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ABSTRACT

Estimating the Difference of Percentiles from Two Independent Populations

by

Romual E. Tchouta

We first consider confidence intervals for a normal percentile, an exponential percentile

and a uniform percentile. Then we develop confidence intervals for a difference of

percentiles from two independent normal populations, two independent exponential

populations and two independent uniform populations. In our study, we mainly focus

on the maximum likelihood to develop our confidence intervals. The efficiency of this

method is examined via coverage rates obtained in a simulation study done with the

statistical software R.
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1 INTRODUCTION

Percentiles are very important in both descriptive and inferential data analysis.

They are used to describe key aspects of a distribution such as central tendency and

spread. The most common percentiles are listed in the five number summary: the

minimum, the 25th percentile (called the first quartile), the 50th percentile (called

the median), the 75th percentile (called the third quartile) and the maximum. The

inter-quartile range (which is the difference between the third and first quartiles) is

often used as a measure of spread of a distribution. Percentiles are used in several

fields of study. For example, standardized tests like SAT, GRE, GMAT, etc. often

report a student’s performance using percentiles[3]. The median household income

is commonly cited in economic statistics. In insurance, percentiles are used to set

premiums.

A considerable amount of work has been done on statistical inference for per-

centiles. Methods, tests and confidence intervals have been developed for situa-

tions when the underlying distribution is unknown: these are called distribution-

free methods. Some of these include order statistics; see, for example, Gibbons and

Chakraborti[2]. Another popular method that plays a useful role in computing is

called bootstrapping; see for example, Efron and Tibshirani[5].

The study of the difference in percentiles may be of interest when we want to

compare two populations in terms of percentiles. A good example to illustrate the

need to estimate the difference in percentiles would be comparing the typical student’s

performances (e.g. 70th percentiles) between 2 groups. Usually, we consider the
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difference in means to compare two groups. There has been work comparing medians

between two independent groups; see, for example, Price and Bonett[1]. In this thesis,

we consider three distributions: the normal distribution, the exponential distribution

and the uniform distribution. For each of these, we want to find confidence intervals

for the difference in percentiles when the underlying distributions are independent.

We focus on maximum likelihood to develop an approximate (1−α)100% confidence

interval for the difference of percentiles. The form of the interval will be estimator ±

zα/2 ∗ standard error.

1.1 Basic Definitions

A population parameter is a value used to represent a certain quantifiable char-

acteristic of a population. As an example, the family of normal distributions has

two parameters, the mean and the variance. Other examples of parameters are the

standard deviation, the median, percentiles, and proportions.

An estimator is any quantity calculated from the sample data which is used to give

information about a population parameter. For example, the usual estimator of the

population mean is µ̂ = X =

n∑
i=1

Xi

n
where n is the size of the sample X1, X2, . . . , Xn

taken from the population.

An estimator θ̂ of a parameter θ is said to be unbiased if the expectation, E(θ̂),

of θ̂ is equal to θ. Otherwise, it is biased. For example, the sample mean X is an

unbiased estimator of the population mean µ.

An estimator θ̂ of a parameter θ is said to be asymptotically unbiased if E(θ̂) → θ

10



as n → ∞, where n is the sample size.

For a given proportion ρ, a confidence interval for a population parameter is

an interval that is calculated from a random sample of the underlying population

such that, if the sampling was repeated numerous times and the confidence interval

re calculated from each sample according to the same method, proportion ρ of the

confidence intervals would contain the parameter. For example, the interval [a, b] is

a 95% confidence interval for the population mean µ if by repetition, in 95% of the

cases, µ lies between a and b.

A (100p)th percentile is a value, kp, such that at most (100p)% of the observations

are less than this value and at most 100(1−p)% are greater. That is, given a random

variable X with p.d.f. f(x) and c.d.f. F (x), the (100p)th percentile is the number

kp such that p =
∫ kp

−∞ f(x)dx = F (kp). For instance, the 65th percentile is the value

below which 65% of the observations may be found.

Let X be a random variable which has a normal distribution with mean µ and

standard deviation σ. Then the probability density function of X is given by [7]

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, σ > 0,−∞ < µ < ∞,−∞ < x < ∞. (1)

Let Y be a random variable which has an exponential distribution with mean θ.

Then the probability density function of Y is given by [6]

g(y) =
1

θ
e−y/θ, 0 ≤ y < ∞. (2)

Let Z be a random variable which has a uniform distribution with interval of

support [a, b]. Then the probability density function of Z is given by

h(z) =
1

b − a
, a ≤ z ≤ b. (3)
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1.2 Maximum Likelihood Estimator

Let X1, X2, . . . , Xn be a random sample from a distribution that depends on one or

more unknown parameters θ1, θ2, . . . , θm with p.m.f. or p.d.f. denoted by f(x; θ1, θ2,

. . . , θm). Suppose that (θ1, θ2, . . . , θm) is restricted to a parameter space Ω. Then the

joint p.m.f. or p.d.f. of X1, X2, . . . , Xn, namely

L(θ1, θ2, . . . , θm) = f(x1; θ1, θ2, . . . , θm)f(x2; θ1, θ2, . . . , θm) · · · f(xm; θ1, θ2, . . . , θm)

where (θ1, θ2, . . . , θm) ∈ Ω, when regarded as a function of θ1, θ2, . . . , θm, is called

the likelihood function.

Say [u1(x1, x2, . . . , xn), u2(x1, x2, . . . , xn), . . . , um(x1, . . . , xn)] is that m−tuple in

Ω that maximizes L(θ1, θ2, . . . , θm). Then

θ̂1 = u1(X1, X2, . . . , Xn)

θ̂2 = u2(X1, X2, . . . , Xn)

...

θ̂m = um(X1, X2, . . . , Xn)

are maximum likelihood estimators of θ1, θ2, . . . , θm, respectively; and the correspond-

ing observed values of these statistics, namely u1(x1, x2, . . . , xn), u2(x1, x2, . . . , xn)

,. . . , um(x1, x2, . . . , xn), are called maximum likelihood estimates. In many practical

cases, these estimators (and estimates) are unique.

For many applications there is just one unknown parameter. In these cases the
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likelihood function is given by

L(θ) =
n∏

i=1

f(xi; θ). (4)

As an illustration, let X1, X2, . . . , Xn be a random sample from the geometric

distribution with p.m.f. f(x; p) = (1 − p)x−1p, where x = 1, 2, 3, · · · . The likelihood

function is given by

L(p) = (1 − p)x1−1p(1 − p)x2−1p · · · (1 − p)xn−1p

= pn(1 − p)

n∑
i=1

xi−n
, 0 ≤ p ≤ 1. (5)

The natural logarithm of L(p) is

ln L(p) = n ln p +
( n∑

i=1

xi − n
)

ln(1 − p), 0 < p < 1. (6)

Thus restricting p to 0 < p < 1 so as to be able to take the derivative, we have

d lnL(p)

dp
=

n

p
−

n∑
i=1

xi − n

1 − p
= 0.

Solving for p, we obtain

p =
n

n∑
i=1

xi

=
1

x̄
(7)

and this solution provides a maximum. So the maximum likelihood estimator of p is

p̂ =
n

n∑
i=1

Xi

=
1

X
. (8)
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2 CONFIDENCE INTERVAL FOR THE DIFFERENCE OF PERCENTILES

FROM TWO NORMAL DISTRIBUTIONS

2.1 Confidence Interval of a Normal Distribution Percentile

Let X be a random variable which has a normal distribution with mean µ and

variance σ2. Then the p.d.f. of X is given by

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , −∞ < x < ∞. (9)

Let kp denote the (100p)th percentile of X. Then

kp = µ + Zpσ (10)

where Zp denotes the (100p)th percentile of the standard normal distribution N(0, 1)

[3]. Since µ and σ are unknown, we need to find estimators for those parameters.

Proposition 2.1 Given a random sample X1, X2, . . . , Xn from a normal distribution

N(µ, σ2), the maximum likelihood estimator of µ is the sample mean X = 1
n

n∑
i=1

Xi.

Proof.

The likelihood function is given by

L(µ) =
1

σ
√

2π
e−

(x1−µ)2

2σ2
1

σ
√

2π
e−

(x2−µ)2

2σ2 · · · 1

σ
√

2π
e−

(xn−µ)2

2σ2

=

(
1

σ
√

2π

)n

e−

n∑
i=1

(xi−µ)2

2σ2 (11)
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The natural logarithm of L(µ) is

ln L(µ) = n ln

(
1

σ
√

2π

)
− 1

2σ2

n∑

i=1

(xi − µ)2. (12)

Thus taking the derivative of ln L(µ) with respect to µ, we have

d lnL(µ)

dµ
=

2

2σ2

n∑

i=1

(xi − µ)

=
1

σ2

n∑

i=1

(xi − µ)

=

n∑
i=1

xi − nµ

σ2
= 0, σ 6= 0. (13)

Solving for µ, we obtain

µ =
1

n

n∑

i=1

xi (14)

and this provides a maximum. So the maximum likelihood estimator for µ is

µ̂ =
1

n

n∑

i=1

Xi = X � (15)

Moreover, X is an unbiased estimator of µ since E(X) = µ.

Lemma 2.2 Let X1, X2, . . . , Xn be a random sample of size n from a normal distri-

bution N(µ, σ2). Then the distribution of (n− 1)S2/σ2 is χ2(n− 1), where χ2(n− 1)

is a Chi-square distribution with n-1 degrees of freedom [6].

Proposition 2.3 Let X1, X2, . . . , Xn be a random sample of size n from a normal

distribution N(µ, σ2). Then the sample variance S2 =

n∑
i=1

(Xi−X)2

n−1
is an unbiased esti-

mator of σ2.
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Proof.

By Lemma 2.2, the distribution of (n − 1)S2/σ2 is χ2(n − 1). Therefore

E

(
(n − 1)S2

σ2

)
= E

(
χ2(n − 1)

)

n − 1

σ2
E(S2) = n − 1

E(S2) = σ2 � (16)

Proposition 2.4 cS is an unbiased estimator for σ, where c =
√

n−1
2

Γ(n−1
2

)/ Γ(n
2
).

Proof.

We need to show that E(cS) = σ, i.e. E(S) = σ
c
. We know from Lemma 2.2 that

χ2(n − 1) ∼ (n−1)S2

σ2 . So,
√

χ2(n − 1) ∼
√

n−1S
σ

.

Let’s find the p.d.f. of Y =
√

χ2(n − 1). Suppose f(x) and g(y) are p.d.f.’s of

χ2(n − 1) and
√

χ2(n − 1) respectively. Then

f(x) =
1

Γ(n−1
2

)2
n−1

2

x
n−1

2
−1 e−

x
2 , 0 ≤ x < ∞. (17)

Thus, by the change-of-variables technique we have,

g(y) =
1

Γ(n−1
2

)2
n−1

2

(y2)
n−1

2
−1 e−

(y2)
2 2y, 0 ≤ y < ∞. (18)

Now,

E(Y ) =

∫ ∞

0

y
1

Γ(n−1
2

)2
n−1

2

(y2)
n−1

2
−1 e−

y2

2 2ydy

=

∫ ∞

0

(y2)
1
2

1

Γ(n−1
2

)2
n−1

2

(y2)
n−3

2 e−
y2

2 2ydy

=

∫ ∞

0

1

Γ(n−1
2

)2
n−1

2

(y2)
n−2

2 e−
y2

2 2ydy
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Letting t = y2, dt = 2ydy and we obtain,

E(Y ) =

∫ ∞

0

1

Γ(n−1
2

)2
n−1

2

t
n−2

2 e−
t
2 dt

=

∫ ∞

0

1

Γ(n−1
2

)2
n−1

2

t
n
2
−1 e−

t
2 dt

=
1

Γ(n−1
2

)2
n−1

2

∫ ∞

0

t
n
2
−1 e−

t
2 dt

=
Γ(n

2
)2

n
2

Γ(n−1
2

)2
n−1

2

∫ ∞

0

t
n
2
−1 e−

t
2

Γ(n
2
)2

n
2

dt

︸ ︷︷ ︸
1

.

Hence,

E(Y ) =
Γ(n

2
)
√

2

Γ(n−1
2

)
(19)

Since Y =
√

χ2(n − 1) ∼
√

n−1S
σ

, E(Y ) =
√

n−1
σ

E(S) and therefore,

E(S) =
σE(Y )√

n − 1

=
σ√

n − 1

Γ(n
2
)
√

2

Γ(n−1
2

)

=
σ√
n−1

2

Γ(n
2
)

Γ(n−1
2

)

=
σ√

n−1
2

Γ(n−1
2

)

Γ(n
2
)

=
σ

c
. � (20)

Thus by Proposition 2.1 and Proposition 2.4, an unbiased estimator for kp is

k̂p = X + ZpcS (21)

Theorem 2.5 Let X1, X2, . . . , Xn be a random sample of size n from a normal dis-

tribution N(µ, σ2) where µ and σ2 are unknown. Then a (1 − α)100% confidence

17



interval for the (100p)th percentile, kp, is

(X + ZpcS) ± zα/2
S√
n

√
1 + nZ2

p(c2 − 1) (22)

where c =
√

n−1
2

Γ(n−1
2

)/ Γ(n
2
) and P (Z > zα/2) = α/2.

Proof.

A (1 − α)100% confidence interval for kp is k̂p ± zα/2

√
̂

V ar(k̂p) and by (21) k̂p =

X + ZpcS. So, all we need to show is that ̂V ar(k̂p) = S2

n

(
1 + nZ2

p(c
2 − 1)

)
.

V ar(k̂p) = V ar(X + ZpcS)

= V ar(X) + (cZp)
2V ar(S)

=
σ2

n
+ c2Z2

p

[
E(S2) − (E(S))2

]

=
σ2

n
+ c2Z2

p

[
σ2 − σ2

c2

]
by (16) and (20)

=
σ2

n

(
1 + nc2Z2

p(1 − 1

c2
)

)

=
σ2

n

(
1 + nZ2

p(c2 − 1)
)

(23)

Thus an estimator for V ar(k̂p) is

̂V ar(k̂p) =
S2

n

(
1 + nZ2

p(c2 − 1)
)

� (24)

2.2 Confidence Interval of the Difference of Percentiles from Two Normal

Percentiles

In this section, we consider two independent normal distributions N(µx, σ
2
x) and

N(µy, σ
2
y). The objective is to construct an approximate confidence interval for kp−k

′
p

18



where kp and k
′
p are the (100p)th percentiles of N(µx, σ

2
x) and N(µy, σ

2
y) respectively.

We will use the results obtained in the previous section.

Theorem 2.6 Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be 2 independent random sam-

ples of sizes n and m from the two normal distributions N(µx, σ
2
x) and N(µy, σ

2
y).

Let kp and k
′
p be the (100p)th percentiles of N(µx, σ

2
x) and N(µy, σ

2
y), respectively. An

approximate (1 − α)100% confidence interval for kp − k
′
p is

(
(X + ZpcnSx) − (Y + ZpcmSy)

)
±

zα/2

√
S2

x

n

(
1 + nZ2

p(c
2
n − 1)

)
+

S2
y

m

(
1 + mZ2

p(c
2
m − 1)

)
(25)

where Zp denotes the (100p)th percentile of the standard normal distribution N(0, 1),

cn =
√

n−1
2

Γ(n−1
2

)/ Γ(n
2
) and cm =

√
m−1

2
Γ(m−1

2
)/ Γ(m

2
).

Proof.

A (1 − α)100% confidence interval of kp − k
′
p is

I = k̂p − k′
p ± zα/2

√
̂

V ar(k̂p − k′
p) (26)

= k̂p − k̂
′

p ± zα/2

√
̂

V ar(k̂p − k̂′
p) (27)

= k̂p − k̂
′

p ± zα/2

√
̂V ar(k̂p) + ̂V ar(k̂′

p) (28)

Now, using the same concept as in equations (21) and (24) from the previous section
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we have

k̂p = X + ZpcnSx (29)

k̂
′

p = Y + ZpcmSy (30)

̂
V ar(k̂p) =

S2
x

n

(
1 + nZ2

p(c
2
n − 1)

)
(31)

̂
V ar(k̂′

p) =
S2

y

m

(
1 + mZ2

p(c2
m − 1)

)
(32)

and the result follows. �

2.3 Simulation Results

A simulation study was conducted to evaluate the coverage probabilities for the

90%, 95% and 99% confidence intervals for the difference in percentiles from two

normal populations. We used the statistical software R to simulate the random data

100,000 times (the R code is shown in Appendix A)[8]. The parameters for the two

normal distributions were fixed as follows: µ1 = 10, σ1 = 1, µ2 = 15 and σ2 = 4.
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Table 1: Empirical coverage Rates of 90%, 95% and 99% Confidence Intervals for

Difference in Percentiles from Two Normal Populations.

percentiles n m 90% 95% 99%

10 10 0.8731 0.9219 0.9699
50 10 0.8698 0.9190 0.9661

p = 0.25 50 50 0.8971 0.9443 0.9866
200 100 0.8987 0.9481 0.9883
500 500 0.8991 0.9487 0.9893
10 10 0.8691 0.9214 0.9729
50 10 0.8652 0.9286 0.9708

p = 0.5 50 50 0.8952 0.9455 0.9827
200 100 0.8956 0.9480 0.9887
500 500 0.9001 0.9495 0.9896
10 10 0.8729 0.9226 0.9705
50 10 0.8715 0.9282 0.9663

p = 0.75 50 50 0.8944 0.9449 0.9865
200 100 0.8969 0.9476 0.9884
500 500 0.8988 0.9495 0.9894
10 10 0.8776 0.9233 0.9659
50 10 0.8742 0.9273 0.9614

p = 0.9 50 50 0.8957 0.9443 0.9846
200 100 0.8970 0.9467 0.9874
500 500 0.9001 0.9508 0.9895
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3 CONFIDENCE INTERVAL FOR THE DIFFERENCE OF PERCENTILES

FROM TWO EXPONENTIAL DISTRIBUTIONS

3.1 Confidence Interval for an Exponential Distribution Percentile

Let X be a random variable which has an exponential distribution with mean θ

and variance θ2. Then the p.d.f. of X is given by

f(x) =
1

θ
e−

x
θ , 0 ≤ x < ∞. (33)

The (100p)th percentile of X is the number kp such that F (kp) = p. That is,

∫ kp

0

1

θ
e−

x
θ dx = p

1 − e−
kp
θ = p.

Solving for kp we obtain

kp = −θ ln(1 − p). (34)

But θ being an unknown parameter, we need to estimate it.

Proposition 3.1 Let X1, X2, . . . , Xn be a random sample of size n from an expo-

nential distribution with mean θ. The sample mean X = 1
n

n∑
i=1

Xi is the MLE of

θ.

Proof.
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The likelihood function is given by

L(θ) = L(θ; x1, x2, . . . , xn)

=

(
1

θ
e−x1/θ

) (
1

θ
e−x2/θ

)
· · ·

(
1

θ
e−xn/θ

)

=
1

θn
exp



−

n∑
i=1

xi

θ


 , 0 < θ < ∞. (35)

The natural logarithm of L(θ) is

ln L(θ) = −n ln(θ) − 1

θ

n∑

i=1

xi, 0 < θ < ∞. (36)

Thus,

d [ln L(θ)]

dθ
=

−n

θ
+

n∑
i=1

xi

θ2
= 0

Solving for θ, we obtain

θ =
1

n

n∑

i=1

xi. (37)

Hence, the maximum likelihood estimator for θ is

θ̂ = X =
1

n

n∑

i=1

Xi. � (38)

Also by the Central Limit Theorem, X is an unbiased estimator of θ. Thus an

unbiased estimator for kp is given by

k̂p = −X ln(1 − p). (39)

Theorem 3.2 Let X1, X2, . . . , Xn be a random sample from an exponential distribu-

tion with unknown mean θ. Then a (1 − α)100% confidence interval for the (100p)th

percentile, kp, is given by

−X ln(1 − p) ± zα/2| ln(1 − p)| X√
n

. (40)
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Proof.

A (1 − α)100% confidence interval for kp is k̂p ± zα/2

√
̂V ar(k̂p) and by (39) k̂p =

−X ln(1 − p). Also,

V ar(k̂p) = V ar(−X ln(1 − p))

= (ln(1 − p))2 V ar(X)

= (ln(1 − p))2 θ2

n
by the Central Limit Theorem. (41)

Thus,

̂V ar(k̂p) = (ln(1 − p))2 X
2

n
. (42)

Hence,

√
̂V ar(k̂p) = | ln(1 − p)| X√

n
. (43)

Therefore a (1 − α)100% confidence interval for kp is

−X ln(1 − p) ± zα/2| ln(1 − p)| X√
n

. � (44)

3.2 Confidence Interval for the Difference of Percentiles from Two Exponential

Distributions

In this section, we will consider two exponential distributions D1 and D2 with

respective unknown means θ1 and θ2. Our objective will be to find an approximate

confidence interval of kp - k′
p where kp and k′

p denote the (100p)th percentiles of D1 and

D2 respectively. For that purpose, we will use the results obtained on the previous

section.
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Theorem 3.3 Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be two independent random sam-

ples of sizes n and m from the two exponential distributions D1 and D2. Let kp and k′
p

be the (100p)th percentiles of D1 and D2 respectively. Then a (1−α)100% confidence

interval for kp − k′
p is given by

ln(1 − p)
(
Y − X

)
± zα/2| ln(1 − p)|

√
X

2

n
+

Y
2

m
(45)

where P (Z > zα/2) = α/2.

Proof.

By equation (25), a (1 − α)100% confidence interval for kp − k′
p is given by

k̂p − k̂′
p ± zα/2

√
̂V ar(k̂p) + ̂V ar(k̂′

p). (46)

From the results obtained in the previous section, we can establish the following

equations :

k̂p = −X ln(1 − p) (47)

k̂′
p = −Y ln(1 − p) (48)

̂V ar(k̂p) = (ln(1 − p))2X
2

n
(49)

̂
V ar(k̂′

p) = (ln(1 − p))2Y
2

m
. (50)

Thus a (1 − α)100% confidence interval for kp − k′
p is

(−X ln(1 − p)) − (−Y ln(1 − p)) ± zα/2

√

(ln(1 − p))2
X

2

n
+ (ln(1 − p))2

Y
2

m
.

And factoring out ln(1 − p) and | ln(1 − p)| , we obtain

ln(1 − p)
(
Y − X

)
± zα/2| ln(1 − p)|

√
X

2

n
+

Y
2

m
. �
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3.3 Simulation Results

A simulation study was conducted to evaluate the coverage probabilities for the

90%, 95% and 99% confidence intervals for the difference in percentiles from two

exponential populations. We used the statistical software R to simulate the random

data 100,000 times (the R code is shown in Appendix B)[8]. We fixed the parameters

of the exponential distributions to be θ1 = 10 and θ2 = 15.

Table 2: Empirical Coverage Rates of 90%, 95% and 99% Confidence Intervals for

Difference in Percentiles from Two Exponential populations.

percentiles n m 90% 95% 99%

10 10 0.9181 0.9632 0.9931
50 10 0.8779 0.9167 0.9597

p = 0.25 50 50 0.9051 0.9534 0.9908
200 100 0.8999 0.9479 0.9887
500 500 0.9003 0.9503 0.9898
10 10 0.9163 0.9626 0.9933
50 10 0.8803 0.9168 0.9591

p = 0.5 50 50 0.9033 0.9544 0.9910
200 100 0.8998 0.9500 0.9875
500 500 0.8997 0.9511 0.9901
10 10 0.9181 0.9621 0.9934
50 10 0.8815 0.9183 0.9595

p = 0.75 50 50 0.9030 0.9538 0.9907
200 100 0.8987 0.9497 0.9884
500 500 0.9017 0.9502 0.9907
10 10 0.9178 0.9619 0.9931
50 10 0.8796 0.9176 0.9587

p = 0.9 50 50 0.9038 0.9540 0.9910
200 100 0.9038 0.9540 0.9877
500 500 0.9002 0.9513 0.9901
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4 CONFIDENCE INTERVAL FOR THE DIFFERENCE OF PERCENTILES

FROM TWO UNIFORM DISTRIBUTIONS

4.1 Confidence Interval for a Uniform Distribution Percentile

Let X be a random variable which has a uniform distribution with interval of

support [a, b]. Then the p.d.f. of X is given by

f(x) =
1

b − a
, a ≤ X ≤ b. (51)

The (100p)th percentile of X is the number kp such that is F (kp) = p. That is,

∫ kp

a

1

b − a
= p

kp − a

b − a
= p.

Solving for kp, we have

kp = a + p(b − a). (52)

Thus, an estimator for kp is given by

k̂p = â + p(b̂ − â). (53)

We will use X(1) and X(n) as estimators for a and b. So let’s establish the following

proposition.

Proposition 4.1 Let X1, X2, . . . , Xn be a random sample from a uniform distribution

U(a, b) where [a, b] is the interval of support. Let the random variables X(1), X(2)
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, . . . , X(n) denote the order statistics of that sample.That is,

X(1) = smallest of X1, X2, . . . , Xn

X(2) = second smallest of X1, X2, . . . , Xn

...

X(n) = largest of X1, X2, . . . , Xn.

Then,

i) â = X(1) is an asymptotically unbiased estimator for a

ii) b̂ = X(n) is an asymptotically unbiased estimator for b.

Proof.

We need to show that lim
n→∞

E(X(1)) = a and lim
n→∞

E(X(n)) = b.

i) We first show that lim
n→∞

E(X(1)) = a. But before doing that, note that the p.d.f. of

X(1) is given by

g1(y) = n [1 − F (y)]n−1 f(y), a < y < b (54)

where f(y) is the p.d.f. of the Xi’s and F (y) is the c.d.f. of the Xi’s. In this case we

have

f(y) =
1

b − a
, a < y < b (55)

and

F (y) =

∫ y

a

1

b − a
dy

=
y − a

b − a
. (56)
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Thus,

g1(y) = n

(
1 − y − a

b − a

)n−1
1

b − a

= n

(
b − y

b − a

)n−1
1

b − a

=
n(b − y)n−1

(b − a)n
. (57)

Now, the expectation of X(1) is given by

E(X(1)) =

∫ b

a

yg1(y)dy

=

∫ b

a

y
n(b − y)n−1

(b − a)n
dy

=
n

(b − a)n

∫ b

a

y(b − y)n−1dy.

Using integration by parts with u = y, du = 1 and dv = (b − y)n−1, v = −(b−y)n

n
, we

obtain

E(X(1)) =
n

(b − a)n

[
−y(b − y)n

n
− (b − y)n+1

n(n + 1)

]b

a

=
1

(b − a)n

[
−y(b − y)n − (b − y)n+1

n + 1

]b

a

=
1

(b − a)n

(
0 −

(
−a(b − a)n − (b − a)n+1

n + 1

))

=
a(b − a)n

(b − a)n
+

(b − a)n+1

(n + 1)(b − a)n

= a +
b − a

n + 1
.

Hence,

lim
n→∞

E(X(1)) = lim
n→∞

a +
b − a

n + 1
= a. (58)
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ii) We now show that lim
n→∞

E(X(n)) = b. Note that the p.d.f. of X(n) is given by

gn(y) = n [F (y)]n−1 f(y), a < y < b (59)

= n

(
y − a

b − a

)n−1
1

b − a
by (52) and (53)

=
n(y − a)n−1

(b − a)n
. (60)

Thus, the expectation of X(n) is given by

E(X(n)) =

∫ b

a

ygn(y)dy

=

∫ b

a

y
n(y − a)n−1

(b − a)n
dy

=
n

(b − a)n

∫ b

a

y(y − a)n−1dy.

Using integration by parts with u = y, du = 1, dv = (y − a)n−1, v = (y−a)n

n
, we have

E(X(n)) =
n

(b − a)n

[
y(y − a)n

n
− (y − a)n+1

n(n + 1)

]b

a

=
1

(b − a)n

[
y(y − a)n − (y − a)n+1

n + 1

]b

a

=
1

(b − a)n

(
b(b − a)n − (b − a)n+1

n + 1
− 0

)

=
b(b − a)n

(b − a)n
− (b − a)n+1

(n + 1)(b − a)n

= b − b − a

n + 1
.

Hence,

lim
n→∞

E(X(n)) = lim
n→∞

b − b − a

n + 1
= b. � (61)

Therefore an estimator for kp is given by

k̂p = X(1) + (X(n) − X(1))p. (62)
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Theorem 4.2 Let X1, X2, . . . , Xn be a random sample from a uniform distribution

U(a, b) where [a, b] is the interval of support. Let the random variables X(1), X(2), . . . ,

X(n) denote the order statistics of that sample.That is,

X(1) = smallest of X1, X2, . . . , Xn

X(2) = second smallest of X1, X2, . . . , Xn

...

X(n) = largest of X1, X2, . . . , Xn.

Then a (1 − α)100% confidence interval of the (100p)th percentile,kp, of U(a, b) is

given by

X(1) +
(
X(n) − X(1)

)
p ± zα/2

X(n) − X(1)

n + 1

√
2p2(n − 1) − 2p(n − 1) + n

n + 2
. (63)

Proof.

A (1 − α) confidence interval for kp is k̂p ± zα/2

√
̂V ar(k̂p). By equation (59), k̂p =

X(1) + (X(n) − X(1))p; thus all we need to show is that

̂
V ar(k̂p) =

(X(n) − X(1))
2

(n + 1)2(n + 2)

(
2p2(n − 1) − 2p(n − 1) + n

)
. (64)

Now,

V ar(k̂p) = V ar
(
X(1) + (X(n) − X(1))p

)

= V ar
(
X(1) + X(n)p − X(1)p

)

= V ar
(
(1 − p)X(1) + pX(n)

)

= (1 − p)2V ar
(
X(1)

)
+ p2V ar

(
X(n)

)
+ 2p(1 − p)Cov

(
X(1), X(n)

)
.(65)
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Let’s find V ar
(
X(1)

)
, V ar

(
X(n)

)
and Cov

(
X(1), X(n)

)
.

V ar(X(1)) = E(X2
(1)) − (E(X(1)))

2

=

∫ b

a

y2n(b − y)n−1

(b − a)n
dy −

(
a +

b − a

n + 1

)2

. (66)

Using integration by parts we have

∫ b

a

y2n(b − y)n−1

(b − a)n
dy = a2 +

2a(b − a)

n + 1
+

2(b − a)2

(n + 1)(n + 2)
. (67)

So plugging equation (67) into equation (66) we obtain

V ar(X(1)) = a2 +
2a(b − a)

n + 1
+

2(b − a)2

(n + 1)(n + 2)
−

(
a2 +

2a(b − a)

n + 1
+

(b − a)2

(n + 1)2

)

=
2(b − a)2

(n + 1)(n + 2)
− (b − a)2

(n + 1)2

=
n(b − a)2

(n + 1)2(n + 2)
. (68)

Also,

V ar(X(n)) = E(X2
(n)) − (E(X(n)))

2

=

∫ b

a

ny2(y − a)n−1

(b − a)n
dy −

(
b − b − a

n + 1

)2

. (69)

Using integration by parts, we obtain

∫ b

a

ny2(y − a)n−1

(b − a)n
dy = b2 − 2b(b − a)

n + 1
+

2(b − a)2

(n + 1)(n + 2)
. (70)

Plugging equation (70) into (69) we have

V ar(X(n)) = b2 − 2b(b − a)

n + 1
+

2(b − a)2

(n + 1)(n + 2)
−

(
b2 − 2b(b − a)

n + 1
+

(b − a)2

(n + 1)2

)

=
2(b − a)2

(n + 1)(n + 2)
− (b − a)2

(n + 1)2

=
n(b − a)2

(n + 1)2(n + 2)
. (71)
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So we observe that V ar(X(1)) = V ar(X(n)) = n(b−a)2

(n+1)2(n+2)
. To find Cov

(
X(1), X(n)

)
,

we need to evaluate the joint probability of X(1) and X(n), fX(1),X(n)
, since we know

that

Cov(X(1), X(n)) = E(X(1), X(n)) − E(X(1))E(X(n))

=

∫ b

a

∫ y

a

xyfX(1),X(n)
dxdy − E(X(1))E(X(n)). (72)

Consider a random sample X1, X2, . . . , Xn from a normal distribution with interval

of support [a, b] which has p.d.f. f(x) and c.d.f. F (x). Let the random variables

X(1), X(2), . . . , X(n) be the order statistics of that sample. Then, the joint distribution

of any 2 order statistics X(i) and X(j) is given by [4]

fX(i),X(j)
=

n!

(i − 1)!(j − i − 1)!(n − j)!
(F (x))i−1 f(x)

× (F (x) − F (y))j−i−1 f(y) (1 − F (y))n−j . (73)

For i = 1 and j = n, we have

fX(1),X(n)
=

n!

(1 − 1)!(n − 1 − 1)!(n − n)!
(F (x))1−1 f(x)

× (F (x) − F (y))n−1−1 f(y) (1 − F (y))n−n

=
n!

0!(n − 2)!0!
(F (x))0 f(x) (F (x) − F (y))n−2 f(y) (1 − F (y))0

=
n!

(n − 2)!

(
x − a

b − a
− y − a

b − a

)n−2

= n(n − 1)
(x − y)n−2

(b − a)n
. (74)
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Thus,

Cov(X(1), X(n)) =

∫ b

a

∫ y

a

xyn(n − 1)
(x − y)n−2

(b − a)n
dxdy − E(X(1))E(X(n))

=
n(n − 1)

(b − a)n

∫ b

a

∫ y

a

xy(x − y)n−2dxdy − E(X(1))E(X(n)).

Evaluating the double integral above using integration by parts, we have

∫ b

a

∫ y

a

xy(x − y)n−2dxdy = ab(b−a)n

n(n−1)
− a(b−a)n+1

n(n−1)(n+1)
− b(b−a)n+1

n(n−1)(n+1)

− (b−a)n+2

n(n−1)(n+1)(n+2)
.

Thus,

n(n − 1)

(b − a)n

∫ b

a

∫ y

a

xy(x − y)n−2dxdy = ab +
(b − a)2

n + 2
. (75)

Also,

E(X(1))E(X(n)) =

(
a +

b − a

n + 1

) (
b − b − a

n + 1

)

= ab − a(b − a)

n + 1
+

b(b − a)

n + 1
− (b − a)2

(n + 1)2

= ab +
(b − a)2

n + 1
− (b − a)2

(n + 1)2

= ab +
n(b − a)2

(n + 1)2
. (76)

Combining equations (75) and (76), we have

Cov(X(1), X(n)) = ab +
(b − a)2

n + 2
− ab − n(b − a)2

(n + 1)2

=
(b − a)2

n + 2
− n(b − a)2

(n + 1)2

=
(b − a)2

(n + 1)2(n + 2)
(n + 1 − n)

=
(b − a)2

(n + 1)2(n + 2)
. (77)
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Hence, plugging equations (68), (71) and (77) into (65) we obtain

V ar(k̂p) = (1 − p)2 n(b − a)2

(n + 1)2(n + 2)
+ p2 n(b − a)2

(n + 1)2(n + 2)
+ 2p(1 − p)

(b − a)2

(n + 1)2(n + 2)

=
(b − a)2

(n + 1)2(n + 2)

(
n(1 − p)2 + np2 + 2p(1 − p)

)

=
(b − a)2

(n + 1)2(n + 2)

(
n − 2np + np2 + np2 + 2p − 2p2

)

=
(b − a)2

(n + 1)2(n + 2)

(
2p2(n − 1) − 2p(n − 1) + n

)
. (78)

Therefore,

̂V ar(k̂p) =
(X(n) − X(1))

2

(n + 1)2(n + 2)

(
2p2(n − 1) − 2p(n − 1) + n

)
. (79)

and the result follows. �

4.2 Confidence Interval of the Difference of Percentiles from Two Uniform

Distributions

In this section, we consider two uniform distributions U(a, b) and U(c, d) with intervals

of support [a, b] and [c, d], respectively. The objective is to find an approximate

confidence interval for kp − k′
p where kp and k′

p are the (100p)th percentiles of U(a, b)

and U(c, d), respectively. We will apply the results from the previous section to

construct an approximate confidence interval for the difference of percentiles.

Theorem 4.3 Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be two independent random sam-

ples of sizes n and m from two uniform distributions U(a,b) and U(c,d) with intervals

of support [a, b] and [c, d] respectively. Let the random variables X(1), X(2), . . . , X(n)

and Y(1), Y(2), . . . , Y(m) denote the order statistics of the first and second samples re-

spectively. Let kp and k′
p be the (100p)th percentiles of U(a, b) and U(c, d) respectively.
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Then a (1 − α)100% confidence interval for kp − k′
p is given by

(X(1) − Y(1)) +
[(

X(n) − Y(m)

)
−

(
X(1) − Y(1)

)]
p ± zα/2

×
(

(X(n)−X(1))
2

(n+1)2(n+2)
(2p2(n − 1) − 2p(n − 1) + n) +

(Y(n)−Y(1))
2

(m+1)2(m+2)
(2p2(m − 1) − 2p(m − 1) + m)

)1/2

(80)

where P (Z > zα/2) = α/2.

Proof.

By equation (28), a (1 − α)100% confidence interval for kp − k′
p is given by

k̂p − k̂′
p ± zα/2

√
̂V ar(k̂p) + ̂V ar(k̂′

p). (81)

The two distributions in question being independent, we have Cov(X(i), Y(j)) = 0 for

any i = 1, . . . , n and j = 1, . . . , m. In particular,

Cov(X(1), Y(1)) = 0 (82)

Cov(X(1), Y(m)) = 0 (83)

Cov(X(n), Y(1)) = 0 (84)

Cov(X(n), Y(m)) = 0. (85)

Therefore, we can use equation (81) to get our desired confidence interval. From the

results obtained in the previous section, we can establish the following equations :

k̂p = X(1) +
(
X(n) − X(1)

)
p (86)

k̂
′

p = Y(1) +
(
Y(m) − Y(1)

)
p (87)

̂V ar(k̂p) =
(X(n) − X(1))

2

(n + 1)2(n + 2)

(
2p2(n − 1) − 2p(n − 1) + n

)
(88)

̂
V ar(k̂′

p) =
(Y(n) − Y(1))

2

(m + 1)2(m + 2)

(
2p2(m − 1) − 2p(m − 1) + m

)
. (89)
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So,

k̂p − k̂′
p =

[
X(1) + (X(n) − X(1))p

]
−

[
Y(1) + (Y(m) − Y(1))p

]

=
(
X(1) − Y(1)

)
+

[(
X(n) − X(1)

)
p −

(
Y(m) − Y(1)

)
p
]

=
(
X(1) − Y(1)

)
+

[(
X(n) − Y(m)

)
−

(
X(1) − Y(1)

)]
p, (90)

and, adding equations (88) and (89) we have ̂V ar(k̂p) + ̂V ar(k̂′
p) =

(X(n)−X(1))
2

(n+1)2(n+2)
(2p2(n − 1) − 2p(n − 1) + n) +

(Y(n)−Y(1))
2

(m+1)2(m+2)
(2p2(m − 1) − 2p(m − 1) + m) . �

4.3 Simulation Results

The simulation study was conducted to estimate the coverage rates for the 90%,

95% and 99% confidence intervals for the difference in percentiles from two normal

populations. We used the statistical software R to generate the random data and

simulate the values 100,000 times (the R code is shown in Appendix C)[8]. The inter-

vals of support of the distributions were fixed as follows: [a, b]=[2, 4] and [c, d]=[3, 5].
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Table 3: Empirical Coverage Rates of 90%, 95% and 99% Confidence Intervals for

the Difference in Percentiles from Two Uniform Populations

percentiles n m 90% 95% 99%

10 10 0.8228 0.8752 0.9369
50 10 0.7996 0.8437 0.9014

p = 0.25 50 50 0.8893 0.9282 0.9695
200 100 0.8917 0.9282 0.9661
500 500 0.9001 0.9367 0.9741
10 10 0.8183 0.8732 0.9385
50 10 0.8131 0.8614 0.9204

p = 0.5 50 50 0.8862 0.9289 0.9728
200 100 0.8945 0.9340 0.9733
500 500 0.9006 0.9403 0.9779
10 10 0.8243 0.8735 0.9367
50 10 0.8017 0.8456 0.9010

p = 0.75 50 50 0.8908 0.9276 0.9698
200 100 0.8928 0.9265 0.9658
500 500 0.9004 0.9380 0.9751
10 10 0.8259 0.8756 0.9348
50 10 0.7725 0.8177 0.8792

p = 0.9 50 50 0.8882 0.9268 0.9681
200 100 0.8847 0.9202 0.9598
500 500 0.9001 0.9364 0.9729
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5 CONCLUSION

We observe from Table 1, Table 2 and Table 3 that with small values of n and m

(for example n = 10 and m = 10 or n = 50 and m = 10), the coverage probabilities

can be on the liberal side. However, as both n and m increase, the coverage probabil-

ities converge to the desired nominal level. It is important to note that, in this thesis,

the underlying distributions were known in advance. A possible alternative method

for estimating the difference between percentiles from two independent groups when

the underlying distributions are unknown would be bootstrapping which is a com-

puter intensive method based on resampling. This could be considered as a direction

for future research.
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APPENDICES

1 Appendix A: R Code for the Empirical Coverage Rates of Confidence Intervals

for the Difference in Percentiles from Two Normal Distributions.

norm cover = function(nsims,n,m,mu1,sig1,mu2,sig2,alpha,p) {

zp = qnorm(p)

kp1 = mu1 + zp*sig1

kp2 = mu2 + zp*sig2

diff = kp1 - kp2

cc = 1 - alpha

ic = 0

for ( i in 1:nsims) {

samp1 = rnorm(n,mu1,sig1)

samp2 = rnorm(m,mu2,sig2)

#c1 = (sqrt((n-1)/2) * gamma((n-1)/2)) / (gamma(n/2)) When n -> inf

gamma function fails; use log gamma

lnc1 = log(sqrt((n-1)/2)) + lgamma((n-1)/2) - lgamma(n/2)

c1 = exp(lnc1)

#c2 = (sqrt((m-1)/2) * gamma((m-1)/2)) / (gamma(m/2))

lnc2 = log(sqrt((m-1)/2)) + lgamma((m-1)/2) - lgamma(m/2)

c2 = exp(lnc2)

mean1 = mean(samp1)

sd1 = sd(samp1)
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mean2 = mean(samp2)

sd2 = sd(samp2)

kp1 hat = mean1 + c1*zp*sd1

kp2 hat = mean2 + c2*zp*sd2

var kp1 hat = (sd1^ 2/n)*(1 + n*zp^ 2*(c1^ 2 - 1) # estimated variance of

kp1 hat

var kp2 hat = (sd2^ 2/m)*(1 + m*zp^ 2*(c2^ 2 - 1)) # estimated variance

of kp2 hat

crit = qnorm(1-alpha/2)

lb = kp1 hat - kp2 hat - crit*sqrt(var kp1 hat + var kp2 hat)

ub = kp1 hat - kp2 hat + crit*sqrt(var kp1 hat + var kp2 hat)

if (lb <= diff & diff <= ub) {ic = ic + 1}

}

empcov = ic/nsims

list( empiricalcover = empcov )

}
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2 Appendix B: R Code for the Empirical Coverage Rates of Confidence Intervals

for the Difference in Percentiles from Two Exponential Distributions.

expo cover = function(nsims,n,m,theta1,theta2,alpha,p){

kp1 = qexp(p,theta1)

kp2 = qexp(p,theta2)

diff = kp1 - kp2

cc = 1- alpha

ic = 0

for (i in 1:nsims) {

samp1 = rexp(n,theta1)

samp2 = rexp(m,theta2)

mean1 = mean(samp1)

mean2 = mean(samp2)

kp1 hat = - mean1 * log(1-p)

kp2 hat = - mean2 * log(1-p)

var kp1 hat = (log(1-p))^ 2 * mean1^ 2 / n

var kp2 hat = (log(1-p))^ 2 * mean2^ 2 / m

crit = qnorm(1-alpha/2)

lb = kp1 hat - kp2 hat - crit*sqrt(var kp1 hat + var kp2 hat)

ub = kp1 hat - kp2 hat + crit*sqrt(var kp1 hat + var kp2 hat)

if (lb <= diff & diff <= ub) {ic = ic + 1}

}

empcov = ic/nsims
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list( empiricalcover = empcov )

}
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3 Appendix C: R Code for the Empirical Coverage Rates of Confidence Intervals

for the Difference in Percentiles from Two Uniform Distributions.

unif cover = function(nsims,n,m,a,b,c,d,alpha,p) {

kp1 = a + (b-a)*p

kp2 = c + (d-c)*p

diff = kp1 - kp2

cc = 1 - alpha

ic = 0

for ( i in 1:nsims) {

samp1 = runif(n,a,b)

samp2 = runif(m,c,d)

ordered samp1 = sort(samp1)

ordered samp2 = sort(samp2)

a hat = ordered samp1[1]

b hat = ordered samp1[n]

c hat = ordered samp2[1]

d hat = ordered samp2[m]

kp1 hat = a hat + (b hat - a hat)*p

kp2 hat = c hat + (d hat - c hat)*p

var a hat = (n * (b hat-a hat)^ 2)/((n+2)*(n+1)^ 2)

var b hat = (n * (b hat-a hat)^ 2)/((n+2)*(n+1)^ 2)

var c hat = (m * (d hat-c hat)^ 2)/((m+2)*(m+1)^ 2)

var d hat = (m * (d hat-c hat)^ 2)/((m+2)*(m+1)^ 2)
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cov1 = (b hat - a hat)^ 2 / ((n+2)*(n+1)^ 2)

cov2 = (d hat - c hat)^ 2 / ((m+2)*(m+1)^ 2)

var kp1 hat = (1-p)^ 2 * var a hat + p^ 2 * var b hat + 2*p*(1-p)*cov1

var kp2 hat = (1-p)^ 2 * var c hat + p^ 2 * var d hat + 2*p*(1-p)*cov2

crit = qnorm(1-alpha/2)

lb = kp1 hat - kp2 hat - crit*sqrt(var kp1 hat + var kp2 hat)

ub = kp1 hat - kp2 hat + crit*sqrt(var kp1 hat + var kp2 hat)

if (lb <= diff & diff <= ub) {ic = ic + 1}

}

empcov = ic/nsims

list( empiricalcover = empcov )

}
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