-closed

colorings is in bijection with the antichains of (P,<); note that ∅ is not considered to

be an antichain in P , but all one-element sets are; this empty set leads to the “+1”

in the Lemma.

For one direction, let c be a unitarily up-closed coloring on (P,<). Let Mc = {A ∈

P : c(A) = 1 and c(B) = 0 for every B < A} i.e., the set of elements of P minimal

with respect to receiving the value 1 under c. Clearly, Mc forms an antichain, since

if there exist A,B ∈Mc with A < B, then A does not meet the constructive criteria

of Mc. This provides a map from colorings to antichains. To see that the map is

injective, let c and d be two different unitarily up-closed colorings, and suppose that

25

Mc = Md. Fix A ∈ P . Suppose that c(A) = 1. If A is minimal, then we have that

d(A) = 1 since Mc = Md. If A is not minimal, it is above some B ∈Mc. B ∈Md by

hypothesis, and since B < A, d(A) = 1 as d is unitarily up-closed. Now suppose that

c(A) = 0. Since A is not above any element of Mc, A is also not above any element of

Md. Hence d(A) = 0, as if d(A) = 1 we would have that A was above some minimal

element under d.

To see the reverse, notice that for a fixed antichain A, we can define a unitarily

closed up-coloring c = cA by the rule c(A) = 1 iff B < A for some B ∈ A, 0 otherwise.

We claim that Mc = A, and hence this provides a 1− 1 inverse to our 1− 1 function.

Since no element below any element of A receives color 1, clearly A ⊆ Mc. On the

other hand, every element A with c(A) = 1 is above some element of A, and since

Mc contains every element of A, no other element receiving color 1 can belong to Mc,

and we are done.

It follows that the “fate” of each element of [n], i.e., which sets in P it belongs to,

can be determined in α ways, and thus there are αn assignments of the elements of

[n] to the sets in P . �

Theorem 4 There exists a u-cycle of all assignment of the elements of

{1, 2, 3, ..., n} to sets in an ordered subposet of the Boolean Lattice whose Hasse

Diagram has any given shape.

Proof: Given any Boolean Lattice Bn and a subposet P of Bn, we start by com-

puting the number of antichains in P . For example, if P is a k-chain, there are

(k+ 1)−antichains; if P is a diamond, there are 5 antichains; if P is a W -poset there

26

are 12 antichains; and if P is a multichain M with k-chain Mk1 ,Mk2 , ...,Mkr , then

there are k1 · k2 · k3 · ... · kr antichains. Bill Kay, our collaborator, proved that the

number of assignments of the elements of {1, 2, 3, ..., n} to P is (A+ 1)n, where A is

the number of antichains. This holds true for any ordered P . The idea of the proof

is as above; label each element of an antichain (and anything above it) by 1 and all

other elements by 0. Then, the resulting configuration of 0′s and 1′s is a legal assign-

ment of the element j to the sets in P . Repeating for each j ∈ [n] we get (A + 1)n

possibilities overall. The key ingredient is that there is a bijection between antichains

and legal assignments. Finally, De Bruijn’s theorem in [3] is used to complete the

proof, as illustrated in the 2-chain example. �

27

3 WORDS

A word of length n on an alphabet of size d is (a1, a2, a3, ..., an), where ai ∈ {0, 1, ..., d−

1} and the
∑
ai = weight of the word. The length a vertex is n − 1, edges are of

length n, s is the minimum weight of the word, t is the maximum weight of the word

and s < t. If d = 2, then we get results proven in [4] that there exists a u-cycle of

all binary words of weight between s and t. Notice that in [4] Blanca and Godbole

proved the smaller case of a binary alphabet while in Theorem 5, we will be doing

the proof for a larger alphabet.

Some u-cycles were found in the paper written by Ariel Leitner and Anant Godbole

[3] for different kinds of restrictions on d. An example of such a u-cycle, a password

is a length-n word over an alphabet d which contains at least one character from q

distinct subsets (classes) of d. It was also shown in the same paper that u-cycles of

passwords existed for as long as the condition 2q ≤ n was satisfied. In the case where

each class is of size 1, we notice that such strong passwords are not necessary.

This now brings us to one of our main theorems.

Theorem 5 Given s < s + (d − 1) ≤ t there exists a u-cycle of all words with

weight between s and t.

The objective of this proof is to show that G is Eulerian by showing that i(v) = o(v)

for each v and that the graph is weakly connected, i.e., that there exists a path

between each v ∈ G and some “sink” vertex denoted sv. The sink vertex is defined

as the vertex of weights that contains a desired number of letters that are all either

28

x′s or (x + 1)′s. Now that we have defined the sink vertex, we explain how the sink

vertex is calculated.

The sink vertex is calculated by first calculating the quantity s
n−1 , where s is the

minimum weight of an edge or word formed between any two pair of connected ver-

tices, d is the size of the alphabet, n−1 is the length of the vertex and n is the length

of the edge or word formed between any two pair of connected vertices. This gives

the “average letter in a vertex of weight s.”

After s
n−1 has been calculated, if we get a whole number, w, then that number w

represents what the weight of each letter of the sink vertex should be. On the other

hand, if we get a mixed fraction (do not simplify), then the whole number (w) tells

us that our sink vertex is going to contain letters that are either w or (w + 1). The

numerator of the mixed fraction tells us how many letters of weight (w+ 1) will be in

our sink vertex and the difference between the denominator and the numerator tells

us how many letters of weight w our sink vertex will contain. Finally, if we have a

proper fraction (again do not simplify), then our sink vertex is going to contain 0′s

and 1′s with the numerator telling us how many 1′s our sink vertex is going to contain

and the difference between denominator and numerator tells how many 0′s our sink

vertex will contain. Below is an example of how to calculate our target vertex or sink

vertex:

s = 16, t = 20, d = 7, n = 4.

s
n−1 = 16

4−1

= 16
3

29

= 51
3

Our sink vertex contains letters of weight 5′s and 6′s. Hence, our sink vertex is

(5, 5, 6).

After doing several examples to try and generalize the idea behind showing weak

connectedness, we came up with the following three examples that gave us the idea

of showing weak connectedness in general. First, we start out with a big enough n,

and in all examples we let n = 11, d = 6, s = 25 and t ≥ s + (d− 1) = 30. First we

calculate our target or sink vertex as shown in the previous paragraphs. Our target or

sink vertex denoted s.v. = (2, 2, 2, 2, 2, 3, 3, 3, 3, 3). Then we find our vertex weights

and edge weights conditions. For this example, the weights of our edges has to be

between 25 → 30 and our vertices has to be between weights: 20 → 30. Now one of

our later lemmas that will be used to prove the main theorem states that, any vertex

v of weight equal to s can be taken to another vertex v1 that contains the desired

number of weights x′s and x+ 1′s of our target vertex.

We choose v to be (0, 0, 0, 2, 2, 5, 5, 5, 3, 3). Throughout the next few pages, red

numbers represent vertex weights and blue numbers represent edge weights, then we

proceed as follows:

0,0,0,2,2,5,5,5,3,3 25

↓ 28

0,0,2,2,5,5,5,3,3,3 28

↓ 28

30

0,2,2,5,5,5,3,3,3,0 28

↓ 28

2,2,5,5,5,3,3,3,0,0 28

↓ 30

2,5,5,5,3,3,3,0,0,2 28

↓ 30

5,5,5,3,3,3,0,0,2,2 28

↓ 30

5,5,3,3,3,0,0,2,2,2 25

↓ 27

5,3,3,3,0,0,2,2,2,2 22

↓ 27

3,3,3,0,0,2,2,2,2,5 22

↓ 25

3,3,0,0,2,2,2,2,5,3 22

↓ 25

3,0,0,2,2,2,2,5,3,3 22

↓ 25

0,0,2,2,2,2,5,3,3,3 22

↓ 25

0,2,2,2,2,5,3,3,3,3 25

↓ 28

2,2,2,2,5,3,3,3,3,3 28

31

↓ 30

2,2,2,5,3,3,3,3,3,2 28

↓ 30

2,2,5,3,3,3,3,3,2,2 28

↓ 30

2,5,3,3,3,3,3,2,2,2 28

↓ 30

5,3,3,3,3,3,2,2,2,2 28

↓ 30

3,3,3,3,3,2,2,2,2,2 25

↓ 28

3,3,3,3,2,2,2,2,2,3 25

↓ 28

3,3,3,2,2,2,2,2,3,3 25

↓ 28

3,3,2,2,2,2,2,3,3,3 25

↓ 28

3,2,2,2,2,2,3,3,3,3 25

↓ 28

2,2,2,2,2,3,3,3,3,3 25

as desired.

For our second example, we choose u to be (5, 5, 5, 5, 5, 0, 0, 0, 0, 0), then we proceed

as follows:

32

5,5,5,5,5,0,0,0,0,0 25

↓ 30

5,5,5,5,0,0,0,0,0,5 25

↓ 30

5,5,5,0,0,0,0,0,5,5 25

↓ 30

5,5,0,0,0,0,0,5,5,5 25

↓ 30

5,0,0,0,0,0,5,5,5,5 25

↓ 30

0,0,0,0,0,5,5,5,5,5 25

↓ 28

0,0,0,0,5,5,5,5,5,3 28

↓ 28

0,0,0,5,5,5,5,5,3,0 28

↓ 28

0,0,5,5,5,5,5,3,0,0 28

↓ 28

0,5,5,5,5,5,3,0,0,0 28

↓ 28

5,5,5,5,5,3,0,0,0,0 28

↓ 30

5,5,5,5,3,0,0,0,0,2 25

33

↓ 27

5,5,5,3,0,0,0,0,2,2 22

↓ 27

5,5,3,0,0,0,0,2,2,5 22

↓ 27

5,3,0,0,0,0,2,2,5,5 22

↓ 27

3,0,0,0,0,2,2,5,5,5 22

↓ 25

0,0,0,0,2,2,5,5,5,3 22

↓ 25

0,0,0,2,2,5,5,5,3,3 25

↓ 28

0,0,2,2,5,5,5,3,3,3 28

↓ 28

0,2,2,5,5,5,3,3,3,0 28

↓ 28

2,2,5,5,5,3,3,3,0,0 28

↓ 30

2,5,5,5,3,3,3,0,0,2 28

↓ 30

5,5,5,3,3,3,0,0,2,2 28

↓ 30

34

5,5,3,3,3,0,0,2,2,2 25

↓ 27

5,3,3,3,0,0,2,2,2,2 22

↓ 27

3,3,3,0,0,2,2,2,2,5 22

↓ 25

3,3,0,0,2,2,2,2,5,3 22

↓ 25

3,0,0,2,2,2,2,5,3,3 22

↓ 25

0,0,2,2,2,2,5,3,3,3 22

↓ 25

0,2,2,2,2,5,3,3,3,3 25

↓ 28

2,2,2,2,5,3,3,3,3,3 28

↓ 30

2,2,2,5,3,3,3,3,3,2 28

↓ 30

2,2,5,3,3,3,3,3,2,2 28

↓ 30

2,5,3,3,3,3,3,2,2,2 28

↓ 30

5,3,3,3,3,3,2,2,2,2 28

35

↓ 30

3,3,3,3,3,2,2,2,2,2 25

↓ 28

3,3,3,3,2,2,2,2,2,3 25

↓ 28

3,3,3,2,2,2,2,2,3,3 25

↓ 28

3,3,2,2,2,2,2,3,3,3 25

↓ 28

3,2,2,2,2,2,3,3,3,3 25

↓ 28

2,2,2,2,2,3,3,3,3,3 25

as desired.

The final example we are going to look at is when our starting vertex w is the vertex

(5, 0, 1, 0, 5, 5, 4, 2, 0, 3), then we proceed as follows as in the previous example:

5,0,1,0,5,5,4,2,0,3 25

↓ 28

0,1,0,5,5,4,2,0,3,3 23

↓ 26

1,0,5,5,4,2,0,3,3,3 26

↓ 29

0,5,5,4,2,0,3,3,3,3 28

↓ 28

36

5,5,4,2,0,3,3,3,3,0 28

↓ 30

5,4,2,0,3,3,3,3,0,2 25

↓ 27

4,2,0,3,3,3,3,0,2,2 22

↓ 26

2,0,3,3,3,3,0,2,2,4 22

↓ 25

0,3,3,3,3,0,2,2,4,3 23

↓ 25

3,3,3,3,0,2,2,4,3,2 25

↓ 28

3,3,3,0,2,2,4,3,2,3 25

↓ 28

3,3,0,2,2,4,3,2,3,3 25

↓ 28

3,0,2,2,4,3,2,3,3,3 25

↓ 28

0,2,2,4,3,2,3,3,3,3 25

↓ 27

2,2,4,3,2,3,3,3,3,2 27

↓ 29

2,4,3,2,3,3,3,3,2,2 27

37

↓ 29

4,3,2,3,3,3,3,2,2,2 27

↓ 29

3,2,3,3,3,3,2,2,2,2 25

↓ 27

2,3,3,3,3,2,2,2,2,2 24

↓ 27

3,3,3,3,2,2,2,2,2,3 25

↓ 28

3,3,3,2,2,2,2,2,3,3 25

↓ 28

3,3,2,2,2,2,2,3,3,3 25

↓ 28

3,2,2,2,2,2,3,3,3,3 25

↓ 28

2,2,2,2,2,3,3,3,3,3 25

as desired. Clearly, we can see that there exists a path between three chosen vertices

and our sv. We need to prove this in general.

Proof of Theorem 5: If s = t = 0, then trivially a u-cycle exists. Since s < t

where t ≥ s + (d− 1), it follows that if s is positive so is t. Now let V be the set of

all vertices of length n− 1 and weight w, where s− (d− 1) ≤ s ≤ t over a alphabet

[d] = {0, 1, 2, ..., d−1} and let D =< V,E > be a digraph defined as follows. Suppose

we let v1 = a1a2...an−1 and v2 = b1b2...bn−1 which are both in V . A directed edge

38

is drawn from v1 → v2 if the last n − 2 letters of v1 are the same as the first n − 2

letters of v2 and the edge labeled with the corresponding concatenated n-letter word

of weight w satisfies s− (d− 1) ≤ 2 ≤ t. If we let A be the set of all n-letter words,

then the Eulerian circuit in D will determine the existence of a universal cycle for

A. And once again the proof reduces to showing that D is Eulerian.

Suppose we let v1 = a1a2...an−1 ∈ V where

n−1∑
i=1

ai = w.

If s ≤ w < t, then we will have edges (words) coming in and out of v1 for every

vertex weight x ≥ 0, where x ∈ [d], such that s ≤ w + x ≤ t, hence i(v) = o(v).

If w = t then it is only possible to add a weight 0 since adding anything else to v1

will make the edge (word) greater than t which is illegal. Hence i(v) = o(v) = 1. If

s − (d − 1) ≤ w < s, then the valid edges (words) will be those corresponding value

of x such that s ≤ w + x ≤ t, and hence i(v) = o(v) ≥ 1. Therefore, i(v) = o(v) for

all vertices in the vertex set V . Establishing weak connectedness is no trivial step.

However, we will prove weak connectedness using Lemmas 6− 9 below.

Lemma 6 Any vertex v of weight equal to s, can be taken to v’ = (x,x,x,x,...,x+1,x+1,...,x+1),

where the numbers of x′s and x+ 1′s are correct, but they do not necessarily have to

be in the right order.

Proof: The claim is that once we have a vertex of weight equal to s, then we can

reduce it to the desired number of weight x′s and (x+ 1)′s. First, we figure out what

our target or sink vertex is. We then know that the weight of our vertices has to

be between s − (d − 1) ≤ |v| ≤ t and the weight of our edges has to be between

39

s ≤ |e| ≤ t. Since we are starting with a vertex of weight equal to s, then our vertex

consists of ai ∈ {0, 1, 2, ..., d − 1} where the
∑
ai = |v| = s. Recall that vertices are

of length n− 1.

Case 1: Suppose our vertex is of weight equal to s and does not contain weights of

x′s or (x + 1)′s or both. Then, the ultimate goal is to end up at a vertex that has

the desired number of weights x′s and (x + 1)′s. If the first element of our vertex is

greater than weight (x + 1), then we can cycle and add a weight of (x + 1). Adding

a weight of (x + 1) decreases our vertex weight and increases our edge weight while

still keeping our edge and vertex weights legal. If this new vertex weight is within x

of the maximum vertex weight, then we cycle until we get to a weight greater than

(x + 1) and add weight x. We repeat until we get to a weight less than x. If we get

to a weight less than x, then we can cycle and add weight x as long as our vertex

and edge weights are legal. Also, if we get to a weight less than x but the weight

of our previous vertex is within x of the maximum vertex weight, then we need to

cycle which keeps our vertex and edge weights legal. Again, we repeat until we get

to a weight greater than (x+ 1) (where the first part of this paragraph already took

care of this case). However, on the other hand, if our vertex weight is within x of the

minimum vertex weight, then we need to add a weight of (x+ 1) which will increase

our vertex and edge weight while still keeping them legal. And we repeat all of the

above until we have our desired number of weight x′s and (x + 1)′s which does not

have to be in order.

Case 2: If our starting vertex v does have weights x′s or (x + 1)′s or both then

whenever we get to these weights, we cycle which keeps our vertex and edge weights

40

legal. If we get to a vertex that is within x of the minimum vertex weight, then we

need to add a weight of (x + 1) to keep our vertex and edge weights legal. On the

other hand, if our vertex is within x of the maximum vertex weight, then we need

to add a weight of x which keeps both edge and vertex weights legal. If we get to a

vertex greater than (x+ 1), and we are within our x of our minimum vertex weight,

then we need to cycle until we get to a weight less than x while still keeping our edge

and vertex weights legal. Furthermore, if we get to a weight greater than (x + 1),

and we are within x of the maximum vertex weight, then we need to cycle and add

weight x which still keeps our edge and vertex weights legal. We repeat until we have

our vertex of desired weights x′s and (x + 1)′s. There may we cases where we have

a vertex with more of weight x than (x + 1). We rectify this by cycling until we get

to a weight of x and then we cycle and add a weight of (x + 1). We repeat until we

have our desired number of weights x′s and (x+ 1). On the other hand, if we have a

vertex with more of weight (x+ 1)′s than x′s, we rectify this by cycling until we get

to a weight of (x + 1) and then we cycle and add a weight of x. Finally, we repeat

until we have our desired number of weights x′s and (x+ 1). �

The idea is if we start with a vertex of weight greater than s or less than s, then

we can get it to a vertex of weight s. After getting it to a vertex of weight s, then we

know that we can get our desired number of weights x′s and (x+ 1)′s not necessarilly

in order. Lemmas 7 and 8 deal with vertices of this kind and the proofs will follow

and Lemma 9 deals with getting the weights x′s and (x+ 1)′s in order.

41

Lemma 7 Any vertex v of weight ≥ s+ 1 can be reduced to one with a weight s.

Proof: Suppose our vertex v1 = a1a2a3...an−1 and a1 = 0, then we cycle and we

get v2 = a2a3...an−1a1. Notice that this cycling does not change the vertex or the

edge weight. However, if a1 ≥ 1, then we set v2 = a2a3...an−1(a1 − 1). Notice that

|v2| = |v1|−1 and the weight of the edge |e1| = a1+a2+a3+...+an−1+(a1−1). If |e1| is

not legal, then we have to add the minimum letter that will keep our edge weight legal

while still reducing our vertex weight. Worse case scenario is, if |vi| = |ei| = t, then

we cycle and add a weight of 0. Now our vertex vi+1 = ar+1...an−1ar, where ar = 0

and vi+1 has weight t − ar ≥ t − (d − 1) ≥ s where r ≤ d − 1. If |vi| = t − r, then

we add any weight x that reduces the vertex weight to some weight greater than or

equal to s while still keeping the edge weight legal. However, if we get to some vertex

vi = a1a2a3...an−1, where |vi| = s+ 1 and a1 6= 0, then our vi+1 = a2a3...an−1(a1 − 1)

and |vi+1| = s. The weight of our edge |ei| = s+1+(a1−1) ≤ s+1+d−2 = s+d−1 ≤ t,

where ar ≤ d− 1 and our edge weight is legal. �

Lemma 8 Any vertex v of weight ≤ s− 1 can be increased to one with a weight s.

Proof: The proof of this lemma is very similar to the previous lemma, but instead

of reducing the vertex weight, we are increasing the vertex weight to s. Suppose

|v1| = a1a2...an−1 ≤ s−1 where a1 ≤ d−1, then we cycle and v2 = a2a3...an−1(a1 +1)

which increases our vertex weight. Now our edge weight |e1| = |v1| + (a1 + 1) ≤

|v1|+ d− 1 + 1 ≤ s− 1 + d− 1 + 1 = s− 1 + d ≤ t.

If a1 = d − 1, then v2 = a2a3...an−1(d − 1) and |v1| = |v2| which is legal. Our edge

weight |e1| = |v1| + (d− 1) ≤ t. Sooner or later there will exist an aj ≤ d− 2 which

42

will take a vertex v, |v| ≤ s − 1. Finally, if vi = a1a2...an−1, where |vi| = s − 1

and a1 6= 0. Then vi+1 = a2a3...an−1(a1 + 1) where |vi+1| = s. The edge weight

|ei| = |vi|+ a1 + 1 ≤ |vi|+ d− 1 + 1 ≤ s− 1 + d− 1 + 1 = s−+d ≤ t. Therefore, the

edge weight is legal and the weight of our vertex is s. �

Lemma 9 Any vertex v of weight s with the desired number of weights x′s and x+1′s

(not necessarily in order) can be arranged in order.

Proof: The proof is very straight forward. Since we have our vertex weight of s and

our desired number of weight x′s and (x + 1)′s, then we can cycle until they are in

order. If v1 = a1a2...an−1 where a1 = x and an−1 = x + 1, then we cycle and add

weight (x + 1) and our v2 = a2a3...an−1(x + 1). And we repeat until we have our

desired number of weight (x+ 1)′s. Then we cycle and add our weight x′s to the end.

Notice that our edge and vertex weight may increase but still remain legal. Finally

we cycle until our weight x′s and (x + 1)′s are in order. If v1 = a1a2...an−1 where

a1 = x+ 1 and an−1 = x, then we cycle and add weight x and our v2 = a2a3...an−1x.

And we repeat until we have our desired number of weight x′s. Then we cycle and

add our weight (x+ 1)′s to the end. Notice that our edge and vertex weights are still

legal even though they might increase or decrease. �

Therefore, given any vertex in D there exists a path p such that we can get to our

target or sink vertex. This establishes weak connectedness, and this completes the

proof of Theorem 5. �

43

4 CONCLUDING REMARKS

We showed that given any modular k-letter alphabet, there exists u-cycles for M -

Lipschitz n-letter word if condition C holds and all assignment of the elements of [n]

to the sets in an ordered subposet of the Boolean Lattice whose Hasse Diagram has

any given shape. We also showed that there exists a u-cycle of all words with weight

between s and t.

For future research, it would be interesting to improve Theorem 5 so that the range

of the weight of the word is as small as possible, or else to prove that the range in

Theorem 5 is the best possible. Also, one might ask how and to what extent one can

show the existence of de Bruijn cycles for unordered posets. Last but not least, can

results be proved for (labelled as well as unlabelled) subposets of mother posets other

than the Boolean Lattice?

44

BIBLIOGRAPHY

[1] Miklos Bona (2002). “A Walk Through Combinatorics, An Introduction to Enu-

meration and Graph Theory,” Published by World Scientific Co. pte. Ltd.

[2] Gary Chartrand, Linda Lesniak, Ping Zhang (2011). “Graphs & Digraphs,” 5th

edition, Published CRC Press.

[3] A. Leitner and A. P. Godbole (2010). “Universal Cycles of Classes of Restricted

Words,” to appear in Discrete Math.

[4] A. Blanca and A. P. Godbole (2011). “On Universal Cycles for New Classes of

Combinatorial Structures,” SIAM J. Discrete Math. 25, 1832-1842.

[5] G. Hulbert (1994). “On Universal Cycles for k-subsets of an n-set,” SIAM J.

Discrete Math. 7, 598-604.

[6] G. Hulbert, T. Johnson, and J. Zahl (2009). “On Universal Cycles for Multisets,”

Discrete Math. 309, 5321-5327.

[7] A. Bechel, B. LaBounty-Lay and A. P. Godbole (2008). “Universal Cycles of

Discrete Functions,” Congressum Numerantium. 189, 121-128.

[8] F. Chung, P. Diaconis and R. Graham (1992). “Universal Cycles for Combina-

torial Structures,” Discrete Math. 110, 43-59.

[9] B. Jackson (1993). “Universal Cycles of k-subsets and k-permutations,” Discrete

Math. 117, 114-150.

45

VITA

ANDRÉ ALEXANDER CAMPBELL

Education: B.A. Mathematics and Computer Science, Tusculum College,

Greeneville, Tennessee, 2009

M.S. Mathematics, East Tennessee State

University (ETSU), Johnson City, Tennessee, 2013

Professional Experience: Teaching Assistant, East Tennessee State

University, Johnson City, Tennessee, 2012–present

Graduate Assistant, East Tennessee State University

University, Johnson City, Tennessee, 2011–2012

Publications: A. Campbell, A. Godbole and B. Kay, “Contributions to the
Theory of de Bruijn Cycles,” Submitted for Publication,
April 2013

Honor Societies: Kappa Mu Epsilon

46

	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2013

	Universal Cycles for Some Combinatorial Objects
	Andre A. Campbell
	Recommended Citation

