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ABSTRACT

Decompositions, Packings, and Coverings of Complete Directed Graphs with a

3-Circuit and a Pendent Arc

by

Chrys Gwellem

In the study of Graph theory, there are eight orientations of the complete graph on

three vertices with a pendant edge, K3 ∪ {e}. Two of these are the 3-circuit with a

pendant arc and the other six are transitive triples with a pendant arc. Necessary

and sufficient conditions are given for decompositions, packings, and coverings of the

complete digraph with the two 3-circuit with a pendant arc orientations.
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1 INTRODUCTION

Graph theory is an interesting area in the study of combinatorial mathematics. In

this area of mathematics, we model objects as a set of points (vertices or nodes) and

the relation between them as edges (arcs).

For a clear view and understanding of this thesis, we start by giving a list of

definitions. A graph G is a finite nonempty set of objects called vertices (the singular

is vertex) together with a (possibly empty) set of unordered pairs of distinct vertices

of G called edges. The vertex set of G is denoted by V (G), while the edge set is

denoted by E(G). A graph G is called simple if no two edges are equal as sets. In

other words, a graph G is simple if at most one edge connects any two vertices (nodes).

In the field of graph theory a complete graph is a simple graph where an edge connects

every pair of vertices. In other words, a graph G is said to be complete if every two

vertices (nodes) are adjacent. With a non-empty graph G, we can generate a directed

graph D by assigning a direction (or by orienting ) each edge of G. D is called the

orientation of G. A directed graph D is thus a finite non-empty set of points called

vertices, together with a set of ordered pairs of distinct vertices of D, called arcs or

directed edges. If a = [x, y] is an arc of a digraph D, then a is said to join x to y

and a is incident to y and a is incident from x, while y is incident from a and x is

incident to a. In graph theory, we say that x and y are adjacent. A complete digraph

Dv of v vertices can be obtained from a complete graph G by replacing each edge

of a complete graph with two arcs of opposite orientation as in Figure 1. Clearly,

we see that in a complete digraph each pair of vertices are connected. In a directed

graph, we define the out-degree, od(u), of vertex u in D as the number of vertices
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of D that are adjacent from u, i.e., od(u) = |No(u)| where the open neighborhood

No(u) = {x ∈ V (D)/x is adjacent from u}. The in-degree, id(u) of vertex u in D

refers to the number of vertices of D that are adjacent from u, i.e., id(u) = |Ni(u)|

where Ni(u) = {x ∈ V (D)/x is adjacent to u }. By total degree of vertex u, we shall

mean od(u) + id(u).

Figure 1: A Complete Digraph on 3 Vertices.

A decomposition of a simple graph with isomorphic copies of graph g is a set

{g1, g2, ..., gn} where gi
∼= g and V (gi) ⊂ V (G) for all i and E(gi) ∩ E(gj) = ∅ for

i 6= j and the union over all gi’s gives the graph G. The gi’s are called blocks of

the decomposition while V (G) is the vertex set of G and E(G) is the edge set. By

replacing the edge set by arc set in the above definition, a similar definition can be

obtained for the decomposition of digraphs. A graph (digraph) decomposition into

isomorphic copies of a graph (respectively digraph) on three vertices is equivalent to

a triple system. A K3 decomposition of a complete graph on v vertices, Kv, is called

a Steiner Triple system, STS(v), which is known to exist if and only if v ≡ 1 or 3

(mod 6) [16].
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In general, when a complete graph (digraph) is decomposed into graphs (respec-

tively digraphs) on 3 vertices, the resulting structure is called a triple system. There

are two orientations of K3, namely the 3 − circuit and the transitive triple. The fol-

lowing directed graphs below are the two orientations of a K3. These can be labelled

as C3 for a 3-circuit and T for the transitive triple.

u u

u

-

�
�

�
�

��� A
A

A
A

AAK

b c

a

C3

u u

u

-

�
�

�
�

���

A
A
A
A
AAUb c

a

T

Figure 2: 3-Circuit and Transitive Triple

A decomposition of a complete digraph, denoted Dv into isomorphic copies of the

3-circuit is equivalent to a Mendelson Triple System of order v, denoted MTS(v) and

it exists if and only if v ≡ 0 or 1 (mod 3), v 6= 6 [14].

A directed triple system is equivalent to a transitive triple T (see Figure 2) de-

composition of Dv and exists if and only if v ≡ 0 or 1 (mod 3) [9]. Also of relevance

to our results are decompositions of Kv into copies of K3 with a pendant edge (the

graph L of Figure 4). Such decompositions exist if and only if v ≡ 0 or 1 (mod 8) [1].

For example, D3 can be decomposed into two copies of the 3-circuit as shown on

Figure 3.

Giving a 3− circuit orientation to the K3 subgraph in the L and the two different

orientations on the pendent arc is the concentration of this work. We will decompose

complete digraphs with these two orientations. This is illustrated by Figure 4. Firstly,
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Figure 3: Decomposition of D3 into 2 Copies of 3-Circuit.

m1 has a vertex with out-degree equal to 2 and in-degree 1, two others with out-degree

1 and in-degree 1 and the last one with out-degree 0 and in-degree 1. Secondly, m2

has a vertex with out-degree equal to 1 and in-degree 2 , two others with out-degree

1 and in-degree 1 and the last one with out-degree 1 and in-degree 0.

Figure 4: m2, m1 and a Lollipop L.

Mendelsohn, 1971, proved that a complete directed graph, Dv admits a decom-

position into isomorphic copies of 3-circuit if and only if v ≡0 or 1 (mod 3), v 6= 6

[14]. In this work, we shall state and prove a similar results, viz.: a complete digraph
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admits a decomposition into isomorphic copies of 3-circuit with a pendent arc if and

only if v ≡ 0 or 1 (mod 4). In this case, the 3-circuit with a pendent arc is either m1

or m2. Sufficiency is established in this case by using a well known method called the

difference method, which involves direct constructions.

If a decomposition of Dv does not exist, then one question to address is, “can we

efficiently remove isomorphic copies of the 3-circuit with a pendent arc from Dv such

that the number of arcs remaining is a minimum or such that the number of arcs re-

peated is a minimum?“ These concepts are called packings and coverings, respectively,

of the complete digraph on v vertices and we talk of “the packing problem“ as well as

“the covering problem“ for complete digraphs. The remaining arcs are often referred

to as the leave of the packing while the repeated arcs are called the padding of the

covering. We shall consider the packing problem for Dv with isomorphic copies of m1

and of m2. More precisely, a maximal packing of a directed graph G with isomorphic

copies of a graph g is a set {g1, g2, ..., gn} where gi
∼= g and V (gi) ⊂ V (G) for all i

and A(gi) ∩ A(gj) = φ for i 6= j and
⋃n

i gi ⊂ G and

|A(l)| = |A(G)/
n⋃

i

gi|

is minimal, where V (G) is the vertex set and A(G) is the arc set of the graph G. The

leave of the packing is represented by l.

A number of graphs have been studied in connection with the problem of finding

maximal packing (with minimal leaves). Maximal C3 packings for Kv were explored

by Schönheim and Spencer [17, 18]. Schöheim and Bialostocki, 1975, studied packings

of Complete Graph with 4-cycles and established the following theorem [2].

Theorem 1.1 [2] A C4 packing of Kv with minimal leave l exist if and only if
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1) if v ≡ 0 (mod 2) then |E(l)| = v/2

2) if v ≡ 1 (mod 8) then |E(l)| = 0

3) if v ≡ 3 (mod 8) then |E(l)| = 3

4) if v ≡ 5 (mod 8) then |E(l)| = 6 and

5) if v ≡ 7 (mod 8) then |E(l)| = 5.

K4-packings of Kv have been studied in [3] and C6 packings of Kv in [10, 11]. Some

packings of noncomplete graphs have been studied, for example some cycle packings

of Kv −Ku are studied in [4, 13]

A minimal covering of a simple graph G with isomorphic copies of a graph g is a

set {g1, g2, . . . , gn} where gi
∼= g and V (gi) ⊂ V (G) for all i, G ⊂ ∪n

i=1gi, and

|A(P )| = |∪n
i=1A(gi) \ A(G)|

is minimal (the graph ∪n
i=1gi may not be simple and ∪n

i=1E(gi) may be a multiset).

The graph P is called the padding of the covering.

A number of graphs have been studied in connection with the problem of finding

minimal coverings (with minimal paddings). Minimal C3 coverings of Kv were ex-

plored by Fort and Hedlund [5]. Schöheim and Bialostocki, 1975, studied coverings

of complete graph with 4-cycles and establish the theorem below [7].

Theorem 1.2 [7] A C4 covering of Kv with minimal padding P exist if and only if

1) if v ≡ 0 (mod 4) then |E(P )| = v/2

2) if v ≡ 2 (mod 4) then |E(P )| = v/2 + 2

3) if v ≡ 1 (mod 8) then |E(P )| = 0

4) if v ≡ 3 (mod 8) then |E(P )| = 5
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5) if v ≡ 5 (mod 8) then |E(P )| = 2 and

6) if v ≡ 7 (mod 8) then |E(P )| = 5.

C6-coverings of Kv have also been studied in [12]. A minimal cyclic C4 coverings

of the complete graph have been studied by Gardner, Gwellem and Lwenczuk [7].

Coverings have not been as extensively studied as packings.

As an example, a minimal covering of K5 with isomorphic copies of C3 has a

padding of P =2×K2 as illustrated in Figure 5.

Figure 5: C3 Covering of K5.

In the studies of the complete digraph, Dv, one question we try to answer is “ For

what v does there exist a decomposition for Dv into the 3-circuit with a pendent arc?”

And also if a decomposition of Dv does not exist, then another question to address is

“Can we efficiently remove isomorphic copies of the 3-circuit with pendent arc from

Dv such that the number of arcs remaining is a minimum or can we efficiently build

up Dv from isomorphic copies of the 3-circuit with pendent arc such that the number

of arcs repeated is a minimum?”
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2 DECOMPOSITIONS

2.1 Introduction

A decomposition of a complete digraph with isomorphic copies of digraph g is a set

{g1, g2, ..., gn} where gi
∼= g and V (gi) ⊂ V (G) for all i and A(gi)∩A(gj) = φ for i 6= j

and the union over all gi’s gives the graph Dv. The gi’s are called the blocks of the

decomposition. A graph (respectively digraph) decomposition into isomorphic copies

of a graph (digraph) on 3 vertices is equivalent to a triple system. A K3 decomposition

of a complete graph on v vertices, Kv, is called a Steiner Triple system, STS(v), which

is known to exist if and only if v ≡1 or 3 (mod 6) [16].

Putting orientations on K3 generates a 3-circuit and a transitive triple denoted

by C3 and T respectively as illustrated in Figure 2. A Mendelsohn triple system is

equivalent to a 3-circuit (C3) decomposition of Dv and exists if and only if v ≡ 0 or

1 (mod 3), v 6= 6 [14]. A directed triple system is equivalent to a transitive triple T

(see Figure 2) decomposition of Dv and exists if and only if v ≡ 0 or 1 (mod 3) [9].

Also of relevance to my results are decompositions of Kv into copies of K3 with

a pendant edge (the graph L of Figure 4 ). Such decompositions exist if and only if

v ≡ 0 or 1 (mod 8) [1]. There are 8 orientations of a K3 with a pendant edge. In this

chapter, we will give results of decompositions of the complete digraph, Dv, into the

two orientations given in Figure 4.
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2.2 Examples, Theorems and Proofs

In this subsection we will give specific examples to illustrate the difference method.

The difference method involves direct construction. We will illustrate how a complete

digraph, Dv, admits a cyclic decomposition if v ≡ 1 (mod 4) by the difference method.

We will also use the difference method to illustrate that if v ≡ 0 (mod 4) then Dv

can undergo a rotational decomposition which is with one fixed point. At the end,

we will generalize the results with theorems and proofs.

Example 1: Suppose we have a complete digraph Dv on 72 vertices. This implies

that v ≡ 0 (mod 4) and so the decomposition in this case is rotational with one

fixed point denoted by ∞. We note that a base block, m1, (a b c)- d has associated

differences of a-b, b-c, c-a and a-d. The 3-circuit with a pendent arc difference method

for a graph of v vertices is given by verifying if the sum of the first three difference

is equal to 0 (mod v − 1).The fourth difference can appear in any order since it is a

pendent arc and has no restriction. To illustrate the difference method concept, we

use the m1-decomposition of a complete digraph Dv of 72 vertices as shown by Figure

6.

On the other hand, suppose we have a complete digraph Dv on 73 vertices. This

tells us that v ≡ 1 (mod 4) and so the decomposition in this case is cyclic with no fix

point. We will need to carry out the same procedure as above for the decomposition

except for the fact that the sum of the first three differences will be equal to 0 (mod

v). We can, for example, generalized the case for v ≡ 1 (mod 4) and it is from

this generalization that the results and the proofs stated below originates. This m1-

decomposition is illustrated in Figure 7.
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Figure 6: m1-Decomposition of the Directed Graph with v Vertices.

Figure 7: m1-Decomposition of the Directed Graph with v Vertices.

17



In this figure, the lines show the pattern in which the differences are grouped so

that the sum should be equal to 0 (mod v).

Theorem 2.1 A m1-decomposition of Dv exists if and only if v ≡ 0 or 1 (mod 4).

Proof.

In this proof we consider several cases as outlined below.

Case 1. Suppose v ≡ 1 (mod 24), say v = 24k + 1.

Consider the blocks: {(j, 4k + 4 + 2i + j, 8k + 2 + i + j) − (20k − 2 − 4i + j)m1 |

i = 0, 1, . . . , 2k − 1, j = 0, 1, . . . , 24k}
⋃
{(j, 8k + 6 + 2i + j, 10k + 3 + i + j) −

(8k − 1 − i + j)m1 | i = 0, 1, . . . , 2k − 4, j = 0, 1, . . . , 24k}
⋃
{(j, 18k + 4 + 2i +

j, 12k + 8 + 4i + j) − (2k − 1 − i + j)m1 | i = 0, 1, . . . , 2k − 2, j = 0, 1, . . . , 24k}
⋃
{(j, 4k+2+j, 8k+1+j)−(20k+1+J)m1 , (j, 8k+4+j, 10k+2+j)−(12k+1+j)m1,

(j, 18k + j, 6k + j)− (6k + 3 + j)m1, (j, 18k + 2 + j, 6k − 2 + j)− (6k + 2 + j)m1 | j =

0, 1, . . . , 24k}.

Case 2. Suppose v ≡ 5 (mod 24), say v = 24k + 5.

Consider the blocks: {(j, 4k + 2 + 2i + j, 8k + 2 + i + j) − (20k + 2 − 4i + j)m1 |

i = 0, 1, . . . , 2k, j = 0, 1, . . . , 24k + 4}
⋃
{(j, 8k + 6 + 2i + j, 10k + 4 + i + j) −

(8k + 1 − i + j)m1 | i = 0, 1, . . . , 2k − 3, j = 0, 1, . . . , 24k + 4}
⋃
{(j, 18k + 8 + 2i +

j, 12k + 12 + 4i + j) − (2k − 1 − i + j)m1 | i = 0, 1, . . . , 2k − 2, j = 0, 1, . . . , 24k + 4}

{(j, 8k + 4 + j, 10k + 3 + j) − (12k + 3 + j)m1, (j, 18k + 4 + j, 6k + j) − (6k + 3 +

j)m1, (j, 18k + 6 + j, 6k − 2 + j) − (6k + 2 + j)m1 | j = 0, 1, . . . , 24k + 4}.

Case 3. Suppose v ≡ 9 (mod 24), say v = 24k + 9.

Consider the blocks: {(j, 4k + 2 + 2i + j, 8k + 3 + i + j) − (20k + 4 − 4i + j)m1 | i =

18



0, 1, . . . , 2k, j = 0, 1, . . . , 24k+8}
⋃
{(j, 8k+6+2i+j, 10k+5+i+j)−(8k+2−i+j)m1 |

i = 0, 1, . . . , 2k − 2, j = 0, 1, . . . , 24k + 8}
⋃
{(j, 18k + 9 + 2i + j, 12k + 10 + 4i + j)−

(2k − i + j)m1 | i = 0, 1, . . . , 2k − 1, j = 0, 1, . . . , 24k + 8}
⋃
{(j, 8k + 4 + j, 10k + 4 +

j)− (12k+5+J)m1, (j, 18k+7+j, 6k+1+ j)− (6k +3+j)m1 | j = 0, 1, . . . , 24k+8}.

Case 4. Suppose v ≡ 13 (mod 24), say v = 24k + 13.

Consider the blocks: {(j, 4k + 6 + 2i + j, 8k + 6 + i + j) − (20k + 8 − 4i + j)m1 |

i = 0, 1, . . . , 2k, j = 0, 1, . . . , 24k + 12}
⋃
{(j, 8k + 10 + 2i + j, 10k + 8 + i + j) −

(8k + 4 − i + j)m1 | i = 0, 1, . . . , 2k − 3, j = 0, 1, . . . , 24k + 12}
⋃
{(j, 18k + 13 + 2i +

j, 12k + 14 + 4i + j) − (2k − i + j)m1 | i = 0, 1, . . . , 2k − 1, j = 0, 1, . . . , 24k + 12}
⋃
{(j, 4k+4+j, 8k+5+j)−(20k+11+j)m1, (j, 8k+8+j, 10k+7+j)−(12k+7+j)m1 |

j = 0, 1, . . . , 24k + 12}
⋃
{(j, 18k + 9 + j, 12k + 6 + j)− (6k + 6 + j)m1, (j, 18k + 11 +

j, 12k + 10 + j) − (6k + 5 + J)m1 | j = 0, 1, . . . , 24k + 12}.

Case 5. Suppose v ≡ 17 (mod 24), say v = 24k + 17.

Consider the blocks: {(j, 4k + 4 + 2i + j, 8k + 6 + i + j) − (20k + 12 − 4i + j)m1 |

i = 0, 1, . . . , 2k + 1, j = 0, 1, . . . , 24k + 16}
⋃
{(j, 8k + 10 + 2i + j, 10k + 9 + i + J)−

(8k + 5− i + J)m1 | i = 0, 1, . . . , 2k − 2, j = 0, 1, . . . , 24k + 16}
⋃
{(j, 18k + 17 + 2i +

j, 12k + 18 + 4i + J) − (2k − i + J)m1 | i = 0, 1, . . . , 2k − 1, j = 0, 1, . . . , 24k + 16}
⋃
{(j, 8k + 8 + j, 10k + 8 + j) − (12k + 9 + j)m1, (j, 18k + 3 + j, 6k + 3 + j) − (6k +

6 + j)m1, (j, 18k + 15 + j, 6k + 1 + j) − (6k + 5 + J)m1 | j = 0, 1, . . . , 24k + 16}.

Case 6. Suppose v ≡ 21 (mod 24), say v = 24k + 21.

Consider the blocks: {(j, 4k + 4 + 2i + j, 8k + 7 + i + j) − (20k + 14 − 4i + j)m1 |

i = 0, 1, . . . , 2k + 1, j = 0, 1, . . . , 24k + 20}
⋃
{(j, 8k + 10 + 2i + j, 10k + 10 + i + j)−

(8k + 6 − i + j)m1 | i = 0, 1, . . . , 2k − 1, j = 0, 1, . . . , 24k + 20}
⋃
{(j, 18k + 18 + 2i +
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j, 12k + 16 + 4i + j) − (2k + 1 − i + j)m1 | i = 0, 1, . . . , 2k, j = 0, 1, . . . , 24k + 20}
⋃
{(j, 8k + 8 + j, 10k + 9 + j)− (12k + 11 + j)m1, (j, 18k + 16 + j, 6k + 4 + j)− (6k +

6+ j)m1 | j = 0, 1, . . . , 24k +20}. In each of Cases 1–6, the given set of blocks forms a

decomposition of Dv where V (Dv) = {0, 1, . . . , v − 1} and vertex labels in the blocks

are reduced modulo v.

Case 7. Suppose v ≡ 0 (mod 24), say v = 24k.

Consider the blocks: {(j, 4k + 4 + 2i + j, 8k + 2 + i + j) − (20k − 4 − 4i + j)m1 | i =

0, 1, . . . , 2k−1, j = 0, 1, . . . , 24k−2}
⋃
{(j, 8k+4+2i+j, 10k+2+i+j)−(8k−i+j)m1 |

i = 0, 1, . . . , 2k − 3, , j = 0, 1, . . . , 24k − 2}
⋃
{(j, 18k + 6 + 2i+ j, 12k +14 +4i + j)−

(2k − 1 − i + j)m1 | i = 0, 1, . . . , 2k − 4, j = 0, 1, . . . , 24k − 2}
⋃
{(j,∞, 2 + j) − (1 +

j)m1, (j, 4k+2+j, 8k+1+j)− (20k−1+j)m1 , (j, 18k+j, 6k−2+j)− (6k+2+ j)m1,

(j, 18k + 2 + j, 6k − 4 + j)− (6k + 1 + j)m1, (j, 18k + 4 + j, 6k − 6 + j)− (6k + j)m1 |

j = 0, 1, . . . , 24k − 2}.

Case 8. Suppose v ≡ 4 (mod 24), say v = 24k + 4.

Consider the blocks: {(j, 4k + 2 + 2i + j, 8k + 2 + i + j) − (20k − 4i + j)m1 | i =

0, 1, . . . , 2k−1, j = 0, 1, . . . , 24k+2}
⋃
{(j, 8k+4+2i+j, 10k+3+i+J)−(8k+1−i+

j)m1 | i = 0, 1, . . . , 2k−2, j = 0, 1, . . . , 24k+2}
⋃
{(j, 18k+10+2i+j, 12k +18+4i+

j)−(2k−1−i+j)m1 | i = 0, 1, . . . , 2k−4, j = 0, 1, . . . , 24k+2}
⋃
{(j,∞, 2+j)−(1+

j)m1, (j, 8k+2+j, 10k+2+j)−(12k+2+j)m1, (j, 18k+4+j, 6k−2+j)−(6k+2+j)m1,

(j, 18k + 6 + j, 6k − 4 + j)− (6k + 1 + j)m1, (j, 18k + 8 + j, 6k − 6 + j)− (6k + j)m1 |

j = 0, 1, . . . , 24k + 2}.

Case 9. Suppose v ≡ 8 (mod 24), say v = 24k + 8.

Consider the blocks: {(j, 4k + 2 + 2i + j, 8k + 3 + i + j) − (20k + 2 − 4i + j)m1 |
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i = 0, 1, . . . , 2k − 1, j = 0, 1, . . . , 24k + 6}
⋃
{(j, 8k + 4 + 2i + j, 10k + 4 + i + j) −

(8k + 2 − i + j)m1 | i = 0, 1, . . . , 2k − 1, j = 0, 1, . . . , 24k + 6}
⋃
{(j, 18k + 11 +

2i + j, 12k + 16 + 4i + j) − (2k − i + j)m1 | i = 0, 1, . . . , 2k − 3, j = 0, 1, . . . , 24k + 6}
⋃
{(j,∞, 2+j)−(1+j)m1, (j, 8k+2+j, 10k+3+j)−(12k+4+j)m1, (j, 18k+7+j, 6k−

1+j)−(6k+2+j)m1, (j, 18k+9+j, 6k−3+j)−(6k+1+J)m1 | j = 0, 1, . . . , 24k+6}.

Case 10. Suppose v ≡ 12 (mod 24), say v = 24k + 12.

Consider the blocks: {(j, 4k + 6 + 2i + j, 8k + 6 + i + j) − (20k + 6 − 4i + j)m1 | i =

0, 1, . . . , 2k, j = 0, 1, . . . , 24k+10}
⋃
{(j, 8k+8+2i+j, 10k+7+i+j)−(8k+4−i+j)m1 |

i = 0, 1, . . . , 2k − 2, j = 0, 1, . . . , 24k + 10}
⋃
{(j, 18k + 15 + 2i + j, 6k − 5− 2i + j)−

(2k − i + j)m1 | i = 0, 1, . . . , 2k − 3, j = 0, 1, . . . , 24k + 10}
⋃
{(j,∞, 2 + j) − (1 +

j)m1, (j, 4k+4+j, 8k+5+j)−(20k+9+j)m1, (j, 18k+9+j, 6k+1+j)−(6k+5+j)m1,

(j, 18k+11+j, 6k−1+j)−(6k+9+j)m1, (j, 18k+13+j, 6k−3+j)−(6k+3+j)m1 |

j = 0, 1, . . . , 24k + 10}.

Case 11. Suppose v ≡ 16 (mod 24), say v = 24k + 16.

Consider the blocks: {(j,∞, 2 + j) − (1 + j)m1, (j, 8k + 6 + j, 10k + 7 + j) − (12k +

8 + j)m1, (j, 18k + 13 + j, 6k + 1 + j)− (6k + 5 + j)m1, (j, 18k + 15 + j, 6k − 1 + j)−

(6k + 4 + j)m1, (j, 18k + 17 + j, 6k − 3 + j)− (6k + 3 + j)m1 | j = 0, 1, . . . , 24k + 14}
⋃
{(j, 4k + 4 + 2i + j, 8k + 6 + i + j) − (20k + 10 − 4i + j)m1 | i = 0, 1, . . . , 2k, j =

0, 1, . . . , 24k + 14}
⋃
{(j, 8k + 8 + 2i + j, 10k + 8 + i + j) − (8k + 5 − i + j)m1 | i =

0, 1, . . . , 2k−1, j = 0, 1, . . . , 24k +14}
⋃
{(j, 18k +19+2i+ j, 6k −5−2i+ j)− (2k −

i + j)m1 | i = 0, 1, . . . , 2k − 3, j = 0, 1, . . . , 24k + 14}.

Case 12. Suppose v ≡ 20 (mod 24), say v = 24k + 20.

Consider the blocks: {(j, 4k + 4 + 2i + j, 8k + 7 + i + j)− (20k + 12 − 4i + j)m1 | i =
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0, 1, . . . , 2k, j = 0, 1, . . . , 24k+18}
⋃
{(j, 8k+8+2i+j, 10k+9+i+j)−(8k+6−i+j)m1 |

i = 0, 1, . . . , 2k, j = 0, 1, . . . , 24k +18}
⋃
{(j, 18k +20+2i+ j, 6k −2−2i+ j)− (2k +

1−i+j)m1 | i = 0, 1, . . . , 2k−2, j = 0, 1, . . . , 24k+18} {j,∞, 2+j)−(1+j)m1, (j, 8k+

6 + j, 10k + 8 + j) − (12k + 10 + j)m1, (j, 18k + 16 + j, 6k + 2 + j) − (6k + 5 + j)m1

(j, 18k + 18 + j, 6k + j) − (6k + 4 + j)m1 | j = 0, 1, . . . , 24k + 18}.

In each of Cases 7–12, the given set of blocks forms a decomposition of Dv where

V (Dv) = {∞, 0, 1, . . . , v−2} and the numerical vertex labels in the blocks are reduced

modulo v − 1.

Corollary 2.2 A m2-decomposition of Dv exists if and only if v ≡ 0 or 1 (mod 4).

Proof. The necessary condition follows as in Theorem 2.1. Since the converse of

m1 is m2 and the Dv is self converse, the result follows trivially from Theorem 2.1.
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3 PACKINGS AND COVERINGS

In this chapter, we will target the following question: “When a decomposition does

not exist, how close to it can we get?” There are two approaches to this question:

packings and coverings. A g-packing of a directed graph D with isomorphic copies

of a graph g is a set {g1, g2, ..., gn} where gi
∼= g and V (gi) ⊂ V (D) for all i and

A(gi) ∩ A(gj) = φ for i 6= j and
⋃n

i gi ⊂ D and

|A(l)| = |A(D)/
n⋃

i

gi|

is minimal , where V (D) is the vertex set and A(D) is the arc set of the graph D.

The leave of the packing is represented by l. The packings are said to be maximal

(optimal) when the leave is minimal. Maximum packings of complete graphs with

hexagons was studied by J. Kennedy [10, 11]. Gardner, Gwellem and Lewenczuk

studied maximal cyclic C4 packings of complete graphs [7]. Maximal packings of

complete digraphs Dv with 3-circuit and transitive triples have been studied by R.

Gardner [6]. In his studies, he came out with the following results.

Theorem 3.1 [6] A maximal packing of Dv, where v 6= 6, with copies of the 3-circuit,

C3, and a leave l satistfies:

1) |A(l)| = 0 if v ≡ 0 or 1 (mod 3), v 6= 6 or

2) |A(l)| = 2 and l=C2 if v ≡ 2 (mod 3) .

Theorem 3.2 [6] A maximal packing of Dv, where v 6= 6, with copies of the transitive

triple, T , and a leave l satisfies:

1) |A(l)| = 0 if v ≡ 0 or 1 (mod 3), or

2) |A(l)| = 2 and l=C2 if v ≡ 2 (mod 3) .
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A g-covering of a directed graph D with isomorphic copies of a graph g is a set

{g1, g2, . . . , gn} where gi
∼= g and V (gi) ⊂ V (D) for all i, G ⊂ ∪n

i=1gi, and

|A(P )| = |∪n
i=1A(gi) \ A(D)|

The graph P is called the padding of the covering. The covering is said to be minimal

if the padding is minimal. J. Kennedy explored minimal coverings of complete graphs

with hexagons [12]. Minimal cyclic C4 coverings of complete graphs was studied by

Gardner, Gwellem and Lewenczuk [7]. R. Gardner studied the minimal coverings

problem of complete digraph Dv with 3-circuit and transitive triples and came out

with the following theorems [6].

Theorem 3.3 [6] A minimal covering of Dv, where v 6= 6, with copies of the 3-

circuit, C3, and padding P satisfies:

1) |A(P )| = 0 if v ≡ 0 or 1 (mod 3), v 6= 6 or

2) |A(l)| = 3 and P=C3 if v = 6, or

3) |A(P )| = 4 if v ≡ 2 (mod 3) and P may be two disjoint copies of C2, a 4-circuit

or two osculating 2-circuits OC2.

Theorem 3.4 [6] A minimal covering of Dv, where v 6= 6, with copies of the transi-

tive triple ,T , and padding P satisfies:

1) |A(P )| = 0 if v ≡ 0 or 1 (mod 3), or

2) |A(P )| = 4 if v ≡ 2 (mod 3) and P may be two disjoint copies of C2, any

orientation of a 4-cycle or two isolating 2-circuits OC2.

The main purpose of this chapter is to carry out maximal packings and minimal
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coverings of complete digraph, Dv, with m1 and m2. This work is accomplished by

the following main theorems, corollaries and proofs.

Theorem 3.5 A maximal m1-packing of Dv with leave L satisfies

1) |A(L)| = 0 if v ≡ 0 or 1 (mod 4), and

2) |A(L)| = 2 if v ≡ 2 or 3 (mod 4).

Proof. If v ≡ 0 or 1 (mod 4), then there is a decomposition by Theorem 2.1 and the

result follows. For v ≡ 2 or 3 (mod 4), we consider several cases.

We need to put in the packing for D7 since we have seven fixed points in each of the

cases of v ≡ 2 (mod 4). Here is the packing of D7 with m1’s: We first of all keep two

of the vertices as fixed points and call them ∞1 and ∞2. The 10 m1’s are: (0 3 ∞1)

- (4), (1 4 ∞1) - (0), (2 0 ∞1) - (1), (3 1 ∞1) - (2), (4 2 ∞1) - (3), (0 2 ∞2) - (1), (1

3 ∞2) - (2), (2 4 ∞2) - (3), (3 0 ∞2) - (4), (4 1 ∞2) - (0)

Leave = {[∞1 ∞2], [∞2 ∞1]}.

Case 1. Suppose v ≡ 2 (mod 12), say v = 12k + 2. Consider the blocks:

{(j, 9k − 7− 2i + j,∞i+1)− (3k + 1 + 2i + j)m1 | i = 0, 1, 2, 3, 4, j = 0, 1, . . . , 12k − 6}
⋃
{j, 9k+3+ j,∞6)− (3+ j)m1, (j, 12k−7+ j,∞7)− (1+ j)m1 | j = 0, 1, . . . , 12k−6}

⋃
{(j, 1+i+j, 6k−3−i+j)−(6k−2+2i+j)m1 | i = 0, 1, . . . , 6, j = 0, 1, . . . , 12k−6}

⋃
{(j, k + 3 − i + j, 5k − 8 + i + j) − (10k − 8 − 4i + j)m1 | i = 0, 1, . . . , k − 5, j =

0, 1, . . . , 12k − 6}
⋃
{(j, 6k − 19 − 4i + j, 3k − 10 + 2i + j) − (k − 1 − i + j)m1 | i =

0, 1, . . . , k−5, j = 0, 1, . . . , 12k−6}
⋃
{(j, 2k−1−i+j, 4k−1+i+j)−(4k−2−i+j)m1 |

i = 0, 1, . . . , k − 5, j = 0, 1, . . . , 12k − 6}.

Case 2. Suppose v ≡ 6 (mod 12), say v = 12k + 6.
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Consider the blocks: {(j, 9k−5+2i+j,∞1+i)−(3k+3−2i+j)m1 | i = 0, 1, . . . , 4, j =

0, 1, . . . , 12k−2}
⋃
{(j, 9k+5+j,∞6)− (3+j)m1, (j, 12k−3+j,∞7)− (1+j)m1 | j =

0, 1, . . . , 12k−2}
⋃
{(j, 6k−15+j, 3k−8+j)−(6k+j)m1, (j, k+3+j, 5k−3+j)−(10k−

1+j)m1 | j = 0, 1, . . . , 12k−2}
⋃
{(j, 1+ i+j, 6k−1− i+j)− (6k+2+2i+j)m1 | i =

0, 1, . . . , 5, j = 0, 1, . . . , 12k−2}
⋃
{(j, 2k−1−i+j, 4k+1+i+j)−(4k−i+j)m1 | i =

0, 1, . . . , k−5, j = 0, 1, . . . , 12k−2}
⋃
{(j, k+2−i+j, 5k−2+i+j)−(10k−4−4i+j)m1 |

i = 0, 1, . . . , k − 5, j = 0, 1, . . . , 12k − 2}
⋃
{(j, 6k − 19 − 4i + j, 3k − 10 − 2i + j) −

(k − 1 − i + j)m1 | i = 0, 1, . . . , k − 5, j = 0, 1, . . . , 12k − 2}.

Case 3. Suppose v ≡ 10 (mod 12), say v = 12k + 10.

Consider the blocks: {(j, 9k−1+2i+j,∞i+1)−(3k+3−2i+j)m1 | i = 0, 1, 2, 3, 4, j =

0, 1, . . . , 12k+2}
⋃
{(j, 9k+9+j,∞6)− (3+j)m1, (j, 12k+1+j,∞7)− (1+j)m1 | j =

0, 1, . . . , 12k +2}
⋃
{(j, 6k−15+ j, 3k−8+ j)− (6k +1+ j)m1 | j = 0, 1, . . . , 12k +2}

⋃
{(j, 1+i+j, 6k+1−i+j)−(6k+4+2i+j)m1 | i = 0, 1, . . . , 6, j = 0, 1, . . . , 12k+2}

⋃
{(j, k+3−i+j, 5k+5+i+j)−(10k−4i+j)m1 | i = 0, 1, . . . , k−5, j = 0, 1, . . . , 12k+2}

⋃
{(j, 2k−i+j, 4k+2+i+j)−(4k+1−i+j)m1 | i = 0, 1, . . . , k−5, j = 0, 1, . . . , 12k+2}

⋃
{(j, 6k − 19 − 4i + j, 3k − 10 − 2i + j) − (k − 1 − i + j)m1 | i = 0, 1, . . . , k − 5, j =

0, 1, . . . , 12k + 2}.

In each of the cases below we need to put in the packing for D6 since we have six

fixed points in the cases of v ≡ 3 (mod 4). Here is the packing of D6 with m1’s. The

7 m1’s are: (0 1 5) - (2), (0 5 1) - (3), (4 0 2) - (1), (4 1 3) - (0), (3 5 4) - (0), (5 3 2)

- (4), (2 3 1) - (5)

Leave = {[4 2], [2 1]}.

Case 4. Suppose v ≡ 3 (mod 12), say v = 12k + 3.
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Consider the blocks: {(j, 9k−6+2i+j,∞1+i)−(3k+2−2i+j)m1 | i = 0, 1, 2, 3, 4, j =

0, 1, . . . , 12k−4}
⋃
{(j, 12k−5+j,∞6)−(1+j)m1, (j, 1+j, 6k−3+j)−(6k−1+j)m1, j =

0, 1, . . . , 12k−4}
⋃
{(j, 2+i+j, 6k−4−i+j)−(6k−2+2i+j)m1 | i = 0, 1, . . . , 6, j =

0, 1, . . . , 12k−4}
⋃
{(j, k+4−i+j, 5k−6+i+j)−(10k−6−4i)m1 | i = 0, 1, . . . , k−5, j =

0, 1, . . . , 12k − 4}
⋃
{(j, 2k − 1 − i + J, 4k − 1 + i + j) − (4k − 2 − i + j)m1 | i =

0, 1, . . . , k−6, j = 0, 1, . . . , 12k−4}
⋃
{(j, 6k−15−4i+j, 3k−8−2i+j)−(k−1−i+j)m1 |

i = 0, 1, . . . , k − 1, j = 0, 1, . . . , 12k − 4}.

Case 5. Suppose v ≡ 7 (mod 12), say v = 12k + 7.

Consider the blocks: {(j, 9k−4+2i+j,∞i+1)−(3k+4−2i+j)m1 | i = 0, 1, 2, 3, 4, j =

0, 1, . . . , 12k}
⋃
{(j, 12k − 1 + j,∞6) − (1 + j)m1, (j, k + 3 + j, 5k − 5 + j) − (10k +

1 + j)m1, (0, 6k − 11, 3k − 6) − (6k + 1)m1 | j = 0, 1, . . . , 12k}
⋃
{(j, 1 + i + j, 6k −

1 − i + j) − (6k + 2i + j)m1 | i = 0, 1, 2, 3, 4, 5, j = 0, 1, . . . , 12k}
⋃
{(j, k + 3 −

i + j, 5k − 3 + i + j) − (10k − 2 − 4i + j) | i = 0, 1, . . . , k − 4, j = 0, 1, . . . , 12k}
⋃
{(j, 2k−1−i+j, 4k+1+i+j)−(4k−i+j)m1 | i = 0, 1, . . . , k−6, j = 0, 1, . . . , 12k}

⋃
{(j, 6k − 15 − 4i + j, 3k − 8 − 2i + j) − (k − 1 − i + j)m1 | i = 0, 1, . . . , k − 4, j =

0, 1, . . . , 12k}.

Case 6. Suppose v ≡ 11 (mod 12), say v = 12k + 11.

Consider the blocks: {(j, 9k + 2i + j,∞i+1)− (3k + 4− 2i + j)m1 | i = 0, 1, 2, 3, 4, j =

0, 1, . . . , 12k +4}
⋃
{(j, 12k +4+ j,∞6)− (1+ j)m1, (j, 6k−11+ j, 3k −6+ j)− (6k +

3+j)m1 | j = 0, 1, . . . , 12k+4}
⋃
{(j, 1+ i+j, 6k+1− i+j)− (6k+2+2i+j)m1 | i =

0, 1, . . . , 6, j = 0, 1, . . . , 12k+4}
⋃
{(j, k+4−i+j, 5k−2+i+j)−(10k+2−4i+j)m1 | i =

0, 1, . . . , k−4, j = 0, 1, . . . , 12k+4}
⋃
{(j, 2k−i+j, 4k+2+i+j)−(4k+1−i+j)m1 | i =

0, 1, . . . , k−5, j = 0, 1, . . . , 12k+4}
⋃
{(j, 6k−11−4i+j, 3k−4−2i+j)−(k−1−i+j)m1 |
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i = 0, 1, . . . , k − 5, j = 0, 1, . . . , 12k + 4}.

�

Corollary 3.6 A maximal m2-packing of Dv with leave L satisfies

(i) |A(L)| = 0 if v ≡ 0 or 1 (mod 4), and

(ii) |A(L)| = 2 if v ≡ 2 or 3 (mod 4).

Proof. Since the converse of m1 is m2 and the Dv is self converse, the result follows

trivially from Theorem 3.5. �

Corollary 3.7 A minimal m1-covering of Dv with padding P satisfies

(i) |A(P )| = 0 if v ≡ 0 or 1 (mod 4), and

(ii) |A(P )| = 2 if v ≡ 2 or 3 (mod 4).

Proof. What needs to be added is just the covering of D7 for v ≡ 2 (mod 4) and D6

for v ≡ 3 (mod 4) and the result follows trivially from Theorem 3.5.

Here is the covering of D7 with m1’s: The 11 m1’s are: (0 6 1) - (4), (0 1 6) - (2),

(5 1 3) - (0), (5 0 2) - (1), (4 3 0) - (6), (3 4 6) - (0), (3 6 2) - (5), (5 2 4) - (6), (4 2

1) - (5), (6 3 2) - (5), (1 5 2) - (4)

Padding= {[6 3], [5 3]}.

Here is the covering of D6 with m1’s: The 8 m1’s are: (0 1 5) - (2), (0 5 1) - (3),

(4 0 2) - (1), (4 1 3) - (0), (3 5 4) - (0), (5 3 2) - (4), (2 3 1) - (5), (2 1 3) - (4)

Padding = {[1 3], [3 2]}.
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Corollary 3.8 A minimal m2-covering of Dv with padding P satisfies

(i) |A(P )| = 0 if v ≡ 0 or 1 (mod 4), and

(ii) |A(P )| = 2 if v ≡ 2 or 3 (mod 4).

Proof. What needs to be added is just the covering of D7 for v ≡ 2 (mod 4) and D6

for v ≡ 3 (mod 4) and the result follows trivially from Theorem 3.5 and Corollary 3.7

since the converse of m1 is m2 and the Dv is self converse. �
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4 CONCLUSION

In this thesis, we studied decompositions, packings and coverings of complete digraphs

with a 3-circuit and a pendent arc. We outlined the necessary and sufficient conditions

for a decomposition and this exists if and only if v ≡ 0 or 1 (mod 4). For v ≡ 2 or 3

(mod 4) we showed that maximal packings and minimal coverings exist with a leave

of size two and a padding of size two respectively.
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