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ABSTRACT

Omnisculptures

by

Cihan Eroglu

In this thesis we will study conditions for the existence of minimal sized omnipatterns

in higher dimensions. We will introduce recent work conducted on one dimensional

and two dimensional patterns known as omnisequences and omnimosaics, respectively.

These have been studied by Abraham et al [3] and Banks et al [2]. The three dimen-

sional patterns we study are called omnisculptures, and will be the focus of this thesis.

A (K, a) omnisequence of length n is a string of letters that contains each of the ak

words of length k over [A]=(1,2,...a) as a substring. An omnimosaic O(n, k, a) is an

n × n matrix, with entries from the set A=1,2,...,a, that contains each of the {ak2}

k× k matrices over A as a submatrix. An omnisculpture is an n×n×n sculpture (a

three dimensional matrix) with entries from set A ={1, 2, ..., a} that contains all the

ak
3
k × k × k subsculptures as an embedded submatrix of the larger sculpture. We

will show that for given k, the existence of a minimal omnisculpture is guaranteed

when

ka
k2

3

e
≤ n ≤ ka

k2

3

e
(1 + ϵ)

and ϵ = ϵk → 0 is a sufficiently small function of k.
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1 FORMAL DEFINITIONS

A vertex is an arbitrary point v from a set V (G).

An edge is a line that connects one vertex to other, or it could also connect a

vertex to itself. In an abstract sense, an edge is thus a multiset of two vertices.

A graph G is a pair consisting of vertex set V (G), and an edge set E(G),

which is a relation that associates with each two vertices (not necessarily distinct)

their endpoints.

A bipartite graph (Fig. 1)is a graph whose set of vertices can be decomposed

into two disjoint sets such that no two vertices in the same set are adjacent, i.e.

connected by an edge. For a simple graph the adjacency matrix (Fig. 2) (sometimes

Figure 1: Bipartite Graph

called the connection matrix) is a matrix of rows and columns labeled by graph

vertices, with a 1 or 0 in position (vi, vj) according to whether vi and vj are adjacent

or not. For any simple graph with no self-loops, the adjacency matrix must have

zeros on the diagonal. Below are some examples of adjacency matrices. Notice that

8



Figure 2: Adjacency Matrix

any adjacency matrix is always symmetric. The adjacency matrix A of a bipartite

graph whose parts have r and s vertices has the form(
0 B
BT 0

)
where B is an r × s matrix and O is an all-zero matrix. As you can see, the matrix

B uniquely represents the bipartite graphs, and it is commonly called a biadjacency

matrix.

A subgraph is a graph whose vertices and edges are subsets of the vertices and

edges another graph.

An induced subgraph (Fig. 3) is a subgraph obtained by the deletion of a vertex

or multiple vertices. [7]
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Figure 3: Induced Subgraph

A universal graph on n vertices is a graph that contains all k induced subgraphs

on vertices (where k < n) on some selection of vertices 1 ≤ v, < vz < ... < vk ≤ n.

[4]
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2 OMNISEQUENCES

Introduction

Our research is related to finding some embedded patterns in a large set of data.

Imagine we are looking for certain words in a text and we start reading this text and

we stop when we find the corresponding letters. A good example of this would be

the codes that are allegedly embedded in the Bible [11]. It is also similar to a more

extreme case where we recently read in an online article by Fox [12] that Russian spies

communicated with each other via a special code that was embedded in an image.

Our research is very familiar with this example. We are interested in certain patterns

in a large set of random data and we will use our mathematical reasoning to find

some properties and their relation to the large data set.

Omnisequences or Omnibus Sequences

Imagine we have a 3 letter alphabet a, b, c and assume that a computer generates a

random string of letters that only contains these letters. We want this string of the

letters to contain all the words of size 2 in this alphabet as a sequence. The shortest

string that this computer can generate would be a,b,c,a,b,c. We can pick any letter

from the first three letters and then pick the next letter from the next three. We say

that the string of a,b,c,a,b,c is two-omnibus over our 3 letter alphabet. You might

notice that the string of 6 letters was the shortest string that contains all of the two-

letter words; basically we rewrite our alphabet two times back-to-back. Similarly, if

we were to find the shortest string that contains every 3-letter words, then we would

11



need to list our alphabet 3 times back-to-back (three-omnibus over our three letter

alphabet).

Note that we define a string of letters n as k-omnibus over an alphabet [a]=:

(1,2,..y) if it contains all of the ak words as a substring. A minimal k-omnibus

aequence can be obtained by writing the alphabet back to back k times. Before

we begin getting in to the details of our research, let us begin with some necessary

theorems, definitions and corollaries that have previously been proved in this context.

DeBruijn Theorem[3]

For each a and k there exists a cyclic sequence of length ak that contains as a substring

each k-letter word over [a] :={1,2,....,a} precisely once.

Proof To prove this we will use Eulerian cycles to create the required cyclic se-

quence. First, let S be the set of all (k− 1) length that words are generated by using

{1,..,a}. Let G be a graph such that each vertex is labeled with the elements of S.

Note that there are ak−1 elements of S and therefore ak−1 vertices of G. Next, we

need to create an Euler cycle in G with ak edges. Let 1 ≤ i ≤ a and assume we

start with the vertex (a1,....,ak−1) and connect it with directed edges towards the ver-

tex set of (a2, ..., ak−1, 1), (a2, ..., ak−1, 2)....(a2, ..., ak−1, a) and also let the vertex set

(1, a1, ..., ak−1), (2, a1, ..., ak−1), ..., (a, a1, ..., ak−1) be connected with a directed edges

towards (a1, ...., ak−1). There are total of a directed outgoing edges from the ver-

tex (a1, ...., ak−1) and similarly there are a directed incoming edges. Therefore, each

vertex has the same indegree and outdegree and, therefore, G is Eulerian graph and

there are a ∗ ak−1 = ak edges of G. Now we start from any vertex in G and follow

the Eulerian cycle of any path. We label each edge with the union labeling of two
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consecutive vertices, for example the edge from the vertex (a1, ...ak−1) to the vertex

(a2, ...ak−1, ak) would be labeled as (a1, ...ak−1, ak). Note that the length of the edge

labeling is k and there are ak edges and therefore we covered all the k-letter words.

Once every edge is labeled with a k-letter word, we can pick any edge and follow

any Eulerian path and combine all edge labelings by not repeating any consecutive

letter. By doing this, we have created a cyclic sequence of length ak that contains

each k-letter words over [a] := 1, 2, ...., a.

Example: Let k = 3, a = 2. Note that the sequence 11100010 is a cyclic sequence

that contains all 3-length words that are generated by [a] := {0, 1} as a string.

U-trail

The cyclic sequence above is also referred to as an U-cycle. There is also a shortest

sequence that contains all k-length letters that does not loop around. Such shortest

sequences are called U-trails. Notice that, in the example above, in order to get 011

we need to loop around, and count in the first two letters of the sequence. Instead

of looping around we can just repeat the first k-1 letters of the sequence at the end

of the sequence and this will ensure that we have all k-length words. Therefore, the

length of the U-trial that contains all k-length words would be ak + k − 1.

Coin Flipping Example [3]

Suppose that we decide to flip a coin and we want to know how many times we need

to flip in order to have all the 6-length patterns of trials somewhere in the sequence.

We know there are 26 = 64 patterns that we will need to have in this sequence of

trials. In a perfect world, we know that the shortest length of the sequence would be

13



ak + k− 1 = 26 +6− 1 = 69 (this sequence exists by DeBruijn’s Theorem [3]) but, in

reality, this number is expected to be around k ∗ak ∗ log(a) (this is a deep fact proved

in the probability literature [5]).

Omnisequences

Omnisequences are similar to U-trials except that gaps are allowed. A (k, a) omnise-

quence of length n is a string of letters that contains each of the ak words of length k

over [a]=: (1,2,...a). Assume we have a randomly generated string of letters {a,b,c},

and let this string be babc|abaac|cba|bcbacbabcb.... As you notice, we have divided this

string into parts where these parts contain all the letters of the alphabet (a, b, c) and

these are the shortest such sequences. Each of the parts that contains all the letters

of the alphabet is also called a waddle. We have only selected the first 3 waddles

because we can generate every 3-letter alphabet over a, b, c by choosing the first letter

from the first waddle and the second and third from the second and third waddles

respectively. Since each waddle contains every letter, then we can generate all the

3-length words and therefore we say the string babc|abaac|cba is a (3,3) omnisequence

(k = 3, a = 3). Such a string is also called 3-omni over the alphabet (a, b, c). Note

that if we include the next waddle, then we would have a 4-omnisequence over (a, b, c).

Basically, for a string of letters to be k-omni we just need to repeat the alphabet of

[a] = (1, 2, 3, .., h) k times.

Waddle Lemma

A sequence S is k-omni if and if only there exists a pairwise-disjoint collection P of

”completed sets of coupons” (1-omni substrings of S) such that |P | ≥ k.

14



Proof: We can easily see from the definition above that this proof is trivial when

showing sufficiency. Necessity is also very simple; suppose there exist m < k pairwise

disjoint 1-omni substrings of S. Since we can only create every substring of m letters,

then a length of k-substring with more than m letters A = (a1a2...amt..t), where t is

a letter after am in the mth string is impossible. Then A cannot be a subsequence of

the string. This is a contradiction. �

Coupon Collector Problem [9]

The definition of this problem is elementary. Basically, we are collecting ”coupons”

and once we collect all the coupons in the set we are finished. Collecting baseball cards

that are hidden in cereal boxes is a good example of this kind of problem. How many

boxes of cereal on average do we need to buy in order to have all n baseball cards?

The answer to this question could be shown with some probability and statistical

analysis. We see that the expected waiting time for a complete collection is about

n log n.

Proof: There are n types of coupons (baseball cards). Let Xi denote the number

of trials from i-th success, till the (i+1)-th success, where ”success” is defined as

collection of a new coupon. Clearly, the number of trials performed is

X =
n−1∑
i=0

Xi Note that Xi ∼ Geometric where P(Xi=x) = (1− pi)
x−1pi

15



x = 1, 2, 3, ..., where Pi =
n− i

n
, so that

E(Xi) =
∞∑
x=1

xP (Xi = x) =
∑

x(1− pi)
x−1pi

= pi
∑

x(1− pi)
x−1

= pi
∑

((1− pi)
x))′

= pi(
1− pi
pi

)′

= pi(
pi(1− pi)

′ − (1− pi)p
′
i

p2i
)(−1)

=
1

pi

Thus, E(Coupon Collecton Time) =
1
n

n

+
1

n− 1

n

+
1

n− 2

n

+ ...+
1

n− (n− 1)

n

=
n

n
+

n

n− 1
+

n

n− 2
+ ...+

n

1

= n(1 +
1

2
+

1

3
+ ...+

1

n
)

≈ n

∫ n

1

dx

x
≈ n ln(n)

It follows that an (a, k) omnisequence takes about ak ln(a) trials on average. �
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3 OMNIMOSAICS

Introduction

Until now, we dealt with one dimensional sequences and now we want to know what

happens in the two dimensional world. In other words, is there such a omni pattern

in two dimensions? The answer is yes. There exists a collection of data in a plane

where two dimensional information is embedded. Imagine a picture that is so full

of color combinations so that every picture of certain size is embedded in this large

image. Such large pictures are called a omnimosaic. Note that, if we want to find all

k × k matrices over the set A={1,2,...,a}, then we need a large matrix (n × n) that

contains all the k× k matrices. Note that precisely there are ak
2
such k× k matrices.

An omnimosaic O(n, k, a) is an n×n matrix, with entries from the set A={1,2,...,a},

that contains, as a submatrix, each of the ak
2
k × k matrices over A. When k, a are

fixed, the smallest n for which an O(n, k, a) omnimosaic exists is denoted by w(k, a);

for example w(2, 2) = 4 since for a = 2 there exists a 4× 4 matrix as follows


0 1 0 1
1 0 1 0
0 1 0 0
0 1 1 1


We claim that above matrix contains all the 2× 2 matrices over the binary digits of

{0,1}. Note that we can pick two columns and two rows and the intersection of these

columns and rows is a 2× 2 matrix and note that with all the possible combinations

we can create all of the 22
2
= 16 matrices of size 2× 2. [6]

Now imagine we are trying to find w(4, 3) over a = {0, 1, 2}. This is not easy but

suppose we are trying to find any matrix that contains all of the ak
2
= 34

2
submatrices.

17



How can we construct such a matrix? The answer is through a fairly easy method

that has been developed by Banks et al.[2].

Thin Strip Construction by Katie R. Banks [2]

This method is a very efficient method of creating a omnimosaic that contains

all k × k matrices over (1, ..., a). The idea is to first create every k-length word over

the set a and then we stack all the k-length letters as a thin strip. For w(4, 3) we

need to list all 4-letter words over a = {0, 1, 2}. There are 34 = 81 such words over

a = {0, 1, 2} and we start stacking all of these words together. For example

ak = 81-rows



0 0 0 0
0 0 0 1
0 0 0 2
0 0 1 0
.
.
2 2 2 2


Now we repeat the above matrix k times (in this case k=4).

ak = 81-rows

(
.
.

)

ak = 81-rows

(
.
.

)
ak = 81-rows

(
.
.

)
ak = 81-rows

(
.
.

)
The above step ensures that we can reselect repeated rows. For example, if we were

to create a 4 × 4 matrix with all zeros, then we would pick the first zero row from

the first block, then the first zero row from the second block and so forth for the rest.

18



As we see, there are k ∗ ak ∗ k = k2 ∗ ak = 4 ∗ 34 ∗ 4 entries. Note that this matrix

is not a sequence matrix. Nicholas George Triantafillou[3] created a construction of

these matrices by converting the above matrix to a square matrix. The arithmetic is

as follows

k ∗ ak ∗ k = k2 ∗ ak

= (k ∗ ak/2)(k ∗ ak/2)

so that an n× n matrix can be created with

n ≈ (k ∗ ak/2)

Pigeon Hole Principle Applies to Omnimosaics

In the paper Omnimosaics by Katie Bank et al[2], it is shown that a k × k

omnimosaic can be embedded in a smaller matrix than (k ∗ ak/2)x(k ∗ ak/2). But if

n <
k ∗ ak/2

e
, then probability of the array being an omnimosaic is zero. This can be

shown as follows:

We want to know the minimum size of an n × n matrix that contains all k × k

matrices. We select k rows and k columns and consider corresponding k × k matrix.

Basically we are going to look at all the combinations of
(
n
k

)
rows and

(
n
k

)
columns.

The following property for
(
n
k

)
can be established by using the binomial expansion

and Stirling’s approximation(k! ≈
√
2πk(k

e
)k).
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(
n

k

)
=

n(n− 1)...(n− k + 1)

k!
≤ nk

k!
=

=
nk

√
2πk(k

e
)k

≤ nk

(k
e
)k

= (
ne

k
)k, i.e.(

n

k

)
≤ (

ne

k
)k, or(

n

k

)2

≤ (
ne

k
)2k

We know that there are ak
2
k× k matrices over a={1,2,...,a} then the following must

hold:

(
ne

k
)2k ≥ ak

2

, i.e

ne

k
≥ a

k2

2k = a
k
2 , or

n ≥ ka
k
2

e
.

This completes the proof.

Above, we established a lower bound of omnimosaics by the pigeon hole principle.

Next, we will concentrate on establishing an upper bound on the minimum size of

omnimosaics and we will try to lower the upper bound that was created by Banks et

al. [2]. This, too, was done in the omnimosaics paper by Banks et al[2], who showed

that w(k, a) ≤ ka
k
2

e
(1 + ϵ). We will extend this result to three dimensions.

Recall that the adjacency matrix of a graph is a symmetric matrix. We will start

with an example. Note that the adjacency matrix of a 3-universal graph needs to

20



contain all the 3-vertex graphs as induced subgraph. We know there are 8 graphs

that exist over 3 vertices. In other words, an edge between two vertex is either present

or not (a = 2). Since there are 3 vertices, there must be 8 different graphs that could

be drawn between 3 vertices. The adjacency matrix of the complete graph K3 or 3

vertices is


x1 x2 x3

x1 0 1 1
x2 1 0 1
x3 1 1 0


If there exist no edge between x2 and x3, the adjacency matrix would be

x1 x2 x3

x1 0 1 1
x2 1 0 0
x3 1 0 0


Similarly remaining 6 graphs would be represented by the following

x1 x2 x3

x1 0 1 0
x2 1 0 1
x3 0 1 0




x1 x2 x3

x1 0 0 1
x2 0 0 1
x3 1 1 0




x1 x2 x3

x1 0 1 0
x2 1 0 0
x3 0 0 0




x1 x2 x3

x1 0 0 1
x2 0 0 0
x3 1 0 0


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
x1 x2 x3

x1 0 0 0
x2 0 0 1
x3 0 1 0




x1 x2 x3

x1 0 0 0
x2 0 0 0
x3 0 0 0


Now consider the following adjacency matrix of universal graph G that contains all

the adjacency matrices above:

a b c d e f
a 0 0 0 1 0 1
b 0 0 0 0 0 0
c 0 0 0 1 1 0
d 1 0 1 0 1 0
e 0 0 1 1 0 1
f 1 0 0 0 1 0


Note that we if we pick the c, d, e rows and c, d, e columns then we will pick the first

matrix that we mentioned on three vertices. We can pick the empty graph by selecting

rows a, b, c and columns, a, b, c. Similarly, all of the other adjacency matrices can be

found same way.

Introduction to the Probability Model

We want an n× n matrix to include all k× k matrices as a submatrix in order to

call this matrix an omnimosaic. Moreover, if one of the k×k matrices does not exist,

then it is not an n × n omnimosaic. Let us fill in an n × n array with letters of the

alphabet (1, ..., a) randomly and independently. Now, let X be the random variable

that counts the number of missing k × k matrices.

Clearly,X ≥ 1 implies that the structure is not an omnimosaic. Thus, P (X ≥ 1) <

1 implies that there exists an n×n omnimosaic. We know byMarkov’s Inequality that

22



for any a > 0 P (|X| ≥ a) ≤ E(X)

a
, so that choosing a = 1 we get P (X ≥ 1) ≤ E(X).

If we can show that E(X) → 0, it will follow that an omnimosaic exists with high

probability. Our strategy can be summarized by this paragraph.

By the definition of omnimosaics, there are a total of ak
2
k× k matrices that need

to be present as submatrices. Let j represent the jth k × k matrix. Then,

E(X) = E(
ak

2∑
j=1

Ij)

=
∑

E(Ij)

=
∑

P (jth k × k matrix is missing)

=
∑

P (jth k × k matrix doesn’t occur in any of the

(
n

k

)2

locations)

=
∑

Pj, say. (1)

Note that Pj is the probability of the jth k × k matrix not being present on any

of the
(
n
k

)2
possible locations. In other words,
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Pj = P (
L∩

ℓ=1

Ej,ℓ), where

L =

(
n

k

)2

and

Ej,ℓ = P (jth matrix does not occur at location ℓ).

Let Zj = number of occurrences of thejth matrix. It follows that

Pj = P (Zj = 0), where

E(Zj) = L× 1

ak2
=

(
n
k

)2
ak2

. (2)

Applying Suen’s Inequality

Suen’s inequality (Theorem 2 of [1]) says that

Pj ≤ e−λj+∆je
2δj
,

where λj = E(Zj) =

(
n
k

)2
ak2

, δj = max
ℓ

∑
j∼ℓ

P (Ij = 1), and ℓ ∼ j if the ℓth and jth
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locations share at least one position (at least one row and column.) Thus,

δj = max
ℓ

(
number of

intersecting locations

)
1

ak2

=
k∑

r=1

k∑
c=1

(
k

r

)(
n− k

k − r

)(
k

c

)(
n− k

k − c

)
1

ak2

(where r + c < 2k)

≤
(
k

1

)2(
n− 1

k − 1

)2
1

ak2
, so

δj ≤ k2

(
n− 1

k − 1

)2
1

ak2
. (3)

The computation of ∆j is the main component of this proof. We will briefly go

over this and note that we will use similar method in more detail when we study

omnisculptures.

We have

∆j =

(nk)
2∑

ℓ=1

∑
ℓ∼j

P (Ij = 1, Iℓ = 1),

(where j ∼ ℓ if the jth and ℓth locations share at least one position)

≤
(
n
k

)2
a2k2

k∑
r,c=1

r+c<2k

(
k

r

)(
k

c

)(
n

k − r

)(
n

k − c

)
arc

=

(
n
k

)2
a2k2

k∑
r,c=1

r+c<2k

Φ(r, c),

≤
(
n
k

)2
a2k2

k2max{Φ(r, c): 1 ≤ r, c ≤ k; r + c< 2k} (4)

where Φ(r, c) =

(
k

r

)(
k

c

)(
n

k − r

)(
n

k − c

)
arc.
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Further analysis of Φ(r, c) by Banks et al. [2] resulted in the following lemmas:

Lemma 1: Given c, 1 ≤ c ≤ k, Φ(., c) is either monotone or unimodal as a function

of r.

Lemma 2: Φ(1, 1) ≥ Φ(2, 1) if n ≥ k2a

2
+ (k − 2)

Lemma 3: Φ(k, k) ≥ Φ(k − 1, k) if n ≤ ak

k

Lemma 4: Φ(k − 1, k) ≥ Φ(1, 1)

Lemma 5: Φ(r, r) is first decreasing and then increases as a function of r.

As a result of these lemmas, we note that the maximum of Φ(r, c) is Φ(k − 1, k).

Since

∆j ≤
(
n
k

)2
a2k2

k2max{Φ(r, c)}, (5)

it follows that

∆j ≤
(
n
k

)2
a2k2

k2Φ(k − 1, k)

=

(
n
k

)2
a2k2

nk3ak(k−1). (6)

Since λ =

(
n
k

)2
ak2

, (6) yields

∆j =
nk3λ

ak
. (7)

We see from (3) that

δj ≤ k2

(
n− 1

k − 1

)2
1

ak2
≤ k2

(
n

k − 1

)2
1

ak2

=
k4

(n− k + 1)2
λ

≤ 2k4

n2
λ. (8)
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Now we can plug (7) and (8) into Suen’s inequality to get

Pj ≤ e

−λ+λ
nk3

ak
e

4k4λ

n2


.

Note that e

4k4λ

n2 → 1 since
4k4λ

n2
→ 0, so that

P (Structure is not an Omnimosaic) ≤
∑
j

Pj

≤ ak
2 × e

−λ+
2λnk3

ak (9)

Since we can assume that n ≤ kak/2,

P(not omni) ≤ ak
2 × e

(−λ+2λ(
kak/2k3

ak
))

= ak
2 × e

(−λ+2λ
k4

ak/2
)

Assuming

kak/2

e
≤ n ≤ k × ak/2

e
(1 + ϵ),

plugging the above upper bound into

λ ≤ (
ne

k
)2k

1

ak2
≤ k4,

we see that

P(not omni) ≤ ak
2

e
(−λ+2

k8

ak/2
)
→ 0, (10)

as desired.
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4 OMNISCULPTURES

Introduction

We have studied omnipatterns in one dimension and in two dimensions, and now we

want to know what happens in three dimensions. First of all, let us explore a three

dimensional “data set.” Imagine one has k n × m matrices and we stack them on

top of each other to create a three dimensional box matrix which has dimensions of

n×m× k. In other words, imagine that one has k transparent pages, and there are

n×m matrices on each of these k pages. Then, we stack all these pages as a booklet

to create a three dimensional data set. It could be hard to visualize this sort of data

but we can always break a three dimensional box into two dimensional data by taking

each page of paper and placing it on a flat surface. Once we have a three dimensional

matrix, how can we find omnipatterns?

An omnisculpture is an n × n × n sculpture (a three dimensional matrix) with

entries from set A = {1, 2, ..., a} that contains all the ak
3
k × k × k subculptures as

an embedded submatrix of the larger sculpture. In other words, a three dimensional

n × n × n data set is k-omni if it contains all the ak
3
k × k × k three dimensional

data sets as an embedded submatrix where each entry of the data set is from the set

A = {1, 2, .., a}. Three dimensional omnisculptures will be denoted by θ(n, k, a).
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Example of Omnisculpture θ(5, 2, 2)

We need to construct a 5 × 5 omnisculpture with entries 0 and 1 that contains

each 2 × 2 × 2 subsculpture. As we can see, there are ak
3
= 22

3
= 256 2 × 2 × 2

subsculptures that need to be embedded. Note that 5 × 5 × 5 is the smallest such

sculpture that contains all the 2× 2× 2 subscultures. We will show this by utilizing

the pigeon hole principle later on.

We will show this sculpture on this paper by listing all 5 of the 5 × 5 matrices.

The first x, y face is the matrix z1 and so on.

Matrix z1 
x1 x2 x3 x4 x5

y1 1 0 0 0 0
y2 1 0 1 0 1
y3 0 0 0 0 1
y4 1 0 1 0 1
y5 1 0 1 0 1


Matrix z2 

x1 x2 x3 x4 x5

y1 0 0 1 0 1
y2 0 1 1 0 0
y3 1 0 0 1 0
y4 0 1 1 1 1
y5 0 0 1 1 1


Matrix z3 

x1 x2 x3 x4 x5

y1 0 0 1 0 1
y2 1 1 0 0 1
y3 0 1 0 1 1
y4 0 1 1 0 0
y5 1 1 0 0 0


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Matrix z4 
x1 x2 x3 x4 x5

y1 1 0 1 0 1
y2 0 1 1 1 1
y3 1 1 1 1 0
y4 1 0 0 0 0
y5 1 1 0 1 0


Matrix z5 

x1 x2 x3 x4 x5

y1 1 0 0 0 0
y2 1 1 1 0 1
y3 0 0 1 1 1
y4 0 1 0 1 1
y5 0 0 0 0 1



Note that a 2× 2× 2 three-dimensional matrix with all entries zero is embedded

on z1 and z5 matrices with the following x, y coordinates.


x2 x4

y1 0 0

y5 0 0



Similiarly, we can find a 2 × 2 × 2 three-dimensional matrix with all entries one

on z1 and z2 matrices with the following x, y coordinates,
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
x3 x5

y4 1 1
y5 1 1



As a final example we can find a 2× 2× 2 three-dimensional matrix with a front

face (
0 1
0 1

)
and back face of (

1 1
1 0

)

by picking z1 and z4 with the following x, y coordinates,


x2 x5

y2 0 1

y5 0 1


and
x2 x5

y2 1 1

y5 1 0


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Block Design Construction

We can do a simple construction of the desired k-omnisculpture by listing all the

ak
3
embedded subsculptures and then building a cube containing all these subsculp-

tures. For example, in order to form a 2-omnisculpture with entries 0 and 1, we will

need to form all 256 2× 2× 2 subsculptures and then imagine building a cube with

all of these subsculptures. So, this large cube will have 2×2×2×22
3
entries in total.

Then we would have n×n×n = n3 = 23× 22
3
total entries. We can find n by simply

taking the cube root of the above equation, yielding n = 2
3
3 × 2

23

3 where n = 2× 2
8
3 .

Thus, a 2-omnisculpture can be constructed by a block design when n ≈ 13.

In general, we will need all ak
3
k×k×k subsculptures over A = {1, 2, .., a}. Then

we can construct an n× n× n block design omnisculpture where

n× n× n = (k × k × k)× ak
3

,

or

n = k × a
k3

3 .

Actually, we can do a block design similar to the thin strip construction. This

does better, but we skip the details. We claim that the above crude construction that

gave n = k × a
k3

3 is very large and we will show that for given k, the existence of a

minimal omnisculpture is guaranteed when

ka
k2

3

e
≤ n ≤ ka

k2

3

e
(1 + ϵ)

First, we will show the right hand side of the inequality above, that is
ka

k2

3

e
≤ n.

We can show this in a similar way as with omnimosaics.
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Applying the Pigeon Hole Principle

We claim that if n ≤ ka
k2

3

e
, where all the entries are from A = {1, 2, ..a}, then the

probability of the n × n × n array being a k-omnisculpture is zero. In other words,

not all of the k × k × k subsculptures can possibly be embedded in the n × n × n

block. This can be shown as follows:

We are interested to know the minimum size of n× n× n sculpture that contains

all k×k×k subsculptures. Since n×n×n constitutes three dimensional data, we will

select k rows, k columns and k faces (in
(
n
k

)3
ways). Recall Stirling’s approximation

(k! ≈
√
2πk(k

e
)k). [8] Using this we get(

n

k

)
=

n(n− 1)...(n− k + 1)

k!
≤ nk

k!
=

=
nk

√
2πk(k

e
)k

≤ nk

(k
e
)k

= (
ne

k
)k,

and thus (
n

k

)3

≤ (
ne

k
)3k

Since there are total of ak
3
k × k × k sculptures over {1, 2, ..., a}, the following must

hold:

(
ne

k
)3k ≥ ak

3

,

i.e

ne

k
≥ a

k3

3k = a
k2

3 ,

or

n ≥ ka
k2

3

e
.

This completes the proof. �
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Note that the example of the omnisculpture θ(5, 2, 2) that we computed in the

beginning of the omnisculpture section cannot be generated when n < 5. Since n is

arbitrarly small in this case, we do not need to appeal to Stirling’s Approximation.

But by the pigeon hole principle, we must have

(
n

k

)3

≥ ak
3

,

where a, k = 2, or (
n

2

)3

≥ 256,

i.e., n ≥ 5.

Probability Models for Omnisculptures

We want an n× n× n sculpture data set to include all k × k × k sculptures as a

subsculpture in order to call this sculpture an omnisculpture. Moreover, if one of the

k×k×k subsculptures does not exist, then this is not an n×n×n omnisculpture. Let

us fill in an n× n× n data space with letters of the alphabet (1, ..., a) randomly and

independently. Now, let X be the random variable that counts the number of missing

k×k×k subsculptures. Then X≥ 1 implies that the structure is not an omnisculpture.

Thus, P (X ≥ 1) < 1 implies that there exists an n× n× n omnisculpture. We know

by Markov’s Inequality [5] that P (|X| ≥ a) ≤ E(X)

a
for each a ≥ 0, so choosing

a = 1 yields P (X ≥ 1) ≤ E(X). If we can show that E(X) → 0, then it will

follow that an omnisculpture exists with high probability. Since there are a total of

ak
3
k × k × k sculptures that need to be present as subsculptures, we let j represent

34



the jth k × k × k sculpture. Then,

E(X) = E(
ak

3∑
j=1

Ij)

=
∑

E(Ij)

=
∑

P (jth k × k × k sculpture is missing)

=
∑

P (jth k × k × k sculpture isn’t present in any of the

(
n

k

)3

possible locations)

=
∑

Pj, (1)

where Pj is probability of the jth k × k × k subsculpture not being present in any

location of the
(
n
k

)3
possible ones. In other words,

Pj = P (
L∩

ℓ=1

Ej,ℓ), where

L =

(
n

k

)3

, and

Ej,ℓ = P (jth sculpture does not occur at location ℓ).

Let Zj := number of occurrences of the jth sculpture. It follows that

Pj = P (Zj = 0), where

E(Zj) = L× 1

ak3
=

(
n
k

)3
ak3

. (2)
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Applying Suen’s Inequality

Suen’s inequality (Theorem 2 of [1]) asserts that Pj ≤ e−λj+∆je
2δj
, where λj =

E(Zj) =

(
n
k

)3
ak3

, δj = max
ℓ

∑
m∼ℓ

P (Im = 1), and ℓ ∼ m if the ℓth and mth locations share

at least one position (at least one row, one column and one face). Thus,

δj = max
ℓ

(
number of

intersecting locations

)
1

ak3

=
k∑

r=1

k∑
c=1

k∑
d=1

(
k

r

)(
n− k

k − r

)(
k

c

)(
n− k

k − c

)(
k

d

)(
n− k

k − d

)
1

ak3

(where r + c+ d < 3k)

≤
(
k

1

)3(
n− 1

k − 1

)3
1

ak3

so

δj ≤ k3

(
n− 1

k − 1

)3
1

ak3
(3)

As we notice, there is a similar pattern as with omnimosaics, and the difference is

going to stand out while computing ∆j. This part is going to be our main component.

Unlike omnimosaics, we will consider a three-dimensional interaction when computing

∆j.
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We have

∆j =

(nk)
3∑

ℓ=1

∑
ℓ∼m

P (Im = 1, Iℓ = 1),

where j ∼ ℓ if the jth and ℓth locations share at least one position.

≤
(
n
k

)3
a2k3

k∑
r,c,d=1

r+c+d<3k

(
k

r

)(
k

c

)(
k

d

)(
n

k − r

)(
n

k − c

)(
n

k − d

)
arcd

=

(
n
k

)3
a2k3

k∑
r,c,d=1

r+c+d<3k

Φ(r, c, d),

≤
(
n
k

)3
a2k3

k3max{Φ(r, c, d) : 1 ≤ r, c, d ≤ k; r + c+ d ≤ 3k}, (4)

where Φ(r, c, d) =

(
k

r

)(
k

c

)(
k

d

)(
n

k − r

)(
n

k − c

)(
n

k − d

)
arcd.

We have done some further analysis of Φ(r, c, d) and we discovered the following

lemmas.

Lemma 1.1 Φ(1, 1, 1) ≥ Φ(2, 1, 1), if n ≥ (k − 1)2

2
× a+ k − 2.

Proof. This can be shown easily by plugging the given values into the Φ function.

Φ(1, 1, 1) ≥ Φ(2, 1, 1) iff(
k

1

)(
k

1

)(
k

1

)(
n

k − 1

)(
n

k − 1

)(
n

k − 1

)
a ≥

(
k

2

)(
k

1

)(
k

1

)(
n

k − 2

)(
n

k − 1

)(
n

k − 1

)
a2.
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Cancelling same terms, we see that we need to prove that(
k

1

)(
n

k − 1

)
≥

(
k

2

)(
n

k − 2

)
a, or

k × n!

(n− k + 1)!(k − 1)!
≥ k × (k − 1)

2
× n!

(n− k + 2)!(k − 2)!
× a, or

1 ≥ (k − 1)2

2(n− k + 2)
× a.

This completes the proof. �

Lemma 1.2 Φ(k, k, k) ≥ Φ(k − 1, k, k), if ak
2 ≥ k × n.

Proof. This can also be shown with a similar method as that used in the previous

lemma. That is

Φ(k, k, k) ≥ Φ(k − 1, k, k) iff(
k

k

)(
k

k

)(
k

k

)(
n

0

)(
n

0

)(
n

0

)
ak

3 ≥
(

k

k − 1

)(
k

k

)(
k

k

)(
n

1

)(
n

0

)(
n

0

)
ak

3−k2 iff(
k

k

)(
k

k

)(
k

k

)(
n

0

)(
n

0

)(
n

0

)
ak

3 ≥
(

k

k − 1

)(
k

k

)(
k

k

)(
n

1

)(
n

0

)(
n

0

)
ak

3−k2

Doing the necessary canceling, we see that we must have

ak
3 ≥

(
k

k − 1

)(
n

1

)
ak

3−k2 , or

ak
2 ≥ k × n.

This completes the proof. �

Lemma 1.3 Φ(k − 1, k, k) ≥ Φ(1, 1, 1) provided that k is large enough.
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Proof.

Φ(k − 1, k, k) ≥ Φ(1, 1, 1) iff(
k

k − 1

)(
k

k

)(
k

k

)(
n

1

)(
n

0

)(
n

0

)
ak

3−k2 ≥
(
k

1

)(
k

1

)(
k

1

)(
n

k − 1

)(
n

k − 1

)(
n

k − 1

)
a iff

knak
3−k2 ≥ k3

(
n

k − 1

)3

a only if

nak
3−k2−1 ≥ k2(

ne

k − 1
)
3k−3

, by Stirling’s approximation.

This holds iff

ak
3−k2−1

k2
× (k − 1)3k−3

e3k−3
≥ n3k−4, and plugging in n =

ka
k2

3

e
(1 + ϵ),

we need to show

ak
3−k2−1

k2
× (k − 1)3k−3

e3k−3
≥ k3k−4

e3k−4
a

k2

3
(3k−4)(1 + ϵ)3k−4, or

ak
3−k2−1(

k − 1

k
)
3k−3

≥ kea(k
3− 4

3
k2)(1 + ϵ)3k−4, or

a
k2

3 ≥ ke(1 + ϵ)3k−4.

This completes the proof. �

Lemma 1.4 A critical point of Φ = Φ(r, c, d) is when r = c = d.

Proof. Since Φ(r, c, d) is discrete we must check when Φ(r + 1, c, d)− Φ(r, c, d) =

0.

Φ(r + 1, c, d)− Φ(r, c, d) = 0 iff

Φ(r + 1, c, d) ≈ Φ(r, c, d)
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Similarly the following must also hold:

Φ(r, c+ 1, d) ≈ Φ(r, c, d),

and

Φ(r, c, d+ 1) ≈ Φ(r, c, d).

Consider the equation Φ(r+1, c, d) ≈ Φ(r, c, d), which is satisfied when
Φ(r + 1, c, d)

Φ(r, c, d)
≈

1.

Since
Φ(r + 1, c, d)

Φ(r, c, d)
=

(k − r)2acd

(r + 1)(n− k + r + 1)
, (5)

we need to check when

(k − r)2acd

(r + 1)(n− k + r + 1)
= 1,

(k − c)2ard

(c+ 1)(n− k + c+ 1)
= 1,

and

(k − d)2arc

(d+ 1)(n− k + d+ 1)
= 1.

In other words, we need to solve

(k − r)2acd

(r + 1)(n− k + r + 1)
=

(k − c)2ard

(c+ 1)(n− k + c+ 1)
=

(k − d)2arc

(d+ 1)(n− k + d+ 1)
= 1

We can observe that the above mentioned equality is true only when r = c = d. This

is the end of this proof. �

Lemma 1.5 Φ(r, r, r) is first decreasing then increasing.

Proof. Let 3
√
Φ(r, r, r) = α(r) =

(
k

r

)(
n

k − r

)
a

r3

3 . We know α(r) is increasing

when
α(r + 1)

α(r)
=

(k − r)2a(
r+13

3
− r3

3
)

(r + 1)(n− k + r + 1)
≥ 1. Taking logarithms to both sides, we

see that we must have
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2 log(k − r) + (
(r + 1)3

3
− r3

3
) log(a)− log(r + 1)− log(n− k + r + 1) ≥ 0, or

2 log(k − r)− log(r + 1)− log(n− k + r + 1) ≥ −(
(r + 1)3

3
− r3

3
) log(a)

=
−r3 − 3r2 − 3r − 1 + r3

3
log(a)

= −(r2 + r +
1

3
) log(a)

Note that the right hand side of the inequality above is less than that in [1], Lemma

3.6. Therefore we claim the same argument. This finishes the proof. �

Unlike omnimosaics we are dealing with a three dimensional data set. Notice also

that so far we have only covered the behavior of Φ(r, c, d) along the diagonal of the

n×n×n sculpture. We will also need to investigate the trend along its surfaces. For

instance, what happens to Φ(r, c, d) on the front face of the n× n× n cube when the

rows increase? The following lemmas will cover all the surface analysis of Φ(r, c, d)

needed to compare the critical points with those on the boundary so as to identify a

maximum.

Lemma 1.6 On the front facing surface of the n×n×n sculpture Φ(r+1, c0, 1) ≤

Φ(r, c0, 1) for each fixed column c0.
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Proof.

Φ(r + 1, c0, 1) ≤ Φ(r, c0, 1) iff

Φ(r + 1, c0, 1)

ϕ(r, c0, 1)
=

(k − r)2ac0

(r + 1)(n− k + r + 1)
≤ 1.

Note c0 ≤ k. Also note that to maximize the above inequality c needs to be maximum

and (k − r)2 needs to be maximum by setting r to its minimum value. Also, we will

set r = 1 in the denominator. Our conclusion will thus be valid if

(k − 1)2ak

(1 + 1)(n− k + 1 + 1)
≈ k2ak

2n
≤ 1

However, we may assume without loss of generality that n ≥ ka
k2

3

e
≥ k2ak

2
. This is

the end of the proof. �

Lemma 1.7 On the top surface of the n × n × n sculpture, Φ(1, c0, d + 1) ≤

Φ(1, c0, d).

Proof. Similar to Lemma 1.6

Φ(1, c0, d+ 1) ≤ Φ(1, c0, d) iff

Φ(1, c0, d+ 1)

ϕ(1, c0, d)
=

(k − d)2ac0

(d+ 1)(n− k + d+ 1)
≤ 1

Note c0 ≤ k. Also note that, to maximize the above mentioned inequality c needs to

be maximum and (k − d)2 needs to be maximum by setting d to its minimum value.
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So, we check when

(k − 1)2ak

(1 + 1)(n− k + 1 + 1)
≈ k2ak

2n
≤ 1.

We know that n ≥ ka
k2

3

e
≥ k2ak/2.

This is the end of this proof. �

Lemma 1.8 On the left facing surface of the n×n×n sculpture, Φ(r+1, 1, d0) ≤

Φ(r, 1, d0)

Proof. Similarly to the previous two lemmas. The following lemmas will analyze

the remaining 3 surfaces.

Lemma 1.9 On the right facing surface of n× n× n sculpture, Φ(r0, k, d+1) ≤

Φ(r0, k, d) when r0 ≤ k
3
, and furthermore Φ(r0, k, d+ 1) ≥ Φ(r0, k, d) when r0 >

k
3
.

Proof.

Φ(r0, k, d+ 1) ≤ Φ(r0, k, d) iff

Φ(r0, k, d+ 1)

Φ(r0, k, d)
=

(k − d)2ark

(d+ 1)(n− k + d+ 1)
≤ 1.

Now as before

(k − d)2ark

(d+ 1)(n− k + d+ 1)
≈ (k − d)2ark

(d+ 1)n
≤ 1

if

(k − d)2ark

(d+ 1)n
≤ (k − 1)2ark

(1 + 1)n
≤ 1

or when

(k − 1)2ark

(1 + 1)n
≤ k2ark

n
≤ 1,

i.e., when

k2ark ≤ n.
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Since

ka
k2

3

e
≤ n,

we see that the above will hold if r ≤ k
3
; when r > k

3
the inequality will reverse and

thus Φ(r0, k, d+ 1) ≥ Φ(r0, k, d). This completes the proof. �

Lemma 1.10 On the bottom surface of the n×n×n sculpture, Φ(k, c0, d+1) ≤

Φ(k, c0, d) when c0 ≤ k
3
and furthermore Φ(k, c0, d+ 1) ≥ Φ(k, c0, d) when c0 >

k
3
.

Proof. Similar to that of Lemma 1.9. �

Lemma 1.11 On the bottom surface of the n×n×n sculpture, Φ(r+1, c0, k) ≤

Φ(r, c0, k) when c0 ≤ k
3
and furthermore Φ(r + 1, c0, k) ≥ Φ(r, c0, k) when c0 >

k
3
.

Proof. Similiar to that of Lemmas 1.9 & 1.10. Omitted. �
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As a result of these lemmas, we conclude that the maximum of Φ(r, c, d) is

Φ(k, k, k − 1). Recall (4), that is

∆j ≤
(
n
k

)3
a2k3

k3max{Φ(r, c, d)}. (6)

It follows that

∆j ≤
(
n
k

)3
a2k3

k3Φ(k, k, k − 1)

=

(
n
k

)3
a2k3

nk4ak
2(k−1). (7)

Since λ =

(
n
k

)3
ak3

, (7) yields

∆j ≤
nk4λ

ak2
. (8)

We see from (3) that

δj ≤ k3

(
n− 1

k − 1

)3
1

ak3
≤ k3

(
n

k − 1

)3
1

ak3
.

Multiplying top and bottom by

(
n

k

)3

,

we see that

δj ≤ k3

(
n

k − 1

)3
1

ak3

(
n
k

)3(
n
k

)3
= k3

(
n

k−1

)3(
n
k

)3 λ

≤ 2k6

n3
λ. (9)

Now we can plug (8) and (9) into Suen’s inequality to get

Pj ≤ e

−λ+λ
nk4

ak2
e

4k6λ

n3


.
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Noting that e

4k6λ

n3 → 1 since
4k6λ

n3
→ 0, we conclude that

P (Structure is not an Omnisculpture) ≤
∑
j

Pj

≤ ak
3 × e

−λ+λ
2nk4

ak2 (10)

Since we can assume that n ≤ kak
2/3,

P(not omni) ≤ ak
3 × e

(−λ+2λ(
kak

2/3k4

ak2
))

= ak
3 × e

(−λ+2λ
k5

a2k2/3
)
.

Assuming

kak
2/3

e
≤ n ≤ k × ak

2/3

e
(1 + ϵ),

we have

λ ≤ (
ne

k
)3k

1

ak3
= (1 + ϵ)3k ≤ k5,

for suitably chosen ϵ, so that

P(not omni) ≤ ak
3

e
(−λ+2

k10

a2k2/3
)
→ 0. (10)

This completes the proof of the main result. �
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5 CONCLUSION

With this thesis, we carried the study of omnipatterns to a higher dimension.

First, we reviewed previous results on the omnipatterns in one and two dimensions.

Then, we investigated the three dimensional case and the probability of omnipatterns

in the three dimensional space. We proved that the probability of the existence of a

minimal omnisculpture is guaranteed when

n ≥ ka
k2

3

e
(1 + ϵ)

and ϵ = ϵk → 0 is a sufficiently small function of k.

We believe this study can be extended to more dimensions. For example, four,

five even d-dimensional for d ≥ 6 omni patterns may exist. We wish to continue our

work on this topic and extend our study to d−dimensional omni patterns.
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