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ABSTRACT

Differentiating Between a Protein and its Decoy Using Nested Graph Models and

Weighted Graph Theoretical Invariants

by

Hannah Green

To determine the function of a protein, we must know its 3-dimensional structure,

which can be difficult to ascertain. Currently, predictive models are used to deter-

mine the structure of a protein from its sequence, but these models do not always

predict the correct structure. To this end we use a nested graph model along with

weighted invariants to minimize the errors and improve the accuracy of a predic-

tive model to determine if we have the correct structure for a protein.
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1 BACKGROUND

Our goal is to distinguish correct protein structures from incorrect protein

structures using graph theoretical methods. Thus, it is necessary to have an under-

standing of proteins (including their structure, function, and importance), graph

theory, and the way in which graph theory can be used to model proteins. In ad-

dition, a brief overview of some of the other methods used in this research will be

given.

1.1 Proteins

An amino acid is a molecule composed of an amino group and a carboxyl (acid)

group, which form the “base”, and residue group [1, 2, 3, 4, 5]. In any two amino

acids, the base is the same while the residue group can differ, and so the residue

group determines the amino acid. While there are many forms the residue group

can take, there are 20 residue groups that are crucial in the formation of proteins.

We call the amino acids determined by those 20 residues, the protogeneic amino

acids [3, 4, 5]. The structure of a general amino acid can be seen below in Figure 1,

where R represents the residue group.
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Figure 1: Amino Acid Base Structure

When the amino group of an amino acid and the carboxyl group of another re-

act it forms what is called a peptide bond. A protein is defined “a polypeptide chain

of amino acid residues linked together in a definite sequence” [6]. Each distinct se-

quence of amino acids forms a unique protein, with the polypeptide chain forming

the backbone of the protein [1, 3, 6]. The sequence is the first of four layers of pro-

tein structure, and so it is also called the primary structure of the protein. The other

three layers are the secondary, tertiary, and quaternary structures. The secondary

structure consists of α-helices and β-strands, the tertiary structure is how the pro-

tein is folded in 3-dimnesional space, and the quaternary structure is the common

configuration of multiple proteins found in nature [3]. α-helices and β-strands are

common structures found in every protein, they are determined by a definite sub-

sequence of amino acids and form from hydrogen bonds within this subsequence.

The tertiary structure of the protein is the most important layer in determining the

function of a protein, as the 3-dimensional structure of a protein determines how

it interacts with other substances [7, 1, 3, 4, 5].

The 3D structure of a protein is discovered by x-ray crystallography, a method

12



which uses the diffraction of x-rays by crystals to determine the structure of a

molecule. Obtaining a crystal of a protein is a complicated and intricate process

which requires a dependable source of a protein and the ability to purify this suf-

ficiently enough to produce a usable solution (“high quality and homogeneous”)

[8, 9]. This solution must then be crystallized, which is a complicated and intricate

process in itself, with no guarantee of producing a usable crystal. This makes x-ray

crystallography a long and slow, but necessary, process to have a 100% accurate 3D

model of a protein.

Recent research into protein structure has provided evidence that while the

size of the sequence space of proteins is immense, the structure space is a small

finite set. This is to say that a protein with an unknown structure is likely to have a

structure that has already been observed. Since we know that proteins with similar

sequences tend to have similar structures, we can predict the unknown structures

of proteins using the known structures of similar sequences and filling in the gaps

with predictive modeling [10]. However, it is possible for these predictive models

to be wrong. To aid in this issue, Samudrala and Levitt created the well known

and often used “Decoys R Us” database used to house several decoys of a protein

[10, 11, 12, 13]. These decoys are common errors produced by predictive models,

and so are useful in determining the accuracy of any predictive model of protein

structure. The database is a large data set that can be broken down into three main

subsets: multiple, single, and loop. For our project, we will focus on the single

subset of the decoy set, the purpose of which is to separate valid protein structures

from invalid structure. This set can be broken down further into the specific type

13



of decoy, which for us will be the misfold decoy set [14].

1.2 Graph Theory

First, we must define the basic concept of a graph. A graph, or network, G, is

a finite nonempty set V of objects called vertices, also called nodes, together with a

possibly empty set, E of 2-element subsets of V called edges. For notational pur-

poses, to refer to a graph, G, with vertex set V and edge set E, we generally say

G = (V, E). A sample graph can be seen in figure 2. Let G = (V, E) and let m, n

be nonnegative integers, we say that |V| = n and |E| = m, that is, G has n vertices

and m edges. We call n the order of G, and we call m the size of G. If an edge exists

between two vertices, we say those two vertices are adjacent; consider u, v vertices

of a graph G, if u and v are adjacent, then an edge exists between them, and we call

this edge uv. A vertex and the edge connecting it to another vertex are said to be

incident. Let v be a vertex in a graph G, the number of vertices adjacent to v is the

degree of vertex v, usually denoted deg(v). The maximum degree of vertices in G

is denoted ∆(G), and the minimum degree is denoted δ(G). Consider G = (V, E)

and let v ∈ V(G), the closed neighborhood of vertex v, denoted N[v], is a subset of V

which contains the vertex v and all vertices adjacent to v; the open neighborhood of

v, N(v) is N[v] \ {v} [15].

14



Figure 2: A simple graph

Next, we define some special classes of graphs. For n a nonnegative integer,

a complete graph, denoted Kn, is a graph on n vertices in which every two distinct

vertices are adjacent. For n ≥ 3, a cycle, denoted Cn, is a graph on n vertices and n

edges, with vertices that can be labeled v1, v2, ..., vn and egdes v1vn and v1vi+1 for

i = 1, 2, ..., n− 1. Examples of both a complete graph and a cycle are given below.

Consider two graphs, H and G, if V(H) ⊆ V(G) and E(H) ⊆ E(G), then, we say

H is a subgraph of G, denoted H ⊆ G. H, a subgraph of G, is said to be induced if

for each v ∈ V(H), all edges incident with v in G are present in H. Note that for

any positive integer n, Kn is an induced subgraph of Kn+1 [15].

(a) K4 (b) C4

Figure 3: A complete graph and a cycle

We say two graphs, G and H are isomorphic if there exits a bijective function

ϕ : V(G) → V(H) such that u and v are adjacent in G if and only if ϕ(u) and

15



ϕ(v) are adjacent in H [15]. We call the function ϕ an isomorphism. This is to say

that isomorphic graphs have the same structure, and thus ϕ preserves structure.

A graph theoretical invariant is a property of graph that does not change under an

isomorphism. The simplest invariant is the degree of a vertex. This is made clear

when one realizes that the degree relies on the structure of the graph, and as such,

does not change under isomorphism (this is illustrated in the example below).

a

b

c d

e

(a) C5

a

d

b e

c

(b) C5

Figure 4: An isomorphism of C5

Along with the degree of a vertex, another invariant is the domination number

of a graph. We say that vertex v ∈ V(G) dominates its closed neighborhood. Thus,

a dominating set S ⊂ V(G), is a set such that every vertex of G is dominated by at

least one vertex in set S. The minimum cardinality of such dominating sets of G

is called the domination number of G, denoted γ(G). In the graph given below, the

black vertices make a minimum dominating set, thus we can see that γ(G) = 3. It

is important to note that while the vertices below do form a minimum domination

set, this is not the only minimum dominating set.
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Figure 5: Illustration of a dominating set

Another invariant is the clique number of a graph. A clique of G is a complete

subgraph of G. The clique number of a graph G, denoted ω(G), is the order of the

largest clique (complete subgraph) of G. In the graph above, ω(G) = 4. The last

invariant we will discuss is the vertex covering number. A vertex and an incident

edge are said to cover each other. A vertex cover is a set of vertices of a graph that

cover all the edges of that graph. The vertex covering number, denoted β(G), is the

minimum cardinality of vertex covers. In the example below, one can see that the

vertex cover set has cardinality 3, thus β(G) = 3.

Figure 6: Illustration of a vertex cover set

For any graph, a real number can be assigned to each edge. This is called a

weighted graph [15]. For our purposes, we want to adjust this definition and assign

a real number to each vertex, creating a vertex weighted graph. We can now adjust

the invariants that were previously discussed to incorporate weights, which will

17



be called weighted invariants. All of these weighted invariants will use the idea of

the sum of weights of a set of vertices. Once again, the degree of a vertex can be

considered the simplest invariant. Above, the degree of a vertex was determined

by the number of nodes adjacent to it, or, stated another way, the cardinality of its

open neighborhood. To apply the idea of vertex weights to the degree of a vertex,

we simply take the sum of the weights in the open neighborhood of a vertex, and

we call this the vertex weighted degree.

Next, consider domination as discussed above. It is possible to have multi-

ple minimum dominating sets, which are indistinguishable from one another in a

simple graph with no other information. However, when we have weighted ver-

tices, we can further quantify these sets. Across all dominating sets with minimum

cardinality, we can sum the weight of the vertices in these sets to weight the sets

themselves, and we now have a way of distinguishing between the sets of the same

cardinality. We call the weight of such a set a weighted domination number. How-

ever, unlike above we do not only consider the minimum this time, as it may be

more applicable in some circumstances to calculate the maximum weights of such

sets. Note that when using the maximum, we only want to find the maximum

weighted minimum dominating set, as, by definition, the maximum dominating

set is the entire graph.

To weight the clique number we find the largest clique and sum the weight of its

nodes. When we have multiple cliques of the same size, it is beneficial to determine

both the maximum and minimum weighted cliques. The weighted vertex cover

number is similar to the weighted domination number.
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For a highly connected network with many nodes, it can be hard to determine

what certain invariants are. Thus, it is beneficial to break it down into smaller

graphs that are more manageable. A nested graph is a graph where node itself

represents a graph. This allows us to break down the original graph into smaller

subgraphs, called domains, and then create another graph, which we will call a top

level graph, where each vertex represents one of these domains. For our purposes,

adjacency in the top level graph will be determined by the amount of edges that

connect one domain to another in the original graph; we will set a threshold of

edges and if there exist more edges than the threshold, we will say the domains

are adjacent [16].

1.3 Biological Networks

Notice that, if the double bond is ignored, the chemical diagram in Figure 1

and the simple graph in Figure 2 are the same. Thus, we can say that chemical

diagrams are networks, where atoms are the nodes and bonds are the edges. We

can extend this network approach from chemical diagrams to entire biological sys-

tems. In fact, this approach to biological systems in terms of networks is not new

and has been in use for many years to determine different interactions in these sys-

tems. What is new, however, is using a network to study the structure of biological

systems [17]. In 2002, Vishveshwara et al compiled a survey of the different ways

networks have been used to study proteins, with most applications being used to

determine the structure of proteins. Once the graph for a protein’s structure was

acquired, different graph theoretical measures were able to be applied to analyze
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each protein [18]. The application of graph theory to the structure of proteins is

still an active, booming field of research. The critical assessment of methods of

protein structure prediction (CASP) is a recurring “experiment to asses the state

of the art in protein structure prediction” [10, 19, 20]. As CASP is recurring and

the models are ever improving, it becomes important to improve the way models

are assessed for accuracy. For this, Chatterjee, Ghosh, and Vishveshwara created

graph theoretic models of proteins, which were quantified by various measures,

and used these models to train a support vector machine, which was in turn used

to assess the accuracy of the most recent CASP models [10].

In 2013, Knisley, Knisley, and Herron used graph theory to model the protein

CFTR, or cystic fibrosis membrane conductance regulator. Specifically, a nested

graph model was used to model mutations of the NBD1 domain of this protein,

with different graph theoretical measures and weights associated with each muta-

tion [16].

1.4 Computational Methods

Although we are concerned with the 3-dimensional structure of a protein,

we need the data we gather to be 2-dimensional; we need to know which protein

we are dealing with and information about that protein. To tackle this, when we

have data about each protein that has more than two dimensions, we will use

principal component analysis to reduce the dimensionality of the data set down

to one dimension. Principal component analysis (PCA) is a method that takes a

dataset and determines which data point are the most important to the data set,

20



and which are largely irrelevant [21].
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2 METHODS

For this project, I utilized a jupyter notebook, created by Dr. Jeff Knisley, that

reads a PDB file of a protein and generates a networkx graph of the protein struc-

ture, called the contact map, where each vertex represents an amino acid. After

the contact map has been generated, it is possible to create a nested graph model

for the protein. Recall, from above, that to create a nested graph from an existing

graph, we take the domain graphs to be subgraphs of the existing graph; so, here,

we need our domain graphs to be subgraphs of the contact map. To accomplish

this, we partition the sequence of the protein into smaller intervals, with the size of

each dependent on the number of intervals we wish to have. While each interval

should ideally be of the same size, this is not always possible as we may not have a

number of intervals that divides the sequence length. Since each vertex represents

an amino acid, each interval is a set of vertices and, so, we take our domain graphs

to be the subgraph of the contact map induced by each interval. For notational

purposes, we refer to each domain graph as Dgraphs[i,i], where i is the interval

containing the vertices of the graph. To avoid confusion, we shorten this notation

to Di when referring to the vertex in the top level graph that represents domain

graph Dgraphs[i,i].

To determine adjacency in the top level graph, we first create a new set of

graphs called joint graphs. Each joint graph, D[i,j] where i 6= j, is the induced

subgraph of the contact map whose vertices come from intervals i and j. Clearly,

both Dgraphs[i,i] and Dgraphs[j,j] are subgraphs of Dgraphs[i,j]; so, if more

than two edges join vertices from Dgraphs[i,i] and Dgraphs[j,j], we say that Di
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and Dj are adjacent in the top level graph.

Table 1: Amino Acid Descriptors

nme AA1 AA3 G g d · · · vanderWaal · · · EIIP
A A ALA 12 12 2 · · · 2.50E-02 · · · 3.73E-02
R R ARG 54 36 9 · · · 0.2 · · · 9.59E-02
N N ASN 42 24 5 · · · 0.1 · · · 3.60E-03
D D ASP 44 24 5 · · · 0.1 · · · 0.1263
C C CYS 12 12 3 · · · 0.1 · · · 8.29E-02
E E GLU 42 24 6 · · · 0.1 · · · 7.61E-02
Q Q GLN 44 24 6 · · · 0.1 · · · 5.80E-03
G G GLY 0 0 0 · · · 2.50E-02 · · · 5.00E-03
H H HIS 40 36 6 · · · 0.1 · · · 2.42E-02
I I ILE 24 24 5 · · · 0.19 · · · 0
L L LEU 36 24 5 · · · 0.19 · · · 0
K K LYS 38 24 8 · · · 0.2 · · · 3.71E-02
M M MET 44 24 6 · · · 0.19 · · · 8.23E-02
F F PHE 36 24 7 · · · 0.39 · · · 9.46E-02
P P PRO 24 12 4 · · · 0.17 · · · 1.98E-02
S S SER 12 12 3 · · · 2.50E-02 · · · 8.29E-02
T T THR 12 12 3 · · · 0.1 · · · 9.41E-02
W W TRP 62 48 9 · · · 0.56 · · · 5.48E-02
Y Y TYR 52 24 8 · · · 0.39 · · · 5.16E-02
V V VAL 12 12 3 · · · 0.15 · · · 5.70E-03

To weight our nodes in the domain graphs, we used many different descrip-

tors, some of which can be seen above in Table 1 (the full table of descriptors is

given in appendix 3). To provide weights for the vertices of the top level graph,

we apply the four weighted invariants discussed in the previous chapter (degree,

domination, clique, and vertex cover) to the domain graphs. For the sake of clar-

ity, we select an arbitrary domain graph, say Di, and an arbitrary descriptor, say

x. A pre-existing script in the jupyter notebook that gave the weighted degree of
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each vertex was altered into two functions, one that returned the maximum such

weighted degree, and another that returned the minimum. For the other three in-

variants, existing networkx algorithms were slightly altered to find the applicable

sets and then another function was written for each to sum the weight of these

sets [22]. For each descriptor and each domain graph, the minimum and maxi-

mum degree, domination number, and clique number were found and stored in

a dataframe, as was the minimum vertex covering number. This lead to a total of

147 weights for each vertex in the top level graph. For the weighted invariants of

the top level graph, we only used those weights produced by the same algorithm

we wished to run; i.e., to get the minimum weighted domination number of the

top level graph produced by weight x, we only used the minimum weighted dom-

ination number produced by weight x of the domian graph. After doing this for

all invariants and descriptors, we were left with a table of size 21× 7. We used

the principal component analysis algorithm from scikit-learn to reduce the dimen-

sionality of this dataset from 21× 7 to 1× 7 [23]. We reduced the dimensionality

in such a way that we can produce a two dimensional data set, telling us which

protein or decoy we have and information about that protein or decoy.

Once we had the principal component values for the protein and each decoy,

MATLAB was then used to cluster the data and produce a dendrogram [24]
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3 RESULTS

Table 2: Proteins with multiple decoys

Protein Decoy1 Decoy2
2cro 2croon2ci2 2croon1sn3
2ci2 2ci2on2cro 2ci2on1sn3
1sn3 1sn3on2cro 1sn3on2ci2

To analyze and cluster proteins in a meaningful way, we need proteins with

more than one misfold decoy. There are three such proteins in the Decoys R Us

database, shown in the table above [14]. For each protein and decoy, we used the

method described in the previous section. Since each of these has a sequence of

length 65, we used five domains of 9 amino acids, and two domains of 10 amino

acids for a total of seven domains. Given below is a MATLAB dendrogram for all

of proteins and decoys together.
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Figure 7: Combined Dendrogram

As can be seen, the proteins 2cro and 2ci2 have been grouped together, while

the protein 1sn3 has been grouped with a decoy. According to the Protein Data

Bank, 1sn3 is now an obsolete protein that has been replaced by 2sn3, and so its

structure is not the correct structure of a valid protein. This is to say that 1sn3 is

more similar to a decoy than it is to a valid protein.
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Figure 8: Combined dendrogram with 1sn3 and related decoys omitted

The next step was to remove the data for 1sn3 and its decoys and cluster the

data again, producing a new dendrogram. As can be seen from the dendrogram

in figure 8 above, the removal of the data for 1sn3 did not alter the results in any

way. Thus, we have succeeded in our short term goal to separate valid protein

structures from decoys.
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4 CONCLUSIONS

We have demonstrated that a vertex weighted nested graph model was able

to quantify the structure of a protein in such a way that a MATLAB clustering

algorithm was able to separate the decoys and the valid proteins into different

clusters.

Future work that remains to be done is to check this nested graph model for

consistency among different clustering methods. If our method of quantification

allows for correct and incorrect protein structures to be consistently separated,

then we have created useful tool for determining and thus improve the accuracy

of predictive models of proteins.
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APPENDICES

A Domain and Top Level Graphs of Each Protein and Decoy

A.1 2cro

(a) 2cro D1 (b) 2cro D2

(c) 2cro D3 (d) 2cro D4

Figure 9: Domain Graphs 1 through 4 of protein 2cro
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(a) 2cro D5 (b) 2cro D6

(c) 2cro D7 (d) 2cro Top Level Graph

Figure 10: Domain Graphs 5 through 7 and Top Level Graph for protein 2cro
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Figure 11: 2cro Contact Map
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A.2 2croon1sn3

(a) 2croon1sn3 D1 (b) 2croon1sn3 D2

(c) 2croon1sn3 D3 (d) 2croon1sn3 D4

Figure 12: Domain Graphs 1 through 4 of Decoy 2croon1sn3
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(a) 2croon1sn3 D5 (b) 2croon1sn3 D6

(c) 2croon1sn3 D7 (d) 2croon1sn3 Top Level Graph

Figure 13: Domain Graphs 5 through 7 and Top Level Graph for Decoy 2croon1sn3
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Figure 14: 2croon1sn3 Contact Map
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A.3 2croon2ci2

(a) 2croon2ci2 D1 (b) 2croon2ci2 D2

(c) 2croon2ci2 D3 (d) 2croon2ci2 D4

Figure 15: Domain Graphs 1 through 4 of Decoy 2croon2ci2

39



(a) 2croon2ci2 D5 (b) 2croon2ci2 D6

(c) 2croon2ci2 D7 (d) 2croon2ci2 Top Level Graph

Figure 16: Domain Graphs 5 through 7 and Top Level Graph for protein 2cro
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Figure 17: 2croon2ci2 Contact Map
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A.4 2ci2

(a) 2ci2 D1 (b) 2ci2 D2

(c) 2ci2D3 (d) 2ci2 D4

Figure 18: Domain Graphs 1 through 4 of protein 2ci2
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(a) 2ci2 D5 (b) 2ci2 D6

(c) 2ci2 D7 (d) 2ci2 Top Level Graph

Figure 19: Domain Graphs 5 through 7 and Top Level Graph for protein 2ci2
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Figure 20: 2ci2 Contact Map
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A.5 2ci2on1sn3

(a) 2ci2on1sn3 D1 (b) 2ci2on1sn3 D2

(c) 2ci2on1sn3D3 (d) 2ci2on1sn3 D4

Figure 21: Domain Graphs 1 through 4 of decoy 2ci2on1sn3
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(a) 2ci2on1sn3 D5 (b) 2ci2on1sn3 D6

(c) 2ci2on1sn3 D7 (d) 2ci2on1sn3 Top Level Graph

Figure 22: Domain Graphs 5 through 7 and Top Level Graph for decoy 2ci2on1sn3
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Figure 23: 2ci2on1sn3 Contact Map
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A.6 2ci2on2cro

(a) 2ci2on2cro D1 (b) 2ci2on2cro D2

(c) 2ci2on2croD3 (d) 2ci2on2cro D4

Figure 24: Domain Graphs 1 through 4 of decoy 2ci2on2cro
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(a) 2ci2on2cro D5 (b) 2ci2on2cro D6

(c) 2ci2on2cro D7 (d) 2ci2on2cro Top Level Graph

Figure 25: Domain Graphs 5 through 7 and Top Level Graph for decoy 2ci2on2cro
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Figure 26: 2ci2on2cro Contact Map
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A.7 1sn3

(a) 1sn3 D1 (b) 1sn3 D2

(c) 1sn3D3 (d) 1sn3 D4

Figure 27: Domain Graphs 1 through 4 of protein 1sn3

51



(a) 1sn3 D5 (b) 1sn3 D6

(c) 1sn3 D7 (d) 1sn3 Top Level Graph

Figure 28: Domain Graphs 5 through 7 and Top Level Graph for protein 1sn3
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Figure 29: 1sn3 Contact Map

53



A.8 1sn3on2ci2

(a) 1sn3on2ci2 D1 (b) 1sn3on2ci2 D2

(c) 1snon2ci23D3 (d) 1sn3on2ci2 D4

Figure 30: Domain Graphs 1 through 4 of decoy 1sn3on2ci2
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(a) 1sn3on2ci2 D5 (b) 1sn3on2ci2 D6

(c) 1sn3on2ci2 D7 (d) 1sn3on2ci2 Top Level Graph

Figure 31: Domain Graphs 5 through 7 and Top Level Graph for decoy 1sn3on2ci2
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Figure 32: 1sn3on2ci2 Contact Map
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A.9 1sn3on2cro

(a) 1sn3on2cro D1 (b) 1sn3on2cro D2

(c) 1sn3on2croD3 (d) 1sn3on2cro D4

Figure 33: Domain Graphs 1 through 4 of decoy 1sn3on2cro
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(a) 1sn3on2cro D5 (b) 1sn3on2cro D6

(c) 1sn3on2cro D7 (d) 1sn3on2cro Top Level Graph

Figure 34: Domain Graphs 5 through 7 and Top Level Graph for decoy 1sn3on2cro
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Figure 35: 1sn3on2cro Contact Map
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B Tables of vertex weights and weighted invariants for Domain and Top Level

Graphs

Table 3: Amino Acid Descriptors (Part 1)

nme AA1 AA3 G g d c m p Plr Chrg Hydpthy
A A ALA 12 12 2 0 1 12 0 0 1.8
R R ARG 54 36 9 0 1.75 14 1 1 -4.5
N N ASN 42 24 5 0 1.6 15 1 0 -3.5
D D ASP 44 24 5 0 1.6 16 1 -1 -3.5
C C CYS 12 12 3 0 1.333 32 0 0 2.5
E E GLU 42 24 6 0 1.667 16 1 -1 -3.5
Q Q GLN 44 24 6 0 1.667 15 1 0 -3.5
G G GLY 0 0 0 0 0 0 0 0 -0.4
H H HIS 40 36 6 5 2 14 1 1 -3.2
I I ILE 24 24 5 0 1.6 12 0 0 4.5
L L LEU 36 24 5 0 1.6 12 0 0 3.8
K K LYS 38 24 8 0 1.667 14 1 1 -3.9
M M MET 44 24 6 0 1.6 12 0 0 1.9
F F PHE 36 24 7 6 2 12 0 0 2.8
P P PRO 24 12 4 4 2 12 0 0 -1.6
S S SER 12 12 3 0 1.333 16 1 0 -0.8
T T THR 12 12 3 0 1.5 14 1 0 -0.7
W W TRP 62 48 9 9 2.182 12 0 0 -0.9
Y Y TYR 52 24 8 6 2 16 1 0 -1.3
V V VAL 12 12 3 0 1.5 12 0 0 4.2
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Table 4: Amino Acid Descriptors (Part 2)

nme stablty ss-stability vanderWaal chargetransf chargedonar
A 2.18 9.8 2.50E-02 0 0
R 2.71 7.3 0.2 0 1
N 1.85 3.6 0.1 1 1
D 1.75 4.9 0.1 1 0
C 3.89 3 0.1 0 1
E 1.89 4.4 0.1 1 0
Q 2.16 2.4 0.1 0 1
G 1.17 0 2.50E-02 1 0
H 2.51 11.9 0.1 0 1
I 4.5 17.2 0.19 0 0
L 4.71 17 0.19 0 0
K 2.12 10.5 0.2 0 1
M 3.63 11.9 0.19 0 1
F 5.88 23 0.39 0 1
P 2.09 15 0.17 0 0
S 1.66 2.6 2.50E-02 0 0
T 2.18 6.9 0.1 0 0
W 6.46 24.2 0.56 0 1
Y 5.01 17.2 0.39 0 1
V 3.77 15.3 0.15 0 0
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Table 5: Amino Acid Descriptors (Part 3)

nme averhydrophocitiy coilconformation IsoElectric Balaban
A 2.00E-02 0.71 6 0
R -0.42 1.06 10.76 6216.573
N -0.77 1.37 5.41 455.375
D -1.04 1.21 2.77 464.711
C 0.77 1.19 5.05 22
E -1.14 0.84 3.22 1306.932
Q -1.1 0.87 5.65 1302.743
G -0.8 1.52 5.97 0
H 0.26 1.07 7.59 1857.46
I 1.81 0.66 6.02 496.7265
L 1.14 0.69 5.98 418.2822
K -0.41 0.99 9.74 3288.873
M 1 0.59 5.74 794.2392
F 1.35 0.71 5.48 3492.442
P -9.00E-02 1.61 6.3 58.78775
S -0.97 1.34 5.68 14
T -0.77 1.08 5.66 127.363
W 1.71 0.76 5.89 9654.332
Y 1.11 1.07 5.66 5722.512
V 1.13 0.63 5.96 117.5755
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Table 6: Amino Acid Descriptors (Part 4)

nme RofGyr ShapeIndex EIIP
A 0.77 1.28 3.73E-02
R 2.38 2.34 9.59E-02
N 1.45 1.6 3.60E-03
D 1.43 1.6 0.1263
C 1.22 1.77 8.29E-02
E 1.77 1.56 7.61E-02
Q 1.75 1.56 5.80E-03
G 0.58 0 5.00E-03
H 1.78 2.99 2.42E-02
I 1.56 4.19 0
L 1.54 2.59 0
K 2.08 1.89 3.71E-02
M 1.8 2.35 8.23E-02
F 1.9 2.94 9.46E-02
P 1.25 2.67 1.98E-02
S 1.08 1.31 8.29E-02
T 1.24 3.03 9.41E-02
W 2.21 3.21 5.48E-02
Y 2.13 2.94 5.16E-02
V 1.29 3.67 5.70E-03
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Table 7: 2cro Top Level (Part 1)

Dscrptr min wt dom max wt dom min wt deg max wt deg
G 48 602 296 1090
g 24 288 204 720
d 9 74 47 184
c 0 25 0 29
m 3.667 27.849 14 51
p 26 212 120 483

Plr 0 8 3 20
Chrg -3 10 -3 12

Hydpthy -68.6 26.4 -37 33
stablty 4.07 36.87 27 104

ss-stability 14.8 154.3 92 349
vanderWaal 0.1 3.83 0 4
chargetransf 0 6 0 6
chargedonar 0 15 3 17

averhydrophocitiy -13.21 8.99 -6 10
coilconformation 1.55 18.71 6 30

IsoElectric 12.44 164.46 51 235
Balaban 14 49718.2857 6172 67661
RofGyr 3.39 21.39 14 53

ShapeIndex 2.84 36.78 18 75
EIIP 0 1.2788 0 0
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Table 8: 2cro Top Level (Part 2)

Dscrptr max clique wt min clique wt min wt vert cov
G 498 118 1440
g 336 84 1080
d 80 22 265
c 21 0 0
m 23.001 7.334 80.252
p 190 64 695

Plr 9 2 20
Chrg 4 -2 2

Hydpthy 14.1 -27.4 -40
stablty 48.11 11.99 153.26

ss-stability 153.6 36.5 524.5
vanderWaal 2.355 0.55 7.595
chargetransf 3 0 0
chargedonar 8 1 20

averhydrophocitiy 6.7 -4.82 -7.15
coilconformation 13.29 3.89 49.59

IsoElectric 93.16 32.35 343.89
Balaban 26187.7886 2235.39515 33009.20405
RofGyr 23.79 7.6 80.92

ShapeIndex 35.25 10 116.59
EIIP 0.6581 0.1622 1.7706
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Table 9: 2croon1sn3 Top Level (Part 1)

Dscrptr min wt dom max wt dom min wt deg max wt deg
G 36 846 112 984
g 24 684 72 660
d 14 169 18 168
c 0 25 0 31
m 3.682 43.251 6 45
p 24 365 57 425

Plr 0 19 1 19
Chrg -2 10 -4 8

Hydpthy -61.6 25 -45 31
stablty 6.21 78.34 8 90

ss-stability 16.7 267.2 18 322
vanderWaal 0.325 5.09 0 3
chargetransf 0 4 0 6
chargedonar 0 18 0 15

averhydrophocitiy -14.32 12.3 -11 11
coilconformation 3.37 24.94 2 26

IsoElectric 32.95 177.25 22 200
Balaban 36 71449.22465 1535 58492
RofGyr 3.65 44.41 4 47

ShapeIndex 3.49 61.11 8 67
EIIP 0.0058 1.6273 0 0
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Table 10: 2croon1sn3 Top Level (Part 2)

Dscrptr max clique wt min clique wt min wt vert cov
G 546 146 1246
g 360 96 984
d 93 23 225
c 13 0 0
m 27.234 7.767 69.884
p 261 70 619

Plr 10 2 22
Chrg 6 -2 4

Hydpthy 17.6 -24.9 -50.8
stablty 49.46 12.31 141.46

ss-stability 172.7 30.5 453.7
vanderWaal 2.555 0.515 6.77
chargetransf 4 0 0
chargedonar 8 0 20

averhydrophocitiy 5.82 -3.71 -10.75
coilconformation 19.2 4.49 38.83

IsoElectric 129.66 26.19 291.25
Balaban 39134.45095 2402.4349 54573.7766
RofGyr 27.91 7.38 70.18

ShapeIndex 38.78 10.05 102.75
EIIP 0.8806 0.202 1.4768
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Table 11: 2croon2ci2 Top Level (Part 1)

Dscrptr min wt dom max wt dom min wt deg max wt deg
G 84 682 90 790
g 36 528 60 552
d 10 130 16 134
c 0 29 0 19
m 6.6 36.586 4 37
p 36 267 40 350

Plr 0 14 0 13
Chrg -4 12 -3 8

Hydpthy -50.1 55.2 -34 24
stablty 9.58 91.8 8 79

ss-stability 22.1 322 31 272
vanderWaal 0.45 5.41 0 2
chargetransf 0 6 0 4
chargedonar 0 13 0 14

averhydrophocitiy -13.69 15.67 -6 8
coilconformation 10.02 27.54 3 21

IsoElectric 41.74 141.37 19 174
Balaban 139.5755 70607.00365 1351 56260
RofGyr 5.78 37.43 4 38

ShapeIndex 7.28 70.71 6 57
EIIP 0.0115 1.5998 0 0
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Table 12: 2croon2ci2 Top Level (Part 2)

Dscrptr max clique wt min clique wt min wt vert cov
G 276 36 1206
g 192 36 900
d 45 7 252
c 15 0 8
m 14.734 3.5 80.318
p 131 36 681

Plr 6 0 16
Chrg 4 -2 -2

Hydpthy 15.3 -20 -33.5
stablty 30.28 7.97 156.12

ss-stability 111.4 21.2 445.8
vanderWaal 1.58 0.225 6.735
chargetransf 2 0 0
chargedonar 5 0 10

averhydrophocitiy 6.81 -4.21 -9.34
coilconformation 8.04 2.54 41.15

IsoElectric 61.15 14.88 337.56
Balaban 19128.4675 117.5755 26821.98105
RofGyr 14.31 3.41 80.69

ShapeIndex 23.79 5.46 115.11
EIIP 0.5305 0.0853 1.2269
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Table 13: 2ci2 Top Level (Part1)

Dscrptr min wt dom max wt dom min wt deg max wt deg
G 60 908 90 890
g 72 552 72 564
d 19 159 18 148
c 0 23 0 27
m 9.45 39.901 6 42
p 48 264 52 370

Plr 0 17 1 17
Chrg -4 8 -8 7

Hydpthy -33 50.9 -40 27
stablty 15.27 85.96 11 74

ss-stability 38 312 40 288
vanderWaal 0.825 3.98 0 3
chargetransf 0 12 0 9
chargedonar 0 12 0 10

averhydrophocitiy -9.46 18.68 -7 10
coilconformation 5.22 19.06 2 25

IsoElectric 41.36 124.3 27 163
Balaban 411.51425 53872.6592 1709 58868
RofGyr 4.15 41.17 5 41

ShapeIndex 12.71 70.64 8 67
EIIP 0.0266 1.3507 0 0
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Table 14: 2ci2 Top Level (Part2)

Dscrptr max clique wt min clique wt min wt vert cov
G 418 72 1544
g 264 72 1092
d 64 16 258
c 13 0 0
m 19.218 6.2 82.254
p 171 50 685

Plr 8 1 20
Chrg 4 -3 -5

Hydpthy 14.4 -14.5 -36.8
stablty 34.78 10.84 150.51

ss-stability 137.3 32.5 543.6
vanderWaal 1.825 0.59 7.325
chargetransf 6 0 4
chargedonar 4 0 6

averhydrophocitiy 4.96 -3.69 -10.71
coilconformation 11.41 3.03 39.33

IsoElectric 78.64 20.42 333.35
Balaban 24963.97025 986.6035 31584.59055
RofGyr 19.08 5.65 83.21

ShapeIndex 27.84 7.64 126.88
EIIP 0.6519 0.0465 0.9718
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Table 15: 2ci2on1sn3 Top Level (Part1)

Dscrptr min wt dom max wt dom min wt deg max wt deg
G 108 884 110 984
g 156 588 72 660
d 25 128 21 159
c 0 23 0 27
m 6.934 40.634 4 46
p 38 372 40 409

Plr 0 19 1 17
Chrg -8 6 -8 6

Hydpthy -62.6 54.4 -48 51
stablty 7.54 83.93 9 97

ss-stability 6.8 285.3 31 377
vanderWaal 0.275 2.77 0 3
chargetransf 0 12 0 9
chargedonar 0 12 0 11

averhydrophocitiy -15.4 19.49 -9 15
coilconformation 4.75 21.09 2 26

IsoElectric 29.57 170.08 30 181
Balaban 484.302 51238.4045 1732 54182
RofGyr 8.55 23.63 5 46

ShapeIndex 3.12 53.66 5 79
EIIP 0.0114 1.4646 0 0
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Table 16: 2ci2on1sn3 Top Level (Part2)

Dscrptr max clique wt min clique wt min wt vert cov
G 722 188 1236
g 444 120 924
d 112 33 215
c 20 0 0
m 33.552 10.034 65.686
p 276 79 576

Plr 11 2 22
Chrg 3 -4 -5

Hydpthy 42.9 -23.2 -37.2
stablty 66.08 16.66 150.52

ss-stability 245 68.4 417.9
vanderWaal 3.42 0.935 6.44
chargetransf 6 0 8
chargedonar 8 0 8

averhydrophocitiy 14.08 -4.54 -7.13
coilconformation 18.93 5.64 42.15

IsoElectric 122.43 35.93 274.59
Balaban 36021.4414 3398.8727 45707.18125
RofGyr 33.08 9.69 66.81

ShapeIndex 51.38 13.48 126.19
EIIP 0.9598 0.1033 1.5512

73



Table 17: 2ci2on2cro Top Level (Part1)

Dscrptr min wt dom max wt dom min wt deg max wt deg
G 24 606 248 1092
g 36 300 180 744
d 9 74 48 176
c 0 25 0 27
m 5.1 25.7 14 53
p 24 273 116 455

Plr 0 15 3 20
Chrg -6 6 -6 5

Hydpthy -42 60.9 -60 37
stablty 3.84 38.5 28 111

ss-stability 9.2 228.7 113 404
vanderWaal 0.5 3.76 0 4
chargetransf 0 9 0 11
chargedonar 0 7 2 12

averhydrophocitiy -13.25 18.71 -8 12
coilconformation 1.63 17.59 6 31

IsoElectric 17.72 120.22 50 212
Balaban 470.302 36940.2857 6362 56617
RofGyr 3.45 23.12 15 52

ShapeIndex 6.28 43.71 22 89
EIIP 0 1.1902 0 0
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Table 18: 2ci2on2cro Top Level (Part2)

Dscrptr max clique wt min clique wt min wt vert cov
G 454 118 1252
g 300 84 876
d 73 20 257
c 23 0 0
m 23.349 6.001 67.286
p 177 55 681

Plr 7 1 16
Chrg 2 -3 -4

Hydpthy 24.3 -12.4 -36.8
stablty 49 8.12 125.35

ss-stability 191.1 21 442.7
vanderWaal 2.695 0.325 6.64
chargetransf 4 0 12
chargedonar 6 1 12

averhydrophocitiy 6.82 -3.88 -8.54
coilconformation 14.55 3.26 49.48

IsoElectric 92.53 18.09 327.18
Balaban 29545.22595 2277.5692 55069.06075
RofGyr 22 6.06 81.11

ShapeIndex 40.83 5.96 106.17
EIIP 0.5271 0.0857 1.7504
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Table 19: 1sn3 Top Level (Part1)

Dscrptr min wt dom max wt dom min wt deg max wt deg
G 0 722 54 880
g 0 252 36 540
d 0 112 9 146
c 0 45 0 60
m 0 38.05 2 41
p 0 376 42 499

Plr 0 16 1 20
Chrg -7 8 -5 5

Hydpthy -55.4 36.7 -53 24
stablty 8.98 79.38 8 85

ss-stability 0 308.6 7 308
vanderWaal 0.175 5.72 0 2
chargetransf 0 16 0 15
chargedonar 0 14 1 16

averhydrophocitiy -9.76 14.68 -13 11
coilconformation 3.38 29.89 3 35

IsoElectric 18.39 136.97 20 187
Balaban 0 39586.837 1328 59478
RofGyr 4.25 34.1 3 42

ShapeIndex 0 55.7 2 56
EIIP 0.02 1.3597 0 0
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Table 20: 1sn3 Top Level (Part2)

Dscrptr max clique wt min clique wt min wt vert cov
G 524 122 1236
g 348 72 816
d 86 19 216
c 27 0 0
m 27.534 4.934 60.681
p 292 45 620

Plr 12 1 16
Chrg 3 -3 -4

Hydpthy 13.1 -30.4 -27.9
stablty 53.99 8.2 136.38

ss-stability 153.1 18.5 334
vanderWaal 2.765 0.45 5.675
chargetransf 7 0 6
chargedonar 10 1 20

averhydrophocitiy 7.41 -8 -6.8
coilconformation 21.55 5.28 51.61

IsoElectric 114.23 28.98 271.26
Balaban 32685.158 4713.3805 40170.12855
RofGyr 27.08 6.46 75.58

ShapeIndex 34.96 5.05 81.21
EIIP 1.1834 0.0659 1.5946
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Table 21: 1sn3on2ci2 Top Level (Part1)

Dscrptr min wt dom max wt dom min wt deg max wt deg
G 12 582 106 766
g 12 492 60 456
d 2 96 17 122
c 0 45 0 36
m 1 31.816 5 35
p 12 309 44 397

Plr 0 11 0 16
Chrg -8 5 -7 5

Hydpthy -34.8 21.1 -43 23
stablty 11.87 64.21 9 76

ss-stability 8.6 232.8 24 259
vanderWaal 0.1 4.11 0 3
chargetransf 0 13 0 12
chargedonar 0 14 1 15

averhydrophocitiy -15.68 9.2 -11 9
coilconformation 8.01 31.14 4 31

IsoElectric 34.58 125.81 19 157
Balaban 0 52725.127 1998 52249
RofGyr 3.86 27.33 4 35

ShapeIndex 2.84 41.74 5 50
EIIP 0.1143 0.9425 0 0
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Table 22: 1sn3on2ci2 Top Level (Part2)

Dscrptr max clique wt min clique wt min wt vert cov
G 342 88 1218
g 216 60 804
d 57 16 210
c 25 0 22
m 18.7 4.667 69.714
p 196 48 561

Plr 7 1 16
Chrg 2 -2 -4

Hydpthy 9.2 -23.4 -31.9
stablty 38.42 9.07 133.95

ss-stability 126.7 17.9 374.2
vanderWaal 2.325 0.425 6.47
chargetransf 7 0 8
chargedonar 7 1 24

averhydrophocitiy 4.96 -7.48 -12.65
coilconformation 14.24 3.58 50.73

IsoElectric 73.73 22.37 246.91
Balaban 26343.59395 1419.15595 20442.37585
RofGyr 17.51 5.65 73.1

ShapeIndex 26.4 5.22 93.89
EIIP 0.69 0.0705 2.0679
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Table 23: 1sn3on2cro Top Level (Part1)

Dscrptr min wt dom max wt dom min wt deg max wt deg
G 12 508 222 1008
g 12 300 144 612
d 5 100 39 163
c 0 52 0 54
m 2.5 26.298 10 47
p 24 272 108 538

Plr 0 12 4 22
Chrg -6 6 -7 5

Hydpthy -54.9 32 -55 17
stablty 4.46 50.92 21 94

ss-stability 2.6 164 59 306
vanderWaal 0.075 3.02 0 3
chargetransf 0 12 0 15
chargedonar 0 14 2 18

averhydrophocitiy -14.21 7.55 -12 7
coilconformation 1.32 19.64 8 38

IsoElectric 19.73 127.1 53 201
Balaban 14 33785.8342 5663 57158
RofGyr 2.45 21.68 13 48

ShapeIndex 2.59 31.55 13 62
EIIP 0.005 1.5941 0 0
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Table 24: 1sn3on2cro Top Level (Part2)

Dscrptr max clique wt min clique wt min wt vert cov
G 422 84 1350
g 252 48 888
d 71 11 217
c 24 0 8
m 18.768 3.267 72.481
p 194 31 746

Plr 9 1 16
Chrg 2 -2 -4

Hydpthy 4.9 -21 -27
stablty 39.63 3.74 144.12

ss-stability 131.2 8 319.4
vanderWaal 2.42 0.2 5.155
chargetransf 7 0 6
chargedonar 9 1 28

averhydrophocitiy 2.64 -5.02 -11.86
coilconformation 17.16 2.21 51.1

IsoElectric 95.37 8.63 305.45
Balaban 30928.3015 714.3135 31564.6668
RofGyr 22.43 3.22 73.64

ShapeIndex 24.65 3.16 93.6
EIIP 0.6062 0.0797 1.8598
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Table 25: Combinded PCA Values

(a) Values 1 through 4

Protein Val1 Val2 Val3 Val4n
2cro -0.00013 -0.528499 -0.065336 -0.718719

2croon1sn3 -0.000286 -0.62593 -0.013377 -0.512119
2croon2ci2 -0.001368 -0.735074 -0.013983 -0.58544

2ci2 -0.004484 -0.602891 -0.019043 -0.658881
2ci2on1sn3 -0.00501 -0.54147 -0.018239 -0.572466
2ci2on2cro 0.005078 0.400395 0.068768 0.613392

1sn3 -0.000023 -0.447986 -0.015019 -0.673331
1sn3on2ci2 -0.000025 0.647992 0.024483 0.641952
1sn3on2cro -0.000177 -0.422757 -0.070709 -0.715094

(b) Values 5 through 7

Protein Val5 Val6 Val7
2cro -0.278085 -0.023637 -0.349247

2croon1sn3 -0.342754 -0.020935 -0.477334
2croon2ci2 -0.19901 -0.001159 -0.277709

2ci2 -0.279353 -0.010936 -0.351934
2ci2on1sn3 -0.380546 -0.035765 -0.482328
2ci2on2cro 0.320241 0.024598 0.596255

1sn3 -0.369956 -0.053339 -0.453867
1sn3on2ci2 0.323701 0.017344 0.249643
1sn3on2cro -0.38715 -0.008874 -0.393641
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