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ABSTRACT
Tricyclic Steiner Triple Systems with 1-Rotational Subsystems

by
Quan D. Tran

A Steiner triple system of order v, denoted ST'S(v), is said to be tricyclic if it admits
an automorphism whose disjoint cyclic decomposition consists of three cycles. In
this thesis we give necessary and sufficient conditions for the existence of a tricyclic
ST'S(v) when one of the cycles is of length one. In this case, the ST'S(v) will contain
a subsystem which admits an automorphism consisting of a fixed point and a single

cycle. The subsystem is said to be 1-rotational.



Copyright by
Quan D. Tran 2007

All Rights Reserved



DEDICATION

To my family whom I love and value most.



ACKNOWLEDGMENTS

I would like to thank Dr. Robert Gardner, my advisor and mentor, for his advice,
support and patience during preparation of this thesis. I am deeply grateful for all
his help throughout my time at ETSU.

Many thanks to my other committee members for their time and patience. Fur-
thermore, I would also like to express my gratitude to all the professors and staff in

the Department of Mathematics who have taught or helped me in the past year.



CONTENTS

ABSTRACT . . . .
DEDICATION . . . . . .
ACKNOWLEDGMENTS . . . . . . ... . .
LIST OF FIGURES . . . . . . . . . . .
1 INTRODUCTION . . . . . . . . .
1.1 Basic Definitions . . . . . .. .. oo

1.2 Previous Study of 1-Rotational Steiner Triple Systems
1.3 Bicyclic Steiner Triple Systems and the Motivation . . . . . .
2 TRICYCLIC STEINER TRIPLE SYSTEM WITH 1-ROTATIONAL
SUBSYSTEMS . . . . . . . .
2.1 Some Tricyclic Steiner Triple Systems . . . . . . .. . .. ..
2.2 Tricyclic Steiner Triple Systems with 1-Rotational Subsystems
3 ~ THE DIFFERENCE METHOD AND EXAMPLES . . ... ... ..
3.1 The Difference Method . . . . . . . . .. ... .. ... ...
3.2 An Example: Lemma 2.5 Case 2, M = 8 (mod 24) and k = 2
or8 (mod 6). . .. ...
4 CONCLUSION . . . .. e

BIBLIOGRAPHY . . . . . o

20



LIST OF FIGURES

An Illustration of Steiner Triple System: STS for K. . . . . . .. ..
A k-Rotational Steiner Triple System. . . . . . . . .. ... ... ...
A 1-Rotational Steiner Triple System. . . . . . . . .. ... ... ...
A Bicyclic Steiner Triple System. . . . . . . .. ... ... ... ...

A Tricyclic Steiner Triple System Where Every Cycle Have the Same

A Tricyclic Steiner Triple System with 1-Rotational Subsystem.

10



1 INTRODUCTION

There are many real world situations which can be described best by a diagram
consisting of points and connecting lines. For example, by means of using points
to represent people and lines to connect relatives, we can construct family trees for
anyone. The mathematical abstraction behind such situations leads to the concept of
a graph and eventually to the field of graph theory. It was not a surprise that, when
the first computer system was invented, graph theoretic tools immediately arose in
every computational study: network design and analysis, database theory, artificial
intelligence, complexity theory, and matrix computations to name a few.

As a branch of graph theory, combinatorial designs arose together with the ap-
pearance of computer science and operations research. According to Colbourn and
Van Oorschot in their article “Applications of Combinatorial Designs in Computer
Science,” [5] the application of combinatorial designs varies from file organization,
sorting in rounds to probabilistic and deterministic algorithms, authentication codes,
and lower bounds for algorithms. Designs [not only| provide balanced set systems,
[but they also] are minimum coverings and maximum packings [5]. In this thesis, we
will explore the combinatorial design for the model of tricyclic Steiner triple systems
with 1-rotational subsystems. However, many basic definitions are needed; hence,
this chapter serves the purpose of providing enough background so that readers will

have a thorough understanding of this research.



1.1 Basic Definitions

Given a graph G on V vertices and E edges, denoted G = (V, F), we can define
a simple graph to be a graph with no multiple edges. For any two vertices z,y € G,
if (z,y) is an edge of G, then we say = and y are adjacent to each other. We call a
graph G a complete graph if all of its vertices are pairwise adjacent, and we denote
a complete graph on n vertices by K,,. For example: K, is a segment (line); K3 is a
triangle; K4 is a rectangle with its diagonals, etc.

As expected, the concept of graph isomorphism is quite similar to many other
isomorphism concepts that we have encountered. Given two graphs G = (V, E) and
G' = (V',E'), we say G and G’ are isomorphic, denoted G = G, if there exists a
bijection ¢ : V' — V' with (z,y) € F if and only if (¢(z),¢(y)) € E' for all x,y € V.
Such a map ¢ is called an isomorphism. Furthermore, if G = G’ then ¢ is called an
automorphism.

A decomposition of a graph G = (V, E) into isomorphic copies of a graph g < G
is a set {g1,92,...,9,} where g; = g, V(g;) C V(G) (for all i), E(g;) N E(g;) = 0
(where i # j) and | F(g;) = E(G) (for all 7). Such decomposition will be referred to
as “g-decomposition of G”.

We may define a Steiner Triple System (denoted ST'S) to be a Kj-decomposition
of a complete graph K, of order v. Let G be a graph and let 5 = {g1,92,...,9n} be
a K3-decomposition of G. An automorphism of this decomposition is a permutation
of the vertex set V' (G) which fixes the set 5. That is, if g; is a block of the triple and
7 is a permutation, then 7(g;) also forms a block. A permutation 7 of a v-element

set is said to be of type [r], = [m1, 7o, ..., m,] if the disjoint cyclic decomposition of 7

9



Figure 1: An Ilustration of Steiner Triple System: STS for K.

contains 7; cycles of length i.

The orbit of a block under an automorphism 7 is the image of the block under the
powers of . A collection of blocks B is said to be a collection of base blocks for a
STS under the permutation 7 if the orbits of the blocks of B produce the ST'S and
exactly one block of B occurs in each orbit.

Consider a permutation 7 on a v element set. We say a STS(v) is a cyclic
STS(v) if it admits an automorphism of type [0,0,...,0,1] and such a system exists
if and only if v = 1 or 3 (mod 6) and v # 9 [8]. For example: the permutation
7= (0,1,2,3,4,5,6) is the automorphism of a ST'S(7) which consists of the blocks
{(013), (124), (235), (346), (450), (561), (602)} as shown in Figure 1. A reverse STS(v)
admits an automorphism of type [1, (v —1)/2,0,...,0]. Reverse ST'S(v)s exist if and

only if v =1,3,9,19 (mod 24) [9].

10



1.2 Previous Study of 1-Rotational Steiner Triple Systems

A k-rotational ST'S(v) admits an automorphism of type [1,0,0,...,0,k,0,...,0].
That is, the disjoint cyclic decomposition of 7 consists of a single point and precisely

k cycles of length %1 as shown in Figure 2.

((-1)/k -1), 0,

&
.

((v-1y2K)),
0

1

o ((\’-l)fk -1)1 11
T7 - o

((v-1)(2K))

1

k cycles of equal length

L]
L]
-
-
L4
*
*

(-1/2K) |

Figure 2: A k-Rotational Steiner Triple System.

The k-rotational ST'S(v) was first introduced by Phelps and Rosa in their paper
“Steiner Triple Systems with Rotational Automorphisms.” [9] They were able to
prove the existence of such system for the cases where k = 1,2,6 [9]. Later, Cho
proved the existence of cases where k£ = 3,4 in his paper “Rotational Steiner Triple
Systems” which appeared in Discrete Mathematics [3]. However, it was not until 1996,

in his paper “The Spectrum for Rotational Steiner Triple Systems,” which appeared
11



in Journal of Combinatorial Designs, that Colbourn and Jiang were able to show the
necessary conditions of a general case of k-rotational ST'S(v) to exist which settled,

once and for all, the existence problem for a k-rotational ST'S(v) [4].

Theorem 1.1 [4] Let v, k be positive integers such that 1 < k < (v —1)/2. Then a
k-rotational STS(v) exists if and only if

i)v=1,3 (mod 6)

it) v=3 (mod 6) ifk=1

i) v=1 (mod k)

i) v #7,13,15,21 (mod 24) if (v—1)/k is even.

In this thesis, we are much interested in the I-rotational STS(v) which leads
us back to the pioneering work of Phelps and Rosa [9]. Following the definition
of a k-rotational ST'S(v), a I-rotational STS(v) admits an automorphism of type
7 =[1,0,0,...,0,1,0,...,0]. We can describe a l-rotational STS(v) as a disjoint
cyclic decomposition of 7 consisting of a single point and a cycle of length v —1 > 1

as shown in Figure 3.

(v-1)72

Figure 3: A 1-Rotational Steiner Triple System.
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The condition in which 1-rotational ST'S(v) exists along with proposed base blocks
are shown in the following theorem and proved by Phelps and Rosa in their paper
“Steiner Triple Systems with Rotational Automorphisms” which appeared in Discrete

Mathematics in 1981 [9].
Theorem 1.2 [9] A I-rotational STS(v) exists if and only if v=3 or 9 (mod 24).

Proof. To prove the necessary condition, let V' = Z,_; U {oc0}, and let a =
(00)(0,1,...,v—2) be an automorphism of a 1-rotational ST'S(v). Since {c0,,j} € B
[where B is the base block of 1-rotational ST'S(v)] implies {o0,i+ 1,5+ 1} € B, it
follows that {co,4, j} € B if and only if i — j = 3(v — 1)(mod v — 1); in other words,
any l-rotational ST'S(v) contains (v — 1) triples of the form {o0,4,i+ (v —1)}

(mod v). All 3-subsets of V' not containing the element oo are partitioned into orbits
under « all of which are of length v — 1 except possibly a single orbit )y of length
3(v—1) of triples {0, (v — 1), 2(v — 1) }. It is easily seen that no 1-rotational ST'S(v)
contains a triple of Qy: this would require v = 1 (mod 6), and at the same time, there

would be need for further gv(v —1) — 3 (v — 1) — 3(v — 1) = (v — 1)(v — 5) triples

in B which would then necessarily have to be partitioned into ¢(v — 5) orbits of

length v — 1; this is obviously impossible as ¢(v — 5) is not an integer. Thus, the

remaining sv(v—1) — 3(v—1) = (v — 1)(v — 3) triples of B fall into (v — 3) orbits
of length v — 1. If {a, b, ¢} is a triple in one such orbit then clearly the six differences
+(a —b),£(b — ¢),£(a — ¢) are all distinct, and if {as,b1,c1},{as, by, o} are two

triples from two orbits in B then the corresponding 12 differences are all distinct.

Since there are still v — 3 non-zero differences “available” it follows that ¢ (v —3) must

13



be an integer, and so we must have
v=3 (mod 6). (1)

On the other hand, since v is odd, the automorphism a(*~Y/2 is a permutation of
type [j] = [1,3(v —1),0...,0], and so (V, B) is a reverse ST'S(v). Hence, we should
have

v=1,3,9,19 (mod 24). (2)

The congruences (1) and (2) together yield the necessary condition. Now, we will
show the sufficiency of the condition. So let v = 3,9 (mod 24). Define a set B of
triples on V' as follows:

B =B, U By

Bl—{{oo,i,i—i—%(v—l)}|i—0,...,%(v—3)},

By={{ii4+ri+b+k}|i=0,...,0-2;r=1,...,k}

where

where {(a,,b,)[r =1,...,k} is any (A, k)-system with k& = (v — 3)/6. Note: an
(A, k)-system is a set of order pairs {(a,,b.)|r =1,...,k} such that b, — a, = r for
r=1,...,k, and Uff:l {a,,b.} = {1,2,...,2k}; an (A, k)-system exists if and only
if £k = 0,1 (mod 4) [8]. Now, since v = 3,9 (mod 24), £ = 0,1 (mod 4) and so an
(A, k)-system exists. We claim that (V, B) is a 1-rotational ST'S(v). Indeed, given
a pair of elements oo, 7 where 7 € Z,_1, it is contained in exactly one triple of By,
since clearly the set {{i,i+3(v—1)}]i=0,1,...,5(v—3)} partitions Z,_,. Given
apairi,j € Zy_1,1 # j, we look at their difference Ay;: if Ay; = 3(v—1) then {4, 5} is

contained in a unique triple of By. If A;; = s # (v — 1) we may assume w.l.o.g 1 <

14



s < %(v —3). The six differences between the elements of a triple in B, are 7, +(a, +
k), +(b, + k), and since the difference triples {{r,a, + k,b, +k}|r =1,... k} cover
the set {1,2, ce %(v — 3)} it follows that the pair 4,5 with A;; = s is contained
in exactly one triple of B — 2. Thus, (V,B) is a ST'S(v). Observing that a =

(00)(0,1,...,v —2) is an automorphism of (V, B) completes the proof. |

1.3 Bicyclic Steiner Triple Systems and the Motivation

We may define a bicyclic Steiner triple system as a ST'S(v) admitting an automor-
phism of type [7] =[0,0,...,0,m,0,...,0,7n,0,...,0] where mpy =7y =1, M < N
and M + N = v. In other words, a bicyclic Steiner triple systems has an automor-
phism 7 with a disjoint cyclic decomposition of 7 consisting of one cycle of length M
and another (larger) cycle of length N as shown in Figure 4. It is easily seen that a

l-rotational ST'S(v) is just a special case of a bicyclic ST'S(v) where M = 1.

[(M-1)2]

[(N-1)2],

Figure 4: A Bicyclic Steiner Triple System.

In fact, the existence problem for a bicyclic ST'S(v) was proposed and first studied

15



by Calahan and Gardner in their paper “A Special Case of Bicyclic Steiner Triple
Systems” in 1992 [1] . In their paper “Bicyclic Steiner Triple Systems”, they were

able to determine and prove the existence condition for bicyclic ST'S(v)s [2].

Theorem 1.3 [2] A bicyclic STS(v) where v = M + N admitting an automorphism
whose disjoint cyclic decomposition is a cycle of length M, where M > 1, and a
cycle of length N exists if and only if M = 1 or 3 (mod 6), M # 9, M|N and

v=M+N=1or3 (modb).

Since the existence problem for bicyclic ST'S(v) has been solved, a reasonable
new research approach should be tricyclic Steiner triple systems and its existence
condition. Up until this point, our readers might already have guessed what a tricyclic
permutation should be or should look like. In fact, tricyclic ST'S(v) has a disjoint
cyclic decomposition consisting of three cycles of the same length or different lengths.
The ideal general case for a tricyclic ST'S(v) should be a disjoint cyclic decomposition
of an automorphism 7 consisting of a cycle of length X, another cycle of length Y,
and another cycle of length Z where X <Y < Z.

We can certainly take advantage of the previous results from bicyclic ST'S(v) to
attack the existence problem for a general case of tricyclic ST'S(v); that is, the general
case may be catergorized into tricyclic ST'S(v) with bicyclic ST'S(v) subsystem and
tricyclic ST'S(v) with no bicyclic ST'S(v) subsystem. Since 1-rotational ST'S(v)
is a special case of bicyclic ST'S(v), in order to study the existence condition of
tricyclic ST'S(v), we must first investigate the existence condition for the case of
tricyclic ST'S(v) with 1-rotational subsystem. Therefore, this thesis will not address

the general case of tricyclic ST'S(v)s; however, it will address some of the basic
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special cases of such system, especially the case of tricyclic ST'S(v) with 1-rotational

subsystem.

17



2 TRICYCLIC STEINER TRIPLE SYSTEM WITH 1-ROTATIONAL

SUBSYSTEMS

In this chapter, we shall dicuss several tricyclic Steiner triple systems. The fol-
lowing theorem 2.1 and 2.2, along with lemma 2.1 to lemma 2.5 introduced in this
chapter are following results of work of Calahan and Gardner from the early 1990s
[1]. The main result introduced in this chapter is the block design of tricyclic Steiner
triple systems with 1-rotational subsystems which leads to the highlighted theorem
4.1 in chapter 4. Furthermore, the method of construction will be explained in more

detail in chapter 3 where we introduce the difference method.

2.1 Some Tricyclic Steiner Triple Systems

We define a tricyclic ST S(v) to be one that admits an automorphism either of
type [0,...,0,3,0,...,0] (as shown in Figure 5), [0,...,0,1,0,...0,2,0,...,0], or of
type [0,...,0,1,0,...,0,1,0,...,0,1,0,...,0]. From the existence of a cyclic ST'S(v)

we readily have:

Theorem 2.1 A tricyclic STS(v) admitting an automorphism of type [0, ...,0,3,0,...

exists if and only if v =3 (mod 6).

Proof. Of course the condition v = 3 (mod 6) is necessary. For all such v, except
v = 9, there is a cyclic ST'S(v). Simply by cubing the cyclic automorphism, we
see that the systems are also tricyclic. For v = 9, consider the collection of blocks:

(00,01, 20), (09, 02,25), (0g, 12,21), and (04, 11, 15). This is a collection of base blocks
18
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for a tricyclic ST'S(9) under the automorphism 7 = (0, 1o, 29)(01, 11,21)(02, 12, 25)
where the point set is Z3 X Z3. Here, and throughout, we represent the ordered pair

(z,y) as the subscripted pair z,,. |

Figure 5: A Tricyclic Steiner Triple System Where Every Cycle Have the Same

Length.

Similarly, we can establish the existence of a large class of tricyclic ST'Ss from the

existence of the bicyclic ST'Ss.

Theorem 2.2 A tricyclic STS(v) admitting an automorphism of type [7] = [0,...,
0,1,0,...,0,2,0,...,0] where mpy = 1, my = 2 and M > 1 exists if and only if M = 1

or3 (mod6), M #9, M| N andv=N+2M =1 or 3 (mod 6).

Proof. First, suppose there is such a system with the point set Zy, | J Zy x Zy admit-

ting the automorphism 7 = (0, 1,..., M —1)(0p, 1o, ..., (N—1)0)(01,11,...,(N—=1)1).
19



The fixed points of an automorphism form a subsystem of a ST'S. That is, if we fix
two vertices of a base block then the remaining vertex has to be fixed too. By con-
sidering ™ we see, therefore, that such a ST'S(v) has a cyclic subsystem of order
M. Therefore, M =1 or 3 (mod 6) and M # 9 is necessary. Also, such a ST'S must
contain some block of the form (z,y;, z;) where x € Zy and y;,z; € Zn X Zs. By
applying " to this block, we see that (7% (x), y;, z;) must also be a block of the ST'S
and therefore 7%V(x) = x and M | N is necessary.

To establish sufficiency, suppose M and N satisfy the stated conditions. Then
there is a bicyclic ST'S(v) admitting an automorphism consisting of a cycle of length
M and a cycle of length 2N. By considering the square of this automorphism, we see
that the bicyclic ST'S(v) is also tricyclic and admits an automorphism of the desired

type. |

Notice that 2-rotational and 1-transrotational ST'Ss are also examples of tricyclic

STSs.

2.2 Tricyclic Steiner Triple Systems with 1-Rotational Subsystems

We now turn our attention to ST'Ss admitting automorphisms of type [7] =
1,0,...,0,1,0,...,0,1,0,...,0] where m, = 7y = 7y =1, v = M + N + 1,
and M < N. In our discussion, we will let the point set of such a system be
{00} UZp x {0} JZN x {1} and let the automorphism be m = (00)(0y, 1o, . .., (M —

1)0)(01,14,..., (N —1)1) as shown in Figure 6.

20



[(M-1)/2],

[N-1)72),

Figure 6: A Tricyclic Steiner Triple System with 1-Rotational Subsystem.

As in the proof of Theorem 2.2, by considering 7, we see that the STS(v)

contains a 1-rotational subsystem of order M + 1. Therefore we have:

Lemma 2.1 If a tricyclic STS(v) exists admitting an automorphism of the type
7] =[1,0,...,0,1,0,...,0,1,0,...,0] where m; = mpy = 7y = 1 then M = 2 or 8

(mod 24).

Also, in such a ST'S there must be some block of the form (x¢, y1, 21). By considering

the image of this block under 7%V, as in Theorem 2.2, we have:

Lemma 2.2 If a tricyclic STS(v) as described in Lemma 2.1 exists, then M | N.

We have a final necessary condition:

Lemma 2.3 If a tricyclic STS(v) as described in Lemma 2.1 exists, then N = kM
where k = 2,3,6 or 11 (mod 12) whenever M = 2 (mod 24). If M = 8 (mod 24),

then k=0 or 2 (mod 3).

Proof. A base block of the form (xg,y,21) covers two mixed differences and one

pure difference of type 1. One of the mixed differences must be congruent to the

21



sum of the other two differences modulo M. Since M is even, either zero or two of
these differences is/are odd. If 3 | N, then a possible base block is one of the form
(21, (x + N/3)1, (x + 2N/3)1). A block of this type is said to be a short orbit block
since the length of its orbit under 7 is precisely one-third the length of the orbit of
any other block on the points Zy x {1}. A short orbit block covers the pure difference
of type 1 of N/3 only, and N/3 is even. A base block of the form (x1,1,21) (other
than a short orbit block) covers three distinct pure differences of type 1. These three
differences satisfy either the condition that one is the sum of the other two, or the
condition that all three sum to 0 modulo N. In either case, either zero or two of these
differences is/are odd. So, a collection of blocks of the form (zg,y1,21) or (z1,y1, 21)
covers an even number of odd differences. Therefore, the number of odd differences
in the set {0,1,...,M —1}J{1,2,..., N/2—1} must be even. From this, the lemma

follows. |

We now show that the necessary conditions of Lemmas 2.1-2.3 are sufficient in a

series of constructions.

Lemma 2.4 If M = 2 (mod 24) and k = 2,3,6 or 11 (mod 12), then there exists a

tricyclic STS(v) as described above.

Proof. Consider the given collections of blocks.

Case 1. Suppose that M = 2 (mod 24) and k = 2 (mod 12).

If M =26 and k = 2, consider the following collection of blocks:

(017 717 181)7 (017817 171); (017 1317251)7 (017 1417 241); (007017261)a
22



(007017 151)7 (007 ]-17 ]-71)a (007817 281)a (00; 71, 291)7 (00; 1117301)v (007 101a311)7

(007 917 321)7 (007 1217 181)7 (007 1317 161)7 (007 1417 191)7 (007 2017 241)7 (007 2317 251)7

(00, 211,22,) .

Otherwise, consider the following collection of blocks:

(017<(k_1)M+10—QT)l,(M—r)l) forr—1,2, .  FZDM=2

6 2 12 ’

(01’ <(k—1éM—8 _270)1, ((k—lg))M—E) _T)l)

k—1)M —
for7“:1,2,...,< ;{Y o0 (omit if M = 26),
o ((=DM-14 N\ (T(k—1M 14
b 12 a 24 "),
forr=1,2 (k= 1)M — 50
b AR | 24 Y

o <(k - 1)11;4 + 10)17 (7(/<; - 12)iw - 14)1)7 (01, . (5(k; - 12)1\4 + 14)1)7

. <(k— )M — 14)1’ ((k:— 1;]\/[—5)1) (omit if M = 26),

12

(

(

(o0 ("), () ) (o (51),)
(00 (01 = 13 <(""“)#+r)1) for r = 1,2,..., =2
(
(
(
(

M -2 EM — 2 —
—'r) ,( +r)>forr:1,2,...,M 2,
1 1

2 8

(
( 8 8§
00,<M;6)1,<(4k+18)M—2)1), (00, (3M4— 2)1’ ((2k+14)M—2)1)’
< ) 7<(2k+14)M+2> )

23

2
3M —6 4k +1)M + 6 M—1
—7") ,(( + DM+ +r>)forr:1,2,..., 8
1 1




Case 2. Suppose that M = 2 (mod 24) and k = 3 (mod 12). Consider the following

collection of blocks:

(o (), (%
6 T)l’ (kTM_T)l)
) (5

3k +3)M — 12

),
)

3
3k +5)M — 4

—

) )forr:1,2,...,
1

)) (= (7))

(k—1)M — 4
12 ’

(k—1)M —4
12 ’

M +10

(3k +5)M + 8

12

+r> ) forr=1,2,...,
1

12

(16k + 13)M —

12

(8k + 6)M + 12

—7“) ) forr:1,2,...,w,
1 12

12

. (13k+T7)M + 4
. 12

24
(16k +17)M

24
(16k + 18)M

=),

24

=),

(
(
(
(
(
(5
(
(
(
(
(

).

M
—7‘) ) forr=1,2,...,
1

16k + 17)M + 14

(
(5

24

(26K + 18)M

2 15)M 2 17)M +2
(26k + 5 +6 ) <( 6k + 7 + r))forr:l,z,...,
1

(13k:+7M+4) (26k:+16 M+4) )
1

Y

M
—T) ) forr=1,2,...,
1

—r) )forr:1,2,... M
1

(16K 21M
0 + 30 >)f0rr:1,2,...,
1

M
) )forrzl,?,...,
1

T2

M — 26
24

Case 3. Suppose that M = 2 (mod 24) and k = 6 (mod 12). Consider the following

collection of blocks:
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o
=
N\
=
+
=
~_
—_
VR
=
|
N}
|
<
~~
—
N~
ok
=
=
—
N
=
|
)
N

(

(

(

(o0 (55),) (won (527 1),)

(o (252 0r) (S50 ) Y M
(

(

(

(

(

6 6
) (0 (5, (£5)
M

2% + 3)M — 18 — 14
( + ) +r forr=1,2,..., )
5 1 12

=1
D
|
<
~— —  — —
—
7 N N W

4 M —2 M — 14
(dk+1) —r))forrzl,Z,...,
1

12 12 7

—9M_18—r> ,<<2k+91)2]\/[_30+7") > forr:1,2,...,M_2,
1 1

11M — 46 (4k + 11)M — 34 M — 14
—_—+r] , -7 forr=1,2,..., ,
) 12 . 12

(00, (M —3)1, <(k i 6)éM — 24) 1), and <oo, (M — 1), <M#)l>

Case 4. Suppose that M = 2 (mod 24) and k£ = 11 (mod 12). Consider the following

collection of blocks:

(01,<w—2r> ,(W_r) )forr:1,2,...,(k_1)M_20,

6 2 12
(01,<—(k_1)M_2—27“> ,(—(k_l)M_z—r) )forr:1,2,...,(k_1)M_44,
6 1 3 " 24
0., (k—l)M—8_2r 7 7(k_1)M+4—7" f0“”:1’27”"(14/‘—1)]\4—44
12 1 24 1 24
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k- 1)1]2\4+ 16>1’ (7(k _ ;iM+4)1>’ (01’117 (5(k:— 12)i\4+20)1>,

(

0. ((k—11);\4—8)17 ((k—léM—Q)l)
(
(

(

(

o () ()

o (S22) (452 ) o ()
(o (413 ) (0 (52), (241) )
(

(

(

(

00’<M8—2)17<(4k—38)M+6>1)’ (OOa(M;2)17(kM2_4)l>a
07<MI2) ,((2k+14)M—6> ),

M—4 k+1)M —2 M -2
00,< —i—?“) ,(%—r))forrzl,l--w ;
1 1

o

4

kM — 4 M — 18
Oo,rl,( 5 —r>)f0rr:1,2,..., 3 , and
1

M 4k — 1)M — M—-1
(00,< +6—|—7"> ,(( ) 6—7’))forr:1,2,..., 8.
8 1 8 1 8

In each case, the given collection of blocks, along with a collection of base blocks for a

l-rotational ST'S(M + 1) on the point set {oo} |JZys x {0} under the automorphism
(00)(09, 1o, ..., (M — 1)), forms a collection of base blocks for a ST'S of the desired

type. |

Lemma 2.5 If M = 8 (mod 24) and k =0 or 2 (mod 3), then there exists a tricyclic

STS(v) as described above.

Proof. Consider the given collections of blocks.
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Case 1. Suppose that M = 8 (mod 24) and k = 0 (mod 12). Consider the following

collection of blocks:
0 kM n kM
—+r —_— 7
1, 6 . ) 3

12 7
( <(2k+1)M 8 ) 3k—1M—|—2 ))
017 — T

6 1 1
forr=1,2,.

) (., () e 2)
) () (o (22) () )

M —2 )M — M —
—i—r) ,((k+ ) 8 ))forrzl,Q,...,—S,
1 1

M —12
)forr 1,2,...,k—

=

| /\

(% ; 6
M—1 — _
5 6—7” 7 (4k+5)M 16+T fOI'T:]_,2,...7M 87
12 . 12 1 12
M—2 k+T7)M — 2 M -
00, 7 0 : (6 +7) O_T fOrr:LQ,...,—8,
12 . 12 1 12
M—2 4k 4 10)M — 32 M -
0, 8 8 : ( + O) 3 —r forr=1,2,..., 87
12 ) 12 1 12
1M — 4 11)M — 52 M-—2
. 0+T ’ (6k +11) 5 —r forr=1,2,..., O,
—5 1 19 ) 12

11]\412— 40)1 | ((21: + 11)2M - 52)1)’ (007 (M 3),. (M#)l)

(007 (M 1), ((5k + 1?)2M - 24)1)‘

Case 2. Suppose that M = 8 (mod 24) and k = 2 (mod 6). Consider the following

collection of blocks:
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6 3 24 ’

(01, <(k—1)1j2\4—20 _270)1’ <7(k;—;le—8 _T>1>

forr:1,2,...,<k_1>2';\14_56 (omit if M =38),

0L, <5(k:— 12)i\4+32)1>7 (017 <(k— 125M—2)1, 5(k — 1)2M—4>1)7
(), (5 )) (20 ()

k+1)M —4 M
00,(M—7’)1,<%+r>)forrzl,Z,...,Z,
1

—4 kM — 2
) < +>>f0rr—12 M — 16,
2 ) 8

4 M M—-1
8—7”) ;(—(k+ ) -I—T))forr:l,Q,..., 6
1 1

(01’<w—2r> ,(W—r) )forr:1,2,...,w

007

OD

007 ]

(%
(5
00,( > (4k+1M 8)1>,(00,(M2_4)1,<<2k+14)M_4>1)(omitif
8),
(007< M4_4)1,(w>1),and <007 (3M8_8)17<(4k+123M_16)1>~

Case 3. Suppose that M = 8 (mod 24) and k = 3 (mod 12). Consider the following

N 7N N N N N

|| oo|§

w

collection of blocks:

(%), (57)) (=0 (5),)

w—%) ,(W—T) ) forrzl,Z,...,w,
1 L 12

(o
(0 (B2 ) (B ) Yawpm . 0021
(o

12

M+1 k M —12 M+ 4
+ —7’) ,((3 +31)2 +r>)forr:1,2,..., i ,
1 1

12
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M—38 (5k +2)M — 4 M-—38
- for r =1,2,...
(00,< 12 +T)17( 12 T)l) o o ’ 12 ’

(007 <(5k+31)2M+12 _T>17 ((8k:+21);\4—16+r)1>

M+ 4
forr=0,1,2,..., + ,
12

(007 <(5k + ?QM — 4) . ((10k +112)M + 4) 1)

( <5k+3 ) ,<(1Ok+4)M+16—r>)forr:1,2,...,M_8,
. 12 . 12

( (10k + 4) M+16> ((10k+2)M+32))
1

(00’ ((10k+3)M+ 12)17 <(10k: +15;\4+8)1>’

1 HM +1 1 M M —2
(00,<( Ok +4)M + 6—1—7“) ,<M—T))f0r7“:1,2,..., O.
1 1

12 12 12

If M = 32, also take the two blocks:

10k 4+ 1)M + 16 10k 4+ 1)M + 52
0o, ( + DM+ +r| ., ( + DM+ —-r for r =0, 1.
12 L 12 .

If M > 32, instead of the last two blocks, take the blocks:

(00,<(10k+3)M+12—r) ’<(10k+1)M+16+r) )forr:1,2,... M — 32
1 1

12 12
(o (!
(00, ( 10k:+ M+ 16)1’ ((10k+?)2M+20)1> 7
(

(0 (20k + 3) M+24> ((20k+3)M+48) >
05 ) .
1 24 1

20k‘+5M—|—56 (20k + 3)M + 48 M — 32
-r|, o1 +r forr=1,2,...
1 1

Case 4. Suppose that M = 8 (mod 24) and k = 5 (mod 12). Consider the following

collection of blocks:
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(01,<(k_1)M+10—|—r) ’((k—l)MJr?_r) )forr:1,2 ’’’’ (k—l)M—S’

6 3 24
5(k —1)M + 56 7(k — 1)M + 64
(o () (P ),
forr=1,2,..., <k_1>M_32,
24

5(k — IQ)i\4+56) | (3(k— 123M+24) >

o (k—lle+8) 7(5(k—11)2M+44) )

(o
(o (
Lo () ()
(o
(o
(o (

(k—1;M+7) ’(5(k—1)M+20) >

12

(k:—l)M+7+T> ’<(I<:—1)M+4_T) >forr:1,2 ,,,, (k=DM -8

2 24

3(k —1)M + 24 ) (11(k—1)M+56 ) >
01, +7r s —T
8 24 .

k — 1M
forr=1,2,..., ( ) 56,

k—l—l M —8
r=1,2,...
w (S ) () e S
kM — 4 M—-1
0o, (r — 1)1, < 7’) > forr=1,2,..., 6,
2 X s
M

M ) <(4k—1) 8 )
05 - T ) -r rr
8 1 8 1
6

1 1’ 1 ,
o (MY (k1M -8

) 0 4 17 4 ) 9
( 1)




and (00,01, (%) )
2 /4

Case 5. Suppose that M = 8 (mod 24) and k = 6 (mod 12). Consider the following

collection of blocks:

(0 (5), (57)) (0 (552), (557) ) (=0 (59),)
(01, <M#+T>1’ (kMB_?’ —r)l) forr=1,2,... (k- DM — 16,

kM k—1)M + 2 k—1)M —4
(o (B2 ) (02 ) Yy b
1 1

If M =8, also take these four blocks:

(007117 <(3k+ 1)2M+4>1) | (00, ((3k:+ 1)21\4— 8)17 ((9k+ 11)5\4— 20)1) |
(00, ((9k+ 11)2M - 20)1, ((11k:+ 1)2M _44>1) |

(007 ((3/<:+ 11)2M+ 16)1’ ((5k+ 11)2M+28)1) |

If M = 32, instead of the last four blocks, take these blocks:

(e ("“2”4); (5))

M+10 EM — 6 M+4
, +7r forr=1,2,...,
1

o
o
(00,< 3k—|—1 M+ 16 T)17((3k—1)M+8+T)1> forrzl,Q,...,M_S,
N

6 6 12

M+7 Bk+1)M +4 M+4
+r forr=1,2,..., ,
3 6 1 12

12 12

M+4 4k M + 24 M —
0o, M + 18 ) ,<( )M + +r>)forr:1,2,..., 8,
1 24 ) 24
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NN
o (E252) )
(g (o))
)
(Cos ) (Chengrem) )

k+6)M — 12
(19, (29 =12)
1
If M > 32, instead of the last two collections of blocks, take these blocks:
kM + 4 M+4
1 Y 12 1 )

M+10 EM — 6 M+4
, +r forr=1,2,..., ,
6 6 1 12

(o (2

o

(77 ()
o

o 25

o

VRS
o
<

+

k lM 1 k—1)M
Sk 16 'r) ,<(3 1)2 +8+7’)>forr:1,2,...
1 1

9M + 48 4k + 9)M + 24 M —8
0o, + ) ,<( +9)M + —|—r>)forr:1,2,...,
1 1

24 24
—3k+1)M +4 (—bk+3)M + 24
00, —+r s — T
12 ) 12 .
M +16
f =1,2,...
orr ) ) Y 24 Y
(—6k + 3)M + 24 (—2k + 7)M + 64
007 +r ) -T
24 1 24 1
M +16
f =1,2,...
orr ) ) Y 24 Y
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(00, <(—6k +24£M+40)1, <(

M — 32

f =12 ...
orr 2y =5y

24

24

24

24

» ((—Qk + 7)M+64)17 (

(2/<:+9)M+72) (
(2k+9)M—|—48)17(

(—2k+8)M+56)17 (

—2k +8)M +56

24

)

(2k+9)M+96) >

24

24

(6k + 11)M+8> )

(6k + 11)M + 32) )

24

(2k + 8)M + 104) )

24

12

o
e
N N

<(6k +11)M + 32
007

(k:+4)M+40)1’<

24
M — 56
forr=1,2,...
orr y Ly s 24
0 (2k+9)M +48
05 24

) ((6k:+9)M+96
I +
1

12

(—k;+5)M+20> )

) <(10k—|—11)M+8 ) )

+r), -

1 24 1

r) ) forr=1,2,...,
1

24

M — 80

Case 6. Suppose that M = 8 (mod 24) and k =9 (mod 12). Consider the following

collection of blocks:

kE+1)M — kM k—1)M —4
(017<< +) 8+T> 7(__T>)f0r7’:1727"'7¥7
6 1 3 1 12
% +1)M — 2 kM k—1)M —4
017<( +) +T) ,<——T))f0r7“:1,2a--~7¥’
6 1 2 1 12
kM + 6 M+4
o1 (B8 ) Y M1
1

o

(4k + 9)M

. <M1%2—4)1, <(3k+i)2M—4)1), (007 ((—4k +2Z)M—I—8)1’ (

12

—i—r) ,((2k+1)M+16—r) ) forrzl,Q,...,M
1 1

33

+4
12

Y

24
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6

2M —k+1)M+4 M —
+8+7”) ,<< UM+ —T))fOI"?"Zl,Q,..., 8,
1 1 1

3M 4 M —4 M —

_+7") ,((k+5) —T))forrzl,Q,...,—S,

1 L 1 2

™

12 4

-8 (—4k +T7)M + 16 M —38
— f =1,2,...
007< 2 +T)17( 24 r)l) orr ) 4y ’ 12 )

—k+1)M -2 2)M + 2 M —
(=k+1) +T) 7(M_r)>forr:1,2,..., 8,
1 1

6 24

—(4k+9)M—r> ,(—(12k+9)M+r) ) forr:1,2,...,M_8,
1 1

24 24

24 6

(e (2))

Case 7. Suppose that M = 8 (mod 24) and k = 11 (mod 12). Consider the following

00,<<12k+10)M_8+r) ,<w—r> ) forr:1,2,...,M_8,and
1 1

collection of blocks:

(01, <(k:—123M+4+T>1’ ((%_26)M+2 _r>1)

(k—1)M — 32
forr=1,2,...
orr P A 24 Y
o (B=DM+32 T(k—1)M+40
b 24 L 24 .

(k—1)M — 32
forr=1,2,...
Orr P AR 24 Y
8(k —1)M + 32 12(k — 1)M
o (P ) (),
forr:1,2,...,(k_1)M_20,

12

(01’ <5(k - ;lM+8>1’ (5(/<; - 12)i\4 + 32)1)’

(01, <6(k - 12)i\4 + 24)1 | <8(k: - 12)34 + 32))7
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(01 <6(k—1)M+48) (10(k—1)M+16) )

’ 24 - 24 7

(01’ (8(%—;1M+8) 7 <(k —21)M> )’

(00, <%+T)l,<W—T)1> forr:1,2,...,M6_2,

2M — 4 3k +2)M + 2 M —2
(00,< +7‘> ,(( +2)M + —r))forrzl,Q,..., -1,
6 1 6 1 6

(0w (F=57) ) (0 (557), (5552))
(o0 (55, (55).)
(007 <(24i 121)M566) ’((36k—2294)M—32) )
(00 <M+4) <(6k3;M24) ) 1

12 ) 12 )
(007((31@—26)M+4)17<(12k—?)2M—12>1>7

—2)M + 4 —4HM —1 M — 32
(00,<(3k )M + +7“) ,<(6k ) 0—7“) >forr:(),1,2,..., 3 ,
6 1 6 1 24

—3)M — 24 12k —9)M — 12 M —
(6k —3) —r) ,<( k—9) +7‘) )forr:1,2,..., 56
1 1

12 12 24 7

k—2)M +4 M — kM
(00,(7’)1,<(3 )M + —r) )forr:1,2,..., 8,and (00,01, (—) )
6 1 12 2 /4

In each case, the given collection of blocks, along with a collection of base blocks for a
I-rotational ST'S(M + 1) on the point set {oo} | JZys x {0} under the automorphism
(00)(09, Lo, ..., (M —1)p), forms a collection of base blocks for a ST'S of the desired

type. |
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Lemmas 2.1-2.5 combine to give us necessary and sufficient conditions for the
existence of the desired type of ST'S. That is, a ST'S(v) admitting an automorphism
of type [r] = [1,0,...,0,1,0,...,0,1,0,...,0,1,0,...,0] where m; = mpy = 7y = 1,

M < N, exists if and only if M =2 or 8 (mod 24) and N = kM where
1. if M =2 (mod 24) then k = 2,3,6 or 11 (mod 12),

2.if M =8 (mod 24) then k£ =0 or 2 (mod 3).

36



3 THE DIFFERENCE METHOD AND EXAMPLES

In this chapter, we shall discribe the method used to arrive at the results of chapter
2. The difference method introduces two distinguished types of differences between
vertices which are pure difference and mized differences. This method allows us to
make use of the the “differences” (or distances) between vertices to design our desired
base blocks. Furthermore, we will also take a close look at one of our cases in order

to understand and verify the difference method thoroughly.

3.1  The Difference Method

This section will introduce the difference method which plays an important role in
finding the base block for our tricyclic Steiner triple systems with 1-rotational subsys-
tems. For an edge (m,n) € E(K,) where the vertex set is V(K,) = {0,1,2,...,v — 1},

we define the difference as
d=|m —n| =min{(m —n) (mod v), (n —m) (mod v)}

Notice that d < 2.
Given any STS(v) and its differences d;, we may obtain up to 3 possible types of
differences in a ST'S(v); that is,
Type 1. dy + dy = d3
Type 2. dy + dy + d3 = 0 (mod v)
Type 3. d = 3.
In our tricyclic Steiner triple systems with 1-rotational subsystems model, with a

pair of points of the form (xy,y;) we associate a pure difference of type 1 of min{(x —
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y)(mod N), (y — x)(mod N)}. With a pair of points of the form (zo,y;) we associate
the mized difference (y — x) (mod M). The set of pure differences of type 1 is
{1,2,...,N/2} and the set of mixed differences is {0,1,..., M — 1}. A collection of
base blocks for the desired type of ST'S must contain a block of the form (oo, z1, (z+
N/2)1). Notice that this block contains a pair of points with the associated pure
difference of type 1 of N/2. Therefore, constructing the desired type of ST'S is
equivalent to presenting a collection of blocks on the point set Zy x {0} | JZy x {1}
such that the differences associated with the pairs of points of these blocks precisely
cover the set of pure differences of type 1 of {1,2,..., N/2 — 1} and the set of mixed
differences of {0,1,..., M — 1}. Such a collection of blocks along with a collection of
base blocks for a 1-rotational ST'S(M + 1) on the point set {oo} |JZy x {1} (under
the obvious automorphism) and the block (00,01, (N/2);) from a collection of base
blocks for a tricyclic STS(1 + M + N) with a 1-rotational subsystem under 7.

For a full understanding of the proposed constructions in section 2, we will look
at one of the construction, the case of Lemma 2.5 Case 2, M = 8 (mod 24) and k = 2

or 8 (mod 6), in detail.

3.2 An Example: Lemma 2.5 Case 2, M =8 (mod 24) and k =2 or 8 (mod 6)

Suppose that M = 8 (mod 24) and k = 2 (mod 6). Consider the following collection

of blocks:
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The first block

(01’<(k_1)#_2’”) (W—r) ) forr—12  FZDM=8

corresponds to the following differences

Pu/”‘e : (k:_l)ﬂ E— 27” : M, ey 2

P'LLT@ . (k—1)M — (kfl)M726 (5k*i))2M+8
: — : g oty 19
. (2k—2)M —4 . (2k—2)M+2 (5k—5)M —16

Pure. T—{—T T % sty 13

The second block
_ _ _ _ ~“ 1M —
(01,<<k‘1>#_2r) (M#_) )fowzl,g,‘_w(k)—ég
1 1

corresponds to the following differences

. (k=DM-2 o (k=1)M-14 (k—1)M+4
Pure: (k 16)M 2 o (k—1)M—5 ’“'77(14 11)%\/1 8
e i i s Bhts
Pure: ~—p—+r: 5 . o

The third block

(01, <(k - 1)112\4— 20 27«) | (7(k— ;21]\/[—8 _r>1)

—1)M — 56
forr:1,2,...,<k )24 (omit if M = 38)

corresponds to the following differences

Pure : W_QT: (k:—l)l#’“"3
O T s T
Pure: ==+ DS
The 4th block
5(k —1)M + 32
017 117
24 .
Pure : 1
corresponds to the following differences | Pure : 5(’“_12)#
Pure . 2k-DM+8

24
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The 5th block

(01, ((k: - 125M - 2)17 (5(k - EM - 4>1)

Pure : (kfl)ﬁMfz
corresponds to the following differences | Pure : 5(k_1)2M_4
Pure : LM
: 12
The 6th block
0 (k—1)M —20 (k—1)M —2
1, 12 ) ) 3 .
Pure; G120
(k=112

corresponds to the following differences | Pure : 5
3(k=1)M+12

Pure : 13
The 7th block
kM
0, [ ===
(=0 (5))
corresponds to the following difference: [ Pure : % ]

The 8th block
k+1)M —4
(3 (1)

corresponds to the following differences

M
)forrzl,Z,...,—
1 4

Maix : M —r: M—l,...,%

: k+1)M—4 - Z
Mix - (ii)ﬁ—kr: M2 (mo(c]i]g]&,...,gjéMs 8(mod M)
Pure : T—FQTI I T R S e

The 9th block

M—4 kM — 2 M -1
(00,< —r) ,( +7")>for7“:1,2,..., 0
2 1 2 1 8

corresponds to the following differences

Mix - M—d _ .. M6~ 3M

2 2 8
Mix - M2 4r: 0 (mod M),..., Y22 (mod M)
Pure - (k—1)2M+2 Yo (k—1)2M+67 o (2k—121M—12



The 10th block

M — 4k +1)M M -1
(00,<3 8—7") ,(Q—FT))forr:l,Z..., 0
8 ) 8 1 8

corresponds to the following differences

—_ 3M—8 : 3M—16 2M+8

Miz : (4k—|§1)M_r‘ T g

Miz . S5 4r M (mod M), ... 2L (mod M)
. (4k—2)M+8 , (4k—2)M+24 AkM—24

Pure: ~—=—— +2r: S ey g

The 11th block

(o (5), (F57).)

Mix - %
corresponds to the following differences | Miz: =8 (mod M)
Pure : ARM =8

The 12th block

(007 <M2— 4)17 <(2k+ 14)M—4>1) (omit i M = §

Mix : %
corresponds to the following differences | Miz: =1 (mod M)
Pure - 2k—1)M+4
: 4
The 13th block
o (3M -4 (2k + 1)M
0 4 ) ) 4 .
. M—4
M i y 3 1
corresponds to the following differences | Mixz : 7 (mod M)
Pure : —(k_1)2M+2
The 14th block
0 3M -8 (4k+1)M — 16
0 ] . 9 ] )
Mix : 3MS_8
corresponds to the following differences | Miz : 218 (mod M)
(4k—2)M—8

Pure :
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It is easy to check that the pure differences run from 1,..., % and the mixed

differences run from 0,1,..., M — 1 which is exactly what we expected. However,
let’s also check one specific example, say, M = 32,k = 20, and N = 640. Consider

the following collection of blocks: The first block

(017<(k_1)#_2r)1’(w—7")1) forr=1,2,..,,(k_1l>#

corresponds to the following differences

Pure : 2,4,6...,98,100
Pure : 254,255,256 ...,302,303
Pure : 203,204,205...,251,252

The second block
(01, <—<k_123M_2 —2r> ,(—(kj_léM_Q —r) )forT:1,2,...,—(k_1)M_8
1 1

corresponds to the following differences

Pure:  51,53,55...,97,99
Pure: 177,178,179, ...,200,201
Pure: 102,103,104...,125,126

The third block

(017 ((k— 1)112\4—20 _QT)l’ (7(l<;— ;21]\/[—8 _r>l)

forr:1,2,...,<k_1)M_56
24

corresponds to the following differences

Pure : 3,5,7...,45,47
Pure : 154,155,156...,176
Pure: 129,130,132,...,150,151

The 4th block

(01711, <5(k - 12)i\4+32)1)
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Pure: 1
corresponds to the following differences | Pure: 128
Pure : 127
The 5th block

(01, ((k - %M - 2)17 (5(/<; - EM - 4)1)

Pure: 101
corresponds to the following differences | Pure: 253
Pure : 152

The 6th block

(017 <(k—1)1j2\4—20>17 ((k—l?))M—Q)l)

Pure: 49
corresponds to the following differences | Pure: 202
Pure: 153

The 7th block

(0 (%))

corresponds to the following difference: [ Pure : 320 }

The 8th block
kE+1)M —4
(007 (M - 7’)1, (% + T)

corresponds to the following differences

Mix : 24,25,26,...,30,31
Mix - 15,16,17,...,21,22
Pure : 304,306,308, ...,316,318

The 9th block

M —4 kM — 2 M — 16
0o, —-r| ., +r forr=1,2,...,
2 1 2 L 8

Miz . 12,13
corresponds to the following differences | Mix : 0,1
Pure: 307,309

)forr:l,Q,...?M
1 4
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The 10th block

M — 4k + 1)M M -1
(00,<3 8—7") ,((+—)+r)>forr:1,2,..., 6
8 L 8 1 8

Mux : 9,10
corresponds to the following differences | Mix : 5,6
Pure: 315,317

The 11th block

(o (5), (F57),)

Muix: 4
corresponds to the following differences | Mix: 3
Pure : 319
The 12th block
0 M —4 (2k+1)M — 4
05 92 . 3 4 .
Mix: 14
corresponds to the following differences | Mix: 7
Pure: 313
The 13th block
( <3M—4) ((2k+1)M> )
007 s\ T 4
4 1 4 1
Mauix: 23
corresponds to the following differences | Mix: 8
Pure : 305
The 14th block
0 3M -8 (4k+1)M — 16
05 ] . 9 ] .
Mix: 11
corresponds to the following differences | Mix: 2
Pure: 7
It is easily seen that the pure differences run from 1,...,320, and the mixed

differences run from 0, ..., 31.

44



4 CONCLUSION

We have shown the necessary and sufficient conditions for the existence of the

1-rotational ST'S(v) which may be concluded as the following theorem,

Theorem 4.1 A STS(v) admitting an automorphism of type [x] = [1,0,...,0,1,0,
,0,1,0,...,0] where my =mpy =7n =1, M < N, exists if and only if M = 2 or 8

(mod 24) and N = kM where
1. if M =2 (mod 24) then k = 2,3,6 or 11 (mod 12),

2. if M = 8 (mod 24) then k =0 or 2 (mod 3).

However, the case of 1-rotational ST'S(v) is just an initial case of studying tri-
cyclic STS(v). Future research will concentrate on solving the existence problem
for tricyclic ST'S(v) with bicyclic ST'S(v) subsystem and tricyclic ST'S(v) with no

bicyclic ST'S(v) subsystem.
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