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ABSTRACT

On the Attainability of Upper Bounds for the Circular Chromatic Number of

K4-Minor-Free Graphs

by

Tracy Holt

Let G be a graph. For k ≥ d ≥ 1, a k
d
-coloring of G is a coloring c of vertices of

G with colors 0, 1, 2, . . . , k − 1, such that d ≤ |c(x) − c(y)| ≤ k − d, whenever xy is

an edge of G. We say that the circular chromatic number of G, denoted χc(G), is

equal to the smallest k
d

where a k
d
-coloring exists. In [6], Pan and Zhu have given a

function µ(g) that gives an upper bound for the circular-chromatic number for every

K4-minor-free graph Gg of odd girth at least g, g ≥ 3. In [7], they have shown that

their upper bound in [6] can not be improved by constructing a sequence of graphs

approaching µ(g) asymptotically. We prove that for every odd integer g = 2k + 1,

there exists a graph Gg ∈ G/K4 of odd girth g such that χc(Gg) = µ(g) if and only if

k is not divisible by 3. In other words, for any odd g, the question of attainability of

µ(g) is answered for all g by our results. Furthermore, the proofs [6] and [7] are long

and tedious. We give simpler proofs for both of their results.

2



Copyright by Tracy Holt 2008

3



ACKNOWLEDGMENTS

I would first like to thank my wife Nicole for always encouraging me, for believing

in me, and for pushing me to do my best. I would like to thank Dr. Nigussie for

introducing me to this challenging problem, and for his mentoring and guidance. I

would like to thank Dr. Beeler for his insightful comments and questions. I would

like to thank Dr. Gardner for his support, encouragement and for helping me to keep

things in order. Last but not least, I would like Dr. Anant Godbole for introducing

me to graph theory, and for his confidence in me which helped give me the confidence

to pursue a graduate degree.

4



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Farey Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Circular Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Chromatic Numbers and Circular Chromatic Numbers . . . . 12

1.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 THE EXISTENCE OF UPPER BOUNDS . . . . . . . . . . . . . . . 16

3 THE ATTAINABILITY OF THE UPPER BOUNDS . . . . . . . . . 19

3.1 Proof of Theorem 1.7 . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Proof of Theorems 1.8 and 1.9 . . . . . . . . . . . . . . . . . . 22

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5



LIST OF TABLES

1 The First Five Farey Sequences. . . . . . . . . . . . . . . . . . . . . . 9

2 Sequences of Circular Graphs Ordered Using Farey Sequences. . . . . 11

6



LIST OF FIGURES

1 A Homomorphism Mapping C5 to Graph G. . . . . . . . . . . . . . . 8

2 Two Equivalent Representations for K 8
3
. . . . . . . . . . . . . . . . . 10

3 Two Equivalent Representations for K 7
3

(C7). . . . . . . . . . . . . . 11

4 Graphs for the Third Row of Table 2. . . . . . . . . . . . . . . . . . . 12

5 Traffic lanes at an Intersection. . . . . . . . . . . . . . . . . . . . . . 13

6 Unavoidable Configuration of G. . . . . . . . . . . . . . . . . . . . . . 17

7 Kr
m with the Hamiltonian Cycle Generated by βr

m, Where the Vertices

{βr
m − m, βr

m − m + 1, . . . , βr
m + m + 1} are Incident to 0. Note that

the Thick Edges Depict a Cycle of Length C4k+r+2. . . . . . . . . . . 20

8 Graph Gr
g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

9 This Graph Attains the Upperbound for Theorem1.7 When g � 1

mod 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10 A Close-up View of Part of Figure 9 Between Vertices a and bi for any i. 23

11 An Alternate Representation of K1
m Where β ′ = 2k + 2 + m(2k + 1)

Generates the Hamiltonian Cycle. . . . . . . . . . . . . . . . . . . . . 24

12 Extending K1
m to K1

m+1. Vertices of K1
m+1 are Distinguished from

Vertices of K1
m by the “[ ]” Symbol. . . . . . . . . . . . . . . . . . . . 25

13 Graph H Used in Lemma 3.4. . . . . . . . . . . . . . . . . . . . . . . 26

14 How H is Mapped to K1
1 . . . . . . . . . . . . . . . . . . . . . . . . . 26

15 Graph G0 and Hk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

16 Graph G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7



1 INTRODUCTION

A graph is a pair G = (V, E) of sets such that the elements of E are 2-element

subsets of V [1]. The set V is the set of vertices (points) and the set E is the set of

edges (lines). We assume graphs are finite and simple (no multiple edges or loops). Let

G and G′ be graphs. A homomorphism from G to G′ is a mapping f :V (G) → V (G′)

which preserves adjacency, i.e., uv ∈ E(G) implies f(u)f(v) ∈ E(G′). To illustrate

this, Figure 1 shows how a 5-cycle can be mapped by homomorphism f to a graph

G. The notation G ≤ G′ means there is a homomorphism from G to G′. Note that

“ ≤ ” is a reflexive and transitive relation. Also, the notation G ∼ G′ means that

G ≤ G′ ≤ G. Other terminology we use is from [1].

aa

b

b

cc dd

e

e f

Figure 1: A Homomorphism Mapping C5 to Graph G.
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1
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1
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1
1

0
1

1
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1
3

1
2

1
3
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1
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0
1

1
5

1
4

1
3

2
5

1
2

3
5

1
3

3
4

4
5

1
1

Table 1: The First Five Farey Sequences.

1.1 Farey Sequences

Farey sequences are useful in helping to understand relationships between rational

numbers. In particular, for our purposes, we find them very useful in proving the

attainability of upper bounds. From [5] we get the following definition of Farey

sequences. Every rational number between two integers can be generated using Farey

sequences. It suffices to show the values in the sequence between 0 and 1. Construct

a table in the following way. For the first row, write 0
1

and 1
1
. For n ∈ {2, 3, ...} use

the following rule: Form the nth row by copying the (n−1)st row in order, but insert

the fractions a+a′

b+b′ between consecutive fractions a
b

and a′

b′ if b+b′ ≤ n. Since 1+1 ≤ 2,

0+1
1+1

= 1
2

is inserted between 0
1

and 1
1

giving the second row 0
1
, 1

2
, 1

1
. Likewise, the

third row is 0
1
, 1

3
, 1

2
, 1

3
, 1

1
. The first five rows are depicted in Table 1.

A Farey sequence of order n is the nth row of the table described above. Some

useful properties of Farey sequences are the following.

Theorem 1.1 [5] If a
b

and a′

b′ are consecutive fractions in the nth row, say with a
b

to

the left of a a′

b′ , then a′b − ab′ = 1.

9
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K 8
3

Figure 2: Two Equivalent Representations for K 8
3
.

Corollary 1.2 [5] Every a
b

in the table is in reduced form, that is gcd(a, b) = 1.

Corollary 1.3 [5] The fractions in each row are listed in order of their size.

It is also important to note that a Farey sequence of order n is the sequence of all

fractions in reduced form, with denominators not exceeding n [5].

1.2 Circular Graphs

A circular graph is defined in [4] as a graph K k
d

with the vertex set V =

{0, 1, 2, ..., k−1} and the edge set E = {ij : d ≤ |i−j| ≤ k−d}. To illustrate, K 8
3

has

V = {0, 1, 2, . . . , 7} and E = {ij : 3 ≤ |i − j| ≤ 5}. Two equivalent representations

for K 8
3

are depicted in Figure 2.

For the graph K 2k−1
k

, the vertex 0 is adjacent to exactly two vertices, k and k +1,

and likewise all other vertices are adjacent to exactly two vertices, i.e., K 2k−1
k

is 2-

connected. So, K 2k−1
k

is a cycle equivalent to C2k−1. See Figure 3 for the example of

K 7
3
.

We are interested in the circular graphs with the following properties:

(i) k
d

is in reduced form

10



K 7
3

= C7

Figure 3: Two Equivalent Representations for K 7
3

(C7).

K 2
1

K 3
1

K 2
1

K 5
2

K 3
1

K 2
1

K 7
3

K 5
2

K 8
3

K 3
1

K 2
1

K 9
4

K 7
3

K 5
2

K 8
3

K 11
4

K 3
1

K 2
1

K 11
5

K 9
4

K 7
3

K 12
5

K 5
2

K 13
5

K 8
3

K 11
4

K 14
5

K 3
1

Table 2: Sequences of Circular Graphs Ordered Using Farey Sequences.

(ii) gcd(k, d) = 1

(iii) K k
d
≤ K k′

d′
if and only if k

d
≤ k′

d′

Table 2 shows sequences of circular graphs. As will be seen later, circular graphs

with 2
1
≤ k

d
≤ 3

1
are of particular interest to us.

The third row of Table 2 is depicted in Figure 4. Notice that when d = 1, K k
d

is

equal to the complete graph Kk.
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K 2
1

K 7
3

K 5
2

K 8
3

K 3
1

Figure 4: Graphs for the Third Row of Table 2.

1.3 Chromatic Numbers and Circular Chromatic Numbers

One definition for the chromatic number of a graph G denoted χ(G) is the follow-

ing. Graph G is said to be k-chromatic if k is the smallest integer such that G ≤ Kk.

In [4], a similar definition is given for the circular chromatic number of a graph G de-

noted χc(G). χc(G) = k
d

where k
d

is the smallest rational number such that G ≤ K k
d
.

We are interested in circular chromatic numbers because they give us more in-

formation about graphs than chromatic numbers. For example, for any cycle C2k−1,

χ(C2k−1) = 3, but χc(C2k−1) = χc(K 2k−1
k

) = 2k−1
k

. Notice that 2k−1
k

= 2 − 1
k
. From

this we can see that as k gets large, 2 − 1
k

approaches 2. For example, χ(C1001) = 3,

but χc(C1001) = χc(K 1001
500

) = 2.001. An important theorem for circular chromatic

numbers it the following.

Theorem 1.4 [9] For any finite graph G, χ(G) − 1 < χc(G) ≤ χ(G).

Zhu gives the following example [9]. Consider the problem of traffic flow at an

intersection. Each lane of traffic needs to be assigned an interval of time during which

it has a green light. A complete traffic period is a period of time in which each traffic

12
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S to N

E to SW to E W to NE to SW to N

W to E

S
 to N

E to W

N
 to S

N

E

S

W

Figure 5: Traffic lanes at an Intersection.

lane gets a turn at a green light. A pattern of red and green lights needs to be de-

signed for a complete traffic period, where each green light is of unit length.

For this problem, a graph makes an ideal model. Let each traffic lane be repre-

sented by a vertex, and there is an edge between two vertices if the two corresponding

traffic lanes would inhibit one another, e.g. north-south traffic, and east-west traffic

would inhibit each other. A simple example of a graph like this is depicted in Figure 5.

This problem can be solved by finding the chromatic number of the corresponding

graph G. The graph would be partitioned into the minimum number of sets of non-

adjacent vertices with a period of green light of unit length assigned to each set.

This would give a complete traffic period of kt where k is the number of sets, and

t is the length of unit time. However, kt would not be an optimal solution. The

13



optimal solution is obtained using the circular chromatic number of the graph χc.

The number of sets, k, is equal to the chromatic number of the graph, χ. By Theorem

1.4, χc(G) ≤ χc(G), so χct would be the optimal solution.

1.4 Main Results

Finding a tight upper bound for χc(G), in a class of Kn-minor-free graphs, G/Kn,

is a difficult problem even for small values of n. The case n ≥ 5 remains unsolved.

Even for planar graphs the problem is open. See [2] and [8]. To date the best known

circular chromatic number upper bound for planar graphs is given by Zhu [5]. Pan

and Zhu [6, 7] have given a function µ(G), which settles this problem for G/K4, and

proved that their bound is indeed the best possible by asymptotically constructing

χc(G). The following are the theorems of Pan and Zhu, for which we give new proofs.

Theorem 1.5 (Pan, Zhu [6]) Suppose r ∈ {−1, 1, 3} and G ∈ G/K4 has odd-girth

g. If g ≥ 6k+r, then χc(G) ≤ µ(g), where µ(g) = 2σ/(σ−1) and σ = 4k+(r+|r|)/2.

The proof of Theorem 1.5, in Chapter 2, is from an unpublished paper by Yared

Nigussie.

Theorem 1.6 (Pan, Zhu [7]) For every ε > 0, and every odd integer g, there

exists a graph Gg ∈ G/K4 of odd girth g such that χc(Gg) > µ(g) − ε.

The results by Pan and Zhu are based on the so-called labeling method. Although

the labeling method has been quite useful in several proofs, it leads to long case

analysis and calculations.

14



Our proof technique is based on structural methods: We show a minimal coun-

terexample G to Theorem 1.5 must have a certain configuration, which we prove to

be reducible. For Theorem 1.6, we give a different construction which in fact obtains

a stronger result. The following are the main results of this thesis:

Theorem 1.7 For every odd integer g, there exists a graph Hr
g ∈ G/K4 of odd girth

g such that χc(H
r
g) = µ(g), if and only if g � 1 mod 6.

Theorems 1.8 and 1.9 consider the remaining case where g ∼= 1 mod 6. Define

K1
m = K 4k+3+m(4k+1)

2k+1+m2k

.

Theorem 1.8 For every graph G ∈ G/K4 of odd girth at least 6k + 1, there exists

m ∈ N such that G ≤ K1
m.

Theorem 1.9 For every m ∈ N, there exists a graph G ∈ G/K4 of odd girth 6k + 1

such that G � K1
m.

Theorem 1.8 implies that χc(G) < µ(g). Theorem 1.9 implies that µ(g) is the

least upper bound, since K1
m = K 4k+3+m(4k+1)

2k+1+m2k

converges to µ(g) = 4k+1
2k

.

The proof of Theorem 1.5 is given in Chapter 2. The result for Theorem 1.6 is

implied in the results of Theorems 1.7, 1.8 and 1.9. The proofs of Theorems 1.7, 1.8

and 1.9 will be given in Chapter 3.

15



2 THE EXISTENCE OF UPPER BOUNDS

A thread in G is a path P ⊆ G such that the two endpoints of P have degree at

least 3 and all internal vertices of P are degree 2 in G. We shall often use the fact

that if P and P ′ are two edge-disjoint paths and if the lengths of P and P ′ have the

same parity such that P is a thread and has length at least the length of P ′, then

there is a homomorphism that maps P to P ′ sending the two ends of P to the two

ends of P ′. Such a homomorphism is said to fold P to P ′. Let G be a graph and let

Gs denote the multi-graph we obtain from G by “smoothing” all degree 2 vertices of

G. For each edge e of Gs, let Pe denote the thread of G represented by e in Gs, and

let le denote the length of Pe. The graph G∗ is obtained by identifying the parallel

edges of Gs. We need the following Folding Lemma of [4]. The Folding Lemma is a

key lemma which we use in the next section.

Lemma 2.1 (Edge folding lemma [4]) Let G ∈ G/K4 be of odd girth 2k + 1

and let e and e′ be parallel edges in Gs with common end vertices x, y. If G is not

homomorphic to a strictly smaller graph of the same odd girth, then le + le′ = 2k + 1.

Moreover, Pe ∪ Pe′ is the unique cycle of length 2k + 1 containing both x and y.

Lemma 2.2 [4] Let G ∈ G/K4 have odd girth g = 2k + 1 such that G � C2+1 and G

is not homomorphic to a strictly smaller graph of the same odd girth in G/K4. Then,

for any y ∈ V (G∗), if dG∗(y) = 2, then dG∗(y) = dG(y) = 4. Moreover, if such a y

exists then G has a configuration of Figure 6, where Pe1∪Pe2 , Pe3∪Pe4 and Pe5∪P are

pairwise edge-disjoint cycles of length 2k + 1, such that lei
≥ 2, for each i, 1 ≤ i ≤ 5.

16



G′

x

y

z

Pe1

Pe2

Pe3

Pe4

Pe5

P

Figure 6: Unavoidable Configuration of G.

For this proof, we will be referring to Figure 6, and using the notation L1 = le1 ,

l1 = le2 , L2 = le3 , l2 = le4, l3 = le5 and l′3 is the length of P . Also, we will be using

the notation V8k = K8k/(4k−1).

Theorem 1.5 Suppose r ∈ {−1, 1, 3} and G ∈ G/K4 has odd-girth g. If g ≥ 6k + r,

then χc(G) ≤ µ(g), where µ(g) = 2σ/(σ − 1) and σ = 4k + (r + |r|)/2.

Proof. Let G ∈ G/K4 of odd girth at least g be a counterexample with |V (G)| as

small as possible. It suffices to show that G ≤ Kµ(g). We prove that if r 6= −1 then

G ≤ C4k+r and that if r = −1, G ≤ K8k/(4k−1), which contradicts the choice of G.

It is easy to see that G must be 2-connected, because Kµ(g) is vertex-transitive

and so inductively a homomorphism fi : Hi ≤ Kµ(g) for each 2-connected component

Hi, i = 1, 2, . . . , m ≥ 2, can be extended to f : G ≤ Kµ(g), a contradiction. By Lemma

2.1, G has odd-girth g = 6k + r, r ∈ {−1, 1, 3}. Note that Li + li = 6k + r, i = 1, 2.

Let G′ = (G
⋃4

i=1 Pei
) ∪ {x, y} be obtained by deleting. Then by induction,

f : V (G′) ≤ Kµ(g) exists. Note that if r = −1, then f(v1) and f(v2) can be found on

some C4k+1. We may assume f(v1) = 0 and f(v2) = l3, l3 + l′3 = 4k + |r|, l3 < l′3 and

that L1 ≥ L2 > l2. Then l2 ≥ l1. We may also assume that L1 < 4k + (r + |r|)/2, for

otherwise G\PL1 ≤ C4k+|r| can be extended to G ≤ C4k+|r|, and we are done. Then,

17



we have l1 > 2k, if r 6= −1 and l1 ≥ 2k, if r = −1. In addition, we can assume l3 ≥ 2,

for if 0 ≤ l3 ≤ 1, we clearly have G ≤ C4k+|r|. It follows that, l1 + l2 > l′3.

Let {α, β} = {L2, l2} such that L1
∼= β + l3 mod 2. Then β > L1 − l3, for

otherwise we have L1 ≥ β + l3 and α ≥ l1 + l3. Hence, we may identify PL1 with

Pβ ∪ Pl3 and Pα with Pl1 ∪ Pl3 . Since l1 + β ≥ l1 + l2 > l′3, we get G ≤ C4k+|r|.

We now extend f by f ∗ as follows: If r = −1, L1 = L2, and l3 = 2k or 2k + 1, it

is easy to see we map G to V8k by letting f ∗(v) = 8k − L1. Otherwise, we map G

to C4k+|r|, by showing each path: PL1, Pl1 , Pβ and Pα, can be identified with their

corresponding subpaths of the same parity in C4k+|r|. For PL1, we have L1 < 4k + |r|,

because L1 < 4k + (r + |r|)/2 ≤ 4k + |r|. Note also that L1 > l3 since l3 < l′3 and

l3 + l′3 ≤ L1 + l1. For Pl1, we have l1 ≥ 4k + |r| − L1, because L1 + l1 = 6k + r. For

Pβ, we have β > L1 − l3, as shown above. For Pα we show, α ≥ l3 + (4k + |r| − L1).

Substituting α + β = 6k + r and rearranging we shall verify:

L1 − β ≥ (l3 − 2k) + (|r| − r) (∗)

Note that L1 − β ≥ 0. If r 6= −1, then |r| − r = 0, and so if 2k ≥ l3, we are done.

Otherwise, l3 = 2k + 1, then L1 6∼= β mod 2, i.e., L1 > β, which implies (∗) holds.

Next, let r = −1, i.e., |r| − r = 2 and l3 ≤ 2k. By assumption if l3 = 2k, then L1 6= β

and so L1 − β = 2t, t ≥ 1 and if l3 < 2k, we see once more (∗) holds.

Note that the case l3 > 2k + 1 is symmetric, since l′3 = 4k + 1 − l3 ≤ 2k. This

concludes the proof that no counterexample exists to Theorem 1.5. 2

18



3 THE ATTAINABILITY OF THE UPPER BOUNDS

In this Chapter the upper bounds for the three cases, graphs of girth greater

than or equal to 6k + r for r ∈ {−1, 1, 3}, will be classified. That is to say, it will be

shown that when girth is greater than or equal to 6k − 1 or 6k + 3, the upper bound

is attainable, and when girth is greater than or equal to 6k + 1, the upper bound is

unattainable.

3.1 Proof of Theorem 1.7

In this section we assume graph G has odd girth g = 6k+r, where r ∈ {−1, 1, 3}.

We define the following: La = g+1
2

, Lb = g−1
2

, la = g+1
2

− k + 1, and lb = g−1
2

− k + 1.

For short, K−1
m = K 4k+1+8km

2k+(4k−1)m
and K3

m = K 4k+5+(4k+3)(2m)
2k+2+(2k+1)(2m)

. We also need to define

β−1
m = 2k + (4k − 1)m and β3

m = 2k + 2 + (2k + 1)(2m), where βr
m generates the

Hamiltonian cycle for Kr
m depicted in Figure 7.

Let Gr
g be the graph depicted in Figure 8. Notice that the odd girth of Gr

g is less

than 6k+r for k > 1. However, we find Gr
g to be useful in the following sense: Suppose

H is a graph for which we know χc(H) < µ(g). Assuming f is a homomorphism that

maps graph G to H, if we show Gr
g to be a subgraph of f(G), then we deduce that

χc(G) ≥ χc(G
r
g), contrary to the assumption that χc(H) < µ(g). This is the key

method of proof for Theorem 1.7.

Lemma 3.1 For r = {−1, 3}, χc(G
r
g) = µ(g).

Proof. For simplicity, we prove the case r = 3, (the case r = −1 is similar). Note

that G3
g � C4k+5, for otherwise, identifying c to any vertex of la or lb creates an shorter
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0 βr

m 2βr
m

βr
m − 1

βr
m − m + 1
2βr

m − m + 1
βr

m − m

βr
m + 11

βr
m + 2

m − 1
βr

m + m

2βr
m − 2m

βr
m − 3m − 1

2m + 1

βr
m + 3m + 2

βr
m + m + 1

Figure 7: Kr
m with the Hamiltonian Cycle Generated by βr

m, Where the Vertices

{βr
m −m, βr

m −m + 1, . . . , βr
m + m + 1} are Incident to 0. Note that the Thick Edges

Depict a Cycle of Length C4k+r+2.
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La La

LbLb

la

lb

a b

c

Figure 8: Graph Gr
g.

odd cycle. By Theorem 1.5, G3
g ≤ C4k+3. Therefore, 4k+5

2k+2
< χc(G

3
g) ≤ 4k+3

2k+1
. To prove

the second inequality is actually an equality, we use the following.

From basic number theory [5], using what is known as the Farey sequence, we can

see that any rational p
q

strictly between 4k+5
2k+2

and 4k+3
2k+1

has numerator p ≥ 8k + 8.

It is well known [9] that for a graph G with a circular chromatic number a/b, the

numerator a is at most the circumference of G [9], if gcd(a, b) = 1. But then the

circumference of G3
g is 8k + 7 < p. Thus, χc(G

3
g) = 4k+3

2k+1
. 2

Remark. For the case r = 1 note that G1
g � C4k+3 = K1

0 , for otherwise, identifying

c to any vertex of la or lb creates an shorter odd cycle. However, G1
g does not attain

µ(g), because G1
g ≤ K1

1 .

The following lemma is used to help show that the desired subgraph Gr
g appears,

whenever we attempt to map Hr
g to Kr

m for some m ∈ N.

Lemma 3.2 Any three vertices of Kr
m are contained in an odd cycle of length at most

4k + r + 6 when r = {−1, 3}.

Proof. Note that the odd girth of Kr
m is 4k + r + 2, (depicted by thick curves on

Figure 7). First, any two vertices v1 and v2 are on a 4k+r+4-cycle. We may assume
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v1 = 0 and if v2 is not on the thick cycle then, it can be reached by replacing a thick

edge with 3 thin edges. Then v3 can be found similarly. 2

Theorem 1.7 follows from the following Lemma.

Lemma 3.3 For any g � 1 mod 6 let Hr
g be the graph in Figure 9, then χc(H

r
g ) =

µ(g).

Proof. Assume χc(H
r
g ) < µ(g). Then there exists some m, such that Hr

g ≤ Kr
m <

µ(g). When mapping Hr
g to some Kr

m by a homomorphism f , the distance between

f(a) and f(bi) for some 0 ≤ i ≤ 2k − 2 is la, for if dist(f(a), f(bi)) < la for all i, then

f(Hr
g) would have an odd cycle shorter than odd-girth of Kr

m, a contradiction. By

Lemma 3.2, a, bi and ci are on a cycle of length at most 4k + r + 6. This forces either

one of the two shortest paths from a and ci or one of the two shortest paths from bi

and ci to be folded to a path of length either k + 1 or k + 2. Hence, vertices ci and

dij, 1 ≤ j ≤ 4, (see Figure 10) will be on a cycle of length 4k + r + 2 at distance la

(See Figure 8). But then this induces a Gr
g subgraph in f(Hr

g), contrary to Lemma

3.1. 2

3.2 Proof of Theorems 1.8 and 1.9

In this section, we study the remaining case, r = 1. Recall that K1
m = K 4k+3+m(4k+1)

2k+1+m2k
.

In contrast to the cases r = −1 and r = 3, for the case r = 1, we prove that µ(g)

is not attainable. However, we also prove that µ(g) is the best bound that exists.

Analogous to Lemma 3.2, the following lemma is useful.
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a

b0

b1 b2k−3

b2k−2

c0

c1

c2k−3

c2k−2

la lb

Figure 9: This Graph Attains the Upperbound for Theorem1.7 When g � 1 mod 6.

a bi
ci

di1

di2

di3

di4

LaLa

LaLaLaLa

LaLa

Lb LbLbLb

LbLbLbLb la

lala

lak − 1 k − 1

k − 2k − 2

Figure 10: A Close-up View of Part of Figure 9 Between Vertices a and bi for any i.
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... ...

0 β′

2β′

m + 2

β′ + m + 2

β′ + 1

β′ + 2β′ + m − 1

β′ + m

β′ − 1

2β′ − 1

m + 1
β′ + m + 1

Figure 11: An Alternate Representation of K1
m Where β ′ = 2k + 2 + m(2k + 1)

Generates the Hamiltonian Cycle.

For the following lemma, note that the cycle D
⋃

d is a 4k + 3-cycle.

Lemma 3.4 Let H be the graph depicted in Figure 13. Then, H ≤ K1
1 .

Proof. Consider the graph H in Figure 13. Notice first, that l and l′ must be at

least 2k. If not, then |PL| ≥ 4k+2 or |P ′
L| ≥ 4k+2 respectively. Delete the respective

path, then the remaining graph maps to C4k+3. From here the deleted path can be

added back and mapped to C4k+3 as well. Now, let δ = dist(f(a), f(b)). Without

loss of generality, assume l is the smallest of l, L, l′, L′ and let {α, β} = {L′, l′} such

that l and β + δ are the same parity. Then, β < l + δ, otherwise we have β > l + δ
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0

β′

2β′

m + 2

β′ + m + 2

β′ + 1

β′ + 2β′ + m − 1

β′ + m

β′ − 1

2β′ − 1

m + 1
β′ + m + 1

[β′]
[2β′]

[m + 2]

[β′ + m + 2]

[β′ + 1]

[β′ + 2][β′ + m − 2]

[β′ + m − 1]

[β′ − 2]

[2β′ − 2]

[m]

[2β′ + m]
[β′ + m]

[2m + 2] [m + 1]

[β′ + m + 1]

Figure 12: Extending K1
m to K1

m+1. Vertices of K1
m+1 are Distinguished from Vertices

of K1
m by the “[ ]” Symbol.
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a b

c

L

l

L′

l′

d

D

Figure 13: Graph H Used in Lemma 3.4.

f(a)

f(b)
f(c)

x

δ − 1

Figure 14: How H is Mapped to K1
1 .
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and L ≥ α + δ. Hence we may identify Pβ with Pl

⋃
Pδ and PL with Pα

⋃
Pδ, a

contradiction.

Let f(c) be at distance β−δ+1 from x. Since l and β+δ are the same parity, then

so are l and β − δ + 2. Also, since β < l + δ, then β + 2 ≤ l + δ, and so β − δ + 2 ≤ l.

Now, we can identify Pl with the path from a to c which includes x. Thus, H ≤ K1
1 .

2

Theorem 1.8 For every graph G ∈ G/K4 of odd girth at least 6k +1, there exists

m ∈ N such that G ≤ K1
m.

Proof. Assume a graph G ∈ G/K4 of girth at least 6k + 1 is a minimal counterex-

ample. Then G � K1
m for all m ≥ 0. By Lemma 2.2, G has the configuration depicted

in Figure 6. Let G′ = (G\
⋃4

i=1 Pei
)∪{x, y}. Now, by minimality of G, we know that

a homomorphism f maps G′ to K1
m, for some m > 0. Note that f(x) and f(z) are on

a C4k+3 subgraph. We now extend f to a homomorphism f ∗ mapping G to K1
m+1. If

the shortest distance between f(x) and f(z) is not on the Hamiltonian cycle of K1
m,

then G ≤ K1
m by Lemma 3.4. Assume the shortest distance between f(x) and f(z) is

on the Hamiltonian cycle of K1
m, then G � K1

m. In this case, we extend K1
m using an

edge on the Hamiltonian cycle between f(x) and f(z), as depicted in Figure 12, to

obtain K1
m+1. Then in K1

m+1 the shortest distance between f(x) and f(z) is not on

the Hamiltonian cycle. By what we just proved for K1
m, we deduce that G ≤ K1

m+1.

Hence, G ≤ K1
m for some m ∈ N. 2

We prove the remaining Theorem using the following graph. Define recursively

the following. G0 is the graph depicted in Figure 15 (left) and let Hk be the “hook-

graph” depicted on the right. Then, Gj is constructed by taking a copy of Gj−1 and
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2k − 1 copies of Hk, and identifying vertex eji to vertex a and identifying vertex dji

to a vertex at distance 2k + 1 from a on the thread of length 3k + 1 between a and

c(j−1)i, for all j ∈ 0, 1, . . . , 2k − 2. (see Figure 15 for G1
1).

Theorem 1.9 For every m ∈ N, there exists a graph G ∈ G/K4 of odd girth 6k+1

such that G � K1
m.

Proof. By the Remark after Lemma 3.1, G0 � C4k+3. Notice that C4k+3 = K1
0 .

Applying Lemma 3.4 2k − 1 times implies that G0 ≤ K1
1 . Let f be a homorphism

form G0 to K1
1 . For each i ∈ {0, 1, . . . , 2k−2}, a, bi and c0i are contained in a subgraph

of G0 of the form of Figure 13 with the specific values L = L′ = 3k + 1, l = l′ = 3k

and d + D = 6k + 1. For some i ∈ {0, 1, . . . , 2k − 2}, f(bi) is at distance 2k + 1

from f(a), if not we get a cycle shorter than 4k + 1. Note that f maps some thread

of length 3k + 1 between vertices a and c0i injectively to a path on the Hamiltonian

cycle of K1
1 .

Inductively, let m be minimal such that there is a Gm, such that Gm � K1
m and

Gm ≤ K1
m+1. Further we may inductively assume, similar to the mapping of G0

to K1
1 , when Gm is mapped to K1

m+1 for some i ∈ {0, 1, . . . , 2k − 2}, a thread t of

length 3k + 1 between a and cmi, is mapped injectively to K1
m+1. We extend Gm to

Gm+1 (recall the recursive construction), so that Gm+1 � K1
m+1. We extend K1

m+1 to

K1
m+2 at an edge of f(t) so that f(t) is not on the Hamiltonian cycle of K1

m+2. Now,

Gm+1 ≤ K1
m+2, and similar to the mapping of G0 to K1

1 , when Gm+1 is mapped to

K1
m+2 for some i ∈ {0, 1, . . . , 2k− 2}, a thread of length 3k +1 between a and c(m+1)i,

is mapped injectively to K1
m+2. By induction, the result follows. 2
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b0
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c0(2k−3)
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Figure 15: Graph G0 and Hk.
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Figure 16: Graph G1.
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