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ABSTRACT

Level Crossing Times in Mathematical Finance

by

Ofosuhene Osei

Level crossing times and their applications in finance are of importance, given certain

threshold levels that represent the “desirable” or “sell” values of a stock. In this

thesis, we make use of Wald’s lemmas and various deep results from renewal theory,

in the context of finance, in modelling the growth of a portfolio of stocks. Several

models are employed.
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1 INTRODUCTION

Level crossing times in finance modeling are first-occurrence or threshold levels

that the variables in the model in question should satisfy, [2]. In this research, the

assumption is that there is a positive drift in the overall behavior of the models

explored. The increments in the models possess characteristics of a random walk i.e.,

they are independent, identically distributed random variables. Generally, there exist

overshoots or residual life of the random walk which surpasses the level crossing time,

i.e., the level at which it was to be stopped. For example, consider a stock model

with increments which are independent and identically distributed. The stock has an

initial value of B = $0, and the level crossing time, t, at which the model stops is

S = $20. We seek to find the expectation and variance for the increments and the

waiting times. We could then deduce a central limit theorem for the waiting time. If

the increment is always either zero or $0.03, then we see that there is going to be an

overshoot of $0.02 when the stock value surpasses $20.

First, we take a look at some basic distributions, give background terminology

and then introduce and consider the models. We later look into renewal processes

and their applications to the models treated in this research. Probability models are

heavily employed in Mathematical Finance and its applications. An overview of some

of the probability models and their applications include the following:

Binomial Distributions

Binomial distributions are discrete probability models which involve n indepen-

dent trials each of which is a “success” with probability p or a “failure” with prob-
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ability 1 − p, [1]. The probability mass function of a binomial distribution is given

by:

p(k) =
(
n
k

)
pk(1− p)n−k k = 0, 1, 2, 3, ...n

The binomial distribution describes the behavior of a count variable X if the fol-

lowing conditions apply:

1. The number of trials n is fixed.

2. The trials are independent.

3. Each observation representing the outcome of any trial can be one of two out-

comes (“success” or “failure”).

4. The probability of success p is the same for each trial.

If these conditions are met, then X, the number of successes, has a binomial distri-

bution with parameters n and p, abbreviated B(n, p).

The Binomial distribution yields a Bernoulli distribution if the the number of in-

dependent trials n equals 1, and if we set X = 1 with a probability of p if the outcome

is a success and X = 0 with probability 1 − p if the outcome is a failure. Thus, the

probability mass function is given by:

p(0) = P{X = 0} = 1− p

p(1) = P{X = 1} = p

where p ∈ (0, 1).

8



The Binomial Model for Stock Pricing.

The binomial model for pricing stocks in discrete time is given by the Markov chain

given by the recursion Sn+1 = SnKn+1 where the Ki’s are identically, independently

distributed random variables with p = P (Ki = u) and 1 − p = P (Ki = d), n≥ 0.

Thus

Sn+1 =

{
uSn,with probability p

dSn,with probability 1− p

An arbitrage is a trading strategy with a positive probability of earning money and

zero probability of losing with an initial wealth of zero. The two-state binomial option

pricing model is based on the assumption of zero arbitrage and its mathematical

properties are simple.

Binomial Trees

The behavior of portfolios can be described by the binomial tree model, which can

be used in pricing options and its derivatives. For a binomial tree with initial price

S0 with a probability of “p” for going up by a factor u and a probability “1− p” for

going down by a factor d, we have the following schematic diagram (Figure 1):

�
�
�
��>

S
S
S
SSw

S0

uS0

dS0

p

1− p

Figure 1: Generic binomial tree

• The expected value of S1 is given by E[S1] = puS0 + qdS0.

• The drift of the stock price is measured by the expression, pu+ qd.
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• An upward price drift is said to exist if pu + qd > 1, a downward price drift

occurs if pu+ qd < 1, and there is no price drift if pu+ qd = 1

• Figure 2 is an extension of the generic binomial tree with t = 2

����:
����*

Z
Z
ZZ~Z

Z
Z
ZZ~ ����*

Z
Z
ZZ~

S0

uS0

dS0

u2S0

udS0
duS0

d2S0

Probability

p2

pq
qp

q2

Product

p2u2S0

pqudS0
qpduS0

q2d2S0

t = 0 t = 1 t = 2

Figure 2: Binomial tree for time t = 2

Thus,

E[S2] = p2u2S0 + pqudS0 + pqudS0 + q2d2S0

= p2u2S0 + 2pqudS0 + q2d2S0

= (pu+ qd)2S0

= (pu+ qd)E[S1]

More generally, E[Sk+1] = (pu+ qd)E[Sk], and we observe that the drift term pu+ qd

multiplies the expected value for any time period to give the expected price for the

next period. It follows that E[Sk] = (pu+ qd)kE[Sk].
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1.1 Wald’s Lemma

Definition 1.1 For a given stochastic process X = {Xn : n ≥ 0}, a stopping time

τ with respect to X is a random time t such that for each t ≥ 0, τ is completely

determined by the history of the process up to and including time t. More specifically,

the event {τ = t} can be determined to either occur or not depending on the history

of the process up till time t.

Example 1.2 (Hitting time/Passage time/Gambler’s ruin problem)

τa = inf{t ≥ 0|X = a}, i.e the first time the random process hits a. This is because

we can observe the value of the process X till time t and decide whether to stop or not

solely on the basis of information available to us at every time prior to and including

t.

Example 1.3 (i) A gambler plays roulette and gambles until he is broke and (ii) A

person flips a coin until s/he gets 5 successive tails are other examples of stopping

times.

Example 1.4 (Example of a non-stopping time)

Let τb = sup{t ≥ 0|X = b}, i.e., τb is the last time the random process hits b. Consider

a stock with a random price behavior; the last time the stock hits a certain price, b, is

not a stopping time because we don’t know the future evolution of the random process

and looking into the future will be a violation of the very definition of a stopping time.
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Wald’s Lemma relates the expectation of the sum of finite random variables Xi

which are independent and identically distributed to the expected number of terms

in the sum and the expectation of the random variables under the condition that the

number of terms in the sum and summands are independent.

Theorem 1.5 Wald’s Lemma:[4] Given a sequence {Xi}∞i=1 of i.i.d. random vari-

ables with distribution the same as that of X, and a stopping time τ , we have

E(
τ∑

i=1

Xi) = E(τ)E(X).

1.2 Consequences of Wald’s Lemma

Model 1: Additive Model

With X0 = B, we consider the following model:

• τ = inf{n > 0|X(n) ≥ S}

• τ is a stopping time

• Xn+1 = Xn with probability 1− p

• Xn+1 = Xn + ε with probability p

• With In = 1 if the stock goes up at time n (zero otherwise), Wald’s lemma

yields

⌈S −B

ε
⌉ =

τ∑
n=1

In, so that

E(τ) =
1

p
⌈S −B

ε
⌉. (1)

12



Proof of Equation (1), E(τ) for Model 1

Suppose the random variables I1,I2,I3,... are independent and identically dis-

tributed, having finite expectations, then if τ is a stopping time for I1, I2, I3,... for

which E[τ ] < ∞, then by Wald’s lemma we know that with ⌈S−B
ϵ

⌉ upwards steps,

the value of the stock, starting at $S, will be B + ϵ · ⌈S−B
ϵ

⌉ ≈ S, so that, in terms of

0-1 indicators, we see that

E(τ) ≈ S −B

pϵ
.

The exact calculation, with an exact overshoot term, is given by (1).

Model 2: Additive Model with Increments and Decrements

Consider an additive model where the next iteration either increases the stock

value by ε or decreases it by δ, both with a probability of p, and keeps it unchanged

with probability 1− 2p. After buying the stock at $B, we seek to find the expected

value of the stopping time T = inf{n ≥ 1 : Xn ≥ S}. The positive drift condition is

satisfied if we assume that ε > δ.

Xn+1 =


Xn + ε with probability p
Xn − δ with probability p
Xn with probability 1− 2p, where ε > δ

Proof

If ε ≤ δ we have no drift or negative drift and E(T ) = ∞, so we assume the

positive drift model ε > δ. As before, ignoring ceilings and floors of quantities, we

13



see that subject to some rounding error as in the previous case we have the equation,

S −B =
T∑

n=1

In

= E(T )E(Ij)

= E(T )[pϵ+ p(−δ) + 0(1− 2p)]

= E(T )p(ϵ− δ), so that

E(T ) =
S −B

p(ε− δ)
.

Let us next reconsider the model where the next iteration increases by ε or remains

the same with probabilities p and 1− p respectively.

Model 1 reconsidered

Xn+1 =

{
Xn + ε with probability p
Xn with probability 1− p

The waiting time, τ+ defined as how long it takes Xn to become positive is of critical

importance, as is the ladder variable H, which is defined as the value of Xn at the

first positive amount. In general, H is the rather complex “overshoot” term, but in

this example it is clear that H = ε. It is also clear that τ+ is a geometric variable

with parameter p, so

E(τ+) =
1

p
.

The variance of τ+ can be found easily too:

V(τ) =
1− p

p2
=

q

p2
,

14



and an easy calculation reveals that

V(Ij) = ε2pq.

From Lai and Siegmund’s work [1], for a nonlattice X with independent, identical

distribution with positive drift and variance, µ and σ2 respectively, where S0 = 0 and

Sn =
∑n

i=1 Xi, the level crossing time τ(b) = {inf n : Sn > b} has variance given as

Vτ(b) =
bσ2

µ3
+

K

µ2
+ o(1) as b → ∞,

where K is a complicated expression. The constant K is deduced from the moments

of the ladder height from Spitzer’s identity[6] and is given as shown below; note that

we can calculate the constant K exactly for this model. We will later see that even

in the simplest of other models, this calculation presents a great challenge.

K =
σ2EH2

2µEH
+

3

4

(
EH2

EH

)2

− 2

3

(
EH3

EH

)
−
(
EH2EHτ+

EHEτ+

)
+

(
EH2τ+

Eτ+

)
=

(ε2pq)ε2

2εpε
+

3

4

(
ε2

ε

)2

− 2

3

(
ε3

ε

)
−
(
ε3 1

p

ε1
p

)
+ ε2, and thus

V(T ) =
(S −B)σ2

µ3
+

K

ε2p2
+ o(1), (K =

ε2q

2
+

3ε2

4
− 2ε2

3
=

ε2q

2
+

ε2

12
)

=
(S −B)ε2pq

ε3p3
+

ε2q
2

+ ε2

12

ε2p2
+ o(1)

=
(S −B)q

εp2
+

q

2p2
+

1

12p2
+ o(1) (S −B → ∞).

15



Central Limit Theorem: As S −B → ∞, i.e S → ∞, we expect that a central

limit theorem would hold. Specifically, Theorem 3.3.2 of [5] states that:

Suppose µ = EY1 =
∫∞
0

xF (dx) < ∞ is the mean inter-arrival time in a renewal

process.

(1) If P [Y0,∞] = 1, then almost surely N(t)
t

→ µ−1, as t → ∞

(2) If σ2 = V ar(Y1) < ∞

then M(t) is approximately N(µt−1, tσ2µ−3); i.e

lim
t→∞

P

[
(M(t)− tµ−1)

(tσ2µ−3)
1
2

≤ x

]
= N(0, 1, x)

where N(0, 1, x) is the standard normal distribution function and M(t) is the level

crossing time for the level t. Notice the beginning of a trend; all deep results hold

only if the level to be crossed grows large. We, on the other hand, have modest goals:

to cross the level S ̸→ ∞.

For a Monte Carlo simulation with an initial value of 0, a final value of 20, a

probability of “taking a step” of 0.2, and step distance of 0.1, we ran 100 Monte

Carlo simulations 1000 times, producing a mean with a lower bound of 999.642500

and an upper bound of 1000.294630 (Figure 3), and a standard deviation with a

lower bound of 62.764970 and upper bound of 63.306784 (Figure 4). Notice that

E(τ) = S−B
εp

= 1000 and σ(τb) =
√

(S−B)q
εp2

+ q
2p2

+ 1
12p2

=
√
4012.08, σ(τb) = 63.34

This discrepancy in the variance or deviation exists because S − B = 20 ̸→ ∞.

From[5], it suffices to say that τ−E(τ)
σ(τ)

→ N(0, 1), so that
τ−S−B

pε√
(S−B)q

εp2

→ N(0, 1).

16



Histograms for the mean and variance are displayed below.

Figure 3: Reults of Monte Carlo procedure showing the distribution of mean

Figure 4: Monte Carlo procedure showing the distribution of standard deviation

17



2 ASYMMETRIC RANDOM WALKS

In this chapter we focus on the asymmetric random walk, where the increments

from one period to another vary as follows:

Xn =

{
ε with probability p > 1

2

−ε with probability 1− p

Notice that we are now referring to Xn as the change in portfolio value as opposed to

the value at time n; this is because we will now be adopting more standard random

walk terminology and renaming the portfolio value as Sn =
∑n

j=0 Xj, with X0 = B.

The assumption that p > 1/2 ensures a positive drift.

Model 3

Xn+1 =

{
Xn + ε with probability p > 1

2

Xn − ε with probability q = 1− p; p > q

In this case, it is easy to see that H = ε, and finding V(τ) is not a trite calculation.

E(τ)E(Xi) = S −B, and since

E(τ) =
S −B

ε(p− q)
we conclude that

E(Xi) = ε(p− q) = µ. Similarly,

E(X2
i ) = ε2p+ ε2q = ε2 and thus

V(Xi) = ε2 − ε2(p− q)2 = ε2{1− (p− q)2} = ε2(1− p2 − q2 + 2pq).

18



As for Model 1 (and unlike Model 4 that appears later), the value of K can be found

exactly,

K =
σ2ε2

2µε
+

3

4

(
ε2

ε

)2

− 2

3

(
ε3

ε

)
−

(
ε2 1

p−q

ε 1
p−q

)
+

ε2 1
p−q

1
p−q

=
σ2ε2

2µ
+

3ε2

4
− 2ε2

3
− ε+ ε2

=
σ2ε

2µ
+

13ε2

12
− ε,

so that

V(τb) =
(S −B)ε2(1− p2 − q2 + 2pq)

ε3(p− q)3
+

ε2q
p−q

+ 13ε2

12
− ε

ε2(p− q)2

=
(S −B)2(1− p2 − q2 + 2pq)

ε(p− q)3
+

εq
p−q

+ 13ε
12

− 1

ε(p− q)2

=
(S −B)2(1− p2 − q2 + 2pq) + εq + 13ε(p−q)

12
− (p− q)

ε(p− q)3

=
(S −B)2(1− p2 − q2 + 2pq)− εq

12
+ 13εp

12
− (p− q)

ε(p− q)3

and thus as S → ∞, we have

E(τ) =
S −B

ε(p− q)
, which leads to

σ(τ) ≈

√
(S −B)2(1− p2 − q2 + 2pq)

ε(p− q)3
.
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Suppose that in an election year, candidate Q has q votes and candidate P has p

votes where q is always greater than q. We could compute the number of ways the

ballot is ordered by thinking of the ballot permutation as a lattice path starting at

the origin with upward steps for Q as (1, 1) and downward steps for P as (1,−1).

Theorem 2.1 [3] Ballot Theorem. Let n and x be positive integers. There are

exactly x
n
Nn,x paths (s1, ..., sn = x) from the origin to the point (n,x) such that s1 >

0, ..., sn > 0.

Let us arrange p +1’s, for player P and q < p −1′s for player Q so that P always

leads. The desired probability is given as p−q
p+q

. If p=5 and q=3, then the probability

that p always leads is 5−3
5+3

= 1
4
.
(
p+q
p

)
=

(
p+q
q

)
=

(
8
5

)
=

(
8
3

)
= 56 arrangements of

+1’s and -1’s. In 14 of them P always leads. This illustrates the ballot theorem with

Nn,x =
(
8
3

)
and x = 2, n = 8.

The probability of the first positive gain being at the jth trial among the n trials

with success probability p is given as

ϕ2k−1 =
(−1)k−1

2q

(
1
2

k

)
(4pq)k; Φ2k = 0;

when k = 1, note that the above reduces to

ϕ1 =
(−1)0

2q

(
1
2

1

)
(4pq)1 = p;

when k = 2 we see that the only possibilities are ↓↑↑= qp2, which is verified by the

equation:

ϕ3 =
(−1)1

2q

(
1

2

)(
−1

2

)(
1

2!

)
16p2q2;

= qp2

20



The generating function Φ of the first positive gain and other useful statistics are

given [3] as

Φ(s) =
∑

P (w = n)sn

E(s) = Φ′(s)|s=1 =
∑

P (w = n)n

Φ(s)− ps = qsΦ2(s)

Φ′(s)− p = qΦ2(s) + qs2Φ(s)Φ′(s)

Φ′(1)− p = qΦ2(1) + 2qΦ(1)Φ′(1); Φ(1) = 1, p > q

Φ′(1)(1− 2q) = p+ q

Φ′(1) =
p+ q

1− 2q
=

1

1− q − q
=

1

p− q
.

Wald equations yield the same result, as seen in our initial analysis of Model 2 in

Chapter 1. W have

W∑
1

Xi = 1, but since

E(W )E(Xi) = 1, we finally have

E(Xi) = p− q, or

E(W ) =
1

p− q
.

A unique bounded solution of the generating function Φ(s) that satisfies the equation

Φ(s)− ps = qsΦ2(s)

21



is given as

Φ(s) =
1−

√
1− 4pqs2

2qs
, so

Φ(1) =
1−

√
1− 4pq

2q
. Since

1 = (p+ q)2 and√
1− 4pq = p− q, it follows that

Φ(1) =
1− |p− q|

2q
.

When p ≥ q

1− (p− q)

2q
=

q + q

2q
= 1

and when p < q

1− (q − p)

2q
=

p+ p

2q
=

p

q
;

this fact proves that for p ≥ q, the waiting time is finite with probability one, whereas

for p < q, the earnings reach the level 1 with probability p/q, which, e.g., equals 1/2

when p = 1/3, and tends to zero as p → 0. Also we have

Φ(s) =
∑

ΦnS
n

=
1−

√
1− 4pqs2

2qs
, so
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Φ′(s) =
2qs 1

2
√

1−4pqs2
8pqs− (1−

√
1− 4pqs2)2q

4q2s2

=
8pq2 − 2q(p− q)(1− (p− q))

4q2(p− q)
,

√
1− 4pq = |p− q|, and thus

Φ′(s)|s=1 =
1

p− q
, yielding

E(W ) = Φ′(s)|s=1 =
1

p− q

If there are p : +1′s and q : −1′s and Sj =
∑i

j εi and (s1, s2, s3..., sn) is a path with

s1 = (0, 0) sn = (n, p− q) = (n, x), then there are 2n paths (total), with

n = p+ q

x = p− q

The number of legal paths equals
(
p+q
p

)
=

(
p+q
q

)
.

Refection Principle [3]. The number of paths from A to B which touches or

cross theX-axis equals the number of all paths from A′ to B, where A′ is a reflection of

A along the X-axis. The reflection principle is used to prove the ballot theorem. Let

Sn be the position of the particle at time n with upward steps of +1′s and downward

steps of −1′s. The following equations follow easily:

Sn = number of (+1′s = H)− number of (−1′s = T ) = r

x− (n− x) = r

2x− n = r

x =
n+ r

2

P {Sn = r} =

(
n

n+r
2

)
1

22n
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If Sυ = 0 then there is a return to the origin at time υ where υ is even. We set

f2υ = P (S1 ̸= 0, S2 ̸= ..., S2υ−1 ̸= 0, S2υ = 0), and note that

P (#H = #T ) =

(
2υ

υ

)
1

22υ
.

Using Stirling’s formula,

n! ≈
√
2πυ

(
υ

e

)υ

the above simplifies to

P (H = T ) ≈ 1√
πυ

Example 2.2

P (S1 ̸= 0, S2 ̸= ..., S2υ−1 ̸= 0, S2υ = 0) = P (S2v = 0)

For υ = 2 we have

P (S4 = 0) =

(
4

2

)(
1

22

)2

=
6

16
,

verified as follows: For S1 ̸= 0, S2 ̸= ..., S2υ−1 ̸= 0, there are 6 possibilites, 3 above

the X-axis and the remainder by reflection. The possibilities above the X-axis are

given below as:

1 1 1 1

1 1 1 -1

1 1 -1 1
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There are 3 more paths by reflection that are below the X-axis

-1 -1 -1 -1

-1 -1 -1 1

-1 -1 1 -1

f2υ = P (1st return to origin occurs at 2υ)

=
1

2υ − 1

(
2υ

υ

)
1

22υ
, and since

f2υ = u2υ−2 − u2υ, it follows that

f2υ =

(
2υ − 2

υ − 1

)(
1

2

)2υ−2

−
(
2υ

υ

)(
1

2

)2υ

=
1

2υ − 1
u2υ.

The first passage of the random walk through r is at n

Figure 5: The first passage of the random walk through r is at n

25



P

(
max ≤ r|ending at

(
n

k

))
= P (Sn = 2r − k), and since

Pn,r =

(
n

n+r
2

)
1

2n
,

P (max of a path of length n is r ≥ 0) = max(Pn,r, Pn,r+1).

Pn,r = P(S − F = r)

= P(S − (n− S) = r). With

2S − n = r, we have that

S =
n+ r

2
.

Thus P(1st passage through r is at n) =
1

2
(Pn−1,r−1, Pn−1,r+1)

=
1

2

[(
n− 1

n−1+r−1
2

)
1

2n−1
−

(
n− 1

n−1+r+1
2

)
1

2n−1

]
=

1

2n

[(
n− 1

n+r
2

− 1

)
−
(
n− 1
n+r
2

)]
=

1

2n
r

n

(
n

n+r
2

)
.
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3 VARIATIONS OF THE MODELS

Let us next consider a model where the next iterations are given as below:

Model 4

Xn+1 =

{
Xn + 2ε with probability 1

2

Xn − ε with probability 1
2

In this case, it is easy to see that H = ε or H = 2ε, but writing the probabilities of

these events is quite difficult, so that V(T ) is difficult to write down. It is easy to see

that

µ =
2ε

2
− ε

2
=

ε

2
, and

E(Xi+1 −Xi)
2 = 4ε2

1

2
+ ε2

1

2
=

5ε2

2
, so

V(Xi) =
5

2
ε2 − ε2

4
=

9ε2

4
,

or σ =
3ε

2
.

We can use Keener’s work [4] to find upper and lower bounds for the variance.

For this model, ε ≤ EH ≤ 2ε and (for example) the lower bound of the first term is

bounded by ε when it appears in the numerator and by 1/2ε when it appears in the

numerator; the inverse is true for the upper bound. For the first term of K, we thus

have,

σ2ε2

2µ2ε
≤ σ2EH2

2µEH
≤ σ24ε2

2µε
=

2σ2ε

µ

σ2ε

4µ
≤ σ2EH2

2uEH
≤ 2σ2ε

µ

9ε2

16
≤ σ2EH2

2uEH
≤ 9ε2
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9ε2

16
≤ σ2EH2

2uEH
≤ 9ε2 (1)

The 2nd term of K is bounded as:

3

4

(
ε2

2ε

)2

≤ 3

4

(
EH2

EH

)2

≤ 3

4

(
4ε2

ε

)2

, yielding

3

16
ε2 ≤ 3

4

(
EH2

EH

)2

≤ 12ε2 (2)

The rest of the calculation is as follows:

3rd term of K:

−2

3

8ε3

ε
≤ −2

3

EH3

EH
≤ −2

3

ε3

2ε

−16ε2

3
≤ −2EH3

3EH
≤ −ε2

3
(3)

4th term of K:

−8ε3

ε
≤ −EH2EHτ+

EHEτ+
≤ −ε3

2ε

−8ε2 ≤ −EH2EHτ+

EHEτ+
≤ −ε2

2
(4)

5th term of K:

ε2 ≤ −EH2Hτ+

Eτ+

≤ 4ϵ2 (5)

Putting it all together, our bounds for K are:

−57

4
ε2 ≤ K ≤ 145

6
ε2;

this is a wide range and later we use simulations to estimate the exact value of K.
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Bound for the variance are thus as follows,

9(S−B)ε2

4
ε3

8

−
57ε2

4
ε2

4

≤ V(τb) ≤
9(S−B)ε2

4
ε3

8

+
145ε2

6
ε2

4

, which gives

18(S −B)

ε
− 57

4
≤ V(τb) ≤

18(S −B)

ε
+

290

3
, i.e.,

18(S −B)

ε
− 91

3
≤ V(τb) ≤

18(S −B)

ε
+

290

3

According to Theorem 3.3.2 in [5] we have

τ − S−B
ε
2√

18(S−B)
ε

→ N(0, 1).

Simulations with ε = 0.1, S = 50, B = 10 produce a mean time of 800.00125 and a

standard deviation ≈ 28. It is worth noting that the computed mean S−B
ε
2

= 800 is

quite close to the simulated value. Likewise we know,√
18(S −B)

ε
+

K

µ2
≈ 28.

Solving for K with S − B = 40, ε = 0.1, µ2 = ε2

4
= 0.01

4
= 0.0025, we obtain a value

for K = −16.04, which falls in the range −57 ≤ K ≤ 145
6
.
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Model 5: Multiplicative Model

This model is as follows:

Xn+1 =

{
uXn if probability is p
Xn if probability is 1− p

We define the stopping time

T = inf

{
n :

n∏
j=0

Xj+1

Xj

≥ S

B

}
,

or,

T = inf

{
n :

n∑
j=0

log
Xj+1

Xj

≥ log
S

B

}
.

Since E(Zj) := E(log Xj+1

Xj
) = p log u, we see by Wald’s lemma that

E(T ) =
log S

B

p log u
.

Let

Yj = log
Xj+1

Xj

= log µ; with probability p

Yj = 0; with probability 1− p

It follows that EYj = p log u

and EY 2
j = p log2 u, so that

V(Yj) = p log2 u− p2 log2 u. Since

E(T )E(Y ) = log
S

B
,

the expectation of the stopping time is thus given as,

E(T ) =
log S

B

p log u
.
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Using Keener’s work to find a value of K (which can be found exactly) and solving

for the variance, we get

K =
σ2ε2

2εp log u
+

3

4

(
ε2

ε

)2

− 2

3

(
ε3

ε

)
−
(
ε2 1

p log u

ε 1
p log u

)
+

ε2 1
p log u

1
p log u

=
σ2ε2

2p log u
+

3ε2

4
− 2ε2

3
− ε+ ε2

=
σ2ε

2p log u
+

13ε2

12
− ε, and so

V(τb) =
log S

B
(p log2 u)(1− p)

p3 log3 u
+

1

p2 log2 u

{
σ2ε

2p log u
+

13ε2

12
− ε

}
.

Thus as log S
B
→ ∞, we can find the expectation and variance of the stopping time

E(T ) =
log S

B

p log u

σ(τb) =

√
log S

B
(p log2 u)(1− p)

p3 log3 u
.

Also, the Central Limit Theorem [5], holds and thus

τ − E(τ)
σ(τ)

→ N(0, 1), or

τ − log S
B

p log u√
log S

B
(1−p)

p2 log u

→ N(0, 1).
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Model 6: Multiplicative Model with Increments and Decrements

This model is a slight modification of Model 5:

Xn+1 =


uXn with probability p
dXn with probability is p
Xn with probability is 1− 2p

Now, when u > 1 > d, ud > 1 and

T∏
n=1

Xj+1

Xj

=
S

B
,

we see as before by Wald’s lemma that

E(T )E(log
Xj+1

Xj

) = log
S

B
,

which yields

E(T ) =
log S

B

p(log ud)
,

which reduces to the previous model on setting d = 1. Now,

∑
log

Xj+1

Xj

≥
∑

log
S

B
= “b”. With

Yj = log
Xj+1

Xj

,

either Yj = log u > 0 or log d < 0 or 0. It is diffficult to compute bounds on this

model so we use simulations:

Using values of u = 1.05, d = 0.97, B = 5, S = 20, we can find a simulated

standard deviation and use it as an estimate of σT . Thus, we can estimate VT .
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V(τ) =
bσ2

µ3
+

k

µ2
,

We can estimate a value for k, since all the other parameters are known, and V(τ)

could be derived through simulation.

From the model,

µ = p log u+ p log d

= p log ud;

EX2
i = p log2 u+ p log2 d, so

V(Xi) = p(log2 u+ log2 d)− p2(log u+ log d)2

= p log2 u+ p log2 d− p2 log2 u− p2 log2 d− 2p2 log u log d

= (p− p2) log2 u+ (p− p2) log2 d− 2p2 log u log d

= (p− p2){log2 u+ log2 d} − 2p2 log u log d

= (p− p2)(log2 ud)− 2p2 log u log d.

Setting

S2
τ =

log S
B
σ2

µ3
+

k

µ2
,

we can estimate a value for k.
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Model 7: Damped Additive Model

This is the same as the additive model, but the jth increase is by ε
j
. Specifically

Xj+1 equals Xj with probability 1 − p, and increases to Xj +
ε
j
with probability

p. In general, we can do the following for any divergent series
∑

f(j) for which∑
f 2(j) < ∞; the reasons for these conditions will become clear later. Let T be the

same stopping time, i.e., T = inf{n : Xn ≥ S}. Set
T∑
i=1

1

j
≥ S −B, or,

T∑
i=1

1

j
≈

∫ T

1

dx

x
≈ lnT ≥ S −B.

More exactly, with γ representing Euler’s constant,

T∑
i=1

1

j
= lnT + γ + o(1) so that

εp(lnE(T ) + γ + o(1)) = S −B i.e.,

εp lnE(T ) = S −B − εpγ − o(1) i.e.,

E(T ) = e
S−B−εpγ

εp .

From the above model, if the next iteration increases by either the ratio ε
j
or remains

the same then we have

Xj+1 =

{
Xj +

ε
j

with probability p

Xj with probability 1− p

Suppose the increment in the X ′
js is given as Yj where,

Yj = Xj+1 −Xj

Then E(Yj) =
εp

j

E
( T∑

1

Yi

)
= E

( T∑
1

E(Yi)

)
.
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Under certain conditions, we know that Wald’s lemma holds even when the vari-

ables are non-i.i.d. Thus if these conditions are satisfied, we have

E
( T∑

1

ε

j

)
= S −B

E
( T∑

1

1

j

)
=

S −B

ε

Conditions: From work in [7], we see that we need, with

Zj = Yj −
εp

j
,

E
∣∣∣∣∑Zj

∣∣∣∣ = E
∣∣∣∣ T∑

1

Yj −
εp

j

∣∣∣∣ < ∞

Using the triangle inequality, and Hölder’s inequality, we need to show that

T∑
1

E
∣∣∣∣Yj −

εp

j

∣∣∣∣ ≤
√√√√ T∑

1

E
∣∣∣∣Yj −

εp

j

∣∣∣∣2 = √∑
V(Yj) < ∞.

Now,

E(Yj) =
εp

j
and

E(Y 2
j ) =

ε2p

j2
so

V(Yj) =
ε2p

j2
− (εp)2

j2

=
ε2p(1− p)

j2
.

∴
√∑

V(Yj) ≤

√
ε2p(1− p)

j2
< ∞.

Notice for the square summability condition appears.
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Other Models for Future Work

The bulleted models have different distributions in comparison to the models incor-

porated in this research, and they can yield interesting results as to the expectations

and variances of the increments with respective to their models.

• Consider a divergent series
∑

f(j) by an increase of ε ·f(j) at the jth step. Let

F be the antiderivative of f . Then we get

E[T ] ≈ F−1

(
S −B

pε

)
.

• Consider positive random variables, X1, X2, X3, ... that are independent and

identically distributed such that

Xn+1 =

{
Xn + ε
Xn

If

Xn+1 = Xn + ε then Yn+1 = 1

and

Xn+1 = Xn then Yn+1 = 0.

We can construct a Markov matrix for Yn+1 and Yn with associated transition

probabilities α and β given in the table below.
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Table 1: Markov Matrix

Yn+1

1 0
1 α 1− α

Yn

0 β 1− β

• More complicated Markov Chains related to Models 2, 3, 4, 5, 6, 7.

• Time Series models, e.g., Xn+1 = αXn + βXn−1 +N [0, ε2]

• Nonlattice Models such as Xn+1 = Xn + U [0, θ] on uniform distributions –

where it can be established that finding bounds on the variance is not a trite

calculation

• Exponential Families, e.g., Xn+1 = Xi +N(θ, 1).
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4 THEORETICAL RESULTS FROM RENEWAL PROCESS

In this chapter, we look at theoretical results and sufficient conditions from the

theory of renewal processes (sums of non negative random variables) and random

walks with positive drift that are applicable to the models that have been treated

in earlier Chapters. The reader will notice that, in all cases, the level we need to to

cross must tend to infinity for the results to be valid, which is definitely not the case

for us.

Let {Xn, n ≥ 0} be a random walk,{N(t), t ≥ 0} be a family of random in-

dices and the family of randomly indexed random walk be {XN(t), t ≥ 0}. A key

assumption made is that the random walk drifts to +∞ and the increments of the

random variables {Xk, k ≥ 1}have positive, finite mean. The first passage time is

τ = min{n|Xn > t} and the family of random indices in the case of renewal counting

processes is defined by N(t) = max{n : Xn ≤ t}, thus N(t) is not a stopping time.

Clearly, τ = N(t)+1 for renewal processes, since we consider nonnegative increments

in renewal processes.

The renewal function is given by U(t) =
∑∞

1 P (Xn ≤ t) = EN(t), which is finite

for all t. A sufficient and necessary condition for this to hold for all random walks is

that E(X−
1 )

2 < ∞ i.e the second moment of the negative part of the random variable

X1 should be finite.

The following are from [8]:

Theorem 4.1 [8] Let Xk, k ≥ 1 be i.i.d random variables such that E|X1|r < ∞ for

some r ≥ 1 and let Sn =
∑n

k=1Xk, n ≥ 1.Then
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Sn

n
→ EX1 almost surely and in Lr as n → ∞.

Theorem 4.2 [8] Let Xk, k ≥ 1 be i.i.d random variables and let Sn =
∑n

k=1, n ≥

1.Assume that EX1 = 0, that Var X1 = σ2 < ∞, and that the rth moment of X is

finite for some r ≥ 2. Then

E

∣∣∣∣ Sn√
n

∣∣∣∣p → E|Z|p as n → ∞ for all p, 0 < p ≤ r, where Z is a normal random variable

with mean 0 and variance σ2

Theorem 4.3 [8] Suppose that E|X1|r ≤ ∞ for some r (1 ≤ r < ∞). There exist

a numerical constant K ′
r depending on r only such that E|Sτ |r ≤ K ′

r ˙E|X1|r ˙Eτ r.

Remark: If τ is the stopping time and X1, an i.i.d increment of a random variable

have finite moments of order r ≥ 1, then the partial sums of the stopping times also

has a finite moment. If EX1 = 0 then a weaker condition in Theorem 4.4 suffices.

Theorem 4.4 [8] Suppose that E|X1|r < ∞ for some r (0 < r < ∞) and that

EX1 = 0 when r ≥ 1. Then

(i) E|Sτ |r ≤ E|X1|r ˙Eτ for 0 < r ≤ 1;

(ii) E|Sτ |r ≤ K ′
r ˙E|X1|r ˙Eτ for 1≤ r ≤ 2;

(iii) E|Sτ |r ≤ K ′
r((EX2

1 )
r
2 ˙Eτ

r
2 + E|X1|r ˙Eτ) ≤ 2K ′

r ˙E|X1|r ˙Eτ
r
2 for r ≥ 2,

where K ′
r is a a numerical constant depending on r only

The next results are the Wald Lemmas.

Theorem 4.5 [8] If EX1 = µ and Eτ < ∞, then ESτ = µ˙Eτ .

If V arX1 = σ2 < ∞, then E(Sτ − τµ)2 = σ2˙Eτ
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4.1 Nonnegative Drifts for Sums of Random Variables

Let {Xk, k ≥ 1} be independent, identically distributed nonnegative random vari-

ables and their partial sums to be {Sn, n ≥ 0}, thus the sequence {Sn, n ≥ 0} de-

fined is a renewal process. The renewal counting process {N(t), t ≥ 0} is defined as

N(t) = min{n : Sn ≥ t} which is in our context equal to N(t) = min{n : Sn ≥ S−B}

for the models treated in the earlier chapters. There is an inverse relationship that

exist between renewal processes and counting processes, i.e {t > n} = {Sn < t}.

For a renewal function U(t) =
∑∞

n=1 Fn(t),

EN(t) =
∞∑
n=1

P (N(t) ≥ n) =
∞∑
n=1

P (Sn ≤ t) =
∞∑
n=1

Fn(t)

Theorem 4.6 [8] (The Elementary Renewal Theorem) Let 0 ≤ µ = EX1 ≤ ∞.

Then

U(t)

t
→ 1

µ

the limit being 0 as t → +∞.

Lattice and Non-Lattice Renewal Processes

Theorem 4.7 [8] (i) For nonlattice renewal processes we have

U(t)− U(t− h) → h

µ
as t → ∞

(ii) For lattice renewal processes, we have

un =
∞∑
k=1

P (Sk = nd) → d

µ
as n → ∞

the limit being 0 as µ → +∞.
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Remarks: For (i) For a change h, in the renewal function U(t) is given as h
µ
,

where µ > 0

For (ii) A probability distribution of the renewal process Sk for some k is given as d
µ
,

where d > 0 is the span of the lattice renewal process.

4.2 The Central Limit Theorem for Counting Processes

Theorem 4.8 [8] Suppose that 0 < µ = EX1 < ∞ and σ2 = V arX1 < ∞. Then

(i)
N(t)− t

µ√
σ2t
µ3

d→ N(0, 1) as t → ∞

(ii) If the renewal process is nonlattice, then

EN(t) =
t

µ
+

σ2 − µ2

2µ2
+ o(1) as t → ∞

V arN(t) =
σ2t

µ3
+ o(t) as t → ∞

If the renewal process is lattice, then

EN(nd) =
nd

µ
+

σ2 − µ2

2µ2
+

d

2µ
+ o(1) as n → ∞

V arN(nd) =
σ2nd

µ3
+ o(n) as n → ∞

Remarks: The first term of the expectation of the renewal counting process for the

nonlattice case could be derived from Wald’s equation and the second term describes

the overshoot, which is the main issue when t ̸→ ∞. The nature of o(t) could be

described by Keener’s work [4] and the variance in the nonlattice case is valid as

t → ∞.
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4.3 Expected Overshoot of Counting Renewal Processes

R(t) = SN(t)+1− t = Sυ(t)− t = H is the overshoot of the counting renewal process

with the expected overshoot given as

EH = ESυ(t) − t = µ

(
Eυ(t)− t

µ

)
,

where υ(t) is the first passage time of the renewal process. The expected overshoot

for both lattice and nonlattice renewal processes is given below;

Theorem 4.9 [8] Suppose that V arX1 = σ2 < ∞

(i) If the renewal process is nonlattice, then

EH → σ2 + µ2

2µ
as t → ∞

(i) If the renewal process is lattice, then

ER(nd) → σ2 + µ2

2µ
+

d

2
as n → ∞

Remark: With reference to the models discussed t → ∞ ⇒ S − B → ∞, which is

again bringing us back to the same issue as before, namely that all the known results

in the literature focus on the overshoot when the boundary to be crossed is large,

which is not the case in portfolio finance situations.

4.4 Distribution of the Overshoot for a Renewal Process as S → ∞

Theorem 4.10 [8] Suppose that 0 < EX1 = µ < ∞.

(i) If the renewal process is nonlattice, then for x > 0, we have

lim
t→∞

P (R(t) ≤ x) =
1

µ

∫ x

0

(1− F (s))ds.
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(ii) If the renewal process is lattice, then for k = 1, 2, 3, ...,.we have

lim
n→∞

P (R(nd) ≤ kd) =
d

µ

k−1∑
j=0

(1− F (jd)).

or, equivalently,

lim
n→∞

P (R(nd) ≤ kd) =
d

µ
P (X1 ≥ kd).

Remark: The overshoot under appropriate conditions, may converge without normal-

ization.

4.5 Moments of Overshoot

Theorem 4.11 [8] Suppose that EXr
1 < ∞ for some r > 1. If the renewal process is

nonlattice, then

E(R(t))r−1 → 1

rµ
EXr

1 as t → ∞

4.6 Condition for finite moments of overshoot and first passage time

Theorem 4.12 [8] Let r ≥ 1. We have, in the case of random walk with positive drift,

(i) E(X−
1 )

r < ∞ ⇔ E(υ(t))r = E(τ+)r < ∞; (i) E(X+
1 )

r <

∞ ⇔ E(Sυ(t))
r = E(H) < ∞;

Remark: The r-th moment of the expectation of the negative part ofX1, i.e., X
−
1 < ∞

if and only if the expectation of the first passage time is less than ∞

The r-th moment of the expectation of X+
1 < ∞ if and only if the expectation of the

overshoot is less than ∞.
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Theorem 4.13 [8]

E

(
υ(t)

t

)
→ 1

u

∴ for large t = (S −B)

E(υ(t)) ≈ t

u

for p = 2

E

(
υ2(t)

t2

)
→ 1

u2

∴

V (υ(t)) ≈ t2

u2
− t2

u2
= 0

Remark: E(υ(t)/t) → 0 for µ = +∞ for theorem to hold. Now the variance of the

υ(t) is not really zero; the way to interpret the above is to note that second order

terms force V (υ(t)) to be of order O(t).

4.7 Distribution of the Overshoot for a Random Walk with Positive Drift

Theorem 4.14 [8]

(i) Suppose that the random walk is nonlattice, then for x > 0, we have

lim
t→∞

P (R(t) ≤ x) =
1

µH

∫ x

0

(ST1 > y)dy.

(ii) If the renewal process is lattice, then for k = 1, 2, 3, ...,.we have

lim
n→∞

P (R(nd) ≤ kd) =
d

µH

k−1∑
j=0

(ST1 > jd)

or, equivalently,

lim
n→∞

P (R(nd) ≤ kd) =
d

µ
P (ST1 ≥ kd).
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Remark: The overshoot for a positive random walk, in fact converges without nor-

malization, but as with all the above results, we need the level to be crossed to be

going to infinity.

4.8 Expectation of the Overshoot for a Random Walk with Positive Drift

Theorem 4.15 [8] Suppose that E(X+
1 )

2 < ∞, then

(i)If the random walk is nonlattice, we have

lim
t→∞

ER(t) =
EY 2

1

2µH

(i)If the random walk is lattice, we have

lim
t→∞

ER(nd) =
EY 2

1

2µH

+
d

2

Bounds in Theorem 4.15 are not easy to calculate.

Theorem 4.16 [8] Suppose that E(X+
1 )

2 < ∞, then

(i) If the random walk is nonlattice, we have

lim
t→∞

ER(t) ≤ E(X+
1 )

2

2µ
+ o(1) as t → ∞.

(i) If the random walk is lattice, we have

lim
n→∞

ER(nd) ≤ E(X+
1 )

2

2µ
+

d

2
+ o(1) as n → ∞.

4.9 Lorden’s Inequality

Let R∞ be a positive random variable having the distribution

P{R∞ ∈ dx} = g(x) =
P (x > x)

µ
dx
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and let L∞ be positive random variable having the distribution

P{L∞ ∈ dx} = h(x) =
xP{X ∈ dx}

µ
dx,

then it can be shown that

E(Rp
∞) =

1

µ(p+ 1)
E(Xp+1) and E(Lp

∞) =
1

µ
E(Xp+1)(p > 0)

Moreover, Lorden’s inequality states that if X ≥ 0 then

E(Rp
b) ≤ (p+ 2)E(Rp

∞).

Moreover for p = 1, the first moment of the overshoot is bounded as follows:

E(Rb) ≤ 2E(R∞).

Comparing this result with the first moment of Theorem 4.16

E(Rb) ≤ 2E(R∞)

and

E(R) ≤ 1

2µ
E(X2

1 ) if E (X 2
1 ) < ∞ and t → ∞,

Lorden comes closest to giving answers for all nonnegative b (not just b → ∞, but

with an upper bound inequality.) Also, Lorden’s work gives a bound on the tail

probability distribution of Rb

R(Rb > x) ≤ b+ ERb

b+ x
P (L∞ > x)

Is this of use in better computing or bounding the quantities in Keener’s work for

positive random variables? We leave this question for future work.
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