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ABSTRACT
Modeling the Progression of Discrete Paired Longitudinal Data

by

Jonathan Wesley Hicks

It is our intention to derive a methodology for which to model discrete paired lon-
gitudinal data. Through the use of transition matrices and maximum likelihood
estimation techniques by means of software, we develop a way to model the progres-
sion of such data. We provide an example by applying this method to the Wisconsin
Epidemiological Study of Diabetic Retinopathy data set. The data set is comprised of
individuals, all diabetics, who have had their eyes examined for diabetic retinopathy.
The eyes are treated as paired data, and we have the results of the examination at

the four unequally spaced time points spanning over a fourteen year duration.
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1 INTRODUCTION: DR AND WESDR

Due to the severity of diabetes, the body is susceptible to a multitude of compli-
cations. Of these complications, the eyes are prone to be severely effected eventually
leading to blindness. Diabetic retinopathy is the leading cause of visual impairment
among people of working age in America [6]. In the early 1990’s, the cost of medical
care for a blind diabetic under the age of sixty-five was on average 12,764 dollars per
year. This led to an estimated 500 million dollars a year spent on blind diabetics [6] .

The three leading causes of damage to the eyes for diabetics that can all lead to
blindness are cataract, glaucoma, and diabetic retinopathy. Cataracts are character-
ized by clouding of the eye’s lenses [10]. Glaucoma is the increased pressure of fluid
in the eye [10]. Diabetic retinopathy, the most common of these complications that
affect the eye, is caused by damage, usually leakage or swelling of blood vessels, to
the retina, which is the light sensitive tissue located at the rear of the eye [1]. It is
a progressive disease, in that it develops over four stages. The first is known as mild
nonproliferative retinopathy, in which micro aneurysms, small areas of swelling, begin
to occur [1]. The second stage is known as moderate nonproliferative retinopathy, in
which some of the blood vessels that nourish the retina begin to become blocked [1].
The third stage, severe nonproliferative retinopathy, is when many more of the blood
vessels in the retina are blocked and the retina begins to send signals for new blood
vessels to be grown to aid in the loss of blood supply [1]. The end stage of diabetic
retinopathy is proliferative retinopathy, in which the new blood vessels, which are of-
ten fragile with thin walls, may leak blood causing vision loss and eventual blindness

[1]. In Type 1 diabetes, diabetic retinopathy is a common complication and almost
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all patients have a form of retinopathy after a fifteen year duration of diabetes [4].
The classification of diabetic retinopathy is based on a combination of two meth-
ods, the Snellen Visual Acuity Chart and the Modified Airlie House Classification
Scheme [2]. The Snellen Visual Acuity Chart is a chart with which we are all familiar
because it can be found at any optometrist office. It was developed by a nineteenth
century Dutch ophthalmologist Herman Snellen (1834-1908), from which it got its
name. The Snellen chart measures the clarity of vision. This is the standard protocol
for measuring visual clarity and is based on the distance a person is from a letter or
number on the chart and the height of that letter or number [10]. The scale is as

follows:

Table 1: Grading of Visual Acuity

‘ Grade ‘ Diagnosis

20/20 to 20/40 “good”

20/50 to 20/100 | “moderate impairment”

20/200 to 5/200 | “severe impairment”
5/200 “blind”

The next method used in classifying diabetic retinopathy is the Modified Airlie
House Classification Scheme, which was proposed in the late 1960’s [9]. This method
consists of a series of seven 30° standard stereoscopic colour fundus photographs used
in the grading of the severity level of diabetic retinopathy [1]. The Modified Airlie
House Classification Scheme uses the colour fundus photographs to find hemorrhages
or micro aneurysms, which may have formed at the retina. Since these lesions caused

by the hemorrhaging or micro aneurysms can be identified in the photographs, they
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are graded in order to determine the retinopathy severity level. The presence of the
lesions is the major factor to be evaluated [1].

The Modified Airlie Classification Scheme was introduced as a way of standard-
izing the classification of Diabetic Retinopathy, and is still used by clinicians today
based on its ease of use [9]. Standard photographs were provided such that a basis of
grading hemorrhaging or the micro aneurysms could be established.

It was apparent that a need to understand and study the progression diabetic
retinopathy was in order. Many studies have been conducted on the progression of
this disease, but it is the Wisconsin Epidemiological Study of Diabetic Retinopathy
that has gained the most notoriety [6].

The Wisconsin Epidemiological Study of Diabetic Retinopathy (WESDR) [1] was
founded during the years of 1979-1980. Its purpose was to investigate the prevalence,
incidence, and progression of Diabetic Retinopathy. WESDR is the most recognizable
name for its efforts in the prolonged study of diabetic retinopathy [6]. This group has
conducted an observational study of a random sample of diabetics who all received
primary care in an eleven county area of Southern Wisconsin. This sample was
comprised of a younger onset group, all taking insulin before the age of thirty, and
an older onset group [1]. For the purposes of this paper, we are concerned with only
the younger onset group.

The younger onset group is comprised of 996 diabetics examined at four unequally
spaced time points. The standard protcols for measuring diabetic retinopathy were
used at each time point. These protocols are the Snellen chart and the Modified Airlie

(Classification Scheme. The first examination took place at the baseline year. The first
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follow-up examination was done four calendar years from the baseline (year four) in
which 891 of the baseline year participated. The second follow-up examination was
six calendar years after year four (year ten) in which 766 participated. The third
follow-up examination was done four years after the second follow up (year fourteen)
in which 625 of the original baseline examination were examined [1].

These are time censored intervals, in that we have no idea of the individual’s
condition or state in between examinations. Since this is an observational study, some
subjects experience events such as death and other causes to the natural progression of
the retinopathy process [2]. The reasons for non-participation will not be mentioned
in this paper and are addressed elsewhere [1].

At each examination, we have the participant’s visual acuity score from the Snellen
chart and retinopathy severity level from the Modified Airlie House Classification
Scheme. The visual acuity scores follow the standard chart as mentioned in Table
1, while the retinopathy severity levels were scaled using an algorithm where the
scores range from 10 (no disease) through 85 (proliferate retinopathy) [1]. Table 2

summarizes the grading of diabetic retinopathy severity levels.

Table 2: Severity States

‘ Level ‘ severity ‘

RL < 15 no retinopathy
15 < RL < 37 non proliferative DR
38 < RL < 59 | mild non-proliferative DR
60 < RL < &4 active profliferative
RL =85 end stage proliferative DR

We intend to use the visual acuity score and the retinopathy severity level of each
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participant to encode our data. Accompanying these scores, we have the participant’s
gender and age at the baseline year. We intend to use age as a factor in our model
of the progression of diabetic retinopathy:.

The WESDR data are a discrete categorical model, in which we use ordinal scales
for measurements. We intend to take a frequentist approach to modeling the progres-
sion of diabetic retinopathy because of the advantage of using our large sample size
to allow for model selection based on the data [2]. Through the use of probability
transition matrices to aid in the modeling of the progression form one year to the
next and the use of maximum likelihood estimation methods to estimate parameters,
we model the discrete paired longitudinal data as separate entities as well as paired.
Since computation is numerically difficult by hand, software will be implemented
for computation. It is our primary goal to model the progression of discrete paired

longitudinal data.
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2 METHODOLOGY

We propose to use a Markov chain, a stochastic process, because the conditional
distribution of X;,; given X,...X; is identical to the conditional distribution of X,
given X;. Also, the use of a Markov Chains has been successful and convenient in
modeling medical contexts [7]. Our first step in this process was to encode the data
into two groups. All non-participants were given a value of NA corresponding to not
available. We combined the visual acuity score (VA) and retinopathy severity levels
(RL) such that if the individual had a VA>20 or a RL<85, he/she was given a value
of zero, which corresponds to not having severe visual impairment. If the individual
scores a VA less than 20 and a RL equal to 85, he/she was given a value of one
indicating severe visual impairment. A summary of the counts are given in Table 3
and Table 4 for the left and right eye, respectively, for our four time points, which

are given in years after the baseline examination.

Table 3: Coded Counts for The Left Eye

‘ Year ‘ 0 H 1 ‘

Baseline 914 || 78
4 years after | 815 || 76
10 years after | 721 || 45
14 years after | 611 || 41

2.1 Modeling Eyes Individually

We now wish to apply a probability transition matrix to the unequally spaced

time points separately for each eye. Our assumptions are that all cases are mutually
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Table 4: Coded Counts for the Right Eye

‘ Year ‘ 0 H 1 ‘

Baseline 916 || 76
4 years after | 814 || 77
10 years after | 715 || 51
14 years after | 605 || 47

exclusive, an individual’s eye is considered not to have severe visual impairment until
a value of one is seen, and once the individual has reached the state of visual impair-
ment, that individual is considered to have severe visual impairment for the duration
of observed time points. We are treating the probabilities of the transition matrix as
constants for the moment, and the transition matrix represents the idea of going from
state to state in one-year increments. In the first row, the parameter p represents the
probability of going from an eye of non-severe visual impairment to an eye of non-
severe visual impairment, 1 — p represents that of going from an eye of non-severe
visual impairment to that of an eye with severe visual impairment. The second row
of the transitions matrix, under our assumptions, gives us a zero for going from an
eye with severe visual impairment to an eye with non-severe visual impairment and
a 1 for the probability of going from severe impairment to severe impairment. As it
should, each row in the transition matrix sums to one. The following represents our

transition matrix that we have applied to the data set:

p 1L—p
0 1
We used maximum likelihood estimation to estimate the parameters. Using this
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transition matrix, we applied it to all possible finite cases of each eye separately and
produced the following results where the first column represents the baseline year
and the remaining columns represent four years after the baseline, ten years after
the baseline, and fourteen years after the baseline, respectively. In the event that
a missing value occured at the baseline year and a value of one occured at the first
observed time point, the parameter v was introduced. We do not know the state of
the individual at the baseline year, and v is the the estimate of having a value of
not having severe visual impairment at the baseline year. The transition matrix is
applied to each eye separately and the following represents all possible cases under
our assumptions and their respective probabilities. We have substituted a value of *
for any missing value in the following cases.

Cases — Probability

0000 — p'4

0001 — pl® —p'4

0011 — p* — p'®

0111 — 1 —p*

1111 — 1

000 — p't

001 — pl0 — pl4

*011 — pt — plo

*111 — 1 — vpt

0%00 — p'

0*01 N p10 _ p14
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0%11 — 1 — p10
111 — 1

00%0 — p4
00*1 — 1 —p*
01*1 — 1 —p*
11*1 — 1

000% — !0
001% — p* — p!©
011% — 1 — p?
111 — 1
-
(] s pl0 _ pld
11— 1 —vp'l
0F*0 — pl
0%*1 — 1 — pt
1951 — 1

00 — pld
KO¥] — pt — plt
141 — 1 — vp?
00%* — p

01 — 1 —p?
1% — 1

0*0* N plo
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0%¥1% — 1 — pl0
1F1% — 1

*00% — pl0
*01% — pt — plo
1* — 1 —wp?
0%k, 1

1RRE

KHE !
N
HH(E s pl0

kK ] _plo
*RK() p14

k] ] l/p14

It is now our goal to write the likelihood of the observed cases. We write a func-
tion in R, to obtain the counts of the cases and shall denote the counts as n; such
that {n;,i = 1...N} where i denotes the number of the discrete observed cases and
the observed probabilities are denoted as f(z;) from the transition matrix, where

7 = 1...N is the number of the observed cases. Our likelihood function is

L= Hf\; fla).

By taking the natural log of our likelihood function, we obtain our log-likelihood
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L= 30 n In(f ().

We use the log-likelihood to find our estimate of p and v. This is done since the value
of p and v maximize the likelihood function as well as the log-likelihood function [5].
Once the counts of the cases are obtained from our R program, we take the counts
and write our log-likelihood function in Maple version 10 to procure the results. The
log-likelihood value is given since the likelihood function may be quite small.
Statistical inferences will be performed to find the best model for the progression of
diabetic retinopathy. For model selection, we incorporate age and time until a severe
visual impairment occurs as factors. We are operating under the same assumptions
that our cases are mutually exclusive. An individual’s eye is considered not to have
severe visual impairment until a value of one is seen. Once the individual has reached
the state of visual impairment, that individual is considered to have severe visual
impairment for the duration of the observed time. In the following transition matrix,
t represents the time until severe visual impairment is observed or until the end of our
observed time and age represents the age of the individual at the baseline year. As
before, both rows sum to one. We assume little about the parameters 3 and v except

that they are less than or equal to zero and hence account for this in our matrix.

pe(_:@age_'yt) 1 — pe(_:@age_'yt)
0 1

After applying the transition matrix, where age and time are factors, we then
arrive at all possible cases under our assumptions and they are as follows:

Cases — Probability
0000 — plie(-148age—y 2, 0)
19



0001 — plOe(~108age—v X2, t) _ pldo(—14Bage—y 3,2, 1)
0011 — ple(—4Bage—r i1 t) _ ;10o(=108age—y 342, 1)
0111 — 1- ple(-4Bage—y i)

1111 — 1

*000_>p146(—145age—y2}ilt)

*001 — pl0e(~108age—y St p146(—145age—yz}ilt)
*011 — ple(—4Bage=7Xi1t) _ plog(—108age—y 32,2, 1)
*111 — l-yple-4Page—7 i, 1)

0%00 — p14e(—145age—~, S

0%01 — pIOe(—loﬁage—y SR p14e(—145age—~,z,}ilt)
0%11 — 1- ploe(—mﬁage—«,z}glt)

111 — 1

00%0 — p14e(—145age—~, POrE))

00%1 — ple(~48age=7211t) _ pldp(~14Bage—y 3212, 1)
01%1 — 1- ple(~4Bage—7Xi 1 ?)

11*1 — 1

000*_)ploe(—loﬁage—yztlglt)

001* — p4€(—4ﬁage—yz§:1t) o ploe(—loﬁage—yzglt)
011% — 1- ple(-4Bage—r i 1 1)

111* —= 1

**OO_>p146(—145age—y2}i1t)

k%01 — ploe(—loﬁage—ﬁ/ SR p146(—145age—~,z}i1t)

**11 — 1_,/p106(—105a96—“/2321t)
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0**0) — p14e(—14ﬁage—’y S
0*¥*%1 — 1- p146(—145age—yz}ilt)
11 — 1
*O*O_>p146(—145age—y2}11t)
*0*1 — p4€(—45age—yz;*:1t) o p146(—145age—yz§i1t)
*1%] — 1_Vp4€(—45age—yz;*:1t)
00%* — p4€(—4ﬁage—yz;*:1t)
01%* — 1- p4€(—45age—~,z;*:1t)
11 — 1
0*0*_)pIOe(—loﬁage—yZ%glt)
0%1* — 1- ploe(—loﬁage—yzgglt)
1% — 1

*00* — pl0e(-108age—y St
*01* — 1- ploe(—loﬁage—yz}glt)
*11% 1_Vp46(—45age—yz§:1t)
OFFF 1

PRk
*O**_>p4€(—4ﬁage—y§j;‘:1t)
kR 1_Vp4€(—4ﬁage—y§j§:1t)
**0*_)ploe(—loﬁage—yzgglt)
kxR 1_Vp106(—105age—yz}glt)
***0_>p146(—146age—“/25i1t)

Ll N 1_Vp146(—146age—~/ S
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In writing our likelihood function including age and time as factors, we represent
f(z;; age, time) as the probability of each case. Here we cannot take our counts and
use Maple version 10 to compute our estimate, however we write our program in R
such that the log-likelihood is added under each iteration of the function. This is
done since age is a changing factor for each case, and if more than one case exists
then the sum of said case’s age is required. Since t is a constant, its value is can easily
be computed. Using the optim feature in R, we are able to achieve our best estimate
for p,v,3, and ~.

Another nice feature of using R to write our log-likelihood is that, since we are
interested in the best possible model, we can obtain the best estimates for when =0
and when v=0 in order to do statistical inferences. We intend to use a likelihood
ratio test to find the best possible model. This will allow us to know if age and/or

time plays a factor in the progression of diabetic retinopathy.

2.2 Modeling of Paired Data

It is now our intent to model the eyes as discrete paired longitudinal data. We are
still under the previous assumptions but, since pairs of ordered categorical responses
tend to be highly correlated, we now incorporate a factor to account for the depen-
dence between the eyes when at least one of the eyes reaches the state of severe visual
impairment [3].

We introduce our transition matrix such that the first row represents going from
the left and right eye not having sever visual impairment to the left and right eye

staying in the same state. In other words, column one represents the left and right
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eye not having severe visual impairment. Column two represents the right eye hav-
ing severe visual impairment and the left eye not having severe visual impairment.
Column three repesents the left eye having severe visual impairment and the right
not having severe visual impairment. Column four represents both eyes having severe
visual impairment. It is our assumption that if the previous state of the eyes are not
severely afflicted then the eyes will have no effect on the next year’s state. In other
words, the first row represents an independence between the state of the eyes. Row
two represents the left eye having no severe visual impaired and the right eye having
severe visual impairment. Row two follows the transitions from the four previously
mentioned columns. Row three represents the left eye having severe visual impair-
ment and the right eye not having severe visual impairment. Row three follows the
same transitions through the columns already mentioned. Row four represents both
eyes having severe visual impairment and their transitions through the mentioned
columns.

In the matrix, the subscripts [ and r apply to left eye and right eye, respectively.
The factors e® and e’ are to account for the dependence between the eyes. We take
the assumption that G, and 3, are less than or equal to zero. Therfore we account for

this restriction in our transition matrix.

ppr (1 =p,) (1=p)pr (1 —p)(1—py)

0 pre P 0 1 —pe P
0 0 pre P 1 —pe P
0 0 0 1

There are a multitude of cases in modeling pairs of longitudinal data that consist

of every combination of left and right eye, respectively. One must keep in mind that
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all cases are mutually exclusive when applying the transition matrix. One must also
be sure to include all possible cases that will influence the probability of each case.
We again use R to write our log-likelihood function to obtain the best estimates for
our parameters.

It is now our intention to include age as a factor in modeling the year-to-year
transitions. We allow v to be our slope for age, which is recorded at the baseline
year, and assume that ~y is greater than zero since we have accounted for the negative
value of v in our transition matrix. We assume the parameter v to be the same for

the left and right eye, since each individual shares the recorded baseline age.

pre” 19,19 e 191 — peT) (1 — pre 1) pe” 9 (1 — pre”79¢)(1 — pre7 1)

O ple_ﬁl_ﬂyage O 1 — ple_ﬁl_ﬂyage
0 0 pre—ﬁr—vage 1 — pre—ﬁr—vage
0 0 0 1

Using R we are again able to write our log-likelihood function and obtain the best
estimates for our parameters, which now consist of p;, p,, 0;, 5,, and v . This matrix
represents the same idea as the previous matrix for modeling eyes jointly, only now the
factor for age is in our program and is included at each iteration of the log-likelihood

function.
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3 RESULTS

In this chapter we present our results. We give the parameter estimates and the
value of the log-likelihood function for each trial of our programs. This is important
since we are going to conduct the likelihood ratio test.

In the likelihood ratio test, the value of the log-likelihood is obtained for the
unconstrained model. In our case, age and time until severe visual impairment repre-
sents our unconstrained model. We denote the unconstrained model’s log-likelihood
value as [,. When a factor is dropped, the model is the constrained model, and we
denote its log-likelihood value as I.. The test statistic is X? = —2 % (I,) — 2 * (I,
[8]. This test statistic is compared to a chi-square distribution with 95% confidence
and the degrees of freedom equal to the number of parameters dropped from the

unconstrained model [11].

3.1 Left Eye Results

We begin with the simpliest case of modeling the left eye transitions that is our first
constrained model. It is our intention to use maximum likelihood estimation (MLE)
methods to estimate parametes, and we use the following equations to represent the
likelihood function with all of cases from the data. Note that v has a no value because

no such cases exist.
L = HI f(x>m — (1_p4)n1*(p4_p10>n2*(plo_pl4)n3*(pl4>n4*(p10)n5*(p4_p14)n6*(p4)n7

Taking all counts from our R program, we were able to write the likelihood function

as follows:
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L=TI () = (1= 5)'% s (= )15 4 (010 = 1104 p70 ! = )
By taking the natural log of the likelihood function we arrive at

L= mn(f(a) =

16 * In((1 — p*) + 13 % In(p* — p'°) + 16 * In(p'® — p'*) + 9864 * In(p) + In(p* — p**))
We are searching for the value that maximizes p, therefore we take the derivative of
L with respect to the unknown parameter p and arrive at:

dl _ —64xp3 4 52xp3  130xp° + 160xp?  224xpl3 +9864 + 4xp3  14xpl3
dp — (1-p*) ' (p*-p'%)  *-p%)  (@0-p™)  (p'0-p") 2 *=p)  ('-p')

By setting the % = 0 we obtain our estimate of p for the left eye to be p=0.995948827.
A log-likelihood value of [,=-227.9330 is computed. Figure 3 shows a graph of the
log-likelihood function for the left eye and Figure 4 shows the log-likelihood function’s
derivative. The figures are provided by Maple version 10.

Our next step is to compute the estimates with age and time until severe visual
impairment are observed as factors. When considering these factors, we obtain our
unconstrained model. Thanks to the software package R, we are able to obtain the
estimates when age or time are dropped from the model. Table 5 summarizes the

estimated parameter values for our unconstrained model.

Table 5: Parameter Estimates for Unconstrained Model for Left Eye

‘ Parameter ‘ Value ‘
P 0.9981274
15} 0.00007342678
v 0.0001084154
v NA
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Figure 1: Graph of the Log-Likelihood Function of Left Eye Treated as a Constant
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Figure 2: Derivative of Log-Likelihood Function for Left Eye Treated as a Constant
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Through MLE methods in R, we obtain parameter estimates to be p=0.9981274,
the slope for age =0.00007342678, the slope for the time until severe visual impair-
ment, y=0.001084154. The parameter v receives a value of “NA”. The unconstrained
model gives [,= -224.8931.

We are now able to give the best results for when time until severe visual impair-
ment is not a factor in the model, y=0. Table 6 summarizes our estimates of our

parameters for when time until severe visual impairment is not a factor.

Table 6: Parameter Estimates for =0 for Left Eye

‘ Parameter ‘ Value ‘
P 0.99699653
15} 0.00005879746
¥ 0
v NA

We see that the parameter p=0.99699653 and the parameter F=0.00005879746.
We obtain a value for [.= -225.7362 for the constrained model.
We can also remove age as a factor from the model. This gives us our third

constrained model. Table 7 summarizes our estimates for when (3 equals to zero.

Table 7: Paramter Estimates for =0 for Left Eye

‘ Parameter ‘ Value ‘
P 0.9958837
15} 0
v 0.00006702342
v NA

The parameter p=0.9958837 and the parameter v=0.00006702342. This con-
29



strained model gives [.= -227.3449. With this information, we are now able to perform
our likelihood ratio test with our possible models. The first test is done for when [

and ~ are dropped from the unconstrained model.

Hy: 8=0 v=0
H,: at least one slope does not equal zero
X2=2%(-224.8931)-2*(-227.9330)=6.0798
X%.9572):5.99146

X? > X{ 5.2 Conclude H,

From this test, we have evidence that at least one parameter can be included in
our model of the progression of diabetic retinopathy. The following test will determine
which factor we shall include.

Test for time being dropped form the model, v=0.

Hy: v=0
Ho: v #0
X2=0%(-224.8931)-2%(-225.7362) =1.6862
X g51)=3-84146

X2 < X%%J) Conclude H

This test gave us supporting evidence for the idea that time until severe visual
impairment should not be included in our model. The following test is to see if we
have evidence that the age of individual is appropriate for our model. This would

support our first test that at least one parameter should be included in the model.
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Hy: =0
He: B#0
X2=2%(-224.8931)-2%(-227.3449)=4.9036
X2 g5.1)=3.84146

X2 > X%,95,1) Conclude H,

From this test, we have evidence that age should be included in our model of the
progression of diabetic retinopathy. This also supports our previous test results. We
can interpret these results to mean that the older an individual, the more susceptible
the individual is to severe visual impairment. The following table summarizes the

results of the likelihood ratio tests:

Table 8: Likelihood Ratio Test Results

‘ Hy ‘ Test Statistic H p-value ‘
B=0 v=0 6.0798 0.04783967
~=0 1.6862 0.1941027
£=0 4.9036 0.0268077

3.2 Right Eye Results

We begin, similar to how we analyzed the left eye results, by treating the transition
matrix as a constant. We begin by showing our equation for the liklihood fucntion of
the right eye. This will be our first constrained model for the right eye. As with the

left eye, the parameter v will not be estimated since no such cases exist.

L =TT f(z)m = (1—p*) x(p*—p'0) 25 (p'0—p') 35 (p'4) 15 (p'0) "o % (p* —p'* )"0 % (p*)™7
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Taking all of our counts from our R program, we were able to write the likelihood

function as follows:

L = HI f(a:) _ (1 o p4)22 N (p4 o p10)17 % (pw o p17)16 % p9696 % (p4 o p14)3

Taking the natural log of the likelihood function we arrive at

L= nin(f(@:) =

22 In((1 — pt) + 17 % In(p? — p'°) + 17 x In(p'® — p'*) + 9696 * In(p) + 3 x In(p* — p'*))

Since we desire the value that maximizes p, we take the derivative of L with respect

to the unknown parameter p and arrive at:

dl _ —88xp® 68xp%  170xp° + 170xp°  238xp!3 4 9696 12xp® 424p13
dp (1-pY) © @*=p0)  (*-p'%) " (

pV=p't)  (p'0—p') P PT—p™)  (pT-p)
By setting the j—; = 0 we obtain the parameter p, for the right eye modeled as a
constant to the value of 0.9941692577. Our log-likelihood function gives a value [.=
-273.7965. Figure 5 shows the graph obtained from Maple version 10 of the log-
likelihood function for the right eye and Figure 6 shows its derivative.

We include age and time until severe visual impairment as factors to obtain our
unconstrained model. The following table represents the results from our MLE meth-
ods in the R program. By optimizing our log-likelihood function to obtain the best
estimates for our parameters as well as for when =0 and v=0, we arrive at the
following tables.

Table 9 shows results from when age and time are factors. We see that our

probability p=0.9962208, £=0.00006593282, v=0.00005152787. This gives us our

unconstrained model for the right eye and has a log-likelihood value [,=-269.7488.
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Figure 3: Graph of the Log-Likelihood Function of Right Eye Treated as a Constant
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Table 9: Parameter Estimates for Unconstrained Model for Right Eye

‘ Parameter ‘ Value ‘
P 0.9962208
15} 0.00006593282
~y 0.00005152787
v NA

We now obtain the best estimates for when time until severe visual impairment is
not a part of our model. This is the case when ~ is equal to zero, and the results are

summarized in Table 10.

Table 10: Right Eye Estimates for y=0

‘ Parameter ‘ Value ‘
P 0.9961130
15} 0.00006592568
0 0
v NA

We have p=0.9961130 and =0.00006592568 as estimates for our parameters. The
log-likelihood function gives a value of [.=-269.7613, and gives us a second constrained
model.

Table 11 summarizes the best estimates for when age is not a part of the model.
This is the case when (3 equals to zero. The values of the paramters are p=0.9958837
and y=0.000047637. The log-likelihood function gives a value of [,.=-273.7672.

Since we now have estimates for our unconstrained and constrained models, we
can perform the likelihood ratio test and select the best model.

Our first test is done for when (3 and v are not a part of the unconstrained model.
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Table 11: Right Eye Estimates for =0

‘ Parameter ‘ Value ‘
P 0.9958837
16} 0
0 0.000047637
v NA
Hy: =0 y=0

H,: at least one slope does not equal zero
X2=2%(-269.7488)-2*(-273.7965)=8.0954
X%.9572):5.99146

X? > X7 5.2 Conclude H,

From this test, we have evidence that at least one parameter can be included in
our model of the progression of diabetic retinopathy. The following test will determine
which factor we shall include.

Test for time until severe visual impairment is observed is not a part of the model.

Hy: v=0
Hy: v #0
X2=2%(-269.7488)-2%(-269.7613)=0.25
X? g5.1)=3.84146

X2 < X%,95,1) Conclude H

This test gave us supporting evidence for the idea that time until severe visual

impairment should not be included in our model. The following test is to see if we
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have evidence that the age of the individual is appropriate for the model, and this
supports our first test that at least one parameter should be included in the model.

Test for age not being a part of the model.

Hy: =0
Ho: B #0
X2=2%(-269.7488)-2*(-273.7672)=8.0368
X%.9571):3.84146

X? > X7 g5y Conclude H,

This test led us to conclude that we have evidence that age should be included in
our model, much like what was seen analyzing data for the left eye. We conclude that
the best model for the left and right eye should be the one in which age is included
and is based on the model selected by the data. We can interpret these results to
mean that the older an individual, the more susceptible the individual is to severe
visual impairment. Table 12 summarizes the results of our likelihood ratio tests and

gives their respective p-values.

Table 12: Likelihood Ratio Test for Right Eye

‘ Ho ‘ Test Statistic H p-value ‘

B=0 v=0 8.0954 0.01746249
~v=0 025 0.874367
B=0 8.0368 0.004583644
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3.3 Joint eyes

We now show results for modeling the progression of the discrete paired longitu-
dinal data. We begin with the simplest case of treating the transition matrix as a
constant, and allowing this to represent the first constrained model. Using the optim
feature in R, we were able to obtain the estimates that maximize our log-likelihood

function and a summary of the results are in the following table.

Table 13: Parameter Estimates for Joint Eyes: Constrained Model

‘ Parameter ‘ Value ‘
12 0.99733348
Dr 0.99625972
15/} 0.02388120
o 0.053444210

The parameters to account for the dependence between the eyes are allowing us to
look at how the eyes change over a one-year interval. The left eye’s dependence value
is e==0.9764016994, and the right eye’s dependence value is e #r=0.9479588262.
This model gives us a [.= -388.8224 for our constrained model’s log-likelihood value.

At this time, we would like to test our model for independence. It was our assump-
tion that a dependence structure was present between the eyes and, by allowing (3,=0
and (3,=0 in our transition matrix, we were able to optimize our log-likelihood func-
tion and acheive the parameter estimates for to be p;=0.9960828 and p,=0.9947730.
Under the restriction that =0 and (,=0 and p;=0.9960828 and p,=0.9947730, we
achieve a log-likelihood value, which shall be denoted [;,=-455.8831, where i represents

our independence structure. We shall again use the likelihood ratio test and it is as
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follows:

Ho: 4,=0 /3,=0
H,: at least one slope does not equal zero
X2=2%(-388.8224)-2%(-455.8831)=134.1214
X%.9572):5.99146

X2 > X?,%,g) Conclude H,

We can conclude that at least one slope does not equal zero with strong evidence
since we have a p-value < 0.0001. From this test, it is clear that a dependence
structure is present and therefore we shall include 3; and 3, in our model of the joint
progression of the discrete paired longitudinal data.

Since it is our primary goal to obtain the best model, we include age as a factor.
We are interested in seeing if age is also a factor to consider for the progression of

diabetic retinopathy in both eyes.

Table 14: Parameter Estimates for Age Included for Joint Eyes

‘ Parameter ‘ Value ‘
Dieft 0.9983295
Dright 0.9973444
Ble ft 0.02913909
Bright 0.05621652

v 0.00003510966

We achieve a log-likelihood value of [,= -386.3605 for our log-likelihood value from
this model and consider it to be our unconstrained model. Age was included as a

factor and y=0.00003510966 and this allows us to conclude that the older you are
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the more likely the eyes are to be severely impaired. Now we wish to conduct our
likelihood ratio test to this model, to test if age should be dropped from modeling

the eyes as a pair.

Hy: v=0
Ho: v #0
X2=2%(-388.8224)-2*(-386.3605)=4.9238
X2 g5.1)=3-84146

X? < x{ g5,y Conclude H,

We can conclude from this likelihood ratio test, that we have evidence to support
that age should be included in modeling of the eyes jointly. In other words, v #0.
We obtain a p-value equal to 0.026489. We can interpret this as meaning that age
plays a role in the progression of diabetic retinopathy in that the older an individual

is, the more likely he/she is to obtain the state of severe visual impairment.
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4 CONCLUSION

The Wisconsin Epidemological Study of Diabetic Retinopathy has gained much ac-
claim for their efforts in the study of incidence, prevalence, and progression of diabetic
retinopathy [6]. Using the Wisconsin Epidemological Study of Diabetic Retinopathy
data set as an example, it was our intention to derive a methodology to model discrete
paired longitudinal data.

In modeling discrete paired longitudinal data, we began by modeling the pairs
seperately, in the case of the WESDR data, the left and right eye, respectively. We
introduced a Markov Chain process in which we implemented a transition matrix to
model from one state to the next state. The purpose of taking such an approach was
that we may perfom statistical inferences and arrive at the most appropriate model.

In the case of treating the pairs seperately, we see that the most appropriate
model is the one that includes age as a factor, information we have for the baseline
examination year of each individual. In the following transition matrix, we have (3

restricted such that the sign is negative.

pe(_ﬁage) 1 — pe(_ﬁage)
0 1

It was our primary goal to determine a methodology to model discrete paired
longitudinal data. We first treated the model for the paired data as a constant, which
includes a value to account for the dependence between the eyes. This dependence is
common with most paired medical, model contexts [3]. The value that was included

to account for the dependece was e~ for the left eye and e=% for the right eye. We
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took the assumption that §; and 3, was negative and accounted for this in our model.
This led us to the restriction that § must be greater than zero in our estimate. We
included age as a factor, to see if age has a role in the model, as it has with treating the
pairs individually. We arrived at the conclusion that we do have enough evidence to
say age is a factor to be included in the model based on the likelihood ratio test. The

following transition matrix represtents our model for the discrete paired longitudinal

data.

pie” 19,79 e 94 (1 — pem19¢) (1 — pre 1) pe” 79 (1 — pre79¢)(1 — peT )

O ple_ﬁl_ﬂyage O 1 J— ple_ﬁl_ﬂyage
0 0 pre—ﬁr—vage 1— pre—ﬁr—wge
0 0 0 1

Through the use of software, we are able to optimize our parameters by means of
maximum likelihood estimation methods. The likelihood ratio test performed on all
our models was chosen as the test since the natural log of the value of the likelihood

function was easily computed.
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APPENDICES

Appendix A presents the code for the left eye’s log-likelihood function in which
age and time have been considered as factors. The right eye was done similarly. We
began by coding the data into a matrix after it has been read into R. The matrix rep-
resents the state of the eye from one observed time point until the next. We denoted
our log-likelihood function for the left eye as lefteyefunction2, where p represents
the probability in our transition matrix, b represents 3 in our transition matrix, g
represents gamma in our transition matrix, and v represtn v.

In Appendix B, we introduce the code for computing the value of the parameters
for when age is incorporated as a factor into the modelling of eyes jointly. Here s
represents the left eye, t represents the right eye, B represents 3;, G represents (,,

and K represents 7, the slope for our factor time.

Appendix A: Code for Modeling Left Eye with Age and Time as Factors

va0 <- 20

leye<- matrix(1, n, 4)
leye[valeO<=va0, 1]<-1
leye[valeO>va0 & rlle0 < 85, 1]<-0
leye[is.na(vale0), 1] <- 2
leye[valed<=va0, 2]<-1
leye[valed>val & rlled < 85, 2]<-0
leye[is.na(valed), 2] <- 2

leye[valelO<=va0, 3]<-1
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leye[valel0>va0 & rllel0 < 85, 3]<-0

leye[is.na(valel0), 3] <- 2

leye[valeld<=va0, 4]<-1

leye[valeld4>va0 & rlleld < 85, 4]<-0

leye[is.na(valel4d), 4] <- 2

lefteyefunction2 <-function(para, n, age0) {

p<-paral[1]

b<-paral[2]

g<-para[3]

v<-paral[4]

loglike <- O

for (i in 1:n){

if (leyeli,1]==0 &leye[i,2]==0 & leye[i,3]==0 & leyel[i,4]1==0){
loglike <- loglike + 14x*log(p)+14*b*age0[i]+g*sum(1:14)

}

if (leyel[i,1]==0 &leye[i,2]==0 & leyel[i,3]==0 & leye[i,4]==1){
loglike<- loglike + log(piO*exp(10*bxageO[i])*exp(g*
sum(1:10))-pld*exp (14*bxage0[i]) *exp(g*sum(1:14)))

}

if (leyel[i,1]==0 &leye[i,2]==0 & leyel[i,3]==1 & leye[i,4]==1){
loglike<-loglike + log(pd*exp(4*b*xage0[i])*exp(g*sum(1:4
))-p1l0*exp(10xb*age0[i])*exp(g*sum(1:10)))

}

46



if (leyeli,1]1==0 &leye[i,2]==1 & leye[i,3]==1 & leye[i,4]==1){
loglike<- loglike + log(1-pd*exp(4*bxage0[i])*exp(g*sum(1:4)))
}

if (leyeli,1]==1 &leyel[i,2]==1 & leyel[i,3]==1 & leye[i,4]==1){
loglike<-loglike + 0O

}

if (leyeli,1]==2 &leye[i,2]==0 & leyel[i,3]==0 & leye[i,4]1==0){
loglike <-loglike + 14*log(p)+14*b*ageO[i]+g*sum(1:14)

}

if (leyeli,1]==2 &leye[i,2]==0 & leye[i,3]==0 & leye[i,4]==1){
loglike<-loglike + log(plO*exp(10*b*ageO[i])*exp (g*
sum(1:10))-pi4*exp (14*bxage0[i]) *exp (g*sum(1:14)))

}

if (leyeli,1]==2 &leye[i,2]==0 & leye[i,3]==1 & leye[i,4]==1){
loglike<-loglike + log(pdxexp(4xb*xage0[i])*exp(g*sum(1:4))
-pI0*exp (10xb*age0[i])*exp(g*sum(1:10)))

}

if (leyeli,1]==2 &leyel[i,2]==1 & leyel[i,3]==1 & leye[i,4]==1){
loglike<-loglike + log(1l-v¥pd*exp(4*b*age0[i])*exp(g*sum(1:4)))
}

if (leyel[i,1]==0 &leye[i,2]==2 & leyel[i,3]==0 & leye[i,4]1==0){
loglike <-loglike + 14xlog(p)+14*b*xageO[i]+g*sum(1:14)

}

47



if (leyeli,1]1==0 &leye[i,2]==2 & leye[i,3]==0 & leye[i,4]==1){
loglike<-loglike + log(pIlO*exp(10*b*ageO[i])*exp(g*sum(1:10))
-pld*exp (14*b*age0[i])*exp(g*sum(1:14)))

}

if (leyel[i,1]==0 &leye[i,2]==2 & leyel[i,3]==1 & leye[i,4]==1){
loglike<-loglike + log(1-pl0*exp(10*bxage0[i])*exp(grsum(1:10)))
}

if (leyeli,1]==1 &leye[i,2]==2 & leyel[i,3]==1 & leye[i,4]==1){
loglike<-loglike + O

}

if (leyeli,1]1==0 &leye[i,2]==0 & leye[i,3]==2 & leye[i,4]==0){
loglike <-loglike + 14xlog(p)+14*b*ageO[i]+g*sum(1:14)

}

if (leyeli,1]==0 &leye[i,2]==0 & leye[i,3]==2 & leye[i,4]==1){
loglike<-loglike + log(plxexp(4xb*age0[i])*exp(g*sum(1:4))-
pl4xexp(14xbxage0[i])*exp(g*sum(1:14)))

}

if (leyel[i,1]==0 &leye[i,2]==1 & leyel[i,3]==2 & leye[i,4]==1){
loglike<-loglike + log(1-pld*exp(4*b*age0[i])*exp(grsum(1:4)))
}

if (leyeli,1]==1 &leyel[i,2]==1 & leyel[i,3]==2 & leye[i,4]==1){
loglike<-loglike + 0O

}
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if (leyeli,1]1==0 &leye[i,2]==0 & leye[i,3]==0 & leye[i,4]==2){
loglike <-loglike + 10*log(p)+10*b*ageO[i]+g*sum(1:10)

}

if (leyel[i,1]==0 &leye[i,2]==0 & leyel[i,3]==1 & leye[i,4]==2){
loglike<-loglike + log(pdexp(4xbxage0[i])*exp(g*sum(1:4))
-pI0*exp (10xb*age0[i])*exp(g*sum(1:10)))

}

if (leyel[i,1]==0 &leye[i,2]==1 & leyel[i,3]==1 & leye[i,4]==2){
loglike<-loglike + log(1-pld*exp(4*b*ageO[i])*exp(grsum(1:4)))
}

if (leyeli,1]==1 &leye[i,2]==1 & leye[i,3]==1 & leye[i,4]==2){
loglike<-loglike + O

}

if (leyeli,1]==2 &leye[i,2]==2 & leye[i,3]==0 & leye[i,4]==0){
loglike <-loglike + 14xlog(p)+14*b*ageO[i]+g*sum(1:14)

}

if (leyeli,1]==2 &leyel[i,2]==2 & leyel[i,3]==0 & leye[i,4]==1){
loglike<-loglike + log(pl0*exp(10%b*ageO[i])*exp(grsum(1:10))-
pldxexp(14xb*xage0[i])*exp(g*sum(1:14)))

}

if (leyeli,1]==2 &leyel[i,2]==2 & leyel[i,3]==1 & leye[i,4]==1){
loglike<-loglike + log(1-v*plO*exp(10xb*age0[i])*exp(gxsum(1:10)))

}
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if (leyeli,1]==2 &leye[i,2]==0 & leye[i,3]==2 & leye[i,4]==0){
loglike <-loglike + 14xlog(p)+14*b*ageO[i]+g*sum(1:14)

}

if (leyeli,1]==2 &leye[i,2]==0 & leyel[i,3]==2 & leye[i,4]==1){
loglike<-loglike + log(pdexp(4xbxage0[i])*exp(g*sum(1:4))
-pld*exp (14*b*age0[i])*exp(g*sum(1:14)))

}

if (leyeli,1]==2 &leyel[i,2]==1 & leyel[i,3]==2 & leye[i,4]==1){
loglike<-loglike + log(1l-v¥pd*exp(4*b*ageO[i])*exp(g*sum(1:4)))
}

if (leyeli,1]==2 &leye[i,2]==0 & leye[i,3]==0 & leye[i,4]==2){
loglike <-loglike + 10*log(p)+10*b*ageO[i]+g*sum(1:10)

}

if (leyeli,1]==2 &leye[i,2]==0 & leye[i,3]==1 & leye[i,4]==2){
loglike<-loglike + log(pdxexp(4xb*xage0[i])*exp(g*sum(1:4))
-pI0*exp (10xb*age0[i])*exp(g*sum(1:10)))

}

if (leyeli,1]==2 &leyel[i,2]==1 & leyel[i,3]==1 & leye[i,4]==2){
loglike<-loglike + log(1-v¥pdkexp(4xb*age0[i]+g*55))

}

if (leyel[i,1]==0 &leye[i,2]==2 & leyel[i,3]==0 & leye[i,4]1==2){

loglike <-loglike + 10%*log(p)+10*b*ageO[i]+g*sum(1:10)

}
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if (leyeli,1]1==0 &leye[i,2]==2 & leye[i,3]==1 & leye[i,4]==2){
loglike<-loglike + log(1-plOxexp(10*bxage0[i])*exp(grsum(1:10)))
}

if (leyeli,1]==1 &leye[i,2]==2 & leyel[i,3]==1 & leye[i,4]==2){
loglike<-loglike + 0O

}

if (leyel[i,1]==0 &leye[i,2]==0 & leyel[i,3]==2 & leye[i,4]1==2){
loglike <-loglike + 4*log(p)+4*b*xageO[i]+g*sum(1:4)

}

if (leyeli,1]1==0 &leye[i,2]==1 & leye[i,3]==2 & leye[i,4]==2){
loglike<-loglike + log(1-pld*exp(4*b*ageO[i])*exp(grsum(1:4)))
h

if (leyeli,1]==1 &leye[i,2]==1 & leye[i,3]==2 & leye[i,4]==2){
loglike<-loglike + O

}

if (leyel[i,1]==0 &leye[i,2]==2 & leyel[i,3]==2 & leye[i,4]1==0){
loglike <-loglike + 14xlog(p)+14*b*ageO[i]+g*sum(1:14)

}

if (leyel[i,1]==0 &leye[i,2]==2 & leyel[i,3]==2 & leye[i,4]==1){
loglike<-loglike + log(1l-pl4xexp(14*bxage0[i])*exp(grsum(1:14)))
}

if (leyeli,1]==1 &leye[i,2]==2 & leyel[i,3]==2 & leye[i,4]==1){

loglike<-loglike + O

ol



}

if (leyel[i,1]==0 &leye[i,2]==2 & leyel[i,3]==2 & leye[i,4]==2){
loglike<-loglike + O

¥

if (leyeli,1]==1 &leye[i,2]==2 & leyel[i,3]==2 & leye[i,4]==2){
loglike<-loglike + 0O

¥

if (leyeli,1]==2 &leye[i,2]==0 & leyel[i,3]==2 & leye[i,4]==2){
loglike <-loglike + 4x*log(p)+4*b*ageO[i]+g*sum(1:4)

}

if (leyeli,1]==2 &leye[i,2]==1 & leye[i,3]==2 & leye[i,4]==2){
loglike<-loglike + log(1-v*pld*exp(4xb*ageO[i])*exp(gxsum(1:4)))
}

if (leyeli,1]==2 &leye[i,2]==2 & leye[i,3]==0 & leye[i,4]==2){
loglike <-loglike + 10*log(p)+10*b*ageO[i]+g*sum(1:10)

¥

if (leyeli,1]==2 &leyel[i,2]==2 & leyel[i,3]==1 & leye[i,4]==2){
loglike<-loglike + log(1-v*plO*exp(10xb*age0[i])*exp(gxsum(1:10)))
¥

if (leyeli,1]==2 &leyel[i,2]==2 & leyel[i,3]==2 & leye[i,4]1==0){
loglike <-loglike + 14xlog(p)+14*b*ageO[i]+g*sum(1:14)

}

if (leyeli,1]==2 &leye[i,2]==2 & leye[i,3]==2 & leye[i,4]==1){
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loglike<-loglike + log(1l-v¥pldxexp(14*b*age0[i]+g*sum(1:14)))
}

if (leyel[i,1]==1 & leyel[i,2]==0){
loglike<-loglike + 0O

¥

else if (leyeli,2]==1 & leye[i,3]==0){
loglike<-loglike + 0O

¥

else if (leyel[i,3]==1 & leyel[i,4]==0){
loglike<-loglike + O

}

else if (leyel[i,1]==1 & leyel[i,4]1==0){
loglike<-loglike + O

}

else if (leyel[i,2]==1 & leyel[i,4]==0){
loglike<-loglike + 0O

¥

else if (leyeli,1]==1 & leye[i,3]==0){
loglike<-loglike + 0O

¥

if (leyeli,1]==2 &leyel[i,2]==2 & leyel[i,3]==2 & leye[i,4]==2){
loglike<-loglike + 0O

}
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}

return(loglike)

}

optim(c(9.964941e-01 ,-3.936488e-05 ,-5.386775e-05 , 0.000000e+00),
lefteyefunction2,method="L-BFGS-B", control = list(maxit=6000,
fnscale =-1), n=n,ageO=age0,lower=c(0.001, -1, -1,0),

upper=c(.999999999, 0,0,1 ))
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Appendix B: Code for Modeling Eyes Jointly

joint2<-function(para,n,age0){
s<-paral[1]
t<-para[2]
B<-para[3]
G<-paral[4]
K<-para[5]
loglike<-0

for (i in 1:n){

if (leyeli,1]==0 &leyel[i,2]==0 & leyel[i,3]==0 & leye[i,4]==0
& reyeli,1]1==0 &reyel[i,2]==0 & reyel[i,3]==0 & reyel[i,4]==0)
{
loglike<- loglike + 1og(sz14)*((exp((—K*ageO[i]))))Z28)*tz14))
}
if (leyeli,1]==0 &leye[i,2]==0 & leye[i,3]==0 & leye[i,4]==0
& reyel[i,1]1==0 &reye[i,2]==0 & reye[i,3]==0 & reyeli,4]==1)
{
loglike<-loglike + log((-1)*s(14)*((exp((-K*age0[i])))) (24)
*tflO)*(—1+t*exp((—K*ageO[i])))*(exp((—B))+t*exp((—K*ageO[i]))
)* (((exp((~K*age0[i])))) (2)*t(2)+((exp((-B)))) (2)))
}
if (leyeli,1]1==0 &leyel[i,2]==0 & leyel[i,3]==0 & leye[i,4]==0
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& reyel[i,1]1==0 &reye[i,2]==0 & reyel[i,3]==1 & reye[i,4]==1)
{

loglike<-loglike + log((-1)*s(14)*((exp((-K*age0[i])))) (18)*
£ (4) % (~1+t*exp ((-K*age0[1])))* ((exp((-B)))) (4)* (exp ((-B))+t*
exp ((-K*age0[i])))*(((exp((-B)))) (2)+exp((-B))*t*exp((-KxageO[i]
))+((exp((-K*age0[i]1)))) (2)*t (2))* (((exp((-B)))) (2)-exp ((-B))
*t*exp ((-K+xage0 [i]))+((exp((-K*age0[i])))) (2)*t(2)))

¥

if (leyel[i,1]==0 &leye[i,2]1==0 & leye[i,3]==0 & leyel[i,4]==0
& reyel[i,1]1==0 &reye[i,2]==1 & reyeli,3]==1 & reye[i,4]==1)
{

loglike<-loglike + log((-1)#*s(13)*((exp((-B))))(9)* ((exp(
(-K*age0[i])))) (13) *x(-1+t*exp ((-K*age0[1])))* (exp ((-B))+tx*
exp ((-K*age0[i1)))* (((exp((-K*age0[11)))) (2)*t(2)+((exp
(BN )

¥

if (leyel[i,1]==0 &leye[i,2]==0 & leye[i,3]==0 & leyel[i,4]==0
& reyeli,1]1==1 &reye[i,2]==1 & reye[i,3]1==1 & reye[i,4]==1)
{

loglike<- loglike + log(s(14)*((exp((-K*age0[i]1)))) (14)x((
exp((-B)))) (14))

¥

if (leyeli,1]==0 &leye[i,2]==0 & leye[i,3]==0 & leyel[i,4]==
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& reyel[i,1]==0 &reye[i,2]==0 & reye[i,3]==0 & reyel[i,4]==0)
{

loglike<-loglike + log(-s(10)*((exp((-Kxage0[i])))) (24)*
£(14) * (-1+s*exp ((-K*age0[i]))) * (exp((-G))+s*exp ((-K*age0O[i])
))*(((exp((-K*xage0[i1)))) (2)*s(2)+((exp((-G)))) (2)))

¥

if (leyeli,1]==0 &leye[i,2]==0 & leye[i,3]==0 & leyel[i,4]==1
& reyeli,1]1==0 &reye[i,2]1==0 & reye[i,3]1==0 & reye[i,4]l==1)
{

loglike<- loglike + log(s(10)*((exp((-K*age0[i])))) (20)*
£(10)* (1+s(4) * ((exp ((-K*age0[i])))) (7) xt (3) xexp ((-B))

-5 (4) *((exp((-K*age0[i])))) (6) ¥t (2) *exp ((-B))+s(4) *(
(exp((-K*age0[i])))) (6)* ((exp((-B)))) (3)*t-s(4) * ((exp(
(-K*age0[11)))) (5)*t*((exp((-B)))) (2)+s(4) *((exp ((-Kx*
age0[11)))) (6) ¥t (2)* ((exp ((-B)))) (2)+s(3)* ((exp ((-K*
age0[i])))) (7)*t{4) *exp ((-G)) -5 (2) *((exp((-K*ageO[i])

))) (6) %t (4) *exp ((-G))+t (4)* ((exp((-K*age0[1])))) (5)*
((exp((-G)))) (3)*xs+s(2)*((exp((-K*age0[i1)))) (6)*t (4)
*((exp((-6)))) (2)-s*((exp((-K+age0[i1)))) (5) *t (4) * ((exp
((=6))))(2)-s(3)* ((exp((-K*age0[11)))) (7)*t(4)-s(4)

* ((exp ((-K*age0[11)))) (7) *t (3)+s(4) * ((exp((-K*age0[i]))

)) (8) %t (4)-s(4)* ((exp((-K*age0[i])))) (4)*((exp((-B)))

) (3)-t(4) % ((exp((-K*age0[11)))) (4)* ((exp((-G)))) (3)))
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¥

if (leyel[i,1]==0 &leye[i,2]==0 & leye[i,3]1==0 & leyel[i,4]==1

& reyeli,1]1==0 &reye[i,2]1==0 & reye[i,3]==1 & reye[i,4]==1)

{

loglike<-loglike + log(s(10)*t(4)*((exp((-K*age0[i])))) (14)

* (—1+t*xexp ((-K*ageO0[i])))* (exp((-B))+t*exp((-Kxage0[i])))*(((exp(
(-B)))) (2)+exp((-B)) *t*exp ((-K*age0[i]))+((exp ((-K*age0[i])))

) (2%t 12))* (((exp((-B)))) (2) —exp ((-B) ) *t*exp ((-K*age0[i]))+
((exp((-K*age0[i])))) (2)*t(2)) * (s*exp ((-K*age0[i]))*exp((-B))
-1)*(s*exp ((-K*age0[i]))*exp((-B))+1)*(s(2)*((exp((-K*age0[i])))
) (2)*((exp((-B)))) (2)+1))

¥

if (leyeli,1]1==0 &leye[i,2]==0 & leye[i,3]==1 & leye[i,4]==1

& reyeli,1]1==0 &reyeli,2]==0 & reye[i,3]==0 & reye[i,4]==0)

{

loglike<-loglike + log(-s(4)*((exp((-Kxage0[i]))))(18)*t(14)

* (-1+s*exp ((-K*age0[i])))* ((exp((-G)))) (4)*(exp ((-G))+s*exp ((-K
*age0[1]1)))*(((exp((-G)))) (2)+exp((-G))*sxexp ((-K*age0[i]))+
5(2) * ((exp((-K*age0[i])))) (2))*(((exp((-G)))) (2)-exp((-G))*
s*exp ((-K*age0[i]))+s(2)* ((exp((-K*age0[i]1))))(2)))

¥

if (leyel[i,1]==0 &leye[i,2]==1 & leye[i,3]==1 & leyel[i,4]==1

& reyel[i,1]1==0 &reyel[i,2]==1 & reyel[i,3]==1 & reyeli,4]==1)
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{

loglike<-loglike + log(1+2*s*((exp((-K*ageO[i]))))2xt-s*exp(
(-K*age0[i]))-t*exp((-K*ageO[i]))-t3*((exp((-K*age0[i]))))4
*((exp((=G))))2+s-s*((exp((-K*age0[1]))))5xtd*((exp((-G)))
) 2-s2% ((exp ((-K*age0[i]))))Ext3xexp ((-G))-s2* ((exp ((-K*
age0[i]))))Bxtdrexp((-G))+s3* ((exp((-K*age0[1]))))7*tldx

exp ((-G))-s3*((exp((-K*age0[i]))))4d* ((exp((-B))))2+t-sdx
((exp((-K*age0[i]))))Extx ((exp((-B))))2+sld*((exp((-K*ageO[i]
))))6xt2x ((exp((-B))))2-s*((exp((-K*age0[i]))))3xt2-s2
*((exp((-K*age0[i]))))3*t+2%s2* ((exp ((-K*xageO[i]))))d*t2+
t3* ((exp((-K*age0[i]))))3* ((exp((-G))))2+s3* ((exp ((-K*
age0[i]))))3*((exp((-B))))2+td* ((exp((-K*age0[i]))))5*((exp
((-6))))3*s+s2* ((exp((-K*age0[1]))))Bxtd*((exp((-G))))2+

sl ((exp((-Kxage0[i]))))5*((exp((-B))))3*t-sd* ((exp ((-Kx*
age0[i]))))Bxt2xexp((-B))+sd* ((exp((-K*ageO[i])))) 7*t3x
exp((-B))-s3x((exp((-Kxage0[i]))))5xt2xexp((-B))+s3*((exp
((-Kxage0[il))))4*t*exp((-B))-s3*((exp((-K*age0[i]))))7*td
-sdx* ((exp((-K*age0[i])))) 7*t3+sd ((exp((-K*age0[i]))) )8
tad-t4* ((exp((-K*age0[i])))) 4 ((exp((~G))))3-sdx ((exp((-K
*age0[i]))))4*((exp((-B))))3+s*((exp((-K*age0[i]))))d*t3*
exp((-G)))

¥

if (leyeli,1]==0 &leyel[i,2]==1 & leyel[i,3]==1 & leyel[i,4]==
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& reyeli,1]==1 &reyel[i,2]==1 & reyel[i,3]==1 & reyeli,4]==1)

{

loglike<-loglike + log(-(s*exp((-K*ageO[i]))*exp((-B))-1)*(s*exp
((-K*age0[i]))*exp((-B))+1)*(s(2)*((exp((-K*age0[i])))) (2)*((
exp((-B)))) (2)+1))

}

if (leyeli,1]==1 &leyel[i,2]==1 & leyel[i,3]==1 & leye[i,4]==1

& reyeli,1]1==0 &reyel[i,2]==0 & reyel[i,3]==0 & reyel[i,4]==0)

{

loglike<-loglike + log(t(14)x((exp((-K*age0[i])))) (14)*((exp
((=6))))14))

}

if (leyeli,1]==1 &leyel[i,2]==1 & leyel[i,3]==1 & leye[i,4]==1

& reyeli,1]==1 &reyel[i,2]==1 & reyel[i,3]==1 & reyeli,4]==1)

{

loglike<-loglike +0

}

if (leyeli,1]==1 & leyel[i,2]==0 || reyel[i,1]==1 & reyel[i,2]==0)
{

loglike<-loglike + O

}

else if (leyeli,2]==1 & leyel[i,3]==0 ||reyel[i,2]==1 & reyel[i,3]==0 )

{
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loglike<-loglike + O

}

else if (leyeli,3]==1 & leyel[i,4]==0 ||reyel[i,3]==1 & reyel[i,4]==0 )
{

loglike<-loglike + 0 }

if (leyeli,1]1==0 &leyel[i,2]==0 & leyel[i,3]==0 & leye[i,4]==2
& reyeli,1]1==0 &reyel[i,2]==0 & reyel[i,3]==0 & reyeli,4]==2)

{

loglike<-loglike + log(s(10)*((exp((-K*age0[i])))) (20)*t(10))
h

if (leyeli,1]==0 &leye[i,2]==0 & leye[i,3]==0 & leye[i,4]==2
& reyel[i,1]1==0 &reye[i,2]==0 & reyel[i,3]==1 & reyel[i,4]==2)

{

loglike<-loglike + log(-s(10)*((exp((-K*age0[i])))) (14)*t(4)
*x (—1+t*xexp ((-Kxage0[i])))*(exp ((-B))+t*exp ((-K*ageO[i])))*(((exp(
(-B)))) (2) +exp ((-B) ) *t*exp ((-K*age0[i]))+((exp((-K*age0[il)))
) (2)%t(2))*(((exp((-B)))) (2) -exp((-B) ) *t*exp((-K*age0[i]))+
((exp((-Kxage0[i]1)))) (2)*t(2)))

}

if (leyeli,1]1==0 &leyel[i,2]==0 & leyel[i,3]==0 & leye[i,4]==2
& reyeli,1]1==0 &reyel[i,2]==1 & reyel[i,3]==1 & reyeli,4]==2)

{

loglike<- loglike + log(-s(14)*((exp((-B)))) (10)*((exp((-Kx*
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age0[i])))) (14) * (-1+t*exp ((-K*age0[i]))) * (exp ((-B)) +t*exp ((-K*
age0[1]1)))*(((exp((-K*age0[i])))) (2)*t(2)+((exp((-B))))(2)))

¥

if (leyeli,1]==0 &leye[i,2]==0 & leye[i,3]==0 & leyel[i,4]==2
& reyeli,1]==1 &reyeli,2]==1 & reyeli,3]==1 & reye[i,4]==2)

{

loglike<- loglike + log(s(10)*((exp((-Kxage0[i]1)))) (10)*((exp
((-B)))) (10))

¥

if (leyeli,1]1==0 &leye[i,2]==0 & leye[i,3]==1 & leye[i,4]==2
& reyeli,1]1==0 &reyeli,2]==0 & reye[i,3]==0 & reye[i,4]==2)

{

loglike<— loglike + log(-s(4)*((exp((-K*age0[i]1))))(14)*t(10)
* (—1+sxexp((-Kxage0[i])))*(exp((-G))+s*exp((-K*xage0[i])))*(((exp((-G)
))) (2)+exp ((-G))*exp ( (-K*xageO[i]))*s+s(2) * ((exp ((-K*age0[i])))
) (2))*(((exp((-G)))) (2)-exp((-G)) *exp((-K*age0 [i])) *xs+s(2) *(
(exp((-K*age0[11)))) (2)))

¥

if (leyeli,1]==0 &leye[i,2]==0 & leye[i,3]==1 & leyel[i,4]==2
& reyeli,1]==0 &reyel[i,2]==0 & reyeli,3]==1 & reye[i,4]==2)

{

loglike<-loglike + log(s(4)*((exp((-Kxage0[i]))))(8)*t(4)

*(1-s* ((exp ((-K*age0[i]1)))) (2)*t+t(3)*((exp((-K*age0[il)))
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) (4) % ((exp((-G)))) (2) *s-s* ((exp ((-K*age0[i])))) (5) *t (4)
*((exp((-6)))) (2)+s(2) * ((exp((-K*age0[i1)))) (5) xt (3) *exp
((=G))-s(2) *((exp((-K*age0[i])))) (6) ¥t (4) xexp((-G))+s(3)
((exp((-K*age0[1])))) (7)*t(4) *exp((-G))+s(3) * ((exp( (-Kx*
age0[i1)))) (4)* ((exp((-B)))) (2) xt-s(4)* ((exp((-K*age0[i])))
) (B)*t* ((exp((-B)))) (2)+s(4)* ((exp((-K*age0[i])))) (6)*
£(2)*((exp((-B)))) (2)+s* ((exp((-K*age0[i])))) (3)*t (2) +2*
s(2)*((exp((-K*age0[i])))) (3) xt-2%s(2)* ((exp((-K*age0[i])))
) (4)*t(2)-t(3)* ((exp ((-K*age0[1])))) (3)* ((exp((-G)))) (2)
-5(3)*((exp((-K*age0[1])))) (3)*((exp((-B)))) (2)+t(5)*((exp
((-Kxage0[i1)))) (6)*((exp((-G)))) (4)-s(6) * ((exp((-K*age0[i]))
)) (7 *t* ((exp((-B)))) (4)-s(5) *((exp((-K*age0[11)))) (7)*t (2
)*((exp((-B)))) (3)+s(6) *((exp((-K*age0[i]1)))) (8)*t(2)*((exp
((-B)))) (4)-s(6)* ((exp((-Kxage0[11)))) (8) *t (2)* ((exp((-B)))
) (3)+s(6) * ((exp((-K*age0[i]1)))) (9)*t(3)* ((exp((-B)))) (3)-

s* ((exp((-K*age0[11)))) (7)*t(6) * ((exp((-G)))) (4)-s(2) * ((exp(
(-K*age0[11)))) (7)*t (5)* ((exp((-G)))) (3)+s(2)* ((exp ((-Kx*
age0[11)))) (8)¥t8* ((exp((-G)))) (4)-s(2)* ((exp((-K*age0[i])))
) (8)*t(6)*((exp((-G)))) (3)-5(3)*((exp((-K*age0[i])))) (8)*
£(5)*((exp((-G)))) (2)+s(3)* ((exp((-K*age0[i])))) (9) *t (6)*(
(exp((-G)))) (3)+s(5) * ((exp((-Kxage0[i])))) (8) *t (3) *exp ((-B))-
s(5)*((exp((-K*age0[i])))) (9)*t (4) *exp ((-B))-s(5)* ((exp ((-Kx

age0[i1)))) (6)*((exp((-B)))) (4)*t+s(6)* ((exp((-Kxage0[il)))
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) (7)*((exp((-B)))) (5)*t+s(5)* ((exp((-K*age0[i])))) (6) *tx((
exp ((-B)))) (3)+s* ((exp((-Kxage0[i]1)))) (6) *t (5)*((exp((-G)))

) (3)+s(2) * ((exp((-K*age0[i])))) (7)*t(5)* ((exp((-G)))) (2)
~5(6) * ((exp((-K*age0[i])))) (10) *t (4) *exp ((-B))+s(6) * ((exp((
~K*age0[1])))) (11) %t (5)*exp((-B))+s(3)* ((exp((-K*age0[il)))

) (8)*t(5) *xexp ((-G))-s(5) * ((exp((-K*age0[i])))) (11)xt(6)-s
(6)*((exp((-Kxage0[11)))) (11) xt (5)+s(6) * ((exp((-K*age0[i])))
) (12) xt(6) -5 (6) * ((exp ((-K*age0[i])))) (6)* ((exp((-B)))) (5)-
£(6) * ((exp((-K*age0[1])))) (6)* ((exp((-G)))) (5)+s(5)*((exp((
—K*age0[11)))) (5)* ((exp((-B)))) (4)-s(3)*((exp((-K*age0[il)))
) (6) %t (3)*exp ((-G))*exp ((-B))+s(3) *((exp((-K*age0[i1)))) (7)
£ (4) % ((exp((-6)))) (2)*exp ((-B))-s(4)* ((exp((-K*age0[i])))) (9
)*t (5)*exp ((-G)) -t (5)* ((exp((-Kxage0[1])))) (6)* ((exp((-G)))) (4)
*5+t (6) * ((exp((-Kxage0[i1)))) (7)*((exp((-G)))) (5)*s-s(4)*((exp
((-K*age0[i])))) (10) xt (6) *xexp ((-G))+s(5) *((exp ((-K*age0[i])))
) (11) %t (6) *exp ((-G) ) -2*s(6) * ((exp((-K*age0[1])))) (9) ¥t (3)*
((exp((-B)))) (2)+2%s(6) * ((exp ((-K*age0[i]1)))) (10) ¥t (4)* ((exp(
(-B)))) (2) -2xs(3) * ((exp ((-K*age0[i]1)))) (9) *t (6) *((exp((-G)))
) (2)+2xs(4) * ((exp((-K*age0[1])))) (10) ¥t (6) * ((exp((-G)))) (2)))
¥

if (leyeli,1]==1 &leye[i,2]==1 & leye[i,3]==1 & leyel[i,4]==2
& reyeli,11==0 &reyeli,2]==0 & reyeli,31==0 & reye[i,4]==2)

{
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loglike<- loglike + log(t(10)*((exp((-K*age0[i]1)))) (10)*((exp
((=G)))) (10N

¥

if (leyel[i,1]==1 &leye[i,2]==1 & leye[i,3]==1 & leyel[i,4]==2
& reyeli,1]1==0 &reye[i,2]==1 & reye[i,3]==1 & reye[i,4]==2)

{

loglike<- loglike + log((-1)*(t*exp((-Kxage0[i]))*exp((-G))-1)*
(t*exp((-K*age0[i]))*exp((-G))+1)* (t(2) *((exp((-K*age0[il)))
) (2)* ((exp((-G)))) (2)+1))

¥

if (leyeli,1]==1 &leye[i,2]==1 & leye[i,3]==1 & leye[i,4]==2
& reyel[i,1]==1 &reyel[i,2]==1 & reyeli,3]==1 & reye[i,4]==2)

{

loglike<-loglike+0

¥

if (leyel[i,1]==0 &leye[i,2]==0 & leye[i,3]==2 & leyel[i,4]==0
& reyeli,1]1==0 &reye[i,2]1==0 & reye[i,3]1==2 & reye[i,4]==0)

{

loglike<— loglike + log(s(14)*((exp((-K*age0[i]))))(28)*t(14))
¥

if (leyel[i,1]==0 &leye[i,2]==0 & leye[i,3]==2 & leyel[i,4]==0
& reyeli,1]1==0 &reye[i,2]1==0 & reye[i,3]1==2 & reye[i,4]==1)

{
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loglike<-loglike + log(s(4)*((exp((-Kxage0[i]))))(8)*t(4)x*
(s(10)* ((exp((-K*age0[11)))) (10) * (1-t*exp( (-K*age0 [i])))* ((exp
((-B)))) 19)+s(10) * ((exp((-K*age0[11)))) (11) *t* (1-t*exp ( (-K*
age0[i])))*((exp((-B)))) (8)+s(10)* ((exp((-K*age0[i])))) (12)*
£(2) % (1-t*exp ((-K*age0[i]))) * ((exp ((-B)))) (7)+s(10) * ((exp ((-
Kxage0[i])))) (13)*t(3) * (1-t*exp ((-K*age0[1])))*((exp((-B)))) (6)
+s5(10) * ((exp( (-K*age0[1])))) (14) xt (4) * (1-t*exp ((-K*age0[i])))*
((exp((-B)))) (5)+s(10)* ((exp((-K*age0[i])))) (15) *t (5) * (1-t*
exp ((-Kxage0[i1)))*((exp((-B)))) (4)+s(10) *((exp ((-K*age0[i])))
) (16)*t (6) * (1-t*exp ((-K*age0[i])))*((exp((-B)))) (3)+s(10)*(
(exp((-Kxage0[i])))) (17) *t (7) x (1-t*exp ((-K*age0[i])))*((exp((-B))
)) (2)+s(10)* ((exp((-K*age0[i]1)))) (18) %t (8)* (1-t*exp ((-K*
age0[il)))*exp((-B))+s(10) *((exp ((-K*age0[i])))) (19) xt{9) *(1-t
xexp((~Krage0 [i1)))))

¥

if (leyeli,1]==0 &leye[i,2]==0 & leye[i,3]==2 & leyel[i,4]==1

& reyeli,11==0 &reyeli,2]==0 & reyeli,3]==2 & reye[i,4]==1)

{

loglike<- loglike + log(s(4)*((exp((-K*age0[il)))) (8)*t(4)
*(1-s*((exp((-K*age0[i])))) (2) *t+s(2)* ((exp((-K*age0[i])))

) (12) %t (10) % ((exp((-G)))) (8)+t(3) * ((exp ((-K*ageO[i])))

) (4) % ((exp((-G)))) (2) *s-s* ((exp((-K*age0[1])))) (5) *t (4)

*((exp((-G)))) (2)+s(2) * ((exp ((-K*age0[i])))) (56) *t (3) xexp
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((-G))-s(2)*((exp((-Kxage0[i])))) (6) *t (4) xexp((-G))+s(3)
((exp((-K*age0[1])))) (7)*t(4) *exp((-G))+s(3) * ((exp ( (-Kx*
age0[i1)))) (4)* ((exp((-B)))) (2) xt-s(4)* ((exp((-K*age0[i])))
) (B)*tx((exp((-B)))) (2)+s(4)* ((exp((-K*age0[i])))) (6) *t (2)
*((exp((-B)))) (2)+s* ((exp ((-K*age0[i])))) (3) *t (2)+2xs(2)
((exp((-K*age0[1])))) (3) xt-2%s(2)* ((exp ((-K*age0[i])))) (4)*
£(2)-t(3)* ((exp((-K*age0[11)))) (3) *((exp((-G)))) (2)-s(3)

* ((exp ((-Kxage0[i]1)))) (3)*((exp((-B)))) (2)-s(5)*((exp ((-Kx*
age0[i1)))) (15)*t(10) * ((exp((-G)))) (4)+s(6) * ((exp ((-Kx
age0[i])))) (16)*t (10)*((exp((-G)))) (4)-s(10) * ((exp ((-Kx*
age0[i])))) (19)*t (9)+s(10) * ((exp ((-K*age0[i])))) (20)*
£(10) -t (10) * ( (exp ((-K*age0[i1)))) (10) * ((exp((-G)))) (9) -

s (10)* ((exp ((-K*age0[i])))) (12) *t(2) *((exp((-B)))) (7)-
s(4)*((exp((-K*age0[i1)))) (14)*t (10) * ((exp((-G)))) (5)-
s(8)* ((exp((~K*age0[i])))) (18) xt (10) *xexp ((-G))+s(9) * ((
exp((-Kxage0[i1)))) (19) *t (10) xexp ((-G))+s(5) * ((exp ((-Kx
age0[i])))) (15) *xt (10)* ((exp((-G)))) (5)-s(10) *((exp( (-
K*age0[i])))) (13)*t(3)* ((exp((-B)))) (6)+s(10)* ((exp((-
K*age0[i])))) (14)*t(4)* ((exp((-B)))) (6)+s(10)* ((exp((-
K*age0[i1)))) 113)*t(3)* ((exp((-B)))) (7)+s(4)* ((exp((-
Kxage0[i1)))) (14)*£{10) * ((exp ((-G)))) (6)-s(3) * ((exp ((-
K*age0[i1)))) (13)*£{10) * ((exp ((-G)))) (6) +s(3) * ((exp ((-

Kxage0[1])))) (13) *t (10)* ((exp((-G)))) (7)-s(2)* ((exp ((-
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Kxage0[i])))) (12)*t (10)* ((exp((-G)))) (7)-s(10) * ((exp ((-
K*age0[i])))) (14) %t (4)* ((exp((-B)))) (5)+t(5) * ((exp ((-K*
age0[i])))) (5)* ((exp((-G)))) (4)+s(10) *((exp ((-K*age0[i])))
) (17)*t (7)) * ((exp((-B)))) (3)-s(10) * ((exp((-K*age0[i])))

) (18) %t (8) *exp ((-B))+s(10) * ((exp ((-K*age0[1])))) (19)
£(9)*exp ((-B))+s(7) * ((exp ((-K*age0[11)))) (17) *t (10) *(
(exp((-6)))) (3)-5(10)* ((exp ((-K*age0[1])))) (16) xt (6) *(
(exp((-B)))) (3)-5(10)* ((exp ((-K*age0[i])))) (15) xt (5) (
(exp((-B)))) (4)+s(10) * ((exp((-K*age0[i]1)))) (16) *xt (6)*(
(exp((-B)))) (4)-s(10) *((exp((-Kxage0[i])))) (17) *t (7) *(
(exp((-B)))) (2)+s(10) *((exp((-K*age0[i]1)))) (18) xt (8)*(
(exp((-B)))) (2)-s{7)* ((exp((-K*age0[11)))) (17) *t (10) *(
(exp((-6)))) (2)-s(6) * ((exp((-K*age0[11)))) (16) £t (10)*(
(exp((=G)))) (3)+s(8) * ((exp((-K*age0[1])))) (18)*t (10)*(
(exp((-G)))) (2)+s(10)* ((exp ((-K*age0[11)))) (15) *t (5) *(
(exp((-B)))) (5)-s(5)* ((exp((-K*age0[i])))) (7)#t(2)*(
(exp((-B)))) (3)-s5(2)* ((exp((-K*age0[i])))) (7)*t (5) *(
(exp((=G)))) (3)-s(3)* ((exp((-K*age0[i])))) (8) ¥t (5)*(
(exp((=G)))) (2)+s(5)* ((exp((-K*age0[i])))) (8) ¥t (3) *exp
((-B))-s(5)*((exp((-Kxage0[i])))) (9) *t (4) *exp((-B))-s(5)

* ((exp ((-K*age0[i1)))) (6)* ((exp((-B)))) (4) *xt+s(5)* ((exp ((-K
xage0[11)))) (6) xt* ((exp((-B)))) (3)+s*((exp((-K*age0[i])))) (6)

*t(5) * ((exp((-G)))) (3)+s(2) * ((exp ((-K*age0[1]1)))) (7) *xt (5)*
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((exp((-G)))) (2)+s(3)* ((exp((-K*age0[i1)))) (8) xt (5) xexp (-G
))+s(5)*((exp((-K*age0[i])))) (5)*((exp((-B)))) (4)-s(3)*((
exp((~K*age0[1])))) (6) *t (3)*exp ((-G) ) *exp((-B))+s(3)* ((exp(
(-K*age0[i])))) (7)*t(4)*((exp((-G)))) (2) *exp ((-B))-s(4) *(
(exp((~K*age0[11)))) (9) xt (5) *exp ((-G)) -t (5)* ((exp((-K*ageO [i]
1)) (6)*((exp((-G)))) (4)*s-5(6)* ((exp((-K*age0[i])))) (9)*
£(3)*((exp((-B)))) (2)+s(6) *((exp ((-K*age0[i])))) (10)*t (4)
*((exp((-B)))) (2)-s(3)* ((exp((-K*age0[i])))) (9) ¥t (6)* ((exp
((-6)))) (2)+s(4)*((exp((-Kxage0[i])))) (10)*t (6) * ((exp((-G))
)) (2)-s(10) * ((exp ((-K*xage0[1])))) (10)* ((exp((-B)))) (9)+

s (10)* ((exp((-K*age0[i])))) (11)*x((exp((-B)))) (9) *t+t (10)

* ((exp((-K*age0[11)))) (11)*((exp ((-G)))) (9)*s-s(10)* ((exp(
(-K*age0[1])))) (11) *t* ((exp((-B)))) (8)+s(10) * ((exp((-Kx*
age0[i])))) (12) *t(2)*((exp((-B)))) (8) -s* ((exp ((-K*age0[i])
))) (1) *£(10)* ((exp((-G)))) (8)-s(9) * ((exp((-K*age0[i])))

) (19)*£710)))

¥

if (leyeli,1]==0 &leye[i,2]==2 & leye[i,3]==0 & leyel[i,4]==0
& reyeli,11==0 greyeli,2]==2 & reyeli,31==0 & reye[i,4]==0)
{

loglike<— loglike + log(s(14)*((exp((-K*age0[i]))))(28)*t(14))

}

if (leyeli,1]==2 &leyel[i,2]==0 & leye[i,3]==0 & leyel[i,4]==0
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& reyeli,1]==2 &reyel[i,2]==0 & reyel[i,3]==0 & reyel[i,4]==0)

{

loglike<- loglike + log(s(14)*((exp((-K*age0[i])))) (28)*t(14))
}

if (leyeli,1]==0 &leyel[i,2]==2 & leyel[i,3]==2 & leye[i,4]==0
& reyeli,1]1==0 &reyel[i,2]==2 & reyel[i,3]==2 & reyel[i,4]==0)

{

loglike<- loglike + log(s(14)*((exp((-K*age0[i]))))(28)*t(14))
}

if (leyeli,1]==0 &leyel[i,2]==0 & leyel[i,3]==2 & leyel[i,4]==2
& reyel[i,1]1==0 &reye[i,2]==0 & reyel[i,3]==2 & reyel[i,4]==2)

{

loglike<- loglike + log(s(4)*((exp((-K*age0[i]))))(8)*t(4))

}

if (leyeli,1]==0 &leye[i,2]==0 & leyel[i,3]==2 & leye[i,4]==2
& reyeli,1]1==0 &reyel[i,2]==1 & reyel[i,3]==2 & reyeli,4]==2)

{

loglike<-loglike + log(s(4)*((exp((-K*age0[il)))) (4)*(1-t*exp
((-Kxage0[i]1)))*((exp((-B)))) (3)+s(4)*((exp((-K*age0[i])))

) (5) *t* (1-t*exp ((-K*age0[i])))*((exp((-B)))) (2)+s(4)*((exp
((-Kxage0[i1)))) (6) *xt(2) * (1-t*exp ((-K*ageO[il)))*exp((-B))+
s(4)*((exp ((-K*age0[i11)))) (7)*t (3) *xexp((-B)))

}
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if (leyeli,1]==0 &leyel[i,2]==0 & leye[i,3]==2 & leye[i,4]==
& reyeli,1]1==1 &reye[i,2]==1 & reye[i,3]1==2 & reye[i,4]==2)

{

loglike<-loglike + log(s(4)*((exp((-K*age0[i])))) (4)*((exp(
(-B)))) (4))

¥

if (leyel[i,1]==0 &leye[i,2]==1 & leye[i,3]==2 & leyel[i,4]==2
& reyeli,11==0 &reyeli,2]==0 & reyeli,3]==2 & reye[i,4]==2)

{

loglike <- loglike + log(s*((exp((-Kxage0[i]))))(4)*(1-txexp((
-K*age0[i])))*t(3)* ((exp((-G)))) (3)+s*((exp((-K*age0[i])))

) (5)*t(4) * (1-s*exp ((-K*age0[i]))) *((exp((-G)))) (2)+s(2) *
((exp((-K*age0[i])))) (6)*t(4)* (1-s*exp((-K*age0[i])))*exp((-G
))+s(3)*((exp((-Kxage0[1])))) (7) *t (4) *exp((-G)))

¥

if (leyel[i,1]==0 &leye[i,2]==1 & leye[i,3]==2 & leyel[i,4]==2
& reyeli,1]1==0 &reye[i,2]==1 & reye[i,3]1==2 & reye[i,4]==2)

{

loglike<- loglike + log(1+2*s*((exp((-K*ageO[i]))))2xt-s*exp(
(-K*age0[i]))-t*exp((-KxageO[i]))-t3*((exp((-K*ageO[i]))))4x*
((exp((=G))))2+s-s*((exp((-K*age0[i]))))Extd*((exp((-G)))

) 2-s2% ((exp ((-K*age0[i]))))Ext3xexp ((-G) ) -s2* ((exp ((-K*

age0[i]))))Bxtdxexp((-G))+s3* ((exp((-K*ageO[i])))) 7*tdx
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exp((-G))-s3* ((exp((-K*age0[i]))))4* ((exp((-B))))2*t-sd*
((exp((-K*age0[i]))))Ext* ((exp((-B))))2+sld*((exp((-K*ageO[i]
))))6xt2+ ((exp((-B))))2-s*((exp((-K*ageO[i])))) 3*t2-sDx
((exp((-K*age0[i]))))3*t+2xs2%((exp((-K*age0[i]))))d*t2+t3
*((exp((-K*age0[1])))) 3+ ((exp((-G))))2+s3* ((exp((-K*age0[i])))
) 3% ((exp((-B))))2+td* ((exp((-K*age0[11))))5* ((exp((-G))))3
*s+52% ((exp ((-K*age0[i]))))Bxtdx ((exp((-G))))2+sd*((exp((-
K+age0[i]1)))) 5% ((exp((-B))))3*t-sld*((exp((-Kxage0[i]))))6x*
t2xexp ((-B) ) +sdx ((exp((-K*age0[i])))) 7xt3*exp((-B)) -s3%(
(exp((-K*age0[i]))))5xt2xexp((-B))+s3*((exp((-K*age0[i]))))4
stxexp((-B))-s3% ((exp((-K*age0[i1)))) 7*td-sdx ((exp((-KxageO [i]
)))) 7*t3+sd* ((exp ((-K*age0[i]))))8*td-td* ((exp((-K*ageO[i]
)))) 4% ((exp((=G))))3-sd*((exp((-K*age0[i]))) )4+ ((exp((-B))))3
+s* ((exp ((-K*age0[i]1))))d*t3**exp((-G)))

¥

if (leyeli,1]==0 &leyel[i,2]==1 & leyel[i,3]==2 & leyel[i,4]==2
& reyeli,1]1==1 &reye[i,2]==1 & reye[i,3]1==2 & reye[i,4]==2)

{

loglike<-loglike + log((-1)*(s*exp((-K*ageO[i]))*exp((-B))-1)*(s*
exp ((-Kxage0[i]))*exp ((-B))+1)* (s(2) * ((exp((-K*age0[i1)))) (2)*
((exp((-B)))) (2)+1))

¥

if (leyeli,1]==1 &leyel[i,2]==1 & leyel[i,3]==2 & leyel[i,4]==
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& reyeli,1]1==0 &reyel[i,2]==0 & reyel[i,3]==2 & reyeli,4]==2)
{

loglike<-loglike + log(t(4)*((exp((-K*ageO[il)))) (4)*((exp(
(-G)))) (4

}

if (leyeli,1]==1 &leyel[i,2]==1 & leyel[i,3]==2 & leyel[i,4]==2
& reyeli,1]1==0 &reyel[i,2]==1 & reyel[i,3]==2 & reyeli,4]==2)
{

loglike<-loglike + log(t(10)*((exp((-K*age0[i])))) (10)*((exp
((=6))))(10))

}

if (leyeli,1]==1 &leyel[i,2]==1 & leye[i,3]==2 & leye[i,4]==2
& reyel[i,1]==1 &reyel[i,2]==1 & reyeli,3]==2 & reye[i,4]==2)
{

loglike<- loglike+0

}

if (leyeli,1]==2 &leyel[i,2]==0 & leyel[i,3]==0 & leye[i,4]==2
& reyeli,1]==2 &reyel[i,2]==0 & reyel[i,3]==0 & reyeli,4]==2)
{

loglike<-loglike + log(s(10)*((exp((-K*age0[i]))))(20)*t(10))
}

if (leyeli,1]1==0 &leyel[i,2]==2 & leyel[i,3]==0 & leye[i,4]==2

& reyeli,1]1==0 &reyel[i,2]==2 & reyel[i,3]==0 & reyeli,4]==2)
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{

loglike<- loglike + log(s(10)*((exp((-K*age0[i]1))))(20)*t(10))

¥

if (leyeli,1]1==0 &leyeli,2]==2 & leyeli,3]==1 & leye[i,4]==2

& reyeli,11==0 &reyeli,2]==2 & reyeli,3]==1 & reye[i,4]==2)

{

loglike<-loglike + log((1-s*exp((-K*ageO[i])))*(1-t*exp ((-K*
age0[i])))+s*((exp((-Kxage0[i]1)))) (2) xt* (1-sxexp((-K*ageO[il))

)* (1-t*exp ((-K*age0[i])))+s(2)*((exp ((-Kxage0[i])))) (4)*xt(2)

* (1-sxexp ((-K*age0[i])))* (1-t*exp ((-K*age0[i])))+s(3)*((exp ((-Kx*
age0[i])))) (6) *t (3) * (1-s*exp ((-K*age0[1]))) * (1-t*exp ((-K*ageO[i]
)))+s(2)* ((exp ((-K*age0[1])))) (5)*t(3) * (1-s*exp((-K*ageO[i]))

)% (1-t*exp ((-K*ageO[i]))*exp ((-G)))+s(3)*((exp((-K*age0[i])))) (5)
*t (2) * (1-t*exp ((-Kxage0[i])))* (1-sxexp((-K*age0[1]) ) *xexp((-B)))+s*
exp((-Kxage0[i]))*(1-t*exp((-KxageO[i])))*(1-s*xexp((-K*ageO[i]))*exp
((-B)))+(1-s*exp((-KxageO[i])))*t*exp((-K*ageO[i]))* (1-t*exp ((-K*
age0[i]))*exp((-G)))+s(4)*((exp((-K*age0[i])))) (8)*t(4)*(1-s

*exp ((~K*age0[i]))) * (1-t*exp( (-K*age0[1])))+s(5) *( (exp ((-K*ageO[i]
)))) (10)*t (5) * (1-s*exp ((-K*age0[i])))* (1-t*exp((-KxageO[i])))+
s(2)* ((exp((-K*age0[i])))) (3) *#t* (1-t*exp ((-K*age0[i]))) * (1-s*

exp ((-K*age0[i]))*exp((-B)))+s(4)* ((exp((-K*age0[i])))) (7)*

£(3)* (1-t*exp ((-Kxage0[i])))* (1-s*exp((-K*ageO[i]))*exp((-B)))+

s(5)* ((exp((-K*age0[i]1)))) (9)*t (4)* (1-t*exp ((-K*ageO[i])))*
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(1-s*exp((-K*age0[i]))*exp((-B)))+s* ((exp((-K*age0[i])))) (3)*t(2)
* (1-s*exp ((-Kxage0[i])))* (1-txexp ((-K*age0[i]))*exp((-G)))+s(3)
* ((exp((-K*age0[1]1)))) (7) *t (4) * (1-s*exp ((-K*age0[1])))*(1-
tkexp((-K*age0[1]))*exp((-G)))+s(4)*((exp((-K*age0[i])))) (9)

£ (5)* (1-s*exp ((-K*age0[i])))* (1-txexp((-K*ageO[i]))*exp((-G))
)+s*exp ((-K*ageO[i]))*(1-t*exp ((-KxageO[i])))*((s*exp((-K*ageO[i]
))*xexp ((-B)))) ((1-s*exp ((-K*age0[i]))*exp((-B))))+(1-s*exp((-K*
age0[i])))*txexp((-K*ageO[i]))*((t*exp((-K*ageO[i]))*exp((-G)))
) ((1-txexp((-K*ageO[i]))*exp((-G))))+2*s(9) * ((exp ((-K*age0[i])
))) (17) %t (8) * (1-t*exp ((-KxageO[i])))* (1-s*exp ((-K*ageO[i]))*
exp((-B))) +s(9)* ((exp ((-K*age0[11)))) {14) £ {5) * (1-txexp
(-K*age0[11)))*((exp((-B)))) (3) * (1-s*exp ((-K*age0[i]))*exp(
(-B)))+s9* ((exp ((-K*age0[i])))) (13)*t (4) * (1-t*exp ((-K*
age0[i])))*((exp((-B)))) (4)*(1-s*exp ((-K*ageO[i]))*exp((-B)
))+s9% ((exp ((-Kxage0[i])))) (15)*t (6) * (1-t*exp ((-K*ageO [i]
)))*((exp((-B))))2x (1-s*exp((-K*ageO [i]))*exp((-B)))+s(9)*(
(exp((-Kxage0[i1)))) (10) *t* (1-t*exp((-Kxage0[i])))* ((exp((-B))
)) (7)* (1-s*exp ((-K*ageO[i]))*exp((-B)))+s(9)*((exp((-K*
age0[i])))) (11)*t (2)* (1-t*exp ((-Kxage0 [i]1)))*((exp((-B)))

) (6) * (1-s*exp ( (-K*xageO0[1]))*exp ((-B)))+s(9) * ((exp( (-Kx*
age0[i])))) (12) *t (3) * (1-t*exp ((-K*age0[1]))) *((exp((-B))

)) (5) % (1-s*exp ((-K*ageO[i]))*exp((-B)))+s(6) * ((exp ((-K*

age0[i]1)))) (11)*t(5) * (1-t*exp ((-K*age0[1]))) * (1-s*exp
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((-K*age0[i]))*exp((-B)))+s(7)*((exp((-K*age0[i])))) (13)*

£(6) * (1-t*exp ((-K*age0[i]))) * (1-sxexp ((-K*age0[i]))*exp((-B)))
+s(8) * ((exp((-K*age0[i])))) (15)*t (7) * (1-t*exp ((-K*age0[i]))

)* (1-s*exp ((-K*ageO[i]))*exp ((-B)))+2xs(8)* ((exp((-K*age0[i])))
) U7) *t(9) * (1-sxexp ((-K*age0 [i]))) * (1-t*exp ((-K*ageO[i]))*

exp ((-G)))+s(5) * ((exp((-K*age0[1]1)))) (11)*t(6)* (1-s*exp
(-K*age0[i])))* (1-t*exp ((-K*ageO [i]))*exp ((-G)))+s(6) *((exp(
(-K*age0[11)))) (13)*t(7) * (1-s*exp((-K*age0[i]1)))* (1-t*exp(
(-K*age0[i]))*exp((-G)))+s(7)*((exp((-K*age0[i])))) (15)*

£(8) * (1-s*exp ((-K*age0[i]))) * (1-t*exp ((-K*ageO[il))*exp ((-G)))
+5(9)* ((exp ((~K*age0[i])))) (16) *xt (7) * (1-t*exp ((-K*age0[i])))
xexp ((-B) ) * (1-s*exp ((-K+xage0[i]))*exp((-B)))+s(6) * ((exp ((-Kx*
age0[i1)))) (12)*t(6) * (1-s*exp ((-K*age0[1]))) * (1-txexp ((-K*
age0[1]1)))+s(7) *((exp((-K*age0[i1)))) (14) *t(7)* (1-s*exp(
(-K*age0[i])))*(1-t*exp((-K*ageO[i])))+s*((exp((-K*ageO[il)))
) (10) #t (9) * (1-s*exp ((-K*age0 [11))) * ((exp ((-G)))) (7) *x (1-tx

exp ((~K*age0[i]))*exp((-G)))+s(2)* ((exp((-K*age0[i])))) (11)x
£(9)* (1-s*exp ((-K*age0[1])))*((exp((-G)))) (6) *(1-t*exp ((-Kx*
age0[i]))*exp((-G)))+s(3)*((exp((-K*age0[i])))) (12) xt(9)
(1-s*exp ((-K*age0[i])))*((exp((-G)))) (5) * (1-t*exp ((-K*ageO[i])
) xexp((=G)))+s(8)* ((exp((-K*age0[i])))) (16)*t(8) x (1-s*exp
((-Kxage0[i])))*(1-t*exp((-K*age0[i])))+s(9) *((exp((-K*ageO[il)

))) (18) %t (9) % (1-s*exp ((-K*age0[i]))) * (1-t*exp((-K*age0[i])))+
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s(5)* ((exp((-K*age0[11)))) (14) xt (9)* (1-s*exp ((-Kxage0[i]))) *
(Cexp((-G)))) (3)* (1-t*exp ((-K*ageO[i]))*exp((-G)))+s(4)*((exp
((~Kxage0[i])))) (13)*t{9) * (1-s*exp ( (-K*age0[i]1)))* ((exp((-G)))

)4x (1-t*exp ((-K*age0[i])) *xexp ((-G)))+s(6)*((exp ((-K*age0[i])))

) (15) £ (9) * (1-s*exp ((-K*age0 [1]1))) * ((exp ((-G)))) (2) * (1-t*exp(
(-K*age0[i]))*exp((-G)))+s(7)*((exp((-Kxage0[i])))) (16) *t(9)*
(1-s*exp((-K*ageO[i])))*exp((-G))*(1-t*exp((-K*ageO[i]))*exp((-G))))

}

if (leyeli,1]==1 &leyel[i,2]==2 & leyel[i,3]==1 & leyel[i,4]==2
& reyeli,1]==1 &reyel[i,2]==2 & reyel[i,3]==1 & reyeli,4]==2)
{
loglike<-loglike+0
¥
if (leyeli,1]==0 &leyel[i,2]==2 & leyel[i,3]==2 & leye[i,4]==2
& reyeli,1]1==0 &reyel[i,2]==2 & reyel[i,3]==2 & reyeli,4]==2)
{
loglike<-loglike+0
¥
if (leyeli,1]==0 &leyel[i,2]==2 & leyel[i,3]==2 & leyel[i,4]==2
& reyeli,1]==1 &reyel[i,2]==2 & reye[i,3]==2 & reyeli,4]==2)

{

loglike<-loglike + O
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}

if (leyeli,1]==1 &leye[i,2]==2 & leyel[i,3]==2 & leyel[i,4]==2
& reyeli,1]1==0 &reyel[i,2]==2 & reyel[i,3]==2 & reyeli,4]==2)
{

loglike<-loglike + 0O

¥

if (leyeli,1]==1 &leyel[i,2]==2 & leyel[i,3]==2 & leyel[i,4]==2
& reyeli,1]==1 &reyel[i,2]==2 & reye[i,3]==2 & reyeli,4]==2)
{

loglike<-loglike + O

}

if (leyeli,1]==2 &leyel[i,2]==2 & leye[i,3]==2 & leyel[i,4]==2
& reyeli,1]==2 &reye[i,2]==2& reyel[i,3]==2 & reyel[i,4]==2)

{

loglike<-loglike + O

¥

if (leyeli,1]==0 &leyel[i,2]==1 & leyel[i,3]==1 & leyel[i,4]==2
& reyeli,1]1==0 &reyel[i,2]==0 & reyel[i,3]==1 & reyeli,4]==2)
{

loglike<-loglike + log(t(4)*((exp((-K*age0[il)))) (7)*(t*exp
((-Kxage0[i]))*exp((-G))-1)*(s*kexp ((-K*age0[i]))-1)* (£t (5)* ((
exp ((-G)))) (5)*s(3) *((exp ((-K*age0[il)))) (5)+((exp ((-Kx*

age0[i1)))) (4)*t(4)*s(3)* ((exp((-G)))) (4)+t(2) * ((exp
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((=6)))) (2)*s(3)* ((exp((-K*age0[11)))) (2) +txexp((-G)) *

5(3) xexp((-Kxage0[1]))+s(3)+((exp((-K*age0[i])))) (4)*
£(5)*s(2)* ((exp((-G)))) (6)+((exp((-Kxage0[i])))) (3)

£(5)*s* ((exp((-G)))) (7)+((exp((-K*age0[i])))) (2)*t(5)
*((exp((-6))))(8)))

}

if (leyeli,1]==0 &leye[i,2]==1 & leye[i,3]==1 & leyel[i,4]==2
& reyeli,1]1==0 &reye[i,2]==1 & reye[i,3]==1 & reyel[i,4]==2)
{

loglike<-loglike + log(1+2*s*((exp((-K*ageO[i]))))2*t-sxexp(
(-K*ageO[i]))-t*exp((-K*age0[i]))-t3*((exp((-Kxage0[il))))4x
((exp((=G))))2*s-s*((exp((-K*age0[i]))))Extd*((exp((-G)))

) 2-52% ((exp ((-K*age0[i]))))Bxt3*exp((-G))-s2* ((exp(
(-K*age0[i]))))6xtdxexp((-G))+s3* ((exp ((-K*age0[i]1))))7
*tdxexp ((-G))-s3% ((exp((-K*age0[i])))) 4% ((exp((-B))))2x*t
-sdx* ((exp((-K*age0[i]))))Ext*((exp((-B))))2+sd* ((exp ((-K*
age0[i]))))6xt2% ((exp((-B))))2-s* ((exp((-K*age0[i]))))3*
t2-s2+ ((exp ((-K*age0[i])))) 3xt+2*s2* ((exp ((-K*age0[i])))
)Axt2+t3% ((exp ((-Kxage0[i])))) 3% ((exp((-G))))2+s3x%(

(exp ((-K*age0[1]))))3*((exp((-B))))2+td* ((exp((-K*ageO[i])
)))5x((exp((=G))))B*s+s2x ((exp((~K*ageO[i]))))6xtd* ((

exp ((-G))))2+sdx*((exp((-K*age0[i]))) )5+ ((exp((-B))))3x*t

-sdx* ((exp((-K*age0[i]))))B*t2*exp ((-B))+sd* ((exp ((-K*
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age0[i]1)))) 7xt3*exp((-B))-s3* ((exp((-K*age0[i]))))5*t2

*exp ((-B))+s3* ((exp ((-Kxage0[i]))))drt*exp((-B))-s3x((exp
((-Kxage0[1])))) 7*td-sd* ((exp((-Kxage0[i]))))7*t3+sd
*((exp((-K*age0[i]))))8xtd-td* ((exp((-K*age0[i]))))4dx* ((
exp((-G))))3-s4x ((exp((-K*age0[i]))))Zd*((exp((-B))))3+s

* ((exp ((-K*age0[i]))))d*t3x*xexp((-G)))

}

}

return(loglike)

}
optim(c(.998,.997,.0311,.05701,.00002510) , joint2,method="L-BFGS-B",
control = list(maxit=6000, fnscale =-1), n=n, ageO=age0,lower=

c(0.99 ,0.99, 0, 0, 0), upper=c(0.99999 ,0.999999, 1, 1, 1))
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