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ABSTRACT

Cost Effective Domination in Graphs

by

Tabitha McCoy

A set S of vertices in a graph G = (V,E) is a dominating set if every vertex in

V \ S is adjacent to at least one vertex in S. A vertex v in a dominating set S is

said to be cost effective if it is adjacent to at least as many vertices in V \ S as it

is in S. A dominating set S is cost effective if every vertex in S is cost effective.

The minimum cardinality of a cost effective dominating set of G is the cost effective

domination number of G. In addition to some preliminary results for general graphs,

we give lower and upper bounds on the cost effective domination number of trees in

terms of their domination number and characterize the trees that achieve the upper

bound. We show that every value of the cost effective domination number between

these bounds is realizable.
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1 INTRODUCTION

1.1 Introduction to Graph Theory

A graph G is a nonempty set V (G) of objects called vertices together with a

(possibly empty) set E(G) of 2-element subsets of V (G) called edges. To indicate

that a graph G has vertex set V (G) and edge set E(G), we write G = (V,E). We

consider simple, finite graphs, that is, graphs with no loops or multiple edges. Each

edge {u, v} of G is typically denoted by uv or vu, and u and v are called adjacent

vertices. Two adjacent vertices are called neighbors of each other. The degree of a

vertex v in a graph G is the number of vertices in G adjacent to v. A vertex v is said

to be even or odd, according to whether its degree in G is even or odd. Also, two

edges are called adjacent edges if uv and vw are distinct edges in G. The vertex u

and the edge uv are said to be incident to each other.

The number of vertices in a graph G is the order of G, and the number of edges

is the size of G. We let |V (G)| = n and |E(G)| = m. A graph of order 1 is called

a trivial graph, and a graph of order 2 or more is called a nontrivial graph. A graph

of size 0 is called an empty graph. A nonempty graph has one or more edges. The

complete graph of order n, denoted Kn, is the graph for which every two distinct

vertices are adjacent. Thus, Kn has size n(n − 1)/2. The path on n ≥ 1 vertices,

denoted Pn, is a graph of order n and size n− 1. The length of a path is the number

of edges it contains. A graph G is connected if for every pair of vertices in V (G),

there exists a path between them. The cycle on n vertices, denoted Cn, is a closed

path, Pn, and has order n and size n. The length of a cycle is the number of edges
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it contains. An acyclic graph has no cycles. A tree is a connected acyclic graph. A

graph G is bipartite if V (G) can be partitioned into two independent sets. A complete

bipartite graph is a bipartite graph with partitions V1 and V2 such that every vertex

in V1 is adjacent to every vertex in V2. If |V1| = s and |V2| = t, then the complete

bipartite graph is denoted Ks,t and has order s+ t and size st. We note that trees are

bipartite. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

A graph G is regular if the all vertices of G have the same degree, say r. Such graphs

are called r-regular. A 3-regular graph is also called a cubic graph. The cartesian

product of two graphs G1 and G2, commonly denoted by G1�G2, has vertex set

V (G) = V (G1)× V (G2)

and two distinct vertices (u, v) and (x, y) of G1�G2 are adjacent if either

(1) u = x and vy ∈ E(G2) or (2) v = y and ux ∈ E(G1).

Figure 1 gives examples of the graphs K4, C5, P3�P4 and K2,3.

For a graph G = (V,E), the open neighborhood of a vertex u ∈ V is the set

N(u) = {v |uv ∈ E}, and the closed neighborhood of u is the set N [u] = N(u) ∪ {u}.

The open neighborhood of a set S ⊆ V is the set N(S) =
⋃
u∈S N(u), and the closed

neighborhood of a set S is the set N [S] = N(S)∪S. A set S of vertices is independent

if no two vertices in S are adjacent and is a dominating set if N [S] = V , that is,

every vertex in V \S is adjacent to at least one vertex in S. The domination number

γ(G) of a graph G equals the minimum cardinality of a dominating set in G (see Fig-

ure 2 for examples where the darkened vertices represent γ(G)-sets), while the upper

domination number Γ(G) equals the maximum cardinality of a minimal dominating
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C5K4

K2,3P3�P4

Figure 1: Graphs K4, C5, P3�P4 and K2,3.

set in G. A dominating set of cardinality γ(G) is called a γ(G)-set. For more de-

tails on domination, the reader is referred to Fundamentals of Domination in Graphs

by Haynes, Hedetniemi, and Henning [13]. The vertex independence number β0(G)

equals the maximum cardinality of an independent set in G, while the independent

domination number i(G) equals the minimum cardinality of a maximal independent

set in G. The following inequalities are well-known in domination theory.

Proposition 1.1 For any graph G, γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G).

We go into more depth with inequality chain from Proposition 1.1 in the Prelim-

inary Results section of this thesis.

1.2 Cost Effective Domination

Motivated by the studies of unfriendly partitions and satisfactory partitions (for

example, see [1, 2, 7, 8, 9, 19, 20]), cost effective domination was introduced in [10].

10



G2G1

Figure 2: Graphs with γ(G1) = 3 and γ(G2) = 4.

A vertex v in a set S is said to be cost effective if it is adjacent to at least as many

vertices in V \ S as it is in S, and v is very cost effective if it is adjacent to more

vertices in V \ S than to vertices in S. A set S is (very) cost effective if every vertex

in S is (very) cost effective. A set S is a (very) cost effective dominating set if S is

both (very) cost effective and a dominating set.

Definition 1.2 The cost effective domination number γcε(G) of a graph G equals the

minimum cardinality of a cost effective dominating set in G. The upper cost effective

domination number Γcε(G) equals the maximum cardinality of a minimal dominating

set that is cost effective in G. A cost effective dominating set of G with cardinality

γcε(G) is called a γcε(G)-set. The very cost effective domination number γvcε(G) and

the upper very cost effective domination number Γvcε(G) are defined similarly.

For examples, consider the graphs G in Figures 3(a) and 4(a) where the darkened

vertices represent γcε(G)-sets and Figures 3(b) and 4(b) where the darkened vertices

represent γvcε(G)-sets.
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(b)(a)

Figure 3: Graph with γcε(G) = 7 and γvcε(G) = 8.

(b)(a)

Figure 4: Graph with γcε(G) = 8 and γvcε(G) = 10.

It should be pointed out that while the property of being a dominating set is

superhereditary, that is, every superset of a dominating set is also a dominating set,

the property of being a cost effective dominating set is not superhereditary. This

explains why the definition of the upper cost effective domination number does not

include the word “minimal” as it does in the definition of the upper domination

number. Without the word minimal in the definition of Γ(G), the value of Γ(G)

would equal n = |V | for all graphs.

In terms of application, we assume that maintaining edges in a network has an

associated cost, and thus they should be used effectively. We assume that an edge

between a vertex in a set S and a vertex in V \ S is being used effectively, while an

edge between two vertices in S is not necessarily being used cost effectively. Thus,

a vertex is considered to be cost effective if at least as many edges incident to it are

12



being used cost effectively as not being used cost effectively.

Another way of viewing the application is to consider a company, where the set S

represents the employees and V \S represents the customers. Certainly the company

would want to have only employees that add to its profits. Suppose the company

offers a service to both its employees and its customers. Let the edges inside S

represent services between employees (internal costs) and let edges between S and

V \ S represent income from paying customers. If the company allows employees to

use the services it offers for free or at a discounted price, then to ensure that each

employee v ∈ S is profitable for the company it would be necessary for v to have at

least as many neighbors in V \ S as in S, that is, S needs to be a cost effective set.

In this thesis, we study bounds on the cost effective domination number of graphs.
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2 BACKGROUND AND TERMINOLOGY

2.1 Unfriendly Partitions

Cost effective domination is derived from the study of unfriendly partitions of

graphs, as follows. Let C be a two-coloring of the vertices of a graph G, C : V →

{Red,Blue}. For every vertex u ∈ V , define B(u) = {v ∈ N(u), C(v) = Blue}

and R(u) = {v ∈ N(u), C(v) = Red}. Similarly, define B(V ) = {v ∈ V,C(v) =

Blue} and R(V ) = {v ∈ V,C(v) = Red}. A two-coloring produces a bipartition

of V , π = {B(V ), R(V )}. Given such a bipartition π, we say that an edge uv ∈

E is bicolored if C(u) 6= C(v). A bipartition π is called an unfriendly partition if

every vertex u ∈ B(V ) has at least as many neighbors in R(V ) as it does in B(V ),

and every vertex v ∈ R(V ) has at least as many neighbors in B(V ) as it does in

R(V ). That is, if C(u) = Blue, then |B(u)| ≤ |R(u)|, and if C(u) = Red, then

|R(u)| ≤ |B(u)|. These types of partitions were defined and studied by Borodin and

Koshtochka [3], Aharoni, Milner and Prikry [1], and Shelah and Milner [20], who

called these unfriendly partitions. They observed the following, a simple proof of

which we provide here.

Theorem 2.1 [10] Every finite connected graph G of order n ≥ 2 has an unfriendly

partition.

Proof. Let π = {B(V ), R(V )} be any bipartition of V (G) having the property that

the number of bicolored edges is a maximum. Assume to the contrary that π is not

an unfriendly partition. Then there must exist a vertex, say v ∈ R(V ), without loss

of generality, having more Red neighbors than Blue neighbors. In this case, moving

14



v to B(V ) will increase the number of bicolored edges, contradicting the assumption

that π has a maximum number of bicolored edges. �

Unfriendly partitions have shown up indirectly in several other lines of research.

In [4, 5] the concept of α-domination in graphs is defined and studied. A set S ⊆ V

of vertices in a graph G = (V,E) is called an α-dominating set if for every vertex

v ∈ V \ S, |N(v) ∩ S|/|N [v]| ≥ α, where 0 ≤ α < 1. In the case where α ≥ 1/2,

every vertex in V \ S meets the unfriendly condition in that it has at least as many

neighbors in S as it has in V \S. However, no unfriendly condition is imposed on the

vertices in S.

Similarly, in [6, 11, 12, 14, 16, 18] global offensive alliances in graphs are defined

and studied. A set S ⊆ V of vertices is called a global offensive alliance if for every

vertex v ∈ V \S, |N(v)∩S| ≥ |N [v]∩ (V \S)|. As with α-domination, if S is a global

offensive alliance, then every vertex v ∈ V \ S satisfies the unfriendly condition, in

that it has at least as many neighbors in S as it has in V \ S if you count the vertex

v as one of its own neighbors. But no unfriendly condition is imposed on the vertices

in S.

A partition that is in some sense dual to an unfriendly partition is a bipartition

π = {B(V ), R(V )} called a satisfactory partition such that every vertex u ∈ B(V ) has

at least as many neighbors in B(V ) as it does in R(V ), and every vertex u ∈ R(V ) has

at least as many neighbors in R(V ) as it has in B(V ). That is, if C(u) = Blue, then

|B(u)| ≥ |R(u)|, and if C(u) = Red, then |R(u)| ≥ |B(u)|. Satisfactory partitions

have been studied in [7, 8, 9] and [19]. However, unlike unfriendly partitions, not

every graph has a satisfactory partition. In fact, it is an NP-complete problem to

15



determine if an arbitrary graph has a satisfactory partition [2].

2.2 Differentials in Graphs

The related concept of differentials in graphs was studied in [17], where the fol-

lowing game was considered for any arbitrary graph G = (V,E). Assume you are

allowed to buy as many tokens as you like, say k tokens, at the cost of $1 each. You

then place your tokens on some subset k vertices of V . For each vertex of G which

is adjacent to a vertex with a token on it, but has no token on itself, you receive $1.

Note that you do not receive any credit for the vertices on which you place a token.

Your objective it to maximize your profit, that is, the total value received minus the

cost of the tokens bought. B(X) is defined as the set of vertices in V \X that have

a neighbor in a set X. Based on this game, the differential of a set X is defined to

be ∂(X) = |B(X)| − |X|, and the differential of a graph to equal the max{∂(X)} for

any subset X of V .

In [17], it was shown that for any graph G,

n− 2γ(G) ≤ ∂(G) ≤ n− γ(G)− 1, and

∆(G)− 1 ≤ ∂(G).

The following realizability result was also given.

Theorem 2.2 [17] For any triple (a, b, c) of positive integers such that a ≤ b ≤ c

and c − 2a ≤ b ≤ c − a − 1, there exists a tree T having order n = c, γ(T ) = a, and

∂(T ) = b.

16



A subdivision of an edge uv is obtained by removing edge uv, adding a new vertex

w, and adding the new egdes uw and wv. A wounded spider is the graph formed

by subdividing at most t − 1 of the edges of a star K1,t for t ≥ 0. The following

gives a characterization of trees that achieve the upper bound for ∂(T ), while the

characterization of the trees T for which ∂(T ) = n− 2γ(T ) is still being determined.

Theorem 2.3 [17] A tree T has ∂(T ) = n− γ(T )− 1 if and only if T is a nontrivial

wounded spider.

Also in [17], the trees having ∂(T ) = ∆(T ) − 1 are characterized. For a rooted

tree T , let Tu denote the subtree of T induced by u and its descendents.

A family T of trees is defined in [17] as follows. A tree T is in T if T is a tree

rooted at a vertex v of maximum degree ∆(T ) and one of the following properties

holds:

1. v is adjacent to exactly one leaf x and for each u ∈ N(v) \ {x}, Tu ∈ {P2, P3},

where u is an endvertex of Tu, or

2. There exist two vertices x, y ∈ N(v) such that Tx ∈ {P1, P2} and Ty ∈ {P1, P2}.

And, for each u ∈ N(v) \ {x, y}, the subtree Tu ∈ {P1, P2, P3, P4, P5} where u

is the center of Tu or u is a leaf of Tu = P3.

We conclude this section with the following theorem.

Theorem 2.4 [17] A tree T has ∂(T ) = ∆(T )− 1 if and only if T ∈ T .

17



3 PRELIMINARY RESULTS

This section will begin with some preliminary results that build to the main results

of this thesis.

Observation 3.1 Every independent dominating set S in an isolate-free graph G is

a very cost effective dominating set.

Corollary 3.2 For any isolate-free graph G,

γ(G) ≤ γcε(G) ≤ γvcε(G) ≤ i(G) ≤ β0(G) ≤ Γvce(G) ≤ Γce(G) ≤ Γ(G).

It is known [13] that β0(G) = Γ(G) for bipartite graphs so, from Corollary 3.2,

we have that β0(G) = Γvce(G) = Γce(G) = Γ(G) for bipartite graphs. On the other

hand, in this section we will see that all combinations of the inequalities in the chain

γ(G) ≤ γcε(G) ≤ γvcε(G) ≤ i(G) are possible, even when restricted to trees. We also

give necessary conditions for a graph G to have γ(G) = γcε(G), and for a graph G

to have γcε(G) = γvcε(G). In Section 4, we show that γcε(T ) ≤ 2γ(T )− 3 for trees T

with γ(T ) ≥ 3, and characterize the trees achieving this bound. Then we show that,

for trees T , every value of the cost effective domination number between γ(T ) and

2γ(T )− 3 is realizable.

We first give some additional terminology. For a graph G and a subset S ⊆ V , we

denote the subgraph induced by S as G[S] = (S,E ∩ (S×S)). An S-external private

neighbor of a vertex v ∈ S is a vertex u ∈ V \ S which is adjacent to v but to no

other vertex of S. The set of all S-external private neighbors of v ∈ S is called the

S-external private neighbor set of v and is denoted epn(v, S). A vertex of degree one

18



is called a leaf (or endvertex), and its neighbor is a support vertex. The double star

Sr,s is the tree with exactly two adjacent non-leaf vertices, one of which is adjacent

to r leaves and the other to s leaves. The corona of graphs G and H, denoted G ◦H,

is the graph formed from one copy of G and |V (G)| copies of H, where the ith vertex

in V (G) is adjacent to every vertex in the ith copy of H.

The inequalities in Corollary 3.2 raise the following interesting questions: Which

graphs have a cost effective γ-set, that is, for which graphs G, is γ(G) = γcε(G)? For

which graphs G is γcε(G) = γvcε(G)?

Note that if G is a cycle or a path Pk for k ≥ 5, then γ(G) = γcε(G) = γvcε(G) =

i(G). The graphs in Figure 5(a) and 5(b), where the darkened vertices represent

γcε(G)-sets, have γcε(G) > γ(G).

(b)(a)

Figure 5: Graphs that do not have cost effective γ-sets.

Observation 3.3 [15] Let S be a cost effective set of G. If every vertex in S has odd

degree, then S is a very cost effective set of G.

Corollary 3.4 If G has a γcε(G)-set that consists of only odd vertices, then γcε(G) =

γvcε(G).

Corollary 3.5 If every vertex of G has odd degree, then γcε(G) = γvcε(G).
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Note that in particular, γcε(G) = γvcε(G) for cubic graphs.

Theorem 3.6 If G has maximum degree ∆(G) ≤ 4, then γ(G) = γcε(G).

Proof. Among all γ(G)-sets, select S to be one with the minimum number of edges in

G[S]. If S is cost effective, we are finished. Hence, assume to the contrary that there

exists a vertex, say x, that is not cost effective. Therefore, |N(x)∩S| > |N(x)∩(V \S)|.

Thus, x has at least one neighbor in S. By the minimality of S, x has at least

one external private neighbor, say x′, with respect to S. But since ∆(G) ≤ 4 and

|N(x) ∩ S| > |N(x) ∩ (V \ S)|, it follows that N(x) ∩ (V \ S) = {x′}. But then

S ′ = (S\{x})∪{x′} is a γ(G)-set with fewer edges in G[S ′] than in G[S], contradicting

our choice of S. Hence, S is cost effective. �

Notice that the tree T in Figure 5(b) has maximum degree ∆(T ) = 5 and γ(T ) <

γce(T ), and thus, the bound ∆(G) ≤ 4 in Theorem 3.6 is best possible.

From Theorem 3.6, we have the following,

Corollary 3.7 If G is a grid graph Pm�Pn, a cylinder Cm�Pn, or a torus Cm�Cn,

then γ(G) = γce(G).

From Observation 3.3 and Theorem 3.6, we have the following:

Corollary 3.8 If G is a cubic graph, then γ(G) = γcε(G) = γvcε(G).

Theorem 3.9 If γ(G) ≤ 3, then γ(G) = γcε(G).

Proof. Clearly, if γ(G) = 1, then γ(G) = γcε(G), so assume that 2 ≤ γ(G) ≤ 3.

Among all γ(G)-sets, select S to be one with the minimum number of edges in G[S].

20



If S is cost effective, then we are finished. Thus, assume that G is not cost effective.

Then there exists a vertex x ∈ S, such that |N(x) ∩ S| > |N(x) ∩ (V \ S)|. Hence, x

has at least one neighbor in S. By the minimality of S, x has at least one external

private neighbor, say x′. Hence, |N(x)∩S| ≥ 2, implying that |S| = 3 and x has two

neighbors in S and |N(x) ∩ (V \ S)| = 1, that is, N(x) ∩ (V \ S) = {x′}. But then

(S \ {x})∪ {x′} is a γ(G)-set with fewer edges in its induced subgraph than in G[S],

contradicting our choice of S. Hence, S is cost effective. �

Notice that the tree T in Figure 5(b) has γ(T ) = 4, but γce(T ) = 5, so the bound

γ(G) ≤ 3 in Theorem 3.9 is best possible. We conclude this section by showing

that all eight combinations of the inequalities γ(G) ≤ γcε(G) ≤ γvcε(G) ≤ i(G) from

Corollary 3.2 are possible, even when restricted to trees. For this purpose, let Kx
1,3

be the star with center x and leaves x1, x2, and x3. Let T jx be the corona Kx
1,3 ◦Kj.

For the following, Ti satisfies inequality i.

1. γ(T ) < γcε(T ) < γvcε(T ) < i(T ).

Let T1 be the tree obtained from T 2
x ∪ T 2

y by adding a new leaf vertex adjacent

to x and an edge between x1 and y1. See Figure 6(a).

2. γ(T ) < γcε(T ) < γvcε(T ) = i(T ).

Let T2 be the tree obtained from T 2
x ∪ T 2

y by adding the edge xy.

3. γ(T ) < γcε(T ) = γvcε(T ) < i(T ).

Let T3 be the tree obtained from T 2
x ∪T 2

y by adding the edge x1y1 and removing

the two leaves adjacent to x1. See Figure 6(b).
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4. γ(T ) < γcε(T ) = γvcε(T ) = i(T ).

Let T4 be the tree T 2
x .

5. γ(T ) = γcε(T ) < γvcε(T ) < i(T ).

Let T5 be the corona P6 ◦K2.

6. γ(T ) = γcε(T ) < γvcε(T ) = i(T ).

Let T6 be the tree T 3
x .

7. γ(T ) = γcε(T ) = γvcε(T ) < i(T ).

Let T7 be the double star Sr,s where 2 ≤ r ≤ s.

8. γ(T ) = γcε(T ) = γvcε(T ) = i(T ).

Let T8 be the corona T ′ ◦K1 of any tree T ′.

(a) (b)

Figure 6: Trees T1 and T3.
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4 MAIN RESULTS

In this section, we determine an upper bound on the cost effective domination

number of trees and characterize the trees obtaining this bound. We also show that

every value of γcε(T ) between the upper and lower bounds of Theorem 4.1 is realizable.

Theorem 4.1 If T is a tree with γ(T ) ≥ 3, then γ(T ) ≤ γcε(T ) ≤ 2γ(T ) − 3, and

these bounds are sharp.

Proof. The lower bound is direct from Corollary 3.2. Let S be a γ(T )-set. If S is

cost effective, then we are finished. Thus, assume that S is not cost effective and let

U = {u1, u2, ..., uk} be the vertices of S that are not cost effective with respect to S.

Let si = |N(ui)∩ S| and oi = |N(ui)∩ (V \ S)|, for 1 ≤ i ≤ k. Thus for each ui ∈ U ,

si ≥ oi + 1. Let U ′ ⊆ V \ S be the vertices in V \ S whose only neighbors in S are

in U . Note that since each ui is not cost effective, ui has a neighbor in S, that is,

si ≥ 1. Hence, the minimality of S implies that ui has at least one external private

neighbor with respect to S in U ′. Thus, |U ′| ≥
∑k

i=1 |epn(ui, S)| ≥ k.

We first prove a claim:

Claim A
∑k

i=1 si ≤ γ(T ) + k − 2.

Proof. We establish the bound on the degree sum in T [S] by considering the possible

edges of T [S] incident to a vertex in U . If both endvertices of an edge are in U , then

we say the edge is a Type-1 edge, while if one endvertex is in U and the other is in

S \ U , we say the edge is of Type-2. Thus, each Type-1 edge adds 2 to the degree

sum in T [S], and each Type-2 edge adds 1. Let ti be the number of Type-i edges.
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Note that if a pair of vertices in U are connected by a path in T [U ], then they

have no common neighbor in S \ U , for otherwise a cycle is formed. Let T [U ] have c

components. Since T is a tree, t1 = k− c, and there are at most c−1 pairs of vertices

in U having a common neighbor in S \ U . By the Pigeonhole Principle, there are at

least t2 − |S \ U | pairs of vertices in U having a common neighbor in S \ U . Thus,

t2 − |S \ U | ≤ c− 1.

Hence,
∑k

i=1 si = 2t1 + t2 ≤ 2(k−c)+ |S \U |+c−1 = 2k−2c+γ(T )−k+c−1 =

γ(T ) + k − c− 1 ≤ γ(T ) + k − 2. �

Since si ≥ oi + 1 for each i, 1 ≤ i ≤ k, by Claim A, we have
∑k

i=1 oi ≤
∑k

i=1(si −

1) ≤ γ(T ) + k − 2− k = γ(T )− 2. Hence, |U ′| ≤ γ(T )− 2.

Next, we give an algorithm to recursively build a cost effective dominating set Sk

from a γ(T )-set S. As before, let U = {u1, u2, . . . , uk} be the subset of vertices in

S that are not cost effective, and let U ′ be the set of vertices in V \ S whose only

neighbors in S are in U .

begin

let S0 = S.

for i = 1 to k do

if ui is cost effective in Si−1

then let Si = Si−1

else if epn(ui, Si−1) = ∅

then let Si = Si−1 \ {ui}

else let Si = (Si−1 \ {ui}) ∪ epn(ui, Si−1)

fi
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fi

end

We next prove that the algorithm produces a cost effective dominating set with

cardinality at most 2γ(T )− 3.

Claim B The algorithm terminates with a cost effective dominating set, namely Sk,

and |Sk| ≤ 2γ(T )− 3.

Proof. By definition the set S = S0 is a dominating set and the vertices of S \

{u1, u2, ..., uk} are cost effective in S. We define the loop invariant: for 1 ≤ i ≤ k,

the set Si is a dominating set and all of the vertices in Si \ {ui+1, . . . , uk} are cost

effective in Si.

To see that Si is a dominating set, we note that Si−1 is a dominating set, so if

ui is cost effective and Si = Si−1, clearly, Si is a dominating set. If ui is not cost

effective in the set Si−1, then ui has at least one neighbor in Si−1, implying that ui is

dominated by Si. Moreover, the external private neighbors of ui with respect to Si−1

are added to form Si, so Si is a dominating set.

To see that the set Si\{ui+1, . . . , uk} is cost effective, note if ui is not cost effective

in Si−1, then Si = Si−1 ∪ epn(ui, Si−1). Let X = epn(ui, Si−1). Since T is a tree and

each vertex in X is adjacent to ui, X is an independent set. Moreover, since each

vertex x ∈ X is a private neighbor of ui, x has no neighbors in Si−1 \ {ui}. In other

words, X is independent in T [Si] and so the vertices of X are cost effective with

respect to Si. Hence, the vertices that are not cost effective in Si are the at the

most the ones that are not cost effective in Si−1 \ {ui}. On iteration k, the algorithm

terminates with the cost effective dominating set Sk.
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It remains to be shown that |Sk| ≤ 2γ(T )− 3. To do this we count the maximum

possible vertices being added to form the set Sk. Since U ′ consists of the vertices

whose only neighbors in S are in U , we have that epn(ui, S) ⊆ U ′ for 1 ≤ i ≤ k.

Consider the construction of set Sk. At iteration i, if ui is cost effective in Si−1,

then we let Si = Si−1. Since ui ∈ U , it is not cost effective in S so we have

|epn(ui, S)| ≥ 1. Hence, for our counting purposes, letting Si = Si−1 is essentially the

same as removing ui and replacing it with a vertex from epn(ui, S) ⊆ U ′.

If ui is not cost effective in Si−1, then we remove ui and add the set epn(ui, Si−1)

to form Si. To show that at most |U ′| vertices are added to S to form Sk, it suffices

to show that epn(ui, Si−1) ⊆ U ′. To see this, suppose to the contrary that x ∈

epn(ui, Si−1) and x 6∈ U ′. By the definition of U ′, it follows that x has a neighbor in

S \ U . Since S \ U ⊆ Si−1, x has a neighbor in Si−1 \ U . But ui ∈ U , contradicting

that x ∈ epn(ui, Si−1). Hence, epn(ui, Si−1) ⊆ U ′, and so we may conclude that every

vertex added to form Sk is in the set U ′.

It follows that to form Sk from our original set S, we add at most |U ′| vertices,

while for the purposes of our count, we “remove” |U | = k vertices. Since |U ′| ≤ γ(T )−

2, we have |Sk| ≤ |S| − |U |+ |U ′| ≤ γ(T )− k+ γ(T )− 2 = 2γ(T )− k− 2 ≤ 2γ(T )− 3

for k ≥ 1. �

By Claim B, γcε(T ) ≤ |Sk| ≤ 2γ(T ) − 3, as desired. We conclude this proof by

showing the bounds are sharp. The corona T ◦K1 of any tree T achieves the lower

bound. Let T be the corona K1,t ◦Kt−1. Then γ(T ) = t + 1 and γcε(T ) = 2t − 1 =

2γ(T )− 3, obtaining the upper bound. �
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γ(T ) = 4 γcε(T ) = 5

Figure 7: Tree T that achieves the upper bound of Theorem 4.1.

Note that the upper bound on the cost effective domination number of Theo-

rem 4.1 does not hold for the very cost effective domination number of trees. For a

counterexample, consider the tree T = K1,t ◦Kt for which γ(T ) = γcε(T ) = t+ 1 and

γvcε(T ) = 2t > 2t− 2 = 2(t+ 1)− 3 = 2γ(T )− 3.

Next we characterize the trees obtaining the upper bound of Theorem 4.1. For

this purpose, we define the family F of trees Tt, which are obtained from the star

K1,t, with center x and leaves x1, x2, ..., xt as follows. Add exactly t− 1 new vertices

adjacent to x, and for 1 ≤ i ≤ t, add at least t− 1 new vertices adjacent to xi. Note

that the corona K1,t ◦Kt−1 ∈ F .

Theorem 4.2 A tree T with γ(T ) ≥ 3 has γcε(T ) = 2γ(T )− 3 if and only if T ∈ F .

Proof. Let Tt ∈ F . Then γ(Tt) = t+1, while γcε(T ) = t+ t−1 = 2t−1 = 2γ(Tt)−3.

Next assume that γcε(T ) = 2γ(T )−3. Let Sk be a cost effective dominating set of

T formed by the algorithm in the proof of Theorem 4.1. Then, 2γ(T )− 3 = γcε(T ) ≤

|Sk| ≤ 2γ(T )− k− 2 ≤ 2γ(T )− 3. Since we have equality throughout, it follows that

2γ(T )−3 = 2γ(T )−k−2, implying that for the set Sk, we have that k = 1. Thus, from

our algorithm, we deduce that T has a γ(T )-set S with exactly one vertex, say u1,

that is not cost effective in S. Furthermore, Sk = S1 = (S \ {u1})∪ epn(u1, S). Since

γcε(T ) = 2γ(T )−3 ≤ |Sk| = |S|−1+|epn(u1, S)| = γ(T )−1+|epn(u1, S)| ≤ 2γ(T )−3,
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we have that |epn(u1, S)| = γ(T ) − 2. Moreover, since u1 is not cost effective with

respect to S, u1 has exactly γ(T )− 1 neighbors in S. Since T is a tree, the induced

subgraph T [S] is the star K1,γ(T )−1 with center u1 and every vertex in V \ S is a leaf

in T . To see that T ∈ F , we need to show that each vertex in S \ {u1} has at least

γ(T )−2 leaf neighbors in V \S. Suppose to the contrary that x ∈ S \{u1} and x has

at most γ(T )−3 leaf neighbors in V \S. Then (S \{x})∪ epn(x, S) is a cost effective

dominating set of T with cardinality |S \ {x}|+ |epn(x, S)| ≤ γ(T )− 1 + γ(T )− 3 <

2γ(T ) − 3 = γcε(T ), a contradiction. Thus, u1 has exactly γ(T ) − 2 leaf neighbors,

and every vertex in S \ {u1} has at least γ(T )− 2 leaf neighbors, and so T ∈ F . �

We conclude by showing that all values between the lower and upper bounds of

Theorem 4.1 are realizable. Let Kv
1,t be the star with center v and leaves v1, ..., vt.

Theorem 4.3 Given positive integers a and b such that 4 ≤ a ≤ b ≤ 2γ(T )−3, there

exists a tree T having γ(T ) = a and γcε(T ) = b.

Proof. To construct a tree T having γ(T ) = a and γcε(T ) = b, we begin with the

tree (Kx
1,a−2 ◦Ka−2) ∪ Ky

1,b−a+1 and add the edge xy. Then, T has a support vertices.

We show that γ(T ) = a and γcε(T ) = b. First note that since the set of support

vertices of T is a dominating set, γ(T ) ≤ a, and since every leaf or its support must

be in any γ(T )-set, we have γ(T ) ≥ a. Hence, γ(T ) = a.

Let S = {x, x1, ...., xa−2, y1, ...., yb−a+1}. To see that S is a dominating set, note

that every vertex in S is dominated by S. Assume v ∈ V \ S. Then, v is either a

leaf adjacent to xi or x, or v = y and is dominated by yj, for some i, j. Hence, S

is a dominating set. To see that S is cost effective, note that yi is independent in

T [S], so each yi, 1 ≤ i ≤ b − a + 1, is cost effective with respect to S. Moreover,
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|N(xi) ∩ S| = 1 and |N(xi) ∩ (V \ S)| = a − 2 ≥ 2, so xi, for 1 ≤ i ≤ a − 2, is cost

effective. Finally, |N(x)∩S| = a− 2 < a− 1 = |N(x)∩ (V \S)|, so x is cost effective.

Hence, S is cost effective, and so γcε(T ) ≤ |S| = 1 + a− 2 + b− a+ 1 = b.

Now, let S∗ be a γcε(T )-set. To dominate T , each leaf or its support vertex

must be in S∗. We show that at least one of the support vertices is not in S∗.

Assume to the contrary that S∗ contains all the support vertices of T . That is,

{x, x1, ...., xa−2, y} ⊆ S∗. But then |N(x) ∩ (V \ S∗)| = a− 2 < |N(x) ∩ S∗| = a− 1,

contradicting that S∗ is a cost effective set. Hence, at least one support vertex, say

w, of T is not in S∗, implying that S∗ contains the leaves adjacent to w. Let lw

be the number of leaves adjacent to w. Recall that T has a support vertices, so

a− 1 + lw ≤ |S∗| = γcε(T ) ≤ b. Thus, lw ≤ b− a+ 1. Since b ≤ 2a− 3, we have that

b−a+ 1 ≤ 2a− 3−a+ 1 = a− 2. Now each support vertex of T is adjacent to either

a − 2 or b − a + 1 leaves and b − a + 1 ≤ a − 2, so we conclude that each support

vertex is adjacent to at least b − a + 1 leaves. In particular, lw ≥ b − a + 1, and so,

lw = b− a+ 1. Hence, γcε(T ) = |S∗| ≥ a− 1 + lw = a− 1 + b− a+ 1 = b. Therefore,

γcε(T ) = b. �

For an example, consider the tree T in Figure 8(a) where the darkened vertices

represent a γ(T )-set and Figure 8(b) where the darkened vertices represent a γcε(T )-

set.
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(a) (b)

Figure 8: Tree T with γ(T ) = a = 6 and γcε(T ) = b = 8.
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5 CONCLUDING REMARKS

We have determined an upper bound on the cost effective domination number of

trees and characterized the trees obtaining the bound. We also showed that every

value of γce(T ) between the upper and lower bounds is realizable. We conclude with

some open problems suggested by this work:

1. Characterize the trees T for which γ(T ) = γcε(T ).

2. Characterize the trees T for which γcε(T ) = γvcε(T ).

3. Characterize the trees T for which γvcε(T ) = i(T ).

4. We have seen that the upper bound of 2γ(T )−3 on the cost effective domination

number of trees does not hold for the very cost effective domination number. Is

there a bound on γvcε(T ) in terms of γ(T ) for trees T?

5. Although 2γ(T )−3 is an upper bound on the cost effective domination number

for trees, we have not been able to prove or disprove that it is a bound for the

cost effective domination number of general graphs. Prove or disprove: For any

graph G, γcε(G) ≤ 2γ(G)− 3.

6. Investigate bounds on the upper parameters Γcε(G) and Γvcε(G).
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