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ABSTRACT

Multilevel Models for Longitudinal Data

by

Aastha Khatiwada

Longitudinal data arise when individuals are measured several times during an ob-

servation period and thus the data for each individual are not independent. There

are several ways of analyzing longitudinal data when different treatments are com-

pared. Multilevel models are used to analyze data that are clustered in some way.

In this work, multilevel models are used to analyze longitudinal data from a case

study. Results from other more commonly used methods are compared to multilevel

models. Also, comparison in output between two software, SAS and R, is done. Fi-

nally a method consisting of fitting individual models for each individual and then

doing ANOVA type analysis on the estimated parameters of the individual models

is proposed and its power for different sample sizes and effect sizes is studied by

simulation.
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1 INTRODUCTION

With the intention to further my education in the field of Biostatistics, we decided

to work on a thesis topic that is of interest in that area. Biostatistics is a relatively

new discipline that largely involves analysis of biological and medical science data

sets. Longitudinal data sets are frequently encountered in the field of biostatistics.

There are several methods that can be used to analyze longitudinal data sets and it

is interesting to compare them. In this work, a relatively new approach of building

statistical models, namely, multilevel models, is used to build models and perform

analysis for longitudinal data sets.

The second chapter presents an introduction to longitudinal data sets along with

some examples to illustrate the composition of such data sets. That chapter also

includes different classical approaches that are commonly used in the analysis of

longitudinal data sets. Output results for some longitudinal analysis performed on

a data set obtained from a case study is also included. Chapter 3 provides a short

description about the multilevel models in the regression context along with some

supporting examples. A case study to illustrate different types of multilevel model

(unconditional and conditional) formation is included in this chapter. In Chapter

4, multilevel models are developed for longitudinal data sets intertwining the results

and approaches discussed in the second and third chapter. Output results for a few

models along with some suitable graphs are also presented in this section.

In the fifth and final part of the thesis we propose a different method that consists

on fitting individual linear models for each individual and then doing a comparison

14



of the parameters of those models to see if they vary or not across the groups defined

by the treatments. First the method is applied to the mice case study and the

estimated slopes of the individual models are compared for the different treatments

using ANOVA, Kruskal-Wallis test and the randomization test, for which R code was

written. Then the power of this new method is studied doing simulations. Data were

simulated using regression models for different scenarios of effect sizes in the slopes

and sample sizes. We report the proportion of times that the null hypothesis, of no

difference between treatments, was rejected.
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2 LONGITUDINAL DATA

Longitudinal data entails taking repeated measurements for the same subject over

a period of time [1]. Since data is collected for each subject over time, a longitudinal

study involves collecting “repeated measurements” for each subject. Repeated mea-

surement involves recording repeated response outcome for each subject at different

periods of time or under different physical conditions [2]. Therefore, longitudinal data

analysis branches out from repeated measure analysis.

Analysis of data collected during a longitudinal study is useful in studying over

time change for any particular individual. This data can also be used in comparing

over time differences between different individuals. Longitudinal data is also useful

in analyzing numerous factors that may cause different individuals to respond differ-

ently over time. Ability to make these comparisons have been widely appreciated by

researchers in social and biological settings. As a result, a significant number of social

and biological scientists now use longitudinal data studies as part of their research.

In social sciences, longitudinal analysis is most commonly used to learn about de-

velopmental trends among living beings or to study social phenomenons like poverty,

inequality or drug violence. In biological and life sciences research, longitudinal study

is used to learn about microorganisms, different kinds of diseases and so on.

2.1 Examples

An example of longitudinal data would be collecting body weight for children

(subjects) prescribed with two different anti-epileptic drugs every week for a year.
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This will entail collecting 52 measurements (one for each week of the year) for each

child (subject) and using this data set to analyze the changes in weight or the number

of seizures as a result of the two prescribed medications. The change in weight

comparison can be done for each child or between groups of children receiving different

drugs. Also comparisons can be done between children receiving the same drug.

Another example of longitudinal study would be collecting test score results from

students who learn English as a second language using one of three available methods.

The goal is to monitor English writing skills for non-native speakers. A writing test

could be given out to students every month and their scores can be recorded to observe

the changes in scores over a period of time for each student. This comparison in scores

can also be made between different students to observe how one student’s score differs

from another student’s score and also to compare the three methods separately. This

can be helpful in implementing good study techniques to improve English writing

skills among students in countries where English is not the first language.

An example of longitudinal data analysis in the context of research in diabetes

mellitus (DM) is described in [3]. In this research, there are two factors involved:

Streptozotocin (STZ), a DM-inducing drug, and physical restraint. Three levels of

STZ (0 mg kg−1, 25 mg kg−1 and 50 mg kg−1) and two levels of physical restraints

(yes or no) are considered. Therefore, a total of six treatments were considered: 0

mg kg−1 STZ with no stress (group 1), 25 mg kg−1 STZ with no stress (group 2),

50 mg kg−1 STZ with no stress (group 3), 0 mg kg−1 STZ with stress (group 4),

25 mg kg−1 STZ with stress (group 5), and 50 mg kg−1 STZ with stress (group 6).

Sixty mice, ten in each treatment group, were used in the research. Measurements
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were taken at 0, 2, 4, 7, 9, 11, 14, 16 and 18 days. The response variables are body

weight and blood glucose. The design of the study (two factors, fixed effects, factorial

design) indicates to use a two-way ANOVA model with interaction for each one of the

response variables in any of the days in which measurements were done. However, if

we want to analyze all the data for a given response variable, we need to remember

that the observations in different days are not independent because they belong to

the same mice. This is a typical case of longitudinal data.

2.2 Graphical Representations

Plots should reveal the differences, if any, among groups, but also the changes

through time for each individual. The plot given below is a good representation

of what longitudinal data looks like. It is called a profile plot. This plot provides

information on the mean glucose level for each of the six treatment groups as measured

on different days.
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Figure 1: Profile plot for the six treatment groups

18



The profile plot in Figure 1 shows that mean glucose levels for treatment groups

1, 2, 4 and 5 are relatively similar on all days . Also, treatment groups 3 and 6 exhibit

similar mean glucose levels on days 0, 2 and 4. However, when compared with other

treatment groups, mean glucose level for treatment group 3 (50 mg kg−1 STZ with

no stress) increases at a higher rate day 4 onwards . Also, mean glucose level for

treatment group 6 (50 mg kg−1 STZ with stress) is relatively higher day 7 onwards

when compared to treatment groups 1, 2, 4 and 5.

The plots in Figure 2 are called ‘spaghetti’ plots. Here, individual plots are drawn

for each treatment group. In this plot, data collected over time for each individual

subject (mouse) are plotted using individual line segments. This helps us compare the

data measurements for all mice on a day by day basis. We can analyze how glucose

level for all mice in each treatment levels change over time and also see how glucose

level varies for each mice on a daily basis.

Figure 2 indicates that for group 3, glucose level is higher for mice 42, 12, 45

and so on. Similarly, glucose level for mice 30 and 58 in treatment group 6 is much

higher on days 14, 16 and 18. The plot also shows that the glucose levels for mice

in treatment groups 1, 2, 4 and 5 are approximately on the same levels except for

mice 24 and 51 on treatment group 5 . The plots also indicate that even though each

group has a certain trend, there is variability among the individuals of each group.

19



0
10
0

30
0

Group 1

day

gl
uc
os
e

0 2 4 7 9 11 14 16 18

   mouse

32
31
33
34
4
1
5
35
3
2

0
10
0

30
0

Group 2

day

gl
uc
os
e

0 2 4 7 9 11 14 16 18

   mouse

10
9
36
39
6
38
40
8
37
7

0
10
0

30
0

Group 3

day

gl
uc
os
e

0 2 4 7 9 11 14 16 18

   mouse

42
12
45
43
11
13
44
41
14
15

0
10
0

30
0

Group 4

day

gl
uc
os
e

0 2 4 7 9 11 14 16 18

   mouse

46
50
20
16
18
17
49
48
19
47

0
10
0

30
0

Group 5

day

gl
uc
os
e

0 2 4 7 9 11 14 16 18

   mouse

23
24
22
51
55
21
52
25
54
53

0
10
0

30
0

Group 6

day

gl
uc
os
e

0 2 4 7 9 11 14 16 18

   mouse

30
58
28
59
26
29
56
60
27
57

Figure 2: Spaghetti plots for individual subjects in the 6 groups

20



2.3 Methods to Analyze Longitudinal Data

2.3.1 Mixed Effects Analysis of Variance (ANOVA)

Some of the most common ways of analyzing longitudinal data involves perform-

ing mixed effects analysis of variance (ANOVA) with a single random subject effect

[4]. This is appropriate for the mice case study described before. This method is

also widely known as the univariate repeated measures ANOVA. In this method, n

repeated measurements are taken for N individuals. The model is given in Equation

1.

Yij = X ′ijβ + bi + εij, i = 1, ..., N ; j = 1, ..., n; (1)

In Equation 1, Yij is the outcome of interest, Xij is a design matrix for the fixed

effects, β is a vector of regression parameters, bi ∼ N(0, σ2
b ), and εij ∼ N(0, σ2

ε).

Here the individual effects (bi) are random and they represent all the unobserved or

unmeasured factors that make individuals respond differently [6]. There might be

a positive correlation among the repeated measurements for each individual subject

since the observations belong to the same individual.

Mixed effects analysis of variance can be performed on the mice data using Equa-

tion 2.

Glucoseij = β0 + β1 × STZij + β2 × Stressij + β3 ×Dayij

+ β4 × STZij × Stressij + β5 × STZij ×Dayij + β6 × Stressij ×Dayij

+ β7 × STZij × Stressij ×Dayij + b0i + εij (2)
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When performing the analysis, we consider Stress (0 or 1) and STZ (0, 25 and

50) to be fixed effects factors since we wish to see how those specific levels of Stress

and STZ influence glucose levels in the mice. The subjects (mice) are random effect

factors because they constitute a random sample of individuals where each individual

may exhibit a different response to the treatment through time. The R code used to

obtain the mixed effects ANOVA table in R using nlme package can be written as:

am1 = lme(glucose ∼ STZ*stress*day, data = mice, random = 1|mouse,

na.action=na.exclude)

anova(am1)

The summary of the ANOVA output obtained by using nlme package on the DM

data for the mixed effects method using Equation 2 is given in Table 1.

This table shows that STZ, Stress, Day and all their interactions are significant.

Table 1: Analysis of variance table for the micedata example using R

numDF denDF F-value p-value
(Intercept) 1 472 1213.1388 <.0001
STZ 1 56 34.5870 <.0001
stress 1 56 5.0538 0.0285
day 1 472 89.4284 <.0001
STZ:stress 1 56 11.1142 0.0015
STZ:day 1 472 151.1998 <.0001
stress:day 1 472 19.7170 <.0001
STZ:stress:day 1 472 44.9351 <.0001

Similarly, the SAS output obtained by using the PROC MIXED method on the

DM data following Equation 2 is given in Table 2. The code used to generate this

output is given as:
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proc mixed data = mice;

class mouse STZ stress day ;

model glucose = STZ stress day STZ*stress STZ*day stress*day

stress*STZ*day/S CHISQ;

repeated day/ type=UN subject=mouse R RCORR ;

run;

Table 2: Analysis of variance table for the micedata example using SAS PROC
MIXED

Effect NumDF DenDF Chi-Square F-Value Pr>ChiSq Pr>F
STZ 2 54 44.20 22.10 <.0001 <.0001
stress 1 54 5.63 5.63 0.0176 0.0212
day 8 54 141.60 17.70 <.0001 <.0001
STZ*stress 2 54 14.71 7.35 0.0006 0.0015
STZ*day 16 54 113.36 7.08 <.0001 <.0001
stress*day 8 54 19.53 2.44 0.0123 0.0248
STZ*stress*day 16 54 36.26 2.27 0.0027 0.0131

Similar to the R output, the SAS output also shows that the factors STZ, Stress,

Day and all their interactions are statistically significant. The existence of a third

order interaction indicates that we should interpret the interaction between STZ and

Stress for each day or the behavior of glucose through time for each combination of

STZ and Stress.

2.3.2 Multivariate Analysis of Variance (MANOVA)

A second approach to analyzing longitudinal data is using repeated-measures mul-

tivariate analysis of variance (MANOVA). In general, MANOVA involves working

23



with a set of different response variables. In the case of longitudinal data, repeated

measurements of the same variable are measured at different times and each one of

those measurements play the role of a variable. The mean level of the responses that

are collected over time are measured. This data set is then used to answer questions

about longitudinal change and its relation to between-subject factors. This method

allows flexibility while making assumptions on the structure of covariance among

repeated measures and therefore is appealing for statisticians.

The output obtained using MANOVA in R are given in Tables 3 and 4. Table 3

gives the summary for Pillai’s test, while Table 4 gives the summary for Wilk’s test.

These tests help us answer whether there is a significant main effect for Factor STZ

or factor Stress and also helps us find out if there is significant interaction between

factors STZ and stress. According to Table 3, the Pillai test concludes that mean

glucose level differ across different mice based on the amount of STZ given to them.

Similarly, stress has no significant impact on glucose levels across different mice. Also,

there is no significant interaction between STZ and stress.

Table 3: MANOVA Pillai Test for DM using R

Df Pillai approx F-Val num Df den Df Pr(>F)
STZ 1 0.49836 5.0777 9 46 9.056e-05 ***
Stress 1 0.21297 1.3831 9 46 0.2235
STZ:Stress 1 0.24583 1.6660 9 46 0.1250
Residuals 54

Wilk’s test also suggests that STZ is the only significant factor and therefore mean

glucose level differ across different mice based on the amount of STZ given to them.

Stress and the interaction between stress and STZ seem to not have any significant
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impact. The result for the Wilk’s test is given in Table 4.

Table 4: MANOVA Wilk’s Test for DM using R

Df Wilks approx F num Df den Df Pr(>F)
STZ 1 0.50164 5.0777 9 46 9.056e-05 ***
Stress 1 0.78703 1.3831 9 46 0.2235
STZ:Stress 1 0.75417 1.6660 9 46 0.1250
Residuals 54

Likewise, the SAS output for MANOVA for no overall STZ effect is given in Table

5. This table shows that STZ is significant for all different tests (Wilk, Pillai, Hotelling

and Roy). Therefore, we can conclude that mean glucose level differ across different

mice based on the amount of STZ given to them.

Table 5: MANOVA different tests to analyze STZ effect on DM data using SAS

Statistic Value F Value Num DF Den DF Pr > F
Wilks’ Lambda 0.46463245 5.89 9 46 <.0001
Pillai’s Trace 0.53536755 5.89 9 46 <.0001
Hotelling-Lawley Trace 1.15223881 5.89 9 46 <.0001
Roy’s Greatest Root 1.15223881 5.89 9 46 <.0001

Similarly, the SAS output for MANOVA for no overall Stress effect is given in

Table 6. This table shows that there is no significant effect of Stress of the mean level

of glucose for mice for all four different tests.
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Table 6: Different MANOVA test results to analyze the Stress effect on the micedata
example using SAS

Statistic Value F Value Num DF Den DF Pr > F
Wilks’ Lambda 0.94706014 0.29 9 46 0.9754
Pillai’s Trace 0.05293986 0.29 9 46 0.9754
Hotelling-Lawley Trace 0.05589916 0.29 9 46 0.9754
Roy’s Greatest Root 0.05589916 0.29 9 46 0.9754

Likewise, the SAS output for MANOVA for interaction between STZ and stress

is given in Table 5. This table shows that there is no significant interaction between

STZ and Stress for all the four different tests.

Table 7: Different MANOVA test results to analyze the interaction between Stress
and STZ for the micedata example using SAS

Statistic Value F Value Num DF Den DF Pr > F
Wilks’ Lambda 0.7541 1.67 9 46 0.1250
Pillai’s Trace 0.2458 1.67 9 46 0.1250
Hotelling-Lawley 0.3259 1.67 9 46 0.1250
Roy’s Greatest Root 0.3259 1.67 9 46 0.1250

It is interesting that the MANOVA approach and the mixed effects ANOVA used

in the previous section do not agree on the importance of the effect of Stress and

the interaction between Stress and STZ. An alternative method that can be used to

analyze longitudinal data involves reducing the sequence of repeated measure data

to a single summary value such as the difference between the final and baseline value

and then applying the ANOVA method for analysis of univariate response to that

single summary value. Since this method compels to focus on only one aspect of the

repeated measures over time it limits the scope of the analysis and therefore is not
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completely efficient [6]. For this reason, we will not analyze the mice data set using

this method.
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3 MULTILEVEL MODELS

Analyzing data sets that contain variables measured at different levels of hierarchy

is known as multilevel modeling. In a multilevel data set subjects in the same level or

cluster may be more similar to one another than subjects in other levels or clusters.

Multilevel models have extensive use in social sciences. They are more generally used

when group level effects need to be analyzed.

3.1 Examples of Multilevel Models

In the regression context, we try to explain one response variable in terms of

explanatory variables. If the data set comes from a random sample of a single popu-

lation, a usual regression model can be applied. For example, we can use a regression

model to explain the response variable ‘length of hospital stay’ in terms of explana-

tory variable ‘age of the patient’. We can also use regression to obtain a model to

explain how the response variable ‘general reading score’ is influenced by the explana-

tory variable ‘vocabulary score’. However, if the data are clustered because they are

selected from different groups defined by other factors, such as patients in ‘different

hospitals’ or students within several ‘different schools’, the observations might not

be totally independent. That is, scores for students in the same school might be

correlated because students in the same school have the same teacher or the length of

hospital stay for patients in the same hospital might be correlated because hospital

policy on patient stay may be same for patients visiting the same hospital and dif-

ferent for patients visiting different hospitals. In such cases, where observations are
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separated based on different levels or hierarchy, we use multilevel models instead of

using general regression models.

Multilevel models may be used in analyzing standardized test scores for students.

In this case, students can be separated based on the schools they attend i.e. students

are nested within schools. Therefore, students will represent the first level of the

multilevel model and schools will represent the second level of the multilevel model.

Students that attend the same school may have similar test scores. In a second

scenario, within a school, students may take test preparation classes with different

instructors. Then the students that take the test preparation class with the same

instructor may have scores that are very similar in nature. In this case, we will have

three levels for the multilevel model such that students will be on the first level,

instructors will be on the second level and schools will be on the third level.

A second example where multilevel models can be used is in analyzing prevalence

of disease among patients admitted in hospitals. In this case, measurements can be

collected on patients nested within hospitals. Therefore, patients represent first level

of the multilevel model while hospitals represent the second level of the model.

3.2 Multilevel Data Analysis

We will use a multilevel model in the context of regression to analyze a data set

related to soil that was provided by Dr. Nandi of the Geoscience department at ETSU

[8]. An instance of a multilevel data analysis involves analyzing how acidity of soil

(variable name: pH ) for different locations (variable name: location) affect the total

exchange capacity of the soil (variable name: TEC ). There are 6 different locations
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- location 1, 2, 3, 4, 5 and 6. The 6 locations are then grouped into 3 different sites

based on the kind of vegetation grown on them: sites 1, 2 and 3. The vegetation

type grown on locations 1, 2, 5 and 6 are trees (‘Alder’ in location 1 and 2, and

‘Rhododendron’ in location 5 and 6) while the vegetation type grown on locations 3

and 4 is grass. Five soil samples were taken from each of the 6 locations and several

variables were measured. Here we will work with soil samples that are nested on

locations. pH is the independent variable while TEC is the response variable. We

will refer to this example as the soildata example. Therefore, sample observations are

the first level of the multilevel model while location is the second level of the multilevel

model. A scatter plot the soil samples nested on locations is given in Figure 3.
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Figure 3: Scatter plot for samples in six locations
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We can also compute the correlation between the TEC measure of soil for a given

location using the intra-class correlation (ICC). The intra-class correlation is denoted

with ρI . We can think of ρI as the correlation between the TEC measure of soil for

two observations randomly selected from the same cluster. For clusters of equal size,

ICC can be computed using the formula presented in Equation 3.

ρ̂I =
τ̂ 2

τ̂ 2 + σ̂2
(3)

Here, τ̂ 2 represents between cluster sample variance which is the sample variance

of TEC measure of soil between the different locations and σ̂2 represents within cluster

sample variance which is the sample variance of TEC measure within locations. σ̂2

is also the variance of ε. We can also think of τ̂ 2 as the measure of the impact that

clusters have on the response variable i.e the impact that locations have on TEC

measure of soil. Larger ICC values indicate that observations in the same cluster

are more closely related. ICC values are indicative of how clustering may impact the

fitted model. Using multilevel data analysis is suggested when large ICC values are

obtained [5].

For the soildata example, we will use R and SAS to perform multilevel data

analysis. For R, two different packages - nlme and lme4 are used.

We will fit two kinds of models here. First, we will fit simple random intercept

multilevel models and then we will fit random slope coefficient multilevel models.
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3.2.1 Simple Random intercept multilevel models

A random intercept model allows the intercept to vary across different clusters.

When we consider a simple linear regression model, one intercept is common between

all observations in a data set. However, in multilevel models, data points are grouped

together as clusters based on some characteristics such that one common intercept

will not suffice for all data points. Therefore, in multilevel models, each cluster will

have its own intercept which suggests that the mean for the response variable when

the explanatory variable is zero, will vary across the clusters. In this section, we will

begin by exploring simple random intercept models known as the null models. Null

models are models that do not include any independent variable. Equations for the

two levels of a null multilevel model are given in Equations 4 and 5.

Level 1 : yij = β0j + εij (4)

Level 2 : β0j = γ00 + U0j (5)

In Equation 4, the ij subscript is used to denote the ith observation in the jth

cluster. So, yij is the TEC value for the ith observation in the jth cluster. β0j is

the cluster specific intercept and εij is the random error term. In Equation 5, γ00

denotes intercept effect that is common across all clusters i.e. it is the mean TEC

value common across all clusters . U0j is the cluster specific effect on the intercept.

Since γ00 remains constant across all clusters, we can think of it as a fixed effect.

Likewise, U0j varies from cluster to cluster, therefore we can think of it as a random
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effect.

Equation 6 is obtained by combining Equations 4 and 5 together. Equation 6

provides a framework for simple random intercept multilevel models.

yij = γ00 + U0j + εij (6)

We begin our analysis by fitting null models using R and SAS. In R, two different

packages nlme and lme4 are used to perform the analysis.

3.2.1.1 Null model using nlme package in R

The R syntax for estimating the null model using the nlme package is given as:

Model1 = lme(fixed = response variable ∼ 1, random =∼ 1|

random effect variable ,data = data filename) (7)

For our example above, the R code can be written as:

Model1 = lme(fixed = TEC ∼ 1, random =∼ 1|location ,data = soildata)

(8)

Summary of the output obtained for Model1 is given in Table 8.
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Table 8: R output for null model using nlme package

AIC BIC logLik
132.8804 136.9823 -63.4402

Random effects:
Formula: ~ 1 | location

(Intercept) Residual
StdDev: 3.006266 1.576791
Fixed effects: TEC ~ 1

Value Std.Error DF t-value p-value
(Intercept) 20.736 1.260614 24 16.44912 0
Standardized Within-Group Residuals:

Min Q1 Med Q3 Max
-2.12251001 -0.76945248 -0.04745117 0.75192944 1.28607833
Number of Observations: 30
Number of Groups: 6

The null model provides estimates for between cluster or between location variance

(τ̂ 2) and within cluster or within location variance σ̂2. From Table 8, we know that τ̂ 2

is 3.00632 = 9.0376 and σ̂2 is 1.57682 = 2.4863. We can use this output to compute

the intraclass correlation (ICC) between the TEC measure of the soil at different

locations as in Equation 2. Here, the value would be

ρ̂I =
τ̂ 2

τ̂ 2 + σ̂2
=

9.0378

9.0378 + 2.4863
= 0.7843

Based on the value above, we can conclude that the correlation of the TEC measure

of the soil between places that are in the same location type is 0.7843. Similarly, from

the output table, we know that γ̂00 is 20.736, which is the average TEC across all

locations.
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3.2.1.2 Null model using lme4 package in R

The R code for estimating the null model using the lme4 package is given below:

Model2 = lmer(response variable ∼ (1|random effect variable),

data = data filename) (9)

For our example above, the R code can be written as:

Model2 = lmer(TEC ∼ (1|location), data = soildata) (10)

Summary of the output obtained for Model2 is given in Table 9.

Table 9: R output for null model using lme4 package

Linear mixed model fit by REML [‘lmerMod’]
Formula: TEC ~ (1 | location)

Data: soildata
REML criterion at convergence: 126.9
Scaled residuals:

Min 1Q Median 3Q Max
-2.12251 -0.76945 -0.04745 0.75193 1.28608

Random effects:
Groups Name Variance Std.Dev.
location (Intercept) 9.038 3.006
Residual 2.486 1.577

Number of obs: 30, groups: location, 6
Fixed effects:

Estimate Std. Error t value
(Intercept) 20.736 1.261 16.45
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Unlike the nlme package, the lme4 package does not provide the AIC, BIC and

log likelihood estimates. Also, the p-value for fixed effects are not included in the

output obtained by using the lme4 package. These values are produced by the nlme

package. Using lme4, p-values can be obtained from the t-value using Markov Chain

Monte Carlo (MCMC) method [5]. Apart from that, all other estimates (τ̂ 2 is 9.038,

σ̂2 is 2.486 and γ̂00 is 20.736) are the same as compared to the output of Model1

which uses the nlme package.

3.2.1.3 Null model using SAS

The null model built in SAS uses the same concept as in R - it has no independent

variable. The generic SAS code to estimate a null model is given in Table 10.

Table 10: Generic SAS code for null model

proc mixed data = data_filename covtest noclprint;
class random_effect_variable ;
model response_variable = / solution;
random intercept / subject = random_effect_variable ;

run;

SAS code for the soildata example is given below in Table 11.

Table 11: SAS code for the soildata null model

proc mixed data = soildata covtest noclprint;
class location ;
model TEC = / solution;
random intercept / subject = location ;

run;

The output obtained from the null model given in Table 11 is given in Table 12.

36



Table 12: SAS output for null model

Covariance Parameter Estimates
Cov Parm Subject Estimate StandError Z Value Pr > Z
Intercept location 9.0376 6.0321 1.50 0.0670
Residual 2.4863 0.7177 3.46 0.0003

Fit Statistics
-2 Res Log Likelihood 126.9
AIC (Smaller is Better) 130.9
AICC (Smaller is Better) 131.3
BIC (Smaller is Better) 130.5

Solution for Fixed Effects
Effect Estimate StandError DF t Value Pr > |t|
Intercept 20.7360 1.2606 5 16.45 <.0001

Looking at the output, we see that the within cluster (σ̂2) and between cluster

(τ̂ 2) variances obtained using the SAS code is the same as that obtained using both

lme and lme4 packages in R (τ̂ 2 = 9.0376 and σ̂2 = 2.4863 ). Also, the common

average affect that all locations have on TEC given by γ̂00 is 20.7360 which is the

same as the R packages. However, the AIC and BIC statistics are lower in the SAS

output (130.9 and 130.5 respectively) when compared to the statistics obtained using

the nlme package (132.89 and 137.0 respectively).

3.2.2 Random slope coefficient multilevel model

Random slope coefficient models are obtained by expanding the simple intercept-

only model. This is done by adding independent predictor variables at the individual

level (level-1) to simple intercept-only models. Equations for the two levels of the

random slope coefficient model can be expressed as:
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Level 1 : yij = β0j + β1jx+ εij (11)

Level 2 : β0j = γ00 + U0j (12)

β1j = γ10 + U1j (13)

The level-1 model given by Equation 11 includes an independent predictor variable

‘x’. β1j is the slope that relates the independent variable to the response variable i.e

it is the change in y that results as a result of a unit change in ‘x’. However, β1j is

decomposed into two component: γ10 which is the average relationship of x with y

which is common across clusters and U1j which is the unique cluster-specific variation

of the average relationship of x with y. U1j is assumed to have mean 0 and to vary

randomly around γ10 [5]. The subscript 10 indicates addition of a predictor variable

at level-1. εij is the random error term. β0j in Equation 11 is the mixed intercept

effect which is composed of the fixed common intercept effect (γ00) and the random

cluster-specific intercept effect (U0j).

Equation 14 is obtained by combining Equations 11, 12 and 13. In this model,

γ00 + γ10xij is the fixed component while U0j +U1jxij + εij is the random component.

yij = γ00 + γ10xij + U0j + U1jxij + εij (14)

While previously the only between cluster variation of U0j was given by τ̂ 2 (in

Equation 5), now a second source of between cluster variance, given by U1j, is added

in Equation 14. Therefore, now we will indicate the variance of U0j by τ̂0
2 and the
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variance of U1j by τ̂1
2. We will also assume that U0j and U1j are independent across

different clusters.

When we plot the soil sample clustered by locations and fit a regression line for

each cluster, we obtain the plot given by Figure 4. The intercepts and slopes for these

regression lines are given in Table 13. Notice that the relationship between TEC and

pH is totally different for 4 locations (locations 1, 2, 5 and 6) where trees, namely

alder and rhododendron, grow and the 2 locations (locations 3 and 4) where grass

grows. The slopes for the locations where tree grows are negative and the slope for

the location with grass are positive.
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Figure 4: Scatter plot for samples in six locations with regression line
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Table 13: Intercepts and slope estimates of multilevel model

Location Vegetation Intercept Û0j Slope Û1j

1 Tree (Alder) 82.51 28.32 -13.73 -6.36

2 Tree (Alder) 51.03 -3.16 -7.03 0.34

3 Grass 3.24 -50.95 3.08 10.45

4 Grass -16.72 -70.91 8.20 15.56

5 Tree (Rhododendron) 115.39 61.20 -19.92 -12.55

6 Tree (Rhododendron) 89.69 35.30 -14.81 -7.44

Overall Mean 54.19 -7.37

3.2.2.1 Model with one independent variable using nlme package in R - random

intercept varies within level-1

When we fit a model that includes an independent explanatory variable, the R

code can be written as below:

Model4 = lme(fixed = response variable ∼ explanatory variable,

random =∼ 1|random effect variable, data = data filename) (15)

For the soildata example, the R code used to fit the model with pH measure of

soil as the independent variable is:
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Model4 = lme(fixed = TEC ∼ pH, random =∼ 1|location,

data = soildata) (16)

In model4, fixed = TEC ∼ pH indicates that the TEC value is predicted with

the pH value being fixed. random = ∼ 1| location indicates that Model4 is a random

intercept model where the random intercept varies by location.

Table 14: R output for full model using nlme package

AIC BIC logLik
125.9186 131.2474 -58.9593

Random effects:
Formula: ~ | location

(Intercept) Residual
StdDev: 2.537469 1.484754
Fixed effects: totalexchangecapacity ~ pH

Value Std.Error DF t-value p-value
(Intercept) 44.81527 9.890587 23 4.531103 0.0001
pH -5.46428 2.231267 23 -2.448959 0.0224
Correlation:

(Intr)
pH -0.994
Standardized Within-Group Residuals:

Min Q1 Med Q3 Max
-1.95260196 -0.59942457 0.07328622 0.71548620 1.14238258
Number of Observations: 30
Number of Groups: 6

Table 14 estimates the correlation between the fixed effect slope (γ̂10) and the

fixed effect intercept (γ̂00) to be -0.994. That is, if we take repeated samples of the

two fixed effects - the intercept and the slope for pH, the correlation between the

two is estimated to be -0.994. The output also shows that after the impact of pH
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measure of soil on TEC is accounted for, the estimated between cluster variance (τ̂0
2)

for intercept (Û0j) is 2.53752 = 6.4387 and the estimated within cluster variance (σ̂2)

is 1.48482 = 2.2045. Similarly, the overall common fixed intercept denoted by γ̂00,

which is the mean TEC value when the pH value is 0, is 44.8153.

Also, observing the output above, we can conclude that the explanatory variable

(pH ) which is the pH measure of the soil content is a significant predictor of the

response variable (TEC ) which is the total exchange capacity of soil (t = -2.4490 and

p-value = 0.0224). Therefore, pH should be included in the model. Interpreting the

slope of pH, we can conclude that as pH measure of soil increases by 1 unit, total

exchange capacity of soil decreases by 5.4643 units.

We can compare the fit of the model by comparing the AIC and BIC statistics

between Model1 (the null model) and Model4. Comparing the AIC and BIC estimates

for the null model (Model1 ) and the model with an independent variable (Model4 ),

we notice that the values for AIC and BIC are smaller when an independent variable

is added to the model. The AIC is reduced from 132.8804 in Model1 to 125.9186 in

Model4. Similarly, BIC is reduced from 136.9823 in Model1 to 131.2474 in Model4.

This is good as smaller AIC and BIC estimates indicate a better fit. Therefore, this

also supports the hypothesis that the independent variable (pH ) should be included

in the model.

We can also compute R2 using the output obtained above. In multilevel models,

R2 can be estimated across all levels and it estimates the percentage of variation

in the response variable that can be explained by the model at each level. For the
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soildata example R2 can be estimated using the formula:

R2
1 = 1− σ̂2

M1 + τ̂ 2M1

σ̂2
M0 + τ̂ 2M0

, (17)

where R1
2 is the R2 for level-1, the subscript M0 indicates null model , therefore

σ̂2
M0 (2.4863) and τ̂ 2M0 (9.0376) are the within cluster (within individual) variance

and between cluster variance for the null model (model given by Model1 ). Similarly,

the subscript M1 indicates the model represented by Model4. Hence, σ̂2
M1 (2.2045)

and τ̂ 2M1 (6.4387) are the within cluster variances and between cluster variances for

Model4. Plugging in all the values in Equation 16 we get:

R2
1 = 1− 2.2045 + 6.4387

2.4863 + 9.0376
= 1− 8.6432

11.5239
= 1− 0.7500 = 0.25

Therefore, when compared to the null model or the model without the independent

variable (pH ), level-1 of Model4 explains approximately 25 percent more variation in

the total exchange capacity of soil (TEC ).

3.2.2.2 Model with one independent variable using lme4 package in R -random in-

tercept varies within level-1

The R code for estimating the model that includes one independent variable using

the lme4 package is given below:
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model5 = lmer(response variable ∼ explanatory variable +

(1|random effect variable), data = data filename) (18)

For our example above, the R code can be written as:

model5 = lmer(TEC ∼ pH + (1|location), data = soildata) (19)

The syntax for lme4 is similar to that for nlme. However, a crucial difference

lies in how cluster information is included using the random effect variable. In lme4

there is no specific random statement, but the random effect is added next to the

explanatory variable in parenthesis. Summary of the output obtained for Model5 is

given in Table 15.
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Table 15: R output for full model using lme4 package

Linear mixed model fit by REML [‘lmerMod’]
Formula: TEC ~ pH + (1 | location)

Data: mydata
REML criterion at convergence: 117.9
Scaled residuals:

Min 1Q Median 3Q Max
-1.95260 -0.59942 0.07329 0.71549 1.14238
Random effects:
Groups Name Variance Std.Dev.
location (Intercept) 6.439 2.537
Residual 2.204 1.485

Number of obs: 30, groups: location, 6
Fixed effects:

Estimate Std. Error t value
(Intercept) 44.815 9.891 4.531
pH -5.464 2.231 -2.449
Correlation of Fixed Effects:

(Intr)
pH -0.994

Comparing output for Model5 with the model output obtained using nlme package

in Model4, we can say that the AIC, BIC and log likelihood and p-value estimates

are still missing from the output. However, the results obtained from both packages

are the same. We can see that the scaled residual five-number summary is identical

between the two models. Also, the within cluster (σ̂2 = 2.204) and between cluster

variance (τ̂ 2 = 6.439) are the same. The common fixed intercept effect estimate

(γ̂00 = 44.815) and correlation between the two fixed effects (the intercept given by

γ̂00 and the slope given by γ̂10) is -0.994 which is also the same between the two

models.
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3.2.2.3 Model with one independent variable using SAS -random intercept varies

within level-1

SAS code for estimating model with one independent variable (Model6 ) such that

random intercept that varies within level-1 is given in Table 16. The only change

made in this code compared to the code used to generate the null model in SAS is

that an independent variable is added to the model. This is given in the code line:

model response variable = independent variable / solution.

Table 16: Generic SAS code for Model6 that includes an independent variable

proc mixed data = data_filename covtest noclprint;
class random_effect_variable ;
model response_variable = explanatory_variable / solution ddfm

= bw;
random intercept / subject = random_effect_variable ;

run;

The SAS code used for the soildata example is given below:

Table 17: SAS code that includes pH as an independent variable in the soildata
example

proc mixed data = soildata covtest noclprint;
class location ;
model TEC = pH / solution ddfm = bw;
random intercept / subject = location ;

run;

The output obtained for Model6 using SAS is given in Table 18.
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Table 18: SAS output for model including pH as an independent variable

Covariance Parameter Estimates
Cov Parm Subject Estimate StandError Z Value Pr > Z
Intercept location 6.4387 4.4143 1.46 0.0723
Residual 2.2045 0.6418 3.44 0.0003

Fit Statistics
-2 Res Log Likelihood 117.9
AIC (Smaller is Better) 121.9
AICC (Smaller is Better) 122.4
BIC (Smaller is Better) 121.5

Solution for Fixed Effects
Effect Estimate StandError DF t Value Pr > |t|
Intercept 44.8153 9.8906 5 4.53 0.0062
pH -5.4643 2.2313 23 -2.45 0.0224

Type 3 Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
pH 1 23 6.00 0.0224

When the independent variable pH is included in the model, the AIC and BIC

estimates obtained using SAS is smaller (121.9 and 121.5 respectively) compared to

the output obtained using nlme package in R (125.9 and 131.2 respectively). The

AIC and BIC estimates are also smaller compared to the outputs obtained for the

null models in both SAS and nlme package in R.

Also, the within cluster (σ̂2 = 2.204) and between cluster variance (τ̂ 2 = 6.439)

are the same between Model4, Model5 and Model6. The common fixed intercept effect

estimate (γ̂00 = 44.815) is also the same as the other models. However, the correlation

between the two fixed effects (the intercept given by γ̂00 and the slope given by γ̂10)

is not provided by the SAS output. However, SAS also provides the Type 3 test of

fixed effects. This test performs hypothesis testing for the significance of the fixed

effect variable pH. Here the F value for the test is 6, which is also equal to square of
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the t-value obtained for pH ( −2.452 = 6.0025). This suggests that the independent

variable pH has a significant participation in the model.

3.2.2.4 Model with one independent variable using nlme package in R -slope of

independent variable varies across level-2 effects

The R code for estimating the model where the impact of the independent variable

on the dependent variable (i.e. the slope given by γ10) is allowed to vary across the

level-2 effects using the nlme package is given below:

Model7 = lme(fixed = response variable ∼ explanatory variable ,

random =∼ explanatory variable |random effect variable),

data = data filename) (20)

In the context of the soildata example, for Model7, the impact of pH measure of

soil on TEC measure of soil varies from one location to another i.e. γ10 is included in

this model. In this model, we allow both the slope and intercept for the explanatory

variable pH to vary randomly from one location to another. The R code in Equation

19 can be modified for the soildata as:
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Model7 = lme(fixed = TEC ∼ pH , random =∼ pH | location),

data = soildata) (21)

R did not produce an output when this method was used. An error, as given

below was generated:

Error in lme.formula(fixed = TEC ~ pH, random = ~pH | location,
data = soildata) :
nlminb problem, convergence error code = 1
message = iteration limit reached without convergence (10)

This could be because of the small sample size (30). However, an output was

obtained when the lme4 package was used as an alternative. When numerical methods

are applied, the efficiency of the different algorithms used by different packages may

differ.

3.2.2.5 Model with one independent variable using lme4 package in R - slope of

independent variable varies across level-2 effects

The R code for estimating the model that includes one independent variable using

the lme4 package is given below in Model8. In this model, the impact of the inde-

pendent variable on the dependent variable is allowed to vary across the level-2 effects.
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Model8 = lmer(response variable ∼ explanatory variable +

explanatory variable |random effect variable), data = data filename) (22)

Equation 21, generated using the lme4 package is very similar to the equation

generation using the nlme package. The major difference lies in how nlme package

assumes the random effects to be correlated or nested in levels while in the lme4

package the random effects may be either correlated or uncorrelated [5]. the random

effects are included inside parentheses in the lme4 package. For the soildata example,

the R code using lme4 package is written as:

Model8 = lmer(TEC ∼ pH + pH | location), data = soildata) (23)

Summary of the output obtained for Model8 is given in Table 19.
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Table 19: R output for random slope coefficient model using lme4 package

Linear mixed model fit by REML [‘lmerMod’]
Formula: TEC ~ pH + (pH | location)

Data: soildata
REML criterion at convergence: 111.5
Scaled residuals:

Min 1Q Median 3Q Max
-1.88360 -0.41346 -0.05158 0.86013 1.78412

Random effects:
Groups Name Variance Std.Dev. Corr
location (Intercept) 1145.567 33.846

pH 47.620 6.901 -1.00
Residual 1.573 1.254

Number of obs: 30, groups: location, 6
Fixed effects:

Estimate Std. Error t value
(Intercept) 49.629 16.946 2.929
pH -6.436 3.537 -1.820
Correlation of Fixed Effects:

(Intr)
pH -0.999

Observing the output, we can conclude that the impact of pH of the soil on TEC

of the soil across different locations is not statistically significant (t-value = -1.820).

The estimated coefficient for pH, is also the same as γ̂10. This measures the average

impact that pH has on TEC that is common across all locations. Here, γ̂10 is equal

to -6.436. Similarly, γ̂00 is equal to 49.629. This is the overall common fixed intercept

which is the mean TEC value when pH measure is 0. Also, the correlation between

γ̂00 and γ̂10 is -0.999.

Similarly, the variance of U1j as given by τ̂1
2 is estimated to be 47.62. This value

reflects the variation in coefficients (slopes) across different locations. Larger τ̂1
2

estimates indicates that the relationship between the dependent variable (TEC ) and
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the independent variable (pH ) is different from one location to another. Similarly, the

within cluster variance (σ̂2) is equal to 1.573 and the between cluster variance (τ̂ 2) is

equal to 1145.57. We can see that the largest source of variation in TEC measure of

soil comes from the between cluster variance (σ̂2) which implies that locations make

a difference when estimating a model for the average TEC measure of soil.

3.2.2.6 Model with one independent variable using SAS - slope of independent vari-

able varies across level-2 effects

SAS code for estimating model with one independent variable such that the impact

of the independent variable on the dependent variable is allowed to vary across level-2

is given in Table 20. The only change made in this code compared to the code used to

generate Model6 in SAS is that the independent variable is added to the random part

of the model. This is given in the code line: random intercept explanatory variable

/ subject = random effect variable;. We will refer to this model as Model9.

Table 20: Generic SAS code for Model9 that includes an independent variable and a
random slope

proc mixed data = data_filename covtest noclprint;
class random_effect_variable ;
model response_variable = explanatory_variable / solution ddfm

= bw;
random intercept explanatory_variable /subject=

random_effect_variable type=un;
run;

The SAS code used for the soildata example is given in Table 21.
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Table 21: SAS code that includes pH as an independent variable in the soildata
example

proc mixed data = soildata covtest noclprint;
class location ;
model TEC = pH / solution ddfm = bw;
random intercept pH / subject = location type = un;

run;

The output obtained for Model9 is given in Table 22. In this model, pH is used

as a level-1 predictor. This variable adds random effect to the model such that its

effect can vary across the different locations. We can see that the estimates for the

intercept and slope of pH is very close to that obtained using nlme and lme4 package.

Also, the covariance estimate of -233.18 with standard error of 276.52 and a p-value of

0.3991 suggests that there is no evidence that the effect of pH on the total exchange

capacity of soil. The parameter corresponding to UN(2,2) is the variability in slopes

of pH. The estimate is 47.1041 with standard error 57.1230. That yields a p-value of

0.2048 for one-tailed test. The test is insignificant which suggests that we do not have

enough evidence to say that there is some difference in slopes among soil samples at

different locations.

This model also has a smaller AIC value (119.4) when compared to Model6 that

does not include pH in the random part of the model. Model6 has an AIC value of

121.90.
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Table 22: SAS output for model with a random slope and pH as an independent
variable

Covariance Parameter Estimates
Cov Parm Subject Estimate StandError Z Value Pr Z
UN(1,1) location 1153.52 1338.89 0.86 0.1945
UN(2,1) location -233.18 276.52 -0.84 0.3991
UN(2,2) location 47.1041 57.1230 0.82 0.2048
Residual 1.5887 0.4843 3.28 0.0005

Fit Statistics
-2 Res Log Likelihood 111.4
AIC (Smaller is Better) 119.4
AICC (Smaller is Better) 121.1
BIC (Smaller is Better) 118.5

Solution for Fixed Effects
Effect Estimate StandError DF t Value Pr > |t|
Intercept 52.0484 16.9107 5 3.08 0.0275
pH -6.9761 3.5056 23 -1.99 0.0586

Now that we have looked at some multilevel models in a regular setting, in the

next section, we will talk about multilevel models in the context of longitudinal data.

We will also look at some examples of longitudinal data sets that can be fitted or

analyzed using multilevel models.
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4 MULTILEVEL MODELS FOR LONGITUDINAL DATA

Multilevel models were developed for analyzing hierarchically structured data.

Some examples of hierarchically structured data are students nested within schools

and employees nested within companies. Therefore, a hierarchy consists of lower-level

observations (individual-level data) nested within higher levels (group-level data).Analysis

of models that contain variables measured at different levels of the hierarchy are

known as multilevel models [6]. In the case of longitudinal data, multilevel models

are useful in the analysis of within person and between person changes by distinguish-

ing two things: how individuals change over time and, how these changes vary across

individuals [7].

In the next part, we will analyze the micedata example (from the longitudinal data

section) from a multilevel point of view. Here, we will explore whether individual

trajectories of change in glucose level differ based on two factors - physical restraint

and dose of the drug (STZ) given to them. Empirical change plots with OLS estimated

linear trajectories for mice in group 3 (No physical restraint, 50 mg kg−1of STZ) is

given in Figure 5. Since, this group of mice shows unusually high glucose level (when

compared to other groups of mice), we will also analyze this model further in later

sections. The plot in Figure 5 shows a linear relationship between between glucose

level (y-axis) and the number of days into the experiment (x-axis). This suggests

that a linear growth model can be used for level-1 variable ‘days’. So, we can write
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the linear growth model as given in Equation 24.

Yij = π0i + π1iDayij + εij (24)

In Equation 24, Yij is the glucose level of i mouse in group j and Dayij is the day

in which measurements are obtained for i mouse in group j. π0i represents individual

i’s true initial stage i.e. the value of Yij when Dayij is 0, π1i represents individual

i’s true rate of change duing the period of study and εij represents that portion of

individual i’s outcome Yij that is unexplained by Dayij for group j.
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Figure 5: Fitted line for group 3 mice

However, before fitting a model with Dayij as the level-1 predictor, we will first

fit a null model i.e. a model without any predictor variable in the next section.
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4.1 The Null Model or Unconditional Means Model (Model A)

The results of this model are helpful in analyzing the partitions in outcome varia-

tion i.e. it distinguishes between the individual variation and with-in group variation.

The structure of the model is given as:

Level 1: Yij = π0i + εij

Level 2: π0i = γ00 + ζ0i

where, εij ∼ N(0, σ2
ε) and ζ0i ∼ N(0, σ2

0). Since this model does not contain

a slope, the true individual change is a horizontal line with y-intercept π0i. The

level-2 equation suggests that, while the flat horizontal lines have different individual

departures, their average elevation across everyone in the population, is γ00. So, π0i

is the person-specific mean or the true mean of Y for individual i while γ00 is the

grand mean or the true mean of Y across everyone in the population. So, the level-1

residual εij is the deviation in Yij from individual i’s true mean (π0i). Therefore, εij

is the “within-person” deviation. Similarly, the level-2 residual ζ0i is the deviation in

the person-specific mean (π0i) from the average true mean (γ00). Therefore, ζ0i is the

“between-person” deviation.

Similarly, variance components σ2
ε and σ2

0 represent the “within-person” variance

and “between-person” variance respectively. The “within-person” variance shows how

each person’s measurements look around their own means while the “between-person”

variance shows how a person specific mean looks around the overall population grand

mean.

Model A in the next page gives us the result of fitting a null model for the mice
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data. The R code executed to fit this model using lme4 package is given as:

ModelL1 = lmer(glucose ∼ 1 + (1 | mouse), data=mice)

summary(ModelL1)

Similarly, the R code executed to fit this model using nlme package in R is given as:

ModelL2 = lme(glucose ∼ 1, random = ∼ 1 | mouse, data=mice,

na.action=na.omit)

summary(ModelL2)

The null model built in SAS uses the same concept as in R - it has no independent

variable. The SAS code for the mice example is given below in Table 23.

Table 23: SAS code to obtain the null model using mice data

proc mixed data = mice covtest noclprint;
class mouse ;
model glucose = / solution;
random intercept / subject = mouse ;

run;

The results obtained using both packages (lme4 and nlme) in R and in SAS are

given in Tables 24, 25 and 26 respectively.
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Table 24: Intercept only model using lme4 package

Linear mixed model fit by REML [‘lmerMod’]
Formula: glucose ~ 1 + (1 | mouse)

Data: mice
REML criterion at convergence: 5784.9
Scaled residuals:

Min 1Q Median 3Q Max
-5.0050 -0.3953 -0.0775 0.2172 5.4671
Random effects:
Groups Name Variance Std.Dev.
mouse (Intercept) 1452 38.11
Residual 2336 48.33

Number of obs: 536, groups: mouse, 60
Fixed effects:

Estimate Std. Error t value
(Intercept) 140.592 5.346 26.3

Table 25: Intercept only model using nlme package

Linear mixed-effects model fit by REML
Data: mice

AIC BIC logLik
5790.917 5803.764 -2892.458

Random effects:
Formula: ~1 | mouse

(Intercept) Residual
StdDev: 38.1112 48.32862
Fixed effects: glucose ~ 1

Value Std.Error DF t-value p-value
(Intercept) 140.592 5.345599 476 26.30051 0
Standardized Within-Group Residuals:

Min Q1 Med Q3 Max
-5.00499067 -0.39529520 -0.07751821 0.21715801 5.46706819

Number of Observations: 536
Number of Groups: 60
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Table 26: SAS output for null model

Covariance Parameter Estimates
Cov Parm Subject Estimate StandError Z Value Pr > Z
Intercept mouse 1452.46 320.93 4.53 <.0001
Residual 2335.66 151.68 15.40 <.0001

Fit Statistics
-2 Res Log Likelihood 5784.9
AIC (Smaller is Better) 5788.9
AICC (Smaller is Better) 5788.9
BIC (Smaller is Better) 5793.1

Solution for Fixed Effects
Effect Estimate StandError DF t Value Pr > |t|
Intercept 140.59 5.3456 59 26.30 <.0001

Based on the results obtained using both nlme and lme4 package and SAS, we

notice that all of them give us the same output values. The estimated grand mean,

γ̂00, is 140.592. This is the overall mean glucose level across all groups of mice. The

population mean is different from 0 significantly (t-value of 26.3) which indicates that

it should be included in the model. Similarly, the “within-person” variance (σ̂2
ε) is

2336 and “between-person” variance (σ̂2
0) is 1452. Based on these results we can

compute the intra-class correlation coefficient, ρ, which is the proportion of the total

outcome variation that lies “between” people. We can write ρ as:

ρ =
σ̂2
0

σ̂2
0 + σ̂2

ε

So, we can calculate ρ by substituting the values of the variance compoenents σ̂2
0

and σ̂2
ε as:

ρ =
1452

1452 + 2336
= 0.3833
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This suggests that about 39 percent of the variation in glucose level can be at-

tributed to differences among individuals. Also, R and SAS produce very similar

output results.

In the next few sections we will fit unconditional growth models or models that

include explanatory variables. We will begin this analysis by first analyzing only the

mice in group 3 as an example.

4.2 Unconditional growth model (Model B) for Group 3 mice

Group 3 includes mice that are not subject to any physical restraint and are given

50 mg kg−1 of STZ. For the unconditional growth model we will include days as the

level-1 explanatory variable i.e. days change on individual level. So, the structure of

the model is given as:

Level 1: Yij = π0i + π1iDayij + εij

Level 2: π0i = γ00 + ζ0i

π1i = γ10 + ζ1i

where, εij ∼ N(0, σ2
ε) and

[
ζ0i
ζ1i

]
∼ N(

[
0
0

]
,

[
σ2
0 σ01

σ10 σ2
1

]
).

Since this model contains a slope, the true individual change has a trajectory.

Here, individual i’s observed glucose level for group j, Yij, deviates from the individ-

ual’s true ‘change’ trajectory by εij. Also, based on the model, we can say that the

individual growth parameter (π0i or π1i) is the sum of the intercept (γ00 or γ10) and

a level-2 residual (ζ0i or ζ1i) [7]. A graphical representation of level-1 model is given

in Figure 6.
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Figure 6: Graphical representation of level-1 model

Also, for this model, interpretation for the variance components σ2
ε and σ2

0 change.

The level-1 residual σ2
ε which is also the the “within-person” variance now summa-

rizes how each individual’s measurements look around his or her own linear change

trajectory (this is different than the person-specific mean). Similarly, the level-2

residual variances σ2
0 (between person variance that comes from intercept) and σ2

1

(between person variance that comes from slope) now summarize the between person

variability in initial status and rates of change. Computing these variances allows us

to distinguish between the level-1 variance and the two kinds of level-2 variances.

Model B in the next page gives us the result of fitting an unconditional growth

model using ‘days’ as the explanatory variable for only group 3 mice.

The R code executed to fit this model using nlme package is given as:
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g3glucose = glucose[treatment ==“NS50STZ”]

g3day = day[treatment ==“NS50STZ”]

ModelL3 = lme(g3glucose ∼ g3day, random = ∼ day | mouse,

na.action=na.omit)

summary(ModelL3)

Similarly, the R code executed to fit this model using lme4 package is given as:

ModelL4 = lmer(glucose ∼ day + (day | mouse), data=mice3)

summary(ModelL4)

Likewise, the SAS code executed to fit this model is given in Table 27.

Table 27: Null model using ‘day’ as an level-1 independent variable on Group 3 mice
in SAS

proc mixed data = Group3 covtest noclprint;
class mouse ;
model glucose = day/ solution;
random day / subject = mouse ;

run;

The results of the fitted models are given in Tables 28, 29 and 30. Table 28

contains the results obtained using the nlme package in R while Table 29 contains

the output obtained using the lme4 output in R. Table 30 gives the output produced

by SAS.
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Table 28: Model using ‘Day’ as an level-1 independent variable on Group 3 mice using
nlme package

Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
951.8178 966.4737 -469.9089

Random effects:
Formula: ~day | mouse
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 4.638532e-04 (Intr)
day 5.815610e+00 -0.061
Residual 4.902000e+01
Fixed effects: g3glucose ~ g3day

Value Std.Error DF t-value p-value
(Intercept) 98.71005 9.399253 76 10.501904 0
g3day 12.24507 2.036540 76 6.012682 0
Correlation:

(Intr)
g3day -0.355
Standardized Within-Group Residuals:

Min Q1 Med Q3 Max
-2.64483919 -0.55094132 0.07178077 0.50308355 3.72281962
Number of Observations: 87
Number of Groups: 10
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Table 29: Model using ‘Day’ as an level-1 independent variable on Group 3 mice using
lme4 package

Linear mixed model fit by REML [’lmerMod’]
Formula: glucose ~ day + (day | mouse)

Data: mice3
REML criterion at convergence: 939.8
Scaled residuals:

Min 1Q Median 3Q Max
-2.6438 -0.5530 0.0743 0.5031 3.7178
Random effects:
Groups Name Variance Std.Dev. Corr
mouse (Intercept) 3.311e-02 0.1819

day 3.367e+01 5.8023 1.00
Residual 2.403e+03 49.0193

Number of obs: 87, groups: mouse, 10
Fixed effects:

Estimate Std. Error t value
(Intercept) 98.712 9.399 10.502
day 12.245 2.033 6.024
Correlation of Fixed Effects:

(Intr)
day -0.350

Table 30: Model using ‘Day’ as an level-1 independent variable on Group 3 mice using
SAS

Covariance Parameter Estimates
Cov Parm Subject Estimate StandError Z Value Pr > Z
Intercept mouse 33.7899 17.2443 1.96 0.0250
Residual 2403.20 390.33 6.16 <.0001

Fit Statistics
-2 Res Log Likelihood 939.8
AIC (Smaller is Better) 943.8
AICC (Smaller is Better) 944.0
BIC (Smaller is Better) 944.4

Solution for Fixed Effects
Effect Estimate StandError DF t Value Pr > |t|
Intercept 98.7099 9.3997 76 10.50 <.0001
day 12.2450 2.0358 9 6.01 0.0002
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Based on the results obtained using both nlme and lme4 package, we notice that

both packages give us same output values. Observing the output results, the fixed

effect, γ̂00, is 98.71. This is the overall mean glucose level across all mice in group 3

when slope for Dayij is 0. Similarly, γ̂10 is 12.25. This is the rate at which Yij changes

for individual i in group 3 when explanatory variable ‘Dayij’ is included as a level-1

predictor. The fixed effects, γ̂00 and γ̂10, estimate the starting point (y-intercept) and

slope of the population average change trajectory for group 3 mice. Both parameters

are significant (t-value of 10.50 and 6.01 respectively) which indicates that they should

both be included in the model. SAS also produces similar output.

Similarly, the “within-person” variance (σ̂2
ε) is 2403. This number summarizes

the average scatter of an individual’s observed outcome values around his or her own

true change trajectory [7]. σ̂2
ε is not too different for model B when compared to

that for model A (2336). Therefore, the explanatory variable Dayij does not appear

to explain a lot of the within-person variance (σ̂2
ε) in Yij. This is also shown by the

SAS output in Table 30. Likewise, the level-2 variance components σ̂2
0 and σ̂2

1 give

the amount of unpredictable variation in the individual growth parameters. σ̂2
0 is the

unpredictable variability in true initial status i.e when day equals 0. It represents the

scatter of the π̂0i around γ̂00[7]. The value of σ̂2
0 is 3.311 × 10−2. Similarly, σ̂2

1 gives

the unpredictable variability in true rates of change. It represents the scatter of π̂1i

around γ̂10[7]. Its value is 33.67. Also, this model has an AIC value of 951.8178 which

is much lower than the AIC value of 5790.917 that was obtained using the null model

in Model A. SAS, on the other hand, produces lower AIC and BIC values.

In the next section, we will look at the unconditional growth model (model B) for
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all mice.

4.3 Unconditional growth model (Model B) for all mice

The model used here has the same structure as given in section 4.2 (also given

below). However, in this section we will look at all mice instead of focusing in only

one group of mice.

Level 1: Yij = π0i + π1iDayij + εij

Level 2: π0i = γ00 + ζ0i

π1i = γ10 + ζ1i

where, εij ∼ N(0, σ2
ε) and

[
ζ0i
ζ1i

]
∼ N(

[
0
0

]
,

[
σ2
0 σ01

σ10 σ2
1

]
).

The R code executed to fit this model using nlme package in R is given as:

ModelL5 = lme(glucose ∼ day, random = ∼ day | mouse, data=mice,

na.action=na.exclude)

summary(ModelL5)

Similarly, the R code executed to fit this model using lme4 package in R is given as:

ModelL51 = lmer(glucose ∼ day + ( day | mouse), data=mice,

na.action=na.exclude)

summary(ModelL51)

Likewise, the SAS code executed to fit this model is given in Table 31.
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Table 31: SAS code to fit a model using ‘day’ as level -1 explanatory variable on
complete mice data set

proc mixed data = mice covtest noclprint;
class mouse ;
model glucose = day/ solution;
random day / subject = mouse ;

run;

The results of the three fitted models are given in Tables 32, 33 and 34 respectively.

Table 32: Model using ‘day’ as level -1 explanatory variable on complete mice data
set using nlme package

Linear mixed-effects model fit by REML
Data: mice

AIC BIC logLik
5386.427 5412.109 -2687.213

Random effects:
Formula: ~day | mouse
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 12.49436 (Intr)
day 5.49093 -0.672
Residual 29.86765
Fixed effects: glucose ~ day

Value Std.Error DF t-value p-value
(Intercept) 117.42164 2.8377908 475 41.37784 0e+00
day 2.63032 0.7413875 475 3.54784 4e-04
Correlation:

(Intr)
day -0.566
Standardized Within-Group Residuals:

Min Q1 Med Q3 Max
-4.24270447 -0.52093432 -0.03220035 0.34435745 6.02351687
Number of Observations: 536
Number of Groups: 60
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Table 33: Model using ‘day’ as level -1 explanatory variable on complete mice data
set using lme4 package

Linear mixed model fit by REML [‘lmerMod’]
Formula: glucose ~ day + (day | mouse)

Data: mice
REML criterion at convergence: 5384.7
Scaled residuals:

Min 1Q Median 3Q Max
-4.3474 -0.4919 -0.0455 0.3787 5.5059
Random effects:
Groups Name Variance Std.Dev. Corr
mouse (Intercept) 0.00 0.000

day 23.98 4.897 NaN
Residual 944.49 30.733

Number of obs: 536, groups: mouse, 60
Fixed effects:

Estimate Std. Error t value
(Intercept) 117.4255 2.4023 48.88
day 2.6334 0.6705 3.93
Correlation of Fixed Effects:

(Intr)
day -0.277
convergence code: 0
unable to evaluate scaled gradient
Model failed to converge: degenerate Hessian with 1 negative
eigenvalues
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Table 34: Model using ‘Day’ as an level-1 independent variable on complete mice
data set using SAS

Covariance Parameter Estimates
Cov Parm Subject Estimate StandError Z Value Pr > Z
day mouse 23.9624 4.6003 5.21 <.0001
Residual 944.58 61.3296 15.40 <.0001

Fit Statistics
-2 Res Log Likelihood 5384.7
AIC (Smaller is Better) 5388.7
AICC (Smaller is Better) 5388.7
BIC (Smaller is Better) 5392.9

Solution for Fixed Effects
Effect Estimate StandError DF t Value Pr > |t|
Intercept 117.43 2.4024 475 48.88 <.0001
day 2.6334 0.6703 59 3.93 0.0002

Based on the results obtained using nlme and lme4 package in R, we notice that

the fixed effect, γ̂00, is 117.42. This is the overall mean glucose level across all mice

when slope for Dayij is 0. Similarly, γ̂10 is 2.63. This is the rate at which Yij changes

for individual i when explanatory variable ‘Dayij’ is included as a level-1 predictor.

This is true for mice in all groups. The fixed effects, γ̂00 and γ̂10, estimate the starting

point (y-intercept) and slope of the population average change trajectory for all mice.

Both estimates are significant (t-value of 41.38 and 3.55 respectively) which indicates

that they should both be included in the model. This result is also corroborated by

the SAS output.

Similarly, R outputs from both packages show that “within-person” variance σ̂2
ε

is 892.077 (29.862). This number summarizes the average scatter of an individual’s

observed outcome values around his or her own true change trajectory [7]. σ̂2
ε is still

significantly smaller for all mice in Model B than what we obtained for Model A
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(2336). Therefore, when analysis is performed on all mice, we can say that a lot of

the within-person variance (σ̂2
ε) in Yij is explained by the explanatory variable Dayij.

These output are slightly different for SAS output. The σ̂2
ε is 944.58 which is slighly

higher than that obtained using nlme package in R.

Likewise, the level-2 variance components σ̂2
0 and σ̂2

1 give the amount of unpre-

dicted variation in the individual growth parameters. σ̂2
0 is the unpredicted variability

in true initial status i.e when day equals 0. It represents the scatter of the π0i around

γ̂00[7]. The value of σ̂2
0 is 156.109 (12.492). This value is much smaller for just group

3 mice (3.311 × 10−2). Similarly, σ̂2
1 gives the unpredictable variability in true rates

of change. It represents the scatter of π1i around γ̂10[7]. Its value is 30.15 (5.492).

This value is about the same (33.67) for just group 3 mice.

Also, the AIC and BIC values are comparable between the two software, R and

SAS.

In the next section, we will look at unconditional growth models for group 3 and

group 6 mice when physical restraint (Stress) is used as a predictor of both initial

status and change.

4.4 Unconditional growth models with uncontrolled effects of Stress (Model C) on

Group 3 and Group 6 mice

This model predicts glucose level based on the intercept and Dayij for only group 3

and group 6 mice. It also asks whether the intercept and slope (for Dayij) are affected

by physical restraint imposed on mice (Stress = 0 or Stress = 1). We analyze group

3 and group 6 mice together because group 3 includes mice that do not experience
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any physical restraint (Stress = 0) and group 6 includes mice that experience physical

restraint (Stress = 1) while mice in both groups are given the same dose of 50 mg kg−1

of STZ. This will help us in understanding how mice that receive the same amount

of drug but face different levels of physical restraint behave. The structure of this

model looks like:

Level 1 : Yij = π0i + π1iDayij + εij

Level 2 : π0i = γ00 + γ01 × Stressi + ζ0i

π1i = γ10 + γ11 × Stressi + ζ1i

(25)

where, εij ∼ N(0, σ2
ε) and

[
ζ0i
ζ1i

]
∼ N(

[
0
0

]
,

[
σ2
0 σ01

σ10 σ2
1

]
).

The R code executed to fit this model using nlme package in R is given as:

ModelL6 = lme(glucose ∼ day * stress, random = ∼ day | mouse, data=gr3gr6,

na.action=na.omit)

summary(ModelL6)

The R code executed to fit this model using lme4 package in R is given as:

ModelL7 = lmer(glucose ∼ day * stress + (day | mouse), data=gr3gr6)

summary(ModelL7)

Likewise, the SAS code executed to fit this model is given in Table 35.
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Table 35: SAS code for mice data set using ‘day’ as the explanatory variable

proc mixed data = grp3grp6 covtest noclprint;
class mouse ;
model glucose = day stress day*stress/ solution;
random day / subject = mouse ;

run;

The results of the fitted models are given in Tables 36, 37 and 38 respectively.

Table 36: Analysis result using ‘day’ as explanatory variable in nlme package for
group 3 and group 6 mice

Error in lme.formula(glucose ~ day * stress, random = ~day | mouse,
data = gr3gr6, :nlminb problem, convergence error code = 1
message = iteration limit reached without convergence (10)

As we can see, the output could not be computed using nlme package in R because

of convergence problems. The lme4 package, on the other hand, provides some output

results which is given in Table 37.
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Table 37: Model using ‘day’ as explanatory variable in lme4 package for group 3 and
group 6

Linear mixed model fit by REML [‘lmerMod’]
Formula: glucose ~ day * stress + (day | mouse)

Data: gr3gr6
REML criterion at convergence: 1833.1
Scaled residuals:

Min 1Q Median 3Q Max
-3.4034 -0.4224 -0.0138 0.3708 4.9419
Random effects:
Groups Name Variance Std.Dev. Corr
mouse (Intercept) 33.35 5.775

day 31.34 5.598 -1.00
Residual 1487.71 38.571

Number of obs: 177, groups: mouse, 20
Fixed effects:

Estimate Std. Error t value
(Intercept) 98.653 7.618 12.950
day 12.244 1.899 6.446
stress 14.479 10.761 1.346
day:stress -8.383 2.685 -3.122
Correlation of Fixed Effects:

(Intr) day stress
day -0.514
stress -0.708 0.364
day:stress 0.364 -0.707 -0.515

Also, an AIC value of 1849.085 is generated for ModelL7 using the codes given

below:

aic1 = AIC(logLik(ModelL7))

aic1

The SAS output result is given in Table 38. There is some difference between the

SAS and R output results. But, for the most part, the outputs are very similar to

each other.
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Table 38: Model using ‘Day’ as an level-1 independent variable on Group 3 and 6
mice data set using SAS

Covariance Parameter Estimates
Cov Parm Subject Estimate StandError Z Value Pr > Z
day mouse 24.5852 8.9655 2.74 0.0031
Residual 1541.60 174.61 8.83 <.0001

Fit Statistics
-2 Res Log Likelihood 1835
AIC (Smaller is Better) 1839
AICC (Smaller is Better) 1839
BIC (Smaller is Better) 1840.8

Solution for Fixed Effects
Effect Estimate StandError DF t Value Pr > |t|
Intercept 98.7323 7.5285 156 13.11 <.0001
day 13.0258 1.7976 17 7.25 <.0001
stress 14.3993 10.6336 156 1.35 0.1777
day*stress -9.1651 2.4849 156 -3.69 0.0003

Substituting the γ̂ parameter estimates obtained in Tables 36, 37 and 38 in the

level-2 sub-model given in Equation 25, we can write:

π̂0i = 98.653 + 14.479Ŝtressi

π̂1i = 12.244− 8.383Ŝtressi

(26)

We can then write the composite model as:

̂Glucoseij = 98.653 + 14.479Ŝtressi + 12.244D̂ayij − 8.383ŜtressiD̂ayij (27)

The first part of Equation 26 given by π̂0i represents the effects of level-2 variable

Stress when Dayij is 0 while the second part of Equation 26 given by π̂1i represents

the effects that level-2 variable Stress has on the slope of level-1 variable Dayij.
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Now, interpreting the γ̂ parameter estimates given in Equation 26, we can say

that the average glucose level for mice in group 3 and group 6 at initial status (Day

0) when no physical restraint is given to them (Stress = 0) is 98.653. This is also

the average glucose level for group 3 mice since only group 3 mice receive no physical

restraint. However, for mice that receive physical restraint (Stress = 1), the average

glucose level is estimated to be 113.132 which is about 14.479 higher than that for

mice that do not receive physical restraint. This is also the average glucose level for

group 6 mice since only group 6 mice receive physical restraint.

In this part, we will analyze the second part of Equation 26 given by π1i. This

part gives the coefficients for the rates of change. Based on the coefficients given, we

can say that the average rate of change in glucose level for mice that do not receive

any physical restraint (mice in group 3 such that Stress = 0) is 12.244. However, the

average rate of change in glucose level for mice that receive physical restraint (mice

in group 6 such that Stress = 1) is estimated to be lowered by 8.383 points (at 3.861).

Hence, we can say that, on the next day that the glucose level is measured, for mice

that do not receive physical restraint, average glucose level goes up by 12.244 points

while for mice that receive physical restraint, average glucose level goes up by only

3.861 points. This suggests that imposing physical restraint on mice decreases their

blood glucose level. Figure 7, which represents the results of the fitted multilevel

model for change, supports the numerical interpretation. Even though the trajectory

for mice that do not face any physical restraint (Stress = 0) is incomplete because of

missing data, we can interpolate that this trajectory shows an increasing trend and the

average glucose level is much higher for mice that do not experience physical restraint.
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This plot also shows that for mice that do not experience any physical restraint, the

average glucose level is around 98 while for mice that experience physical restraint,

the average glucose level is around 113.
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Figure 7: Graphical representation of a fitted multilevel model given in Equation 24
for group 3 and group 6 mice

Now, we will analyze the variance components or the random effects variances

obtained in Tables 36, 37 and 38. Variance components give us the amount of outcome

variability that are unexplained after fitting the multilevel model given in Equation 25.

Based on the results obtained, σ̂2
ε , which gives the variability in an average mouse’s

outcome around it’s own true change trajectory, is 1487.71. This is also known as

the level-1 residual variance. Similarly, the level-2 variance components as given in

Equation 23 as

[
σ̂2
0 σ̂01

σ̂10 σ̂2
1

]
is given by

[
33.35 −32.33
−32.33 31.34

]
. So, σ̂2

0, which gives the

population residual variability of the true initial status (i.e. average intercept when

Dayij = 0) when controlling for physical restraint (Stress =0 or 1), is about 33.35.
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Similarly, σ̂2
1, which gives the population residual variance of true rate of change (i.e.

slope for Dayij) when controlling for physical restraint (Stress = 0 or 1), is 31.34.

And σ̂01 which gives the population residual covariance between true initial status

(σ̂2
0) and true rate of change (σ̂2

1) when controlling for physical restraint is computed

to be -32.33 (using formula: σ̂01 = corr(σ̂2
0, σ̂

2
1)
√
σ̂2
0 × σ̂2

1 = −1
√

33.35× 31.34 =

-32.33 ).

In the next section, we will look at unconditional growth models for all mice

(complete data set) when physical restraint (Stress) is used as a predictor of both

initial status and change.

4.5 Unconditional growth models with uncontrolled effects of Stress (Model C) on

complete data set

The multilevel model used in this section for the complete data set will have

the same structure as given by Equation 25. This will help us analyze whether the

intercept and slope (for level-1 variable ‘days’) is affected by stress on the complete

mouse data set.

The code executed to fit this model using nlme package in R is given as:

ModelL8 = lme(glucose ∼ day * stress, random = ∼ day|mouse, data=mice,

na.action = na.exclude)

summary(ModelL8)

Similarly, the code executed to fit this model using lme4 package in R is given as:
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ModelL9 = lmer(glucose ∼ day *stress + (day | mouse), data=mice, na.action

= na.exclude)

summary(ModelL9)

Likewise, the SAS code executed to fit this model is given in Table 39.

Table 39: SAS code for model using Stress as level-2 variable and ‘Day’ as level-1
variable

proc mixed data = mice covtest noclprint;
class mouse ;
model glucose = day stress day*stress/ solution;
random day / subject = mouse ;

run;

The results of the fitted models are given in Tables 40, 41 and 42 respectively.
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Table 40: Result for model using Stress as level-2 variable and ‘Day’ as level-1 variable
in nlme package on complete mice data set.

Linear mixed-effects model fit by REML
Data: mice1

AIC BIC logLik
5379.892 5414.105 -2681.946

Random effects:
Formula: ~day | mouse
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 12.736417 (Intr)
day 5.402035 -0.66
Residual 29.865808
Fixed effects: glucose ~ day * stress

Value Std.Error DF t-value p-value
(Intercept) 115.89661 4.037605 474 28.704294 0.0000
day 3.85154 1.032780 474 3.729299 0.0002
stress 3.05805 5.711105 58 0.535457 0.5944
day:stress -2.44326 1.460837 474 -1.672506 0.0951
Correlation:

(Intr) day stress
day -0.565
stress -0.707 0.399
day:stress 0.399 -0.707 -0.565
Standardized Within-Group Residuals:

Min Q1 Med Q3 Max
-4.24398759 -0.51543905 -0.02899827 0.35146256 6.00454848

Number of Observations: 536
Number of Groups: 60
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Table 41: Result for model using Stress as level-2 variable and ‘Day’ as level-1 variable
in lme4 package on complete mice data set.

Linear mixed model fit by REML [‘lmerMod’]
Formula: glucose ~ day * stress + (day | mouse)

Data: mice
REML criterion at convergence: 5363.9
Scaled residuals:

Min 1Q Median 3Q Max
-4.2440 -0.5154 -0.0290 0.3515 6.0045
Random effects:
Groups Name Variance Std.Dev. Corr
mouse (Intercept) 162.22 12.736

day 29.18 5.402 -0.66
Residual 891.97 29.866

Number of obs: 536, groups: mouse, 60
Fixed effects:

Estimate Std. Error t value
(Intercept) 115.897 4.038 28.704
day 3.852 1.033 3.729
stress 3.058 5.711 0.535
day:stress -2.443 1.461 -1.673
Correlation of Fixed Effects:

(Intr) day stress
day -0.565
stress -0.707 0.399
day:stress 0.399 -0.707 -0.565

Also, an AIC value of 5379.892 is generated for ModelL9 using the codes given

below:

aic2 = AIC(logLik(ModelL9))

aic2

The SAS output result is given in Table 42.
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Table 42: Result for model using Stress as level-2 variable and ‘Day’ as level-1 variable
in SAS on complete mice data set.

Covariance Parameter Estimates
Cov Parm Subject Estimate StandError Z Value Pr > Z
day mouse 23.1380 4.4868 5.16 <.0001
Residual 945.75 61.4683 15.39 <.0001

Fit Statistics
-2 Res Log Likelihood 5374
AIC (Smaller is Better) 5378
AICC (Smaller is Better) 5378.1
BIC (Smaller is Better) 5382.2

Solution for Fixed Effects
Effect Estimate StandError DF t Value Pr > |t|
Intercept 115.92 3.3988 474 34.11 <.0001
day 3.8533 0.9332 58 4.13 0.0001
stress 3.0144 4.8079 474 0.63 0.5310
day*stress -2.4414 1.3200 474 -1.85 0.0650

Comparing the outputs obtained in Tables 40, 41 and 42, we observe that there

is some difference between the SAS and R output results. But, for the most part,

the outputs are very close to each other. The fixed and random effects estimates

are about the same for all three output results. So, substituting the γ̂ parameter

estimates obtained in tables in the level-2 sub-model given in Equation 23, we can

write:

π̂0i = 115.90 + 3.06Ŝtressi

π̂1i = 3.85− 2.44Ŝtressi

(28)
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We can then write the composite model as:

̂Glucoseij = 115.90 + 3.06Ŝtressi + 3.85D̂ayij − 2.44ŜtressiD̂ayij (29)

The first part of Equation 28 given by π̂0i represents the effects of level-2 variable

Stress when Dayij is 0 while the second part of Equation 28 given by π̂1i represents

the effects that level-2 variable Stress has on the slope of level-1 variable Dayij.

Now, interpreting the γ̂ parameter estimates given in Equation 28, we can say

that the average glucose level for all mice at initial status (Day 0) when no physical

restraint is given to them (Stress = 0) is 115.90. This is also the average glucose level

for mice in groups 1, 2 and 3 since all mice in groups 1, 2 and 3 receive no physical

restraint. However, for mice that receive physical restraint (Stress = 1), the average

glucose level is estimated to be 118.96 which is about 3.06 higher than that for mice

that do not receive physical restraint. This is also the average glucose level for mice

in groups 4, 5 and 6 since only group 4, 5 and 6 mice receive physical restraint.

In this part, we will analyze the second part of Equation 28 given by π̂1i. This

part gives the coefficients for the rates of change. Based on the coefficients given,

we can say that the average rate of change in glucose level for mice that do not

receive any physical restraint (mice in groups 1, 2 and 3 such that Stress = 0) is 3.85.

However, the average rate of change in glucose level for mice that receive physical

restraint (mice in groups 4, 5 and 6 such that Stress = 1) is estimated to be lowered

by 2.44 points (at 1.41). Hence, we can say that, on the next day that the glucose

level is measured, for mice that do not receive physical restraint, average glucose level
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goes up by 3.85 points while for mice that receive physical restraint, average glucose

level goes up by only 1.41 points. This suggests that imposing physical restraint on

mice decreases their blood glucose level. Figure 8, which represents the results of

the fitted multilevel model for change, supports the numerical interpretation. Even

though the trajectory for mice that do not face any physical restraint (Stress = 0)

is incomplete because of missing data, we can interpolate that this trajectory shows

an increasing trend and the average glucose level is much higher for mice that do

not experience physical restraint. This plot also shows that for mice that do not

experience any physical restraint, the average glucose level is around 115 while for

mice that experience physical restraint, the average glucose level is around 118.
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Figure 8: Graphical representation of a fitted multilevel model given in Equation 24
for complete mice data set

Now, we will analyze the variance components or the random effects variances

obtained in Tables 40, 41 and 42. Variance components give us the amount of outcome
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variability that are unexplained after fitting the multilevel model given in Equation

28. Based on the results obtained, σ̂2
ε , which gives the variability in an average

mouse’s outcome around it’s own true change trajectory, is 891.97. SAS gives a

higher variance value of 945.75. This is also known as the level-1 residual variance.

Similarly, the level-2 variance components as given in Equation 28 as

[
σ̂2
0 σ̂01

σ̂10 σ̂2
1

]
is

given by

[
162.22 −45.41
−45.41 29.18

]
. So, σ̂2

0, which gives the population residual variability

of the true initial status (i.e. average intercept when Dayij = 0) when controlling

for physical restraint (Stress = 0 or 1), is about 162.22. Similarly, σ̂2
1, which gives

the population residual variance of true rate of change (i.e. slope for Dayij) when

controlling for physical restraint (Stress = 0 or 1), is 29.18. And σ̂01 which gives the

population residual covariance between true initial status (σ̂2
0) and true rate of change

(σ̂2
1) when controlling for physical restraint is computed to be -32.33 (using formula:

σ̂01 = corr(σ̂2
0, σ̂

2
1)
√
σ̂2
0 × σ̂2

1 = −0.66
√

162.22× 29.18 = -45.41 ).

When we compare these variance components to the values of the variance com-

ponents obtained in section 4.4 (when only considering group 3 and group 6 mice),

we notice that the variance components obtained for the complete mice data set is

much higher. This could be as a result of the varying doses of STZ that mice in

both categories of physical restraint (Stress = 0 or 1) receive. Also, comparing the

AIC values for models in section 4.4 (group 3 and group 6 data set) and section 4.5

(complete mice data set), we notice that the AIC value is much smaller (1849.085)

for the model in section 4.4. The AIC value for the model in section 4.5 is 5379.89.

The fact that all mice used in section 4.4 are given the same dose of STZ may explain

the lower variance component and lower AIC values. To see if this is the case, in the
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next section, we will include variable ‘Day’ as level-1 predictor variable and variables

STZ and Stress as level-2 predictor variables on the complete mice data set.

4.6 Unconditional growth models with uncontrolled effects of Stress and STZ

(Model D) on complete data set

This model predicts glucose level based on the intercept and variable ‘Day’. It

also asks whether the intercept and slope for variable ‘Day’ are affected by physical

restraint (variable name Stress) imposed on the mouse and also by the dose of diabetes

inducing drug (variable name STZ) received by the mouse. The structure of this model

looks like:

Level 1 : Yij = π0i + π1iDayij + εij

Level 2 : π0i = γ00 + γ01 × Stressi + γ02 × STZi + ζ0i

π1i = γ10 + γ11 × Stressi + γ12 × STZi + ζ1i

(30)

where, εij ∼ N(0, σ2
ε) and

[
ζ0i
ζ1i

]
∼ N(

[
0
0

]
,

[
σ2
0 σ01

σ10 σ2
1

]
).

This model evaluates the effects of variable Stress on initial status (when Dayij

= 0) and rates of change in glucose level Yij while keeping the effects of variable STZ

on initial status and rate of change constant. Also, γ01 and γ11 describe the change in

glucose level between mice that experience physical restraint (Stress = 1) and mice

that do not experience physical restraint (Stress = 0) while keeping the effect of the

variable STZ constant. Similarly, γ02 and γ12 describe the change in glucose level
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between mice that receive 0, 25 or 50 mg kg−1 of STZ.

The code executed to fit this model using nlme package in R is given as:

ModelL10 = lme(glucose ∼ day * stress + day * STZ, random = ∼ day|mouse,

data=mice, na.action=na.exclude)

summary(ModelL10)

Also, the code executed to fit this model using lme4 package in R is given as:

ModelL11 = lmer(glucose ∼ day * stress + day * STZ + (day | mouse),

data=mice, na.action=na.exclude)

summary(ModelL11)

Likewise, the SAS code executed to fit this model is given in Table 43.

Table 43: SAS code for model using Stress as level-2 variable and ‘Day’ as level-1
variable

proc mixed data = mice covtest noclprint;
class mouse ;
model glucose = day stress STZ day*stress day*STZ/ solution;
random day / subject = mouse ;

run;

The results of the fitted models are given in Tables 44, 45 and 46 respectively.
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Table 44: Result for model that includes Stress and STZ as level-2 variable and ‘Day’
as level-1 variable using nlme package on the complete mice data set.

Linear mixed-effects model fit by REML
Data: mice

AIC BIC logLik
5364.198 5406.927 -2672.099

Random effects:
Formula: ~day | mouse
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 11.385070 (Intr)
day 4.193854 -0.508
Residual 29.867860
Fixed effects: glucose ~ day * stress + day * STZ

Value Std.Error DF t-value p-value
(Intercept) 123.61266 5.159101 473 23.960117 0.0000
day -0.30766 1.091015 473 -0.281997 0.7781
stress 3.09456 5.517817 57 0.560830 0.5771
STZ -0.30873 0.135212 57 -2.283296 0.0262
day:stress -2.44849 1.166683 473 -2.098677 0.0364
day:STZ 0.16631 0.028586 473 5.817776 0.0000
Correlation:

(Intr) day stress STZ day:stress
day -0.513
stress -0.533 0.273
STZ -0.654 0.336 -0.002
day:stress 0.273 -0.533 -0.513 0.001
day:STZ 0.336 -0.655 0.001 -0.513 -0.001
Standardized Within-Group Residuals:

Min Q1 Med Q3 Max
-4.24148011 -0.52208313 -0.03907015 0.37064596 5.96363367
Number of Observations: 536
Number of Groups: 60
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Table 45: Result for model using Stress and STZ as level-2 variable and ‘Day’ as
level-1 variable in lme4 package on complete mice data set.

Linear mixed model fit by REML [‘lmerMod’]
Formula: glucose ~ day * stress + day * STZ + (day | mouse)

Data: mice
REML criterion at convergence: 5344.2
Scaled residuals:

Min 1Q Median 3Q Max
-4.2415 -0.5221 -0.0391 0.3706 5.9636
Random effects:
Groups Name Variance Std.Dev. Corr
mouse (Intercept) 129.62 11.385

day 17.59 4.194 -0.51
Residual 892.09 29.868

Number of obs: 536, groups: mouse, 60
Fixed effects:

Estimate Std. Error t value
(Intercept) 123.61266 5.15910 23.960
day -0.30766 1.09102 -0.282
stress 3.09456 5.51781 0.561
STZ -0.30873 0.13521 -2.283
day:stress -2.44849 1.16668 -2.099
day:STZ 0.16631 0.02859 5.818
Correlation of Fixed Effects:

(Intr) day stress STZ day:stress
day -0.513
stress -0.533 0.273
STZ -0.654 0.336 -0.002
day:stress 0.273 -0.533 -0.513 0.001
day:STZ 0.336 -0.655 0.001 -0.513 -0.001

Also, an AIC value of 5364.198 is generated for ModelL11 using the codes given

below:

aic3 = AIC(logLik(ModelL11))

aic3
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Table 46: Result for model using Stress and STZ as level-2 variable and ‘Day’ as
level-1 variable in SAS on complete mice data set.

Covariance Parameter Estimates
Cov Parm Subject Estimate StandError Z Value Pr > Z
day mouse 14.5883 2.9255 4.99 <.0001
Residual 934.60 60.8299 15.36 <.0001

Fit Statistics
-2 Res Log Likelihood 5348.9
AIC (Smaller is Better) 5352.9
AICC (Smaller is Better) 5352.9
BIC (Smaller is Better) 5357.1

Solution for Fixed Effects
Effect Estimate StandError DF t Value Pr > |t|
Intercept 123.61 4.4679 473 27.67 <.0001
day -0.3070 1.0115 57 -0.30 0.7626
stress 3.0856 4.7794 473 0.65 0.5189
STZ -0.3085 0.1171 473 -2.63 0.0087
day*stress -2.4484 1.0817 473 -2.26 0.0241
day*STZ 0.1663 0.0265 473 6.27 <.0001

Comparing the outputs obtained in Tables 44, 45 and 46, we observe that the

fixed and random effects estimates are the same for both packages in R. Also, the

output obtained using SAS is very close to the two R outputs. AIC values for all

models are very close to each other. Now, substituting the estimated γ parameters

obtained in the tables in the level-2 sub-model given in Equation 30, we can write

the new equation as given in Equation 31.

π̂0i = 123.6127 + 3.0946Ŝtressi − 0.3087ŜTZi

π̂1i = −0.3077− 2.4485Ŝtressi + 0.1663ŜTZi

(31)
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We can then write the composite model as:

̂Glucoseij = 123.6127 + 3.0946Ŝtressi − 0.3087ŜTZi − 0.3077D̂ayij

−2.4485ŜtressiD̂ayij + 0.1663ŜTZiD̂ayij

(32)

For model D, since it includes two predictor variables in level-2, the intercepts

123.6127 and -0.3077 describe initial state and rate of change for mice that do not

experience physical restraint (Stress = 0) and receive 0 mg kg−1 STZ. Also, we can

conclude that when keeping the effects of STZ constant, the estimated difference in

initial glucose level between mice that experience physical restraint and mice that do

not experience physical restraint is 3.0946. This difference, with a p-value of 0.5771

is insignificant. We can also conclude that, keeping the effects of STZ constant,

the estimated difference in the rate of change in glucose level between mice that

experience physical restraint and mice that do not experience physical restraint is

-2.4485. This estimate is significant with a p-value of 0.0364. Similarly, keeping the

effects of Stress constant, we can conclude that the estimated difference in initial

glucose level between mice that receive 25 mg kg−1 and mice that receive 50 mg kg−1

is -0.3087. This estimate is significant with a p-value of 0.0262. Also, keeping the

effects of Stress constant, the estimated difference in the rate of change in glucose

level between mice that receive 25 mg kg−1 and mice that receive 50 mg kg−1 is

0.1663. This estimate is also significant with a p-value of 0.00.

Now, we will analyze the variance components or the random effects variances

obtained in Tables 44, 45 and 46. Variance components give us the amount of outcome
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variability that are unexplained after fitting the multilevel model given in Equation 32.

Based on the results obtained, σ̂2
ε , which gives the variability in an average mouse’s

glucose level around its own true change trajectory, is 892.09. This is also known as

the level-1 residual variance. Similarly, the level-2 variance components as given in

Equation 23 as

[
σ̂2
0 σ̂01

σ̂10 σ̂2
1

]
is given by

[
129.62 −24.30
−24.30 17.59

]
. So, σ̂2

0, which gives the

population residual variability of the true initial status (i.e. average intercept when

Dayij = 0) when controlling for physical restraint (Stress =0 or 1) and amount of

STZ, is about 129.62. Similarly, σ̂2
1, which gives the population residual variance of

true rate of change (i.e. slope for Dayij) when controlling for physical restraint (Stress

=0 or 1) and STZ, is 17.59. And σ̂01 which gives the population residual covariance

between true initial status (σ̂2
0) and true rate of change (σ̂2

1) when controlling for

both physical restraint and STZ is computed to be -24.30 (using formula: σ̂01 =

corr(σ̂2
0, σ̂

2
1)
√
σ̂2
0 × σ̂2

1 = −0.51
√

129.09× 17.59 = -24.30 ).

When we compare these variance components to the values of the variance compo-

nents obtained in section 4.5 (when only Stress is used as a level-2 predictor variable),

we notice that the variance components obtained for in this section for model D is

smaller. This could be as a result of including variable STZ as a level-2 predictor

variable which helps explain some variability in glucose level between mice. Also,

comparing the AIC values for models in section 4.5 (Model C on complete mice data

set) and section 4.6 (Model D on complete mice data set), we notice that the AIC

value is smaller (5364.198) for the model in section 4.6. The AIC value for the model

in section 4.5 is 5379.89. AIC and BIC scores are very similar among the two packages

used in R and SAS.
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5 FURTHER EXPLORATION OF INDIVIDUAL MODELS

In previous sections we have discussed and compared existing methodologies for

analysis of longitudinal data. In this section we will explore a different path: to fit

individual regression models to the data for each individual and then conduct analyses

on the estimated parameters.

5.1 Linear Models

In this section we will fit separate linear regression models for all mice using ‘Day’

as an explanatory variable. The code used to fit these model uses the lme4 package

and can written as:

a = lmList(glucose ∼ day|mouse, data = mice)

summary(a)

Since there are 60 different mice, 10 mice in each group, the above code gives us

60 different linear models. In order to compare the intercepts and slopes obtained

for each mice in each group, we will create dot plots for the slopes and intercepts in

each linear model as in Figures 9 and 10. In both plots, the solid (filled black) circles

represent the group’s average slope or average intercept values.
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Figure 9: Dot plot for the intercepts of linear models fitted for each of the 60 mice,
separated by groups
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Figure 10: Dot plot for the slope of the linear models fitted for each of the 60 mice,
separated by groups
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5.2 Levene’s Test

Observing the dot plots, we notice greater variability in intercept and slope for

mice in groups 3 and 6. These are the groups of mice that receive 50 mg kg−1 of

STZ with and without physical restraint respectively. A higher dose of STZ could be

associated with the large variability in slope and intercepts. Since there seems to be

unequal variances among the different groups for both slope and intercept, we will

perform Levene’s test to check if this is actually the case. The hypothesis for the

Levene’s test can be written as:

H0 : σ2
1 = σ2

2 = σ2
3 = σ2

4 = σ2
5 = σ2

6

Ha : At least one σ2
i is different, i = 1, 2,.., 6

The code executed to perform Levene’s test in R can be written as:

leveneTest(variable name, group variablename)

leveneTest(int estimate, group)

leveneTest(day estimate,group)

The result for Levene’s test performed to see if the variances in ‘intercept’ and

‘slope’ are same among the different groups of mice are given in Tables 47 and 48

respectively .

Table 47: Result for Levene’s test performed to check equal variance of ‘intercept’
among the 6 groups of mice.

Levene’s Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 5 3.1833 0.01368 *
54
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Table 48: Result for Levene’s test performed to check equal variance of ‘slope’ among
the 6 groups of mice.

Levene’s Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 5 4.6666 0.001299 **
54

For both ‘intercept’ and ‘slope’, the p-values are significant (0.0137 and 0.0013),

therefore, we have enough evidence to say that at least one of the groups of mice have

different variance for both ‘intercept’ and ‘slope’.

5.3 One-Way ANOVA (assuming unequal variance)

In this section, we will perform One-Way ANOVA on the two variables ‘slope’ and

‘intercept’ assuming unequal variances. The hypothesis for One-Way ANOVA can be

written as:

H0 : µ1 = µ2 = µ3 = µ4 = µ5 = µ6

Ha : At least one µi is different, i = 1, 2,.., 6

The R code used to perform One-Way ANOVA on variable ‘intercept’ assuming

unequal variances is given as:

oneway.test(int estimate ∼ group, b,na.action=na.exclude, var.equal =

FALSE)

The output obtained for the analysis is given below in Table 49.
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Table 49: One-way ANOVA for ‘intercept’ assuming unequal variances

One-way analysis of means (not assuming equal variances)
data: int_estimate and group
F = 1.4932, num df = 5.000, denom df = 24.957, p-value = 0.2277

Since the p-value is not small (0.2277), we do not have enough evidence to conclude

that the mean intercept value is different among the six groups.

Similarly, the R code used to perform One-Way ANOVA on variable ‘slope’ as-

suming unequal variances is given as:

oneway.test(day estimate ∼ group, b,na.action=na.exclude, var.equal =

FALSE)

The output obtained for the analysis is given below in Table 50.

Table 50: One-way ANOVA for ‘slope’ assuming unequal variances

One-way analysis of means (not assuming equal variances)
data: day_estimate and group
F = 7.9409, num df = 5.000, denom df = 24.691, p-value = 0.0001418

Since the p-value is very small (0.0001), we have enough evidence to conclude that

the mean slope is different for at least one group. This suggests that the mean slope

is not the same across all groups, i.e. at least one group is different from the others.
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5.4 Two-Way ANOVA (assuming equal variances)

In the previous section we compared the six groups considering them as six different

treatments. Now we will refine the analysis a little more taking into consideration

that those six treatments are actually the combination of the levels of the two factors.

We will fit four Two-Way ANOVA models. Later we will also fit ANOVA models

assuming unequal variances. The first model will assume the intercept to be the

response variable while treating the variables Stress and STZ as the two factors. The

second model will include an interaction between the two factors. Similarly, the third

model will assume the slope to be the response variable while treating variables Stress

and STZ as the two factors. And the fourth model will include an interaction between

the two factors for the new response variable.

By fitting these models, we are trying to analyze if the amount of STZ has an effect

on the intercept and slope. We also want to know if physical restraint experienced

by a mice (Stress) has an effect on the intercept and slope. Also, we want to know

if there is an interaction between the STZ and Stress. While, we attempt to answer

these questions, let us first look at some side-by-side box plots to get a clear picture

of how STZ and Stress impact ‘slope’ and ‘intercept’ of linear models for all mice.
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Figure 11: Box plots for slopes and intercepts separated by factor levels

Observing the box plots, we notice that there exists some difference in the response

variable ‘intercept’ for the two different levels of Stress. The variability in intercept

shown by mice that experience physical restraint (Stress = 1) is smaller than the

variability shown by mice that do not experience physical restraint (Stress = 0).

However, looking at the effect of STZ, the effect of 50 mg kg−1 of STZ on mice seems

to be much more distinguished than the effect that is shown by the mice that are

given the two other levels of STZ(0 mg kg−1 or 25 mg kg−1). This trend is also true
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for response variable ‘slope’. Also, observing the interaction plot given in Figure 12,

we notice that some kind of interaction seem to be present between Stress and STZ

since the lines are not all parallel to each other. Also, it is evident that this interaction

is much distinguished for 50 mg kg−1 of STZ for both response variables. Now, in

order to find out if these factors and interaction between factors are significant, let

us start by fitting the different models.
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Figure 12: Interaction plot between Stress and STZ for ‘slope’ and ‘intercept’

We will fit ANOVA models for the intercept and the slope as response variables

but the focus of the interpretation should be on the slope that represents the change in

glucose level through time. In order to fit these models we will use the lm() function

in R. The generic code to fit a two-way ANOVA model without interaction can be

written as:

lm(Response ∼ FactorA + FactorB)

Similarly, the generic code to fit a two-way ANOVA model with interaction can
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be written as:

lm(Response ∼ FactorA + FactorB + FactorA*FactorB)

Now, we will fit the first Two-way ANOVA model (M1 ) without interaction con-

sidering the ‘intercept’ to be the response variable. The code to fit this model can be

written as:

M1 = lm(intercept ∼ Stress + STZ)

summary(M1)

The results of model M1 is given in Table 51.

Table 51: Result of ANOVA fitted with ‘intercept’ as response variable and Stress
and STZ as two factors.

Call:
lm(formula = int_estimate ~ stress + stz)
Residuals:

Min 1Q Median 3Q Max
-57.112 -14.214 -1.849 13.149 50.951

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 123.6412 5.1749 23.892 <2e-16 ***
stress 2.9806 5.5322 0.539 0.5921
stz -0.3053 0.1355 -2.253 0.0281 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 21.43 on 57 degrees of freedom
Multiple R-squared: 0.08605, Adjusted R-squared: 0.05398
F-statistic: 2.683 on 2 and 57 DF, p-value: 0.07697

Observing the output of the ANOVA table for model M1, we notice that the main

effect of Stress is not significant.Therefore, we can say that the observed difference

in ‘intercept’ between the two different levels of Stress is not statistically significant.
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However, the main effect of STZ shows significant effect on the ‘intercept’ with a

p-value of 0.0281. So, we can say that the observed difference in ‘intercept’ between

the three different levels of STZ is statistically significant.

Now, we will fit the second Two-way ANOVA model (M2 ) that includes inter-

action between the two factors Stress and STZ. The code to fit this model can be

written as:

M2 = lm(intercept ∼ Stress + STZ + Stress*STZ)

summary(M2)

The results obtained from fitting model M2 is given in Table 52.

Table 52: Result of ANOVA fitted with ‘intercept’ as response variable and Stress
and STZ as two factors. This model also includes an interaction term between Stress
and STZ.

Call:
lm(formula = int_estimate ~ stress + stz + stress * stz)
Residuals:

Min 1Q Median 3Q Max
-53.482 -13.751 -2.533 12.783 50.951

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 127.2708 6.1771 20.604 <2e-16 ***
stress -4.2785 8.7357 -0.490 0.6262
stz -0.4505 0.1914 -2.354 0.0221 *
stress:stz 0.2904 0.2707 1.073 0.2880
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 21.4 on 56 degrees of freedom
Multiple R-squared: 0.1045, Adjusted R-squared: 0.05648
F-statistic: 2.177 on 3 and 56 DF, p-value: 0.1008

Observing the output of the ANOVA model M2 in Table 52, we notice that the
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interaction between the two factors Stress and STZ on the response variable ‘intercept’

is not significant. Also, we notice that the main effect of Stress is still not significant in

model M2. However, the main effect of STZ shows significant effect on the ‘intercept’

with a p-value of 0.0221.

Now, we will fit a third Two-way ANOVA model (M3 ) without interaction con-

sidering ‘slope’ to be the response variable. The code to fit this model can be written

as:

M3 = lm(slope ∼ Stress + STZ)

summary(M3)

The results obtained by fitting model M3 is given in Table 53.

Table 53: Result of ANOVA fitted with ‘slope’ as response variable and Stress and
STZ as two factors.

Call:
lm(formula = day_estimate ~ stress + stz)
Residuals:

Min 1Q Median 3Q Max
-7.188 -2.827 -1.294 2.278 12.406

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.30400 1.09513 -0.278 0.7823
stress -2.46325 1.17074 -2.104 0.0398 *
stz 0.16675 0.02868 5.815 2.89e-07 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 4.534 on 57 degrees of freedom
Multiple R-squared: 0.4015, Adjusted R-squared: 0.3805
F-statistic: 19.12 on 2 and 57 DF, p-value: 4.43e-07

Observing the output of the ANOVA model M3 in Table 53, we notice that the
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main effect of Stress is significant on the ‘slope’ with a p-value of 0.0398. Therefore,

we can say that the observed difference in ‘slope’ between the two different levels

of Stress is statistically significant. Similarly, the main effect of STZ also shows

significant effect on the ‘slope’ with a p-value of 2.89 × 10−7. So, we can conclude

that the difference observed in ‘slope’ between the three different levels of STZ is also

statistically significant.

Now, we will fit the final Two-way ANOVA model (M4 ) that includes interaction

between Stress and STZ considering ‘slope’ to be the response variable. The code to

fit this model can be written as:

M4 = lm(slope ∼ Stress + STZ + Stress*STZ)

summary(M4)

The results obtained by fitting model M4 is given in Table 54.
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Table 54: Result of ANOVA fitted with ‘slope’ as response variable and Stress and
STZ as two factors. This model also includes an interaction term between Stress and
STZ.

Call:
lm(formula = day_estimate ~ stress + stz + stress * stz)
Residuals:

Min 1Q Median 3Q Max
-9.4996 -2.8268 -0.0807 1.8459 12.8330

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.61602 1.19403 -2.191 0.032636 *
stress 2.16080 1.68861 1.280 0.205951
stz 0.25923 0.03700 7.007 3.37e-09 ***
stress:stz -0.18496 0.05232 -3.535 0.000826 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 4.136 on 56 degrees of freedom
Multiple R-squared: 0.5107, Adjusted R-squared: 0.4845
F-statistic: 19.48 on 3 and 56 DF, p-value: 8.934e-09

Observing the output of the ANOVA model M2 in Table 54, we notice that the

interaction between the two factors Stress and STZ on the response variable ‘slope’

is significant with a p-value is 0.000826. Therefore, we can say that an interaction

between Stress and STZ exists. Also, we notice that the main effect of Stress is not

significant in model M4. However, the main effect of STZ shows significant effect

on the ‘slope’ with a p-value of 3.37 × 10−9. We can compare these results with

that of PROC MIXED on Page 25 and MANOVA on Pages 27 and 28. In the PROC

MIXED analysis the interaction and each factor all had a significant effect on glucose.

MANOVA indicated that only STZ had a significant effect on glucose. However, in

the method developed in this section what we analyze is the effect of STZ and Stress

on the way that glucose grows through time.
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5.5 Kruskal-Wallis Test

Now, we will apply the Kruskal-Wallis test to see if the samples for the different

treatments come the same population. The hypothesis for this test can be written

as:

H0: The samples for the treatments come from the same population

H1 : The samples for the treatments do not come from the same population

The R code used to perform the test on the intercept can be written as:

kruskal.test(int estimate ∼ group, data = b)

The output result of the test performed on the intercept is given in Table 55.

Since the p-value obtained for the Kruskal-Wallis test is 0.2615, we do not have

enough evidence to say that the samples for the treatment intercepts do not come

from the sample population. It is actually the slope that we care the most about

since they are indicators of how the glucose grows through time for each individual.

Table 55: Kruskal-Wallis test with ‘intercept’ as response and ‘group’ as predictor
variable

Kruskal-Wallis rank sum test
data: int_estimate by group
Kruskal-Wallis chi-squared = 6.4892, df = 5, p-value = 0.2615

The R code used to perform the test on the slope can be written as:

kruskal.test(day estimate ∼ group, data = b)
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The output result of the test performed on the slope is given in Table 56. Since,

the p-value obtained for the Kruskal-Wallis test is 6.215 × 10−5, we have enough

evidence to say that the samples for the treatment slopes do not come from the same

population.

Table 56: Kruskal-Wallis test with ‘slope’ as response and ‘group’ as predictor variable

Kruskal-Wallis rank sum test
data: day_estimate by group
Kruskal-Wallis chi-squared = 26.809, df = 5, p-value = 6.215e-05

5.6 Randomization Test

Another way of comparing the slopes would be using the randomization test. The

randomization test is also known as permutation test. When performing the random-

ization test, each individual values (in this case the slope for each mouse) is randomly

assigned to one of k groups (k = 6 in the example). The mean value (ȳk) for each

random groups is calculated and compared to the general mean (ȳ) using the statistic

Σ(ȳk − ȳ)2. The value of the statistic is then compared with the one calculated from

the original groups defined by the treatments. This process is then repeated multiple

times, and a p-value is calculated based on the number of times that the statistic

from the random groups is equal or greater than the statistic for the original data. I

wrote my own code in R to implement the randomization test. The result of the per-

mutation test is given Figure 13 where the empirical distribution of the values of the

statistic are shown. The p-value of this test is 0. The value of the statistic Σ(ȳk− ȳ)2

(124.67) is denoted by an arrow. Since, the true value is on the extreme right of the
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histogram, the p-value or the area under the distribution to the right of 124.67 is

almost 0. So, we are able to conclude that the observed difference in slopes is not

likely to happen just by chance if there is not really any difference among treatments.

0 20 40 60 80 100 120 140

 Strip chart for SS deviation from overall mean for all groups (Slope) 

124.67

Histogram of SS deviation from overall mean for all groups (Slope)

Deviation from overall mean for all groups

Fr
eq
ue
nc
y

0 20 40 60 80 100 120 140

0
10
00
0

124.67

Figure 13: Randomization test performed on the slope of the individual linear regres-
sion models

5.7 Power Study

In previous sections we have applied the experimental method to the mice example

but now we wonder how well this method works to detect differences among groups

depending on how the slopes are. In other words we want to explore the power of this

test using simulation. We simulated longitudinal data for individuals in three groups

and five days using the model:
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Yijt = a+ bit+ εijt, i = 1 : 3; (33)

where, the intercepts were randomly generated using the U(0, 2) distribution,

bi = 1 + (i − 1)d for d = 0.1, 0.2, 0.3, 0.4, 0.5, t = 1:5 and εijt ∼ N(0, 1). The

simulation was done for different sample sizes in each group ni = 5, 10, 15, 20. These

simulated values are then used to produce a response variable ‘Y’. A box plot is

presented in Figure 14 for the simulated ‘Y’ values based on the three groups for one

of the simulations. We then use these Y values to fit linear regression models using

‘time’ as the explanatory variable. One-way ANOVA test is then applied to the slope

estimates from the linear models using these estimates as the response variable and

‘group’ as the factor. The power of the ANOVA test is then analyzed. Figure 17

represents the power of the test for different ‘d ’ values and sample sizes (n = 5, 10,

15, 20). The ‘d ’ values (d = 0.1, 0.2, ..., 0.5) are the differences between the slopes

of the different groups.

109



1 2 3

0
2

4
6

8
10

Groups

S
im

ul
at

ed
 Y

 v
al

ue
s

Figure 14: Box plot of the simulated ‘Y’ values

Figure 15 shows the p-value for 100 simulations with d = 0.4 but changing the

sample size. WE notice that as the sample size increases the mean p-value decreases

and the whole distribution of p-values is concentrated in the really small values.

Figure 16 displays the x values for sample size 15 changing the different d from 0.1

to 0.5. As the difference in slopes increases, the average p-value becomes smaller as

expected. When the difference in slopes used to generate the data is 0.3, the p-values

already fall very close to 0.
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Figure 15: Histogram of power for different n values while d is fixed
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Figure 16: Histogram of power for different d values while n is fixed

Based on Figures 15, 16 and 17, we notice that the power of the test increases as

the numbers of observations (n) included in each group increases. Similarly, power of

the test is also higher for larger ‘d ’ values.
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Figure 17: Power test performed on the slope of the simulated linear regression model
for different slopes

One advantage of this new method is that each individual is represented by one

number: the slope of a linear model fitted to the data for that individual through

time. Then the slopes can be analyzed by an ANOVA model dictated by the design of

the experiment (one-way, two-way, etc). The power analysis we did has satisfactory

results for sample sizes 10 (per group) and higher. One criticism that would be done

is that the goodness of the fit of the individual models is not taken into consideration.

This could be solved by accompanying the ANOVA of the slopes by an analysis of

the R-squared of the regression lines. This is something we plan to include in future

research. Another thing left to explore is the study of the power when the growth

through time is not linear but we use a linear model to represent it.

Another idea to explore would be to work with slopes for each individual, not

estimated using a regression model but estimated from a more non-parametric point
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of view. For each individual take increment per time unit for each pair of consecutive

measures and then find the mean or the median of such slopes. In that way we are not

assuming a rigid linear model. Even more, if more detail was wanted that analysis

could be done at each time starting in time = 2.

114



6 CONCLUSION

This thesis focuses on using multilevel models to analyze longitudinal data sets but

it also includes a description on the different traditional methods that are commonly

used in longitudinal data analysis. Some of the traditional methods over viewed on

this thesis is Mixed Effects Models and MANOVA. Also a new method based on the

analysis of individual models is proposed. In the next part of the thesis, multilevel

models are developed for a case study. The case study involved looking at how

acidity of soil at different locations affected the total exchange capacity of the soil.

In this case study, six different locations were grouped into three different sites. Five

different soil samples were then taken from different locations such that soil samples

were nested on locations. When constructing multilevel models for this case study,

sample observations were considered to the first level while location was considered

to the second level of multilevel models. Several models, including a null model and

some random slope coefficient models were fitted for this case study. Based on the

analysis performed on the soildata case study, we concluded that the explanatory

variable which is the pH measure of the soil content is a significant predictor of the

response variable which is the total exchange capacity measure of the soil. Similar

results were obtained for the two R packages, nlme and lme4, and SAS.

In the next part of the thesis, we analyzed longitudinal data sets using multilevel

models. The data set analyzed in this section was obtained from a case study per-

formed on mice. In this case, we analyzed if change in individual glucose level for

mice differed based on two factors - physical restraint imposed on the mice and the
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amount of drug (STZ) given to them. Since mice in one particular group (group 3)

showed unusually high glucose level, this fact was considered when developing some

models. When fitting models for this case study, Dayij is considered to be the level-1

predictor while STZij, Stressij or the interaction between the two are considered to

be the level two predictor variables. The unconditional growth model developed for

the group three mice showed the level-1 predictor variable Dayij to be significant.

This was also true when the same analysis was performed on all mice (not just group

3).

In an attempt to compare the effect of factor Stress and it’s interaction with vari-

able Dayij for groups 3 and 6, a model was developed using Stress as the level-2

predictor variable, while using Dayij as the level-1 predictor variable. For this model,

we were not able to conclude any significant interaction between variables Day and

Stress when the two groups of mice were considered. Result from similar analysis

performed on all mice also showed insignificant interaction between variables Day

and Stress. A next model developed using Stress and STZ as level-2 predictor vari-

ables while using Day as the level-1 predictor variable showed significant interaction

between variables Day and Stress and variables Day and STZ.

The output given by multilevel models were somewhat different than that obtained

from mixed effects model. While the multilevel models gave us the within and between

cluster values, these values were not obtained from the outputs for mixed effects

model. Also, the output from multilevel models were comparatively harder to analyze

than the output from mixed effects models.

In the last section, a new method to analyze longitudinal data sets is proposed.

116



In this proposed method, individual linear models are fitted for each individual mice

considering time, Day, to be the predictor variable. Analysis of variance is then

applied to the estimated parameters of the model. This method was able to identify

differences between groups for the mice example. It also detected the existence of

interaction between Stress and STZ and the importance of the effect of STZ when

a two-way ANOVA is performed to the estimated slope. A power analysis using

simulations gave satisfactory results for sample sizes 10 (per group) and higher. Topics

for future research with regard to the new method were identified: to include an

analysis of goodness of fit for the individual methods and to explore the power of the

test when the thought growth in some groups is not linear.
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