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ABSTRACT

Locating-Domination in Complementary Prisms

by

Kristin R.S. Holmes

Let G = (V (G), E(G)) be a graph and G be the complement of G. The complemen-

tary prism of G, denoted GG, is the graph formed from the disjoint union of G and

G by adding the edges of a perfect matching between the corresponding vertices of G

and G. A set D ⊆ V (G) is a locating-dominating set of G if for every u ∈ V (G)\D, its

neighborhood N(u)∩D is nonempty and distinct from N(v)∩D for all v ∈ V (G)\D

where v 6= u. The locating-domination number of G is the minimum cardinality

of a locating-dominating set of G. In this thesis, we study the locating-domination

number of complementary prisms. We determine the locating-domination number

of GG for specific graphs G and characterize the complementary prisms with small

locating-domination numbers. We also present bounds on the locating-domination

numbers of complementary prisms.
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1 INTRODUCTION

The purpose of this thesis is to study selected domination parameters of a family

of graphs known as complementary prisms. In Section 1.1, we introduce the basic

terminology of graph theory utilized in this paper. In Section 1.2, we introduce the

definitions of each of the domination parameters discussed in this paper. In Section

1.3, we define perfection in graphs. In Section 1.4, we define the complementary prism

graph.

1.1 Basic Graph Theory Terminology

As defined in [2], a graph G = (V (G), E(G)) is a nonempty, finite set of elements

called vertices together with a (possibly empty) set of unordered pairs of distinct

vertices of G called edges. The vertex set of G is denoted by V (G) and the edge set

of G is denoted by E(G). In Figure 1, we have an example of a graph.

G

Figure 1: A Graph G

In this paper, we will be studying simple graphs, which are graphs for which there

exists at most one edge between any two vertices. Given any graph G, the order of

G, denoted n(G) = |V (G)|, is the number of vertices in G. The size of G, denoted
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m(G) = |E(G)|, is the number of edges in G. For example, for the graph G in Figure

1, the order n(G) = 6 and the size m(G) = 9. The complement of G, denoted G, is

a graph with V (G) = V (G) and E(G) = {ab|ab 6∈ E(G)}. For example, consider the

graphs G and G shown in Figure 2.

G G

Figure 2: A Graph G and G

For any vertices v, u ∈ V (G), u and v are adjacent if uv ∈ E(G). A u-v path is a

finite alternating sequence {u = v0, e1, v1, e2 . . . ek, vk = v} of vertices and edges such

that ei = vi−1vi for i = 1...k and ei = ej if and only if i = j. Among all u-v paths,

the number of edges in a shortest length u-v path is known as the distance from u

to v, denoted by dist(u, v). For any vertex v ∈ V (G), the open neighborhood of v is

N(v) = {u ∈ V (G) | uv ∈ E(G)}, and the closed neighborhood N [v] = N(v) ∪ {v}.

For a set S ⊆ V (G), its open neighborhood is N(S) = ∪v∈SN(v), and its closed

neighborhood is N [S] = N(S)∪ S. The degree of a vertex v is degG(v) = |N(v)|. The

minimum degree of G is δ(G) = min{degG(v)|v ∈ V (G)}. The maximum degree of

G is ∆(G) =max{degG(v)|v ∈ V (G)}. A vertex of degree zero is an isolated vertex,

these are also known as isolates. A vertex of degree one is called a leaf or a pendant,

and its neighbor is called a support vertex. For any leaf vertex v and support vertex

10



w, the edge vw is called a pendant edge.

Given S ⊆ V (G), and v ∈ S, a vertex w ∈ V (G) is an S-private neighbor of v

if NG(w) ∩ S = {v}. The S-external private neighborhood of v, denoted epn(v, S), is

the set of all S-private neighbors of v in V (G) \ S. For any S ⊆ V (G), the subgraph

of G induced by S is denoted 〈S〉. If S ⊆ V (G) and uv ∈ E(G) for every u, v ∈ S,

then S forms a clique of order |S|, and 〈S〉 is called a complete graph of order |S|.

If uv 6∈ E(G) for every u, v ∈ S, then S is an independent set of order |S| and 〈S〉

is called an empty graph of order |S|. For any graph G, the corona of G, denoted

G ◦ K1, is formed by adding for each v ∈ V (G), a new vertex v′, and a pendant edge

vv′. A set P ⊆ V (G) is a packing if N [u] ∩ N [v] = ∅ for every u, v ∈ P . The join of

simple graphs G and H, denoted G + H, is the graph obtained by the disjoint union

of G and H by adding the edges {xy : x ∈ V (G), y ∈ V (H)}. A matching M in a

graph G is a set of pairwise non-adjacent edges. A perfect matching is a matching

which matches all the vertices in the graph.

Given a graph G with vertex set V (G), a proper coloring of G is a partitioning of

V (G) into independent sets. These sets are called color classes. A proper coloring of G

that has a minimum number of color classes is called a χ(G)-coloring and the number

of color classes in such a coloring is χ(G). For other definitions and terminology

related to graph theory, the interested reader is referred to [2, 7, 5, 13].

11



1.2 Domination Parameters

A set S ⊆ V (G) is a dominating set (abbreviated DS) if N [S] = V (G) and is a

total dominating set (abbreviated TDS) if N(S) = V (G). The minimum cardinality

of any DS (respectively, TDS) of G is the domination number γ(G) (respectively, total

domination number γt(G)). A DS of G with cardinality γ(G) is called a γ(G)-set,

and a γt(G)-set is defined similarly. A set S ⊆ V (G) is a locating-dominating set

(abbreviated LDS) of G, if for every u ∈ V (G)\D, its neighborhood N(u) ∩ D is

nonempty and distinct from N(v)∩D for all v ∈ V (G)\D where v 6= u. The locating-

domination number of G, denoted γL(G), is the minimum cardinality of a locating-

dominating set of G. An LDS of G with cardinality γL(G) is called a γL(G)-set.

See Figure 3 for an example of an LDS for the path P6, where the darkened vertices

represent the γL(G)-set, L. Notice that N(v2) ∩ L = {v1}, N(v3) ∩ L = {v4} and

N(v5)∩L = {v4, v6}, so each of the vertices, v2, v3, and v5 have unique neighborhoods

V (G) ∩ L. If a set L locating-dominates a set X, then we denote this as L ≻L X.

v1 v2 v3 v4 v5 v6

Figure 3: Locating-Dominating Set in P6

Since an LDS is a dominating set, we have the following observation.

Observation 1 For any graph G, γ(G) ≤ γL(G).

A set S ⊆ V (G) is a connected dominating set (abbreviated CDS) of G, if S is a

dominating set and the induced subgraph 〈S〉 is connected. The connected domination
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number γc(G) is the minimum cardinality of a CDS of G. A CDS of G with cardinality

γc(G) is called a γc(G)-set. It is obvious that γ(G) ≤ γc(G) and if γ(G) = 1, then

γ(G) = γc(G) = 1. Also, since any nontrivial connected dominating set is also a total

dominating set, γ(G) ≤ γt(G) ≤ γc(G) for any graph G with ∆(G) < n − 1. For

examples of connected dominating sets in graphs see Figure 4 where the darkened

vertices represent the CDS.

Figure 4: Connected Domination in Graphs

For more information related to domination in graphs, the interested reader is

referred to [7, 8].

1.3 Perfect Graphs

A clique is a set of pairwise adjacent vertices in G. The clique number ω(G) is

the maximum order of a clique in G. A graph is properly colored if no two adjacent

vertices are assigned the same color. A graph G is perfect if χ(G) = ω(G) for every

induced subgraph H of G.

Proposition 2 (The Perfect Graph Theorem [13]) A graph G is perfect if and

only if G is perfect.
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Observation 3 [13] If k ≥ 2, then χ(C2k+1) > ω(C2k+1) and χ(C2k+1) > ω(C2k+1).

Therefore, odd cycles of order ≥ 5 are not perfect.

Observation 3 prompted the following:

Proposition 4 (Strong Perfect Graph Theorem [13]) A graph G is perfect if

and only if both G and G have no induced subgraph that is a cycle of length 5 or

greater.

1.4 Complementary Prisms

Complementary prisms were first introduced by Haynes, Henning, Slater, and van

der Merwe in [9]. For a graph G, its complementary prism, denoted GG, is formed

from a copy of G and a copy of G by adding a perfect matching between corresponding

vertices. For each v ∈ V (G), let v denote the vertex v in the copy of G. Formally,

GG is formed from G ∪ G by adding the edge vv for every v ∈ V (G). For any graph

G, we denote its complementary prism by GG. Complementary prisms generalize

several well-known graphs. For instance, the corona Kn ◦ K1 is the complementary

prism KnKn. Another example, is the Petersen graph, which is the complementary

prism C5C5. These are illustrated in Figure 5.

To aid in the discussion of complementary prisms, we will use the following ter-

minology: For a set P ⊆ V (G), let P be the corresponding set of vertices in V (G).

For a vertex v ∈ V (G), let v represent the corresponding vertex in V (G).

In this thesis, we will explore locating-domination in complementary prisms. We

will also characterize the graphs G for which the complementary prism GG is perfect.

14



C5C5

K3 ◦ K1

Figure 5: Examples of Complementary Prisms
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2 LITERATURE REVIEW

In this chapter, we review the literature on complementary prisms. In Section 2.1,

we will examine the complementary product first introduced in [9] and will see how

complementary prisms are a subset of this. In Section 2.2, we will review the work

on domination and total domination in complementary prisms seen in [9, 10]. This

work will include, but is not limited to, characterizations of complementary prisms

with small domination and total domination numbers as well as bounds.

2.1 The Complementary Product of Two Graphs

In [9], Haynes, Henning, Slater, and van der Merwe introduced a generalization

of the Cartesian product of two graphs. Let G1 and G2 be graphs with V (G1) =

{u1, u2, . . . , un} and V (G2) = {v1, v2, . . . , vp}. The Cartesian product of the graphs

G1 and G2, symbolized by G12G2, is the graph formed from G1 and G2 in the

following manner:

The graph G12G2 has np vertices. Each of these vertices has a label taken from

V (G1)×V (G2). In G12G2, two vertices (ui, vj) and (ur, vs) are adjacent if and only

if one of the following conditions hold:

(1) i = r, and vjvs ∈ E(G2).

(2) j = s, and uiur ∈ E(G1).

For each i, the induced subgraph on the vertices (ui, vj) for 1 ≤ j ≤ p is a copy

of G2, and for each j, the induced subgraph on the vertices (ui, vj) for 1 ≤ i ≤ n

is a copy of G1. In less formal terms, G12G2 can either be viewed as the graph
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formed by taking each vertex of G1, replacing it with a copy of G2 and matching the

corresponding vertices and taking each vertex of G2, replacing it with a copy of G1

and matching the corresponding vertices.

In [9], the complementary product of two graphs is defined. Let R be a subset

of V (G) and S be a subset of V (H). The complementary product (symbolized by

G(R)2H(S)) has the vertex set V (G(R)2H(S)) = {(ui, vj) | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.

The edge (ui, vj)(uh, vk) is in E(G(R)2H(S)) if one of the following conditions hold.

(1) If i = h, ui ∈ R, and vjvk ∈ E(H), or if i = h, ui 6∈ R and vjvk 6∈ E(H).

(2) If j = k, vj ∈ S, and uiuh ∈ E(G), or if j = k, vj 6∈ S, and uiuh 6∈ E(G).

In other words, for each ui ∈ V (G), we replace ui with a copy of H if ui is in

R and with a copy of its complement H if ui is not in R, and for each vj ∈ V (H), we

replace each vj with a copy of G if vj ∈ S and a copy of G if vj 6∈ S.

In the case where R = V (G) (respectively, S = V (H)), the complementary prod-

uct G(R)2H(S) is written G2H(S) (respectively, G(R)2H). To put it more infor-

mally, G2H(S) is the graph obtained by replacing each vertex v ∈ V (H) with a copy

of G if v ∈ S and by a copy of G if v 6∈ S, and replacing each ui with a copy of H.

In the extreme case where R = V (G), and S = V (H), the complementary product

G(V (G))2H(V (H)) = G2H is simply the same as the Cartesian product G2H. See

Figure 6 for an illustration of C4({u1, u4}) 2 C3({v3}).

A complementary prism GG is the complementary product G2K2(S) with |S| = 1.

17



C4

C3

u1

u2

u3

u4

v1 v2

v3

Figure 6: C4({u1, u4}) 2 C3({v3})

2.2 Domination and Total Domination in Complementary Prisms

In [10], Haynes, Henning, and van der Merwe studied domination and total

domination in complementary prisms, they obtained the following results. When G

is a complete graph Kn, the graph tK2, the corona Kt ◦ K1, a cycle Cn, or a path

Pn, they obtained the exact values of γ(GG) and γt(GG), where tK2 is the graph of

t disjoint copies of K2.

Proposition 5 [10]

(1) If G = Kn, then γ(GG) = n.

(2) If G = tK2, then γ(GG) = t + 1.

(3) If G = Kt ◦ K1 and t ≥ 3, then γ(GG) = γ(G) = t.

(4) If G = Cn and n ≥ 3, then γ(GG) = ⌈(n + 4)/3⌉.

(5) If G = Pn and n ≥ 2, then γ(GG) = ⌈(n + 3)/3⌉.

18



Proposition 6 [10]

(1) If G = Kn, then γt(GG) = n.

(2) If G = tK2, then γt(GG) = n = 2t.

(3) If G = Kt ◦ K1 and t ≥ 3, then γt(GG) = γt(G) = t.

(4) If G ∈ {Cn, Pn} with order n ≥ 5, then

γt(GG) =























γt(G), if n ≡ 2 (mod4)

γt(G) + 2, if G = Cn and n ≡ 0 (mod4)

γt(G) + 1, otherwise.

They characterized graphs G for which the domination number γ(GG) and the

total domination number γt(GG) of a complementary prism are small.

Proposition 7 [10] Let G be a graph of order n. Then,

(1) γ(GG) = 1 if and only if G = K1.

(2) γ(GG) = 2 if and only if n ≥ 2 and G has a support vertex that dominates

V (G) or G has a support vertex that dominates V (G).

Proposition 8 [10] Let G be a graph of order n ≥ 2, with |E(G)| = |E(G)|. Then

(1) γt(GG) = 2 if and only if G = K2.

(2) γt(GG) = 3 if and only if n ≥ 3 and G = K3 or G has a support vertex that

dominates V (G) or G has a support vertex that dominates V (G).

They found the following upper and lower bounds on the parameters γ(GG) and

γt(GG).
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Proposition 9 [10] For any graph G, max{γ(G), γ(G)} ≤ γ(GG) ≤ γ(G) + γ(G).

Proposition 10 [10] If G and G are without isolates, then max{γt(G), γt(G)} ≤

γt(GG) ≤ γt(G) + γt(G).

Finally, they characterized graphs G for which γ(GG) = max{γ(G), γ(G)} and

γt(GG) = max{γt(G), γt(G)}.

Proposition 11 [10] A graph G satisfies γ(GG) = γ(G) ≥ γ(G) if and only if

G has an isolated vertex or there exists a packing P of G such that |P | ≥ 2 and

γ(G \ P ) = γ(G) − |P |.

Proposition 12 [10] Let G be a graph such that neither G nor G has an isolated

vertex. Then γt(GG) = γt(G) ≥ γt(G) if and only if G = n
2
K2 or there exists an open

packing P = P1 ∪ P2 in G satisfying the following conditions:

(1) |P | ≥ 2;

(2) P1 ∩ P2 = ∅;

(3) if P1 6= ∅, then P1 is a packing in G;

(4) if P1 = ∅, then |P | ≥ 3 or G[P ] = K2;

(5) γt(G \ N [P1] \ P2) = γt(G) − 2|P1| − |P2|.

20



3 LOCATING-DOMINATION IN COMPLEMENTARY PRISMS

In this chapter, we present the major results of this thesis. We will parallel the

work done in [10] for domination and total domination and will obtain analogous

results for the locating-domination number γL(GG) of a complementary prism.

3.1 Locating-Domination Number of GG for a Specific Graph G

In this section, we determine the locating-domination number of the complemen-

tary prism GG for selected graphs G. Since every LDS must also be a DS leads us

the the following observation:

Observation 13 Every LDS of a graph G must include all of the isolated vertices of

G.

First, we find the locating-domination number of GG, when G is a complete graph.

Proposition 14 If G is the non-trivial complete graph Kn, then γL(GG) = n.

Proof. For G = Kn, the complementary prism GG is the corona Kn ◦ K1. Any

γL(GG)-set must contain each leaf or its support vertex. Therefore γL(GG) ≥ n.

The set of leaves forms an LDS, so γL(GG) ≤ n. Hence γL(GG) = n. 2

Next, we obtain the locating-domination number of GG, when G is a complete

bipartite graph.

Proposition 15 Let G be the complete bipartite graph Kr,s, where r + s = n and

1 ≤ r ≤ s.

γL(GG) =







n, if r = 1
n − 1, if r = 2
n − 2, otherwise.
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Proof. Let G = Kr,s, 1 ≤ r ≤ s, where R and S are the bipartite sets of G with

cardinality r and s, respectively. Let R = {x1, x2, ..., xr} and S = {y1, y2, ..., ys}.

Let L be a γL(GG)-set.

First let r = 1, that is, G = K1,s, 1 ≤ s. Clearly V (G) is an LDS of GG, so

γL(GG) ≤ n.

To see that γL(GG) ≥ n, note that x1 is a leaf in GG. This implies that at least

one of x1 and x1 is in L.

If x1 ∈ L, then x1 can locating-dominate at most one of its neighbors. Thus, there

are n − 1 vertices in NGG(x1) that must either be in L or have another neighbor in

L. Hence, γL(GG) ≥ 1 + n − 1 = n.

If x1 /∈ L, then x1 ∈ L. This implies that at least one of yi and yi is in L to

dominate yi, 1 ≤ i ≤ n− 1. And again γL(GG) ≥ n. Thus, if G = K1,s, γL(GG) = n.

Now assume that 2 ≤ r ≤ s. We first show that |L ∩ (S ∪ S)| ≥ s − 1. Assume

that there are two vertices in S, say yi and yj, where none of yi, yj, yi, and yj are

in L. Then NGG(yi) ∩ L = NG(yi) ∩ L = R ∩ L = NGG(yj) ∩ L. Thus, there exists

at most one vertex, yi ∈ S such that yi and yi are in V (G)\L. This implies that

|L ∩ (S ∪ S)| ≥ s − 1 as desired.

Case I: 2 = r ≤ s. To show that γL(GG) ≤ n−1, we note that R∪ (S\{y1, y2})∪

{y1} is an LDS for GG. To see this, notice that NGG(xi) ∩ L = {xi}, for i ∈ {1, 2}.

Also NGG(y2)∩L = {x1, x2}, NGG(y1)∩L = {y1, yi|i ≥ 3}, NGG(y2)∩L = {yi|i ≥ 3}.

For i ≥ 3, NGG(yi) ∩ L = {x1, x2, yi}. Thus, every vertex in V (GG)\L is locating-

dominated by L. Hence γL(GG) ≤ |R| + |S| − 2 + 1 = r + s − 1 = n − 1.
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Next we want to show γL(GG) ≥ n−1 = s+1. We have shown that |L∩(S∪S)| ≥

s − 1. Assume to the contrary that γL(GG) ≤ s. Hence |L ∩ (R ∪ R)| = 1. Without

loss of generality, either L∩ (R∪R) = {x1} or L∩ (R∪R) = {x1}. In the former, x2

is not dominated by L, a contradiction. In the later, at least one vertex from S ∪ S

is not dominated by L, a contradiction. And so, γL(GG) ≥ s+1 = s+ r− 1 = n− 1.

Case II: 3 ≤ r ≤ s. We show that (R\{x1, x2}) ∪ (S\{y1, y2}) ∪ {x1, y1}

is an LDS of GG. To see this, notice that NGG(x2) ∩ L = {y1}, NGG(y2) ∩ L =

{x1}, NGG(x1) ∩ L = {x1, xi|i ≥ 3}, NGG(x2) ∩ L = {xi|i ≥ 3}, NGG(y1) ∩ L =

{y1, yi|i ≥ 3}, NGG(y2) ∩ L = {yi|i ≥ 3}. And for i ≥ 3, NGG(xi) ∩ L = {y1, xi},

and NGG(yi) ∩ L = {x1, yi}. Thus, every vertex in V (GG)\L is locating-dominated

by L. Hence, γ(GG) ≤ |R| − 2 + 2 + |S| − 2 = r + s − 2 = n − 2.

Next we show that γL(GG) ≥ n − 2. We have shown |L ∩ (S ∪ S)| ≥ s − 1. A

similar argument for R ∪ R will lead to |L ∩ (R ∪ R)| ≥ r − 1. Thus, γL(GG) ≥

s − 1 + r − 1 = r + s − 2 = n − 2. 2

Now we will explore the locating-domination numbers of paths and cycles.

Proposition 16 If G ∈ {Pn, Cn} for 5 ≤ n ≤ 7, then

γL(GG) =

{

4, if n ∈ {5, 6}
5, if n = 7

Proof. Case I: n = 5. First assume that G ∈ {P5, C5} with the vertices of G labeled

sequentially v1, v2, v3, v4, v5. Then the set {v2, v4, v3, v5} is an LDS of GG, so

γL(GG) ≤ 4.

To show that at least four vertices are necessary to locating-dominate GG, we

assume to the contrary that γL(GG) ≤ 3. Let L be a γL(GG)-set. If L ⊆ V (G) (re-
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spectively, L ⊆ V (G)), then at most three vertices are dominated in G (respectively,

G), a contradiction. Hence L ∩ V (G) 6= ∅ and L ∩ V (G) 6= ∅.

Case Ia: G = C5. Without loss of generality, assume that |L ∩ V (G)| = 1 and

|L ∩ V (G)| = 2. Then there are at least two vertices in G, say vi and vj, such that

NGG(vi) ∩ L = NGG(vj) ∩ L = L ∩ V (G), contradicting that L is an LDS of GG.

Case Ib: G = P5. First assume that |L ∩ V (G)| = 1 and |L ∩ V (G)| = 2. Let

L∩V (G) = {vi}. Since L dominates GG, vi is not an endvertex of the path. If vi = v3,

then to dominate GG, v1 and v5 are in L. But then NGG(v2) ∩ L = NGG(v3) ∩ L, a

contradiction. Without loss of generality, the other possibility is that vi = v2. Then to

dominate GG, L = {v2, v4, v5}. Again, NGG(v1)∩L = NGG(v3)∩L, a contradiction.

Now assume that |L∩V (G)| = 2 and |L∩V (G)| = 1. First assume that L∩V (G)

is an endvertex of G. Without loss of generality, assume that v1 ∈ L. Since L must

dominate, L = {v1, v2, v4} or {v1, v2, v5}. And so NGG(v3) ∩ L = NGG(v5) ∩ L or

NGG(v3) ∩ L = NGG(v4) ∩ L. In both cases, we have a contradiction.

Now assume that the vertex in V (G) ∩ L is not an endvertex. If V (G) ∩ L ∈

{v2, v4}, then GG cannot be dominated in three. So assume V (G) ∩ L = {v3}. To

dominate GG, L = {v3, v2, v4}. And so NGG(v1)∩L = NGG(v5)∩L, a contradiction.

Hence, γL(GG) ≥ 4. Therefore, γL(GG) = 4.

Case II: n = 6. First assume that G ∈ {P6, C6} with the vertices of G labeled

sequentially v1, v2, v3, v4, v5, v6. Then the set {v2, v5, v1, v4} is an LDS of GG,

so γL(GG) ≤ 4. If G = C6, then since 4 = ⌈n+4

3
⌉ = γ(GG) ≤ γL(GG), we have

γL(GG) = 4. Thus, assume G = P6.
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To show that at least four vertices are necessary to locating-dominate GG, we

assume to the contrary that γL(GG) ≤ 3. Let L be a γL(GG)-set. If L ⊆ V (G) (re-

spectively, L ⊆ V (G)), then at most three vertices are dominated in G (respectively,

G), a contradiction. Hence L ∩ V (G) 6= ∅ and L ∩ V (G) 6= ∅.

First let |V (G) ∩ L| = 1 and |V (G) ∩ L| = 2. There does not exist a dominating

set which meets this condition.

Next let |V (G) ∩ L| = 2 and |V (G) ∩ L| = 1. In order for L to dominate GG,

the vertex in V (G) ∩ L must either be v1 or v6. Without loss of generality, let

V (G)∩L = {v1}. Since L is a DS, it follows that L = {v1, v2, v5}. Then NGG(v4)∩

L = NGG(v6) ∩ L, a contradiction.

Hence, γL(GG) ≥ 4. Therefore, γL(GG) = 4.

Case III: n = 7. First assume that G ∈ {P7, C7} with the vertices of G labeled

sequentially v1, v2, v3, v4, v5, v6, v7. Then the set {v1, v4, v7, v2, v5} is an LDS

of GG, so γL(GG) ≤ 5.

To show that at least five vertices are necessary to locating-dominate GG, we

assume to the contrary that γL(GG) ≤ 4. Let L be a γL(GG)-set. If L ⊆ V (G)

(respectively, L ⊆ V (G)), then at most four vertices are dominated in G (respectively,

G), a contradiction. Hence, L ∩ V (G) 6= ∅ and L ∩ V (G) 6= ∅.

First let |V (G)∩L| = 1 and |V (G)∩L| = 3 or |V (G)∩L| = 2 and |V (G)∩L| = 2.

There does not exist a dominating set which meets this condition.

Assume that |V (G) ∩ L| = 3 and |V (G) ∩ L| = 1. Then there exist at least two

vertices, vi and vj in V (G), such that NGG(vi) ∩ L = V (G) ∩ L = NGG(vj) ∩ L,

contradicting the fact that L is an LDS of GG.
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Hence, γL(GG) ≥ 5. Therefore, γL(GG) = 5.2

For paths and cycles of order n ≥ 8 consider Figure 7 where the darkened vertices

represent a γL(GG)-set, L. For n = k ≡ 0 (mod 3), the set L = {vi, vj, vk−3, vk−1, vk|i ≡

1 (mod 3), j ≡ 0 (mod 3)} is the LDS of GG. For n ≡ 1, 2 (mod 3) let n = k+ l where

n ≡ l (mod 3). Then L ∪ {vn} is the LDS of GG. The pattern is shown for paths

and the same pattern applies to cycles. These observations lead us to the following

conjecture.

Conjecture 17 If G ∈ {Pn, Cn} for n ≥ 8, then

γL(GG) =

⌊

2n

3

⌋

.

3.2 Complementary Prisms with Small Locating-Domination Number

In this section, we consider complementary prisms with small locating-domination

numbers.

Proposition 18 For a graph G of order n and its complementary prism GG,

(1) γL(GG) = 1 if and only if n = 1.

(2) γL(GG) = 2 if and only if n = 2.

(3) γL(GG) = 3 if and only if n ∈ {3, 4} such that G /∈ {K4, K4, K1,3, K1,3}.

Proof. (1) If |V (G)| = 1, then GG = K2. Thus, γL(GG) = 1. Now assume that

γL(GG) = 1, and without loss of generality, S is a γL(GG)-set and S ⊆ V (G). Since

S must locating-dominate G in GG, it follows that |V (G)| = 1 and G = K1.
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Figure 7: Locating-Domination where G ∈ {Pn, Cn} for n ≥ 8

(2) If |V (G)| = 2, then G ∈ {K2, K2} so GG = P4 and γL(GG) = 2.

Assume that γL(GG) = 2, and let S be a γL(GG)-set. If S ⊆ V (G), then since

S must dominate G, it follows that |V (G)| = 2 and so GG = P4. Now assume

S ∩ V (G) = 1 and S ∩ V (G) = 1. Without loss of generality, let S = {x, y}. We

consider two cases:
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Case I: y = x. Then {x} ≻L V (G)\{x} and {x} ≻L V (G)\{x}. Let w ∈

V (G)\{x}. Then w is adjacent to x and w is adjacent to x, a contradiction. Thus,

V (G)\{x} = ∅, that is, |V (G)| = 1. Then γL(GG) = 1, a contradiction.

Case II: x 6= y. Then x ≻L V (G)\{x, y} and y ≻L V (G)\{x, y}. Without loss of

generality, we may assume that xy ∈ E(GG) and xy /∈ E(GG). Let w ∈ V (G)\{x, y}.

Then NGG(w)∩S = {x} = NGG(x)∩S, contradicting that S is an LDS of GG. Hence

V (G)\{x, y} = ∅, that is, |V (G)| = 2.

(3) Let n ∈ {3, 4}. By (2), γL(GG) ≥ 3. If n = 3, then V (G) is an LDS of

GG, so γL(GG) ≤ 3 and hence γL(GG) = 3. If n = 4, then again V (G) is an LDS of

GG, so γL(GG) ≤ 4. If G ∈ {K4, K4, K1,3, K1,3}, then by Propositions 14 and 15,

γL(GG) = 4. So assume G /∈ {K4, K4, K1,3, K1,3}.

Figure 8 illustrates an LDS of GG for all remaining graphs G on four vertices.

The darkened vertices represent the LDS. Since each has an LDS of cardinality three,

γL(GG) ≤ 3. Hence for those graphs, γL(GG) = 3.

Again by Propositions 14 and 15 for G ∈ {K4, K4, K1,3, K1,3}, γL(GG) = 4.

Assume that G is a graph of order n such that γL(GG) = 3. We only need to show

that n ∈ {3, 4}. Clearly n ≥ 3 by part (2) of this proof. Let L be a γL(GG)-set. If

L ⊆ V (G) or L ⊆ V (G), then it follows that n = 3. Hence assume that L∩V (G) 6= ∅

and L ∩ V (G) 6= ∅. Without loss of generality, let L = {x, y, z} and consider two

cases:

Case I: z ∈ {x, y}. Assume without loss of generality, z = x. Then {x} ≻L

V (G)\{x, y} in GG, implying that there is at most one vertex in V (G)\{x, y} in

GG. Hence n = 3.

28



Case II: z /∈ {x, y}. Thus, {z} ≻L V (G)\{x, y, z}. This implies that there is at

most one vertex in V (G)\{x, y, z}. Hence, n ≤ 4. 2

Figure 8: LDS of GG when n = 4 and G /∈ {K4, K4, K1,3, K1,3}

3.3 Bounds on the Locating-Domination Number for GG

Similar to the bounds seen in Proposition 9 and Proposition 10 for domination

and total domination respectively, γL(GG) is bounded below by max{γL(G), γL(G)}

and above by γL(G) + γL(G).

Proposition 19 For any graph G, max{γL(G), γL(G)} ≤ γL(GG) ≤ γL(G)+γL(G).

Proof. By Proposition 14, if G = Kn, then max{γL(G), γL(G)} = n = γL(GG) ≤

2n − 1 = γL(G) + γL(G). Thus, we may assume G is not complete. Let D be a

γL(GG)-set, and let D1 = D ∩ V (G) and D2 = D ∩ V (G). Assume, without loss of

generality, that γL(G) ≥ γL(G). If D1 locating-dominates G, then we are finished.

So assume there exists a set T ⊆ V (G) such that T is not locating-dominated by D1.

Thus, T is located and/or dominated by D2. Also, each vertex in D2 is adjacent to

at most one vertex in T . Thus, |T | ≤ |D2|. But D1 ∪ T is a locating-dominating set

of G. So γL(G) ≤ |D1 ∪ T | = |D1| + |T | ≤ |D1| + |D2| = |D| = γL(GG).
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For the upper bound, let S1 be a γL(G)-set and S2 be a γL(G)-set, and S = S1∪S2.

Also, let x ∈ V (G)\S1 and y ∈ V (G)\S2. Then,

NGG(x) =

{

NG(x) ∩ S1 ∪ {x}, if x ∈ S2

NG(x) ∩ S1, otherwise
, and

NGG(y) =

{

NG(y) ∩ S2 ∪ {y}, if y ∈ S1

NG(y) ∩ S2, otherwise.

Since S1 and S2 locating-dominate G and G, respectively, and NGG(x)∩S1 6= ∅ 6=

NGG(y) ∩ S2, S is an LDS of GG. 2

The lower bound is sharp, for G ∈ {Kn, Kr,s} when 3 ≤ r ≤ s . The upper bound

is sharp when G = P5.
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4 MISCELLANIOUS RESULTS

4.1 Perfection in Complementary Prisms

In this section, we explore perfection in complementary prisms. We know that

if G is perfect, then G is perfect by Proposition 2. We characterize the perfect

complementary prisms.

Proposition 20 A graph GG is perfect if and only if G ∈ {Kn, Kn}.

Proof. Let G ∈ {Kn, Kn}. Then GG = Kn ◦ K1 and GG is the graph obtained

from the join of Kn + Kn by removing a perfect matching between the vertices of Kn

and the vertices of Kn. Clearly GG has no induced C5. Let H = GG. To see that

H has no induced C5, we note that any induced cycle of length five or more in H

must include at least three vertices from the copy of Kn. These three vertices form

a triangle, so there is no induced cycle in H with length five or more. Hence neither

H nor H has an induced cycle of length five or more, so by Proposition 4, H = GG

is perfect.

Let GG be perfect. For any graph G either G or G is connected. Assume to the

contrary G is connected and is not complete. Therefore, there exists a pair of vertices,

x and z of distance two apart. Thus, G contains an induced P3. Let 〈x, y, z〉 be the

induced P3 in G. Then xz ∈ E(G) and x, x, y, z, z is an induced C5 in GG. Hence by

Proposition 4, GG is not perfect which yields a contradiction. Thus, G is complete.

2

31



4.2 Connected Domination in Complementary Prisms

This section provides some results in connected domination of complementary

prisms.

Observation 21 A graph G must be connected to have a connected dominating set.

Proposition 22 If G complete bipartite graph, Kr,s when 2 ≤ r ≤ s, then γc(GG) =

4.

Proof. To show γc(GG) ≤ 4, we note that the set C = {xi, xi, yi, yi} is a CDS of

G. Hence, γc(GG) ≤ 4.

Next we show that γc(GG) ≥ 4. Since G is disconnected, any CDS, say C, of GG

must include at least one vertex from V (G) and two vertices from V (G) (one from

each component of G). However, no matter which bipartite set of G contains the

vertex of C, 〈C〉 is disconnected. Hence, we need at least one more vertex in C to

connected dominate G. Thus, γc(GG) ≥ 4. 2

Proposition 23 For any graph G, max{γ(G), γ(G)} ≤ γc(GG) ≤ γc(G)+γc(G)+1.

Proof. The lower bound is easy to see given γ(GG) ≤ γc(GG) and by Theorem

9, max{γ(G), γ(G)} ≤ γ(GG). For the upper bound, let S be γc(G)-set and T

be a γc(G)-set. If there exists a v ∈ S where v ∈ T , then S ∪ T is a CDS and

γc(GG) ≤ |S| + |T |. If no such pair exists, let u ∈ T such that u 6= v. Then either

uv ∈ E(G) or uv ∈ E(G). Thus, S ∪T ∪{u} or S ∪T ∪{v} is a CDS of GG implying

that γc(GG) ≤ |S| + |T | + 1. 2
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5 CONCLUDING REMARKS

This thesis presented results on locating-dominating parameters and connected

domination parameters. Also we explored perfection in complementary prisms. Some

unsolved problems from the future would include:

• Finding the locating-domination of GG when G is a tree.

• Characterizing graphs where the bounds of Theorem 19 are sharp.

• Investigating which complementary prisms have a small chromatic number.

• Finding bounds on the chromatic number of GG.

• Investigating which complementary prisms are Hamiltonian.
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