SCHOOL of GRADUATE STUDIES

Confidence Intervals for Population Size in a Capture-Recapture Problem.

Xiao Zhang
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd
Part of the Statistical Methodology Commons

Recommended Citation

Zhang, Xiao, "Confidence Intervals for Population Size in a Capture-Recapture Problem." (2007). Electronic Theses and Dissertations. Paper 2022. https://dc.etsu.edu/etd/2022

Confidence Intervals for Population Size in a Capture-Recapture Problem

A thesis
presented to
the faculty of the Department of Mathematics

East Tennessee State University

In partial fulfillment of the requirements for the degree Master of Science in Mathematical Sciences

by

Xiao Zhang

August, 2007
Robert Price, Ph.D., Chair
Robert Gardner, Ph.D.
Yali Liu, Ph.D.

Keywords: Capture-recapture, Multinomial model, Hypergeometric model, Chapman interval, Wilson interval, Sample size, Population size, Mean coverage

Abstract

Confidence Intervals for Population Size in a Capture-Recapture Problem by

Xiao Zhang

In a single capture-recapture problem, two new Wilson methods for interval estimation of population size are derived. Classical Chapman interval, Wilson and Wilson-cc intervals are examined and compared in terms of their expected interval width and exact coverage properties in two models. The new approach performs better than the Chapman in each model. Bayesian analysis also gives a different way to estimate population size.

Copyright by Xiao Zhang 2007

DEDICATION

I dedicate this thesis to my parents, Zhunan Zhang and Zhiling Dong, for their fosterage and cultivation, and my fiance, Liang Guo, for his love.

ACKNOWLEDGMENTS

I would like to thank Dr. Price, my supervisor, for all his patience and invaluable help during my study at ETSU. I owe him a deep gratitude for his guidance and suggestion on my preparation for this thesis. I would also like to thank Dr. Gardner, our graduate coordinator: he has been ready to help me since my entrance to this program and he is a really kind and respectable friend of mine. Special thanks to Dr. Liu: she always encouraged and supported me like an elder sister and I truly learned a lot from her. Lastly, I express my gratitude and appreciation to all the people in the Department of Mathematics who have taught and helped me in the past two years.

CONTENTS

ABSTRACT 2
COPYRIGHT 3
DEDICATION 4
ACKNOWLEDGMENTS 5
LIST OF TABLES 8
1 INTRODUCTION 9
1.1 The Problem of the Capture-Recapture 9
$1.2 \quad 2 \times 2$ Contingency Table 11
2 ESTIMATION AND INFERENCE IN SIMPLE CAPTURE-RECAPTURE MODELS 13
2.1 Multinomial and Hypergeometric Models 13
2.2 Chapman Interval and Wilson Interval for the Paired Data 16
2.2.1 Wald and Wilson Interval for the Binomial Parameters 16
2.2.2 Chapman and Wilson Interval for Population Size 19
3 APPLYING REFERENCE ANALYSIS 21
3.1 The Comparison of the Three Intervals 21
3.2 Two Examples 27
4 BAYESIAN STATISTICAL METHOD 28
4.1 Introduction to Bayesian Inference 28
4.2 Multiparameter Models 30
5 CONCLUSION 36
BIBLIOGRAPHY 37
APPENDICES 39
Appendix A: Matlab Code for Multinomial Model 39
Appendix B: Matlab Code for Hypergeometric Model 46
Appendix C: R Code for Multinomial Model in Bayesian Statistics 51
Appendix D: R Code for Hypergeometric Model in Bayesian Statistics 55
VITA 57

LIST OF TABLES

12×2 Contingency Table 11
2×2 Contingency Table 16
3 Coverage Property Summary of Three Intervals for $1-\alpha=.90$ 24
4 Coverage Property Summary of Intervals for $1-\alpha=.95$ 24
5 Coverage Property Summary of Three Intervals for $1-\alpha=.99$ 24
6 Coverage Property of Three Intervals with Fixed Sample Size for $1-\alpha=.90$ 25
$7 \quad$ Coverage Property of Three Intervals with Fixed Sample Size for $1-\alpha=.95$ 26
8 Coverage Property Summary of Intervals in Bayesian Analysis 33
$9 \quad$ Coverage Property in Bayesian Analysis with Fixed Sample Size for $1-\alpha=.90$ 34
10 Coverage Property in Bayesian Analysis with Fixed Sample Size for $1-\alpha=.95$ 35

1 INTRODUCTION

1.1 The Problem of the Capture-Recapture

In capture-recapture sampling to estimate the total number of individuals in a population, an initial sample is obtained and the individuals in that sample are marked or otherwise identified. A second sample is independently marked. If the second sample is representative of the population as a whole, then the sample proportion of marked individuals should be about the same as the population proportion of marked individuals. From this relationship, the total number of individuals in the population can be estimated.

Capture-recapture methods were originally developed in the wildlife biology to monitor the census of bird, fish, and insect populations [7]. They have been used to estimate the abundance of animal populations, to estimate the detectability of animals for other survey methods, and to estimate survival and other population parameters. Recently, these methods have been utilized to estimate the abundance of elusive human populations such as the homeless, to adjust for census undercounts of minority groups, and to estimate the number of vital events such as accidents in a population [7].

The animals or other individuals need not literally be captured or marked or recaptured. If it is possible to identify individual animals by natural markings, then two independent sighting surveys may be carried out, and the number of individuals sighted in both surveys is the number of "recaptures". Similarly, if a number of animals in a population has been fitted with radio transmitters and hence has known locations, then in a survey in which observers detect animals by some means independently of the transmitters, the number of transmitter-fitted animals detected is the number of recaptures. For other species, however,
it may be necessary to capture the animals by such means as traps or nets, and to mark them with bands, tags, coded wire implants, paint, or streamers.

For human populations, the two samplers often consist of two lists. For instance, the first list may be from the census data and the second list may be data from a follow-up survey. Or the first list may be health department records of accidents, and the second list, insurance company records.

In more complex capture-recapture animal studies, animals may be captured and released on several different occasions, with the capture history of any animal in the sample identifiable from the previous marks. Complicating factors include capture probabilities that vary from animal to animal or from sample to sample, mortality caused by tagging, mortality between sample times, births, immigration and emigration from the study area, and animals becoming "trap happy" or "trap shy" through the handling procedure [7].

1.22×2 Contingency Table

In the following summary of simple capture-recapture methods, a 2×2 contingency table is used to facilitate consideration of sampling design aspects (Table 1). The total number of marked individuals in the population, which is also the number of individuals in the initial sample, is n_{1}. The number of individuals in the second sample is n_{2}, of which n_{11} are detected. The total number N of animals in the population may then be estimated.

Table 1: 2×2 Contingency Table

	First Sample	Total				
	n_{11}	n_{21}	n_{2}	Second Sample		
	n_{12}	n_{22}				
Total	n_{1}	N				

In the general 2×2 contingency table for a single capture and recapture of a closed population, the capture or detection history of any animal in the population can be categorized into exactly one of four categories: detected on both first and second occasions, detected on first but not on second, detected on second but not on first, detected on neither occasion. Here we restrict our model and assume that the detection probability is the same for each individual in the population during a sampling occasion. Independence between the two sampling occasions is also assumed. If the second sample is representative of the population as a whole, the proportion of marked animals in the sample will be about the same as the proportion of the whole population in the sample. The total number N of animals in the population may be estimated by assuming that the proportion of marked animals in the second sample is representative of the proportion of marked animals in the population, i.e.,
by setting

$$
\begin{equation*}
\frac{n_{11}}{n_{2}}=\frac{n_{1}}{N} \tag{1}
\end{equation*}
$$

and solving for the unknown population size N. Equivalently, the proportion of marked animals in the population that is captured in the second sample should approximately equal the proportion of the population as a whole captured in the second sample, that is,

$$
\begin{equation*}
\frac{n_{11}}{n_{1}}=\frac{n_{2}}{N} . \tag{2}
\end{equation*}
$$

Solving either equation for the unknown population total N gives the Petersen estimator

$$
\begin{equation*}
\widehat{N}=\frac{n_{2} n_{1}}{n_{11}} \tag{3}
\end{equation*}
$$

An estimator of the variance of $N[3]$ is

$$
\begin{equation*}
\widehat{\operatorname{var}(\hat{N})}=\frac{n_{1} n_{2} n_{12} n_{21}}{n_{11}^{3}} \tag{4}
\end{equation*}
$$

The maximum likelihood estimator of the probability p_{1} of capture in the first sample is $\hat{p_{1}}=n_{1} / N$. The MLE of capture probability for the second sample is $\hat{p_{2}}=n_{2} / N$.

2 ESTIMATION AND INFERENCE IN SIMPLE CAPTURE-RECAPTURE MODELS

2.1 Multinomial and Hypergeometric Models

In a multinomial model, N individuals are regarded as being multinomially distributed into a number of capture histories, the observable ones with probability $p_{i j}, i, j=1,2$, and the unobservable category with the probability $1-p^{*}$, where $p^{*}=\sum p_{i j} \leq 1$. Thus, a multinomial model, with the four probabilities for the four cells adding to one, applies to the capture history of each animal. If, in addition, on each sampling occasion the detection outcomes for different individuals are independent, then the model for the numbers of individuals with each capture history will be a product of multinomials. In the general model, the probability of detection may be different for different sampling occasions. The general models contain too many parameters in relation to the number of observations, so that further restrictions are needed for effective estimation of N or of detection probabilities.

One such restricted model assumes that detection probability is the same for each individual in the population during a sampling occasion, but may differ for the two samples. Independence between the two sampling occasions is also assumed. With this model, the maximum likelihood estimator of population total is the integer part of the Petersen estimator $\hat{N}=\left(n_{2} n_{1}\right) / n_{11}$. Even if capture probabilities are different for different individuals at the first sample but equal at the second sample, the estimator is still the Petersen estimator. If a single capture probability p applies to both samples and to all individuals, with independence between samples, the maximum likelihood estimators of p and N are $\hat{p}=2 n_{11} /\left(n_{1}+n_{2}\right)$ and $\hat{N}=\left(n_{1}+n_{2}\right) / 2 \hat{p}$.

If the numbers n_{1} and n_{2} of individuals in the two samples are fixed and the second
sample is a simple random sample of the individuals in the population, we now try to find $P\left(\left\{n_{i j}\right\}_{i, j=1,2} \mid n_{1}, n_{2}\right)$, the conditional density of $n_{i j}$ given the number of samples. It is easily deduced from the multinomial model that n_{1}, n_{2} are independent binomial variables $B\left(N, p_{i}\right)$, $i=i, 2$. Therefore

$$
\begin{equation*}
P\left(n_{1}, n_{2}\right)=\prod_{i=1}^{2}\binom{N}{n_{i}} p_{i}^{n_{i}}\left(1-p_{i}\right)^{N-n_{i}} . \tag{5}
\end{equation*}
$$

We notice that

$$
\begin{align*}
& P\left(\left\{n_{i j}\right\}_{i, j=1,2}\right)=\binom{N}{n_{11} n_{12} n_{21} n_{22}} p_{11}^{n_{11}} p_{12}^{n_{12}} p_{21}^{n_{21}} p_{22}^{n_{22}} \tag{6}\\
& =\left(\begin{array}{c}
N \\
n_{11} n_{12} n_{21} \\
n_{22}
\end{array}\right) p_{1}^{n_{1}} p_{2}^{n_{2}}\left(1-p_{1}\right)^{N-n_{1}}\left(1-p_{2}\right)^{N-n_{2}}
\end{align*}
$$

and

$$
\begin{gather*}
P\left(\left\{n_{i j}\right\}_{i, j=1,2} \mid n_{1}, n_{2}\right)=\frac{\binom{N}{n_{11} n_{12} n_{21} n_{22}}}{\binom{N}{n_{1}}\binom{N}{n_{2}}} \tag{7}\\
=\frac{n_{1}!n_{2}!\left(n_{21}+n_{22}\right)!\left(n_{12}+n_{22}\right)!}{N!n_{11}!n_{22}!n_{12}!n_{21}!}=\frac{\binom{n_{1}}{n_{11}}\binom{N-n_{1}}{n_{21}}}{\binom{N}{n_{21}}},
\end{gather*}
$$

where $0 \leq n_{11} \leq n_{1}, 0 \leq n_{12}, n_{21} \leq \min \left\{n_{1}, n_{2}\right\}$, with the linear constraints $n_{11}+n_{12}=n_{1}$, $n_{11}+n_{21}=n_{2}$, (7) is the generalized hypergeometric density. Then the number n_{11} of marked animals in the second sample has a hypergeometric distribution. With equal capture probabilities among individuals, this is the conditional distribution under the multinomial model of n_{11} given n_{1} and n_{2}. Under this model, the maximum likelihood estimator of N is again the integer part of the Petersen estimator.

In a multinomial model the sample size $n_{i}, i=1,2$, are random variables while $p_{i}, i=1,2$, are parameters. This model is therefore applicable when the effort put into the catching of every sample is fixed before the experiment begins since the p_{i} are then fixed, though unknown. The hypergeometric model, on the other hand, involves the n_{i} as parameters and should be used only when the experimenter is determined to catch no more and no less than
n_{i} individuals at the i th sample; and he or she will only be able to do this when animals are fairly easily caught. In fact, if we had to generalize, we could say that the hypergeometric model is likely to be appropriate when the main limiting factor on sample size is the trouble involved and the multinomial model is more appropriate when the limiting factor is the source of difficulty in catching them [8].

2.2 Chapman Interval and Wilson Interval for the Paired Data

2.2.1 Wald and Wilson Interval for the Binomial Parameters

Assume that $n_{i j}$ follows a multinomial distribution with parameters N and $p_{i j}$. The corresponding probabilities for the 2×2 contingency table are shown in Table 2 where $p_{1}=p_{11}+p_{12}$ and $p_{2}=p_{11}+p_{21}$ are the marginal probabilities of interest.

Table 2: 2×2 Contingency Table

	First Sample	Total		
	p_{11}	p_{21}	p_{2}	Second Sample
	p_{12}	p_{22}		
Total	p_{1}	1		

A Wald confidence interval for a single proportion is defined as

$$
\begin{equation*}
\hat{p}_{i} \pm z_{\alpha / 2} \sqrt{\hat{p}_{i}\left(1-\hat{p}_{i}\right) / N} \tag{8}
\end{equation*}
$$

where $P\left(Z>z_{\alpha / 2}\right)=\alpha / 2, i=1,2$.
A binomial method, noted for its computational simplicity, was recently proposed by Agresti and Coull [1]. The Agresti-Coull interval is defined as

$$
\begin{equation*}
\tilde{p}_{i} \pm z_{\alpha / 2} \sqrt{\tilde{p}_{i}\left(1-\tilde{p}_{i}\right) /(N+4)} \tag{9}
\end{equation*}
$$

where $\tilde{p}_{i}=\left(n_{i}+2\right) /(N+4)$.
Wilson [5] gave a general approach, sometimes referred to as a score interval, that was derived by inverting an approximate normal test using a standard error estimate under the constraint of the null hypothesis. It has the form

$$
\begin{equation*}
\tilde{p}_{i} \pm \frac{z_{\alpha / 2}}{\tilde{N}} \sqrt{N \tilde{p}_{i}\left(1-\tilde{p}_{i}\right)+\frac{z_{\alpha / 2}^{2}}{4}} \tag{10}
\end{equation*}
$$

where $\tilde{N}=N+z_{\alpha / 2}^{2}$.
An approximate $100(1-\alpha) \%$ Wald confidence interval for $p_{1}-p_{2}$ is

$$
\begin{equation*}
\hat{p_{1}}-\hat{p_{2}} \pm z_{\alpha / 2} \sqrt{\left(\hat{p_{2}}+\hat{p_{1}}-\left(\hat{p_{1}}-\hat{p_{2}}\right)^{2}\right) / N} . \tag{11}
\end{equation*}
$$

An alternative for $p_{1}-p_{2}$ is

$$
\begin{equation*}
\tilde{p_{1}}-\tilde{p_{2}} \pm z_{\alpha / 2} \sqrt{\left(\tilde{p_{2}}+\tilde{p_{1}}-\left(\tilde{p_{1}}-\tilde{p_{2}}\right)^{2}\right) /(N+2)} \tag{12}
\end{equation*}
$$

where $\tilde{p}_{i}=\left(n_{i}+1\right) /(N+2)$.
In some applications, a ratio of marginal proportions p_{1} / p_{2} may be more interesting or meaningful than a difference. A $100(1-\alpha) \%$ transformed Wald interval for $\theta=p_{1} / p_{2}$ has the simple form

$$
\begin{equation*}
\exp \left[\ln \left(n_{1} / n_{2}\right) \pm z_{\alpha / 2}\left\{\left(n_{12}+n_{21}\right) / n_{1} n_{2}\right\}^{1 / 2}\right] \tag{13}
\end{equation*}
$$

Newcombe [10] describes Wilson intervals for a single proportion with and without a continuity correction and Newcombe [9] combines two Wilson confidence intervals to obtain a confidence interval for the difference in proportions using independent samples. Bonett and Price [4] proposed an alternative to the Wald interval that combines two Wilson confidence intervals. The width of the interval could only depend on n_{11}, n_{12} and n_{21}, so if we let $n^{\prime}=n_{11}+n_{21}+n_{12}, \hat{p}^{\prime}{ }_{1}=n_{1} / n^{\prime}$ and $\hat{p}^{\prime}{ }_{2}=n_{2} / n^{\prime}$, and a proposed $100(1-\alpha) \%$ Wilson confidence interval for p_{1} / p_{2} may be expressed as

$$
\begin{equation*}
\left[\exp \left\{\ln \left(L_{1}\right)-\ln \left(U_{2}\right)\right\}, \exp \left\{\ln \left(U_{1}\right)-\ln \left(L_{2}\right)\right\}\right]=\left(L_{1} / U_{2}, U_{1} / L_{2}\right), \tag{14}
\end{equation*}
$$

where $\ln \left(L_{1}\right)=\ln \left({\hat{p^{\prime}}}_{1}\right)-k z_{1-\alpha / 2} \operatorname{se}\left\{\ln \left({\hat{p^{\prime}}}_{1}\right)\right\}, \ln \left(U_{1}\right)=\ln \left({\hat{p^{\prime}}}_{1}\right)+k z_{1-\alpha / 2} \operatorname{se}\left\{\ln \left({\hat{p^{\prime}}}_{1}\right)\right\}, \ln \left(L_{2}\right)=$ $\ln \left({\hat{p^{\prime}}}_{2}\right)-k z_{1-\alpha / 2} \operatorname{se}\left\{\ln \left({\hat{p^{\prime}}}_{2}\right)\right\}, \ln \left(U_{2}\right)=\ln \left(\hat{p}_{1}^{\prime}\right)+k z_{1-\alpha / 2} \operatorname{se}\left\{\ln \left(\hat{p}_{2}^{\prime}\right)\right\}$, and $k=\operatorname{se}\left\{\ln \left(\hat{p}^{\prime}{ }_{1}\right)-\right.$
$\left.\ln \left({\hat{p^{\prime}}}_{2}\right)\right\} /\left[\operatorname{se}\left\{\ln \left(\hat{p}_{1}^{\prime}\right)\right\}+s e\left\{\ln \left(\hat{p}_{2}^{\prime}\right)\right\}\right]$.
The Wilson interval for ${\hat{p^{\prime}}}_{i}$ without a continuity correction is

$$
\begin{equation*}
\left[2 n_{i}+z^{2} \pm z\left\{z^{2}+4 n_{i}\left(1-{\hat{p^{\prime}}}_{i}^{\prime}\right)\right\}^{1 / 2}\right] / b \tag{15}
\end{equation*}
$$

where $b=2\left(n^{\prime}+z^{2}\right)$ and $z=k z_{1-\alpha / 2}$. The lower and upper endpoint of Wilson interval for $\hat{p^{\prime}}{ }_{i}$ with a continuity corretion are

$$
\begin{align*}
& {\left[2 n_{i}+z^{2}-1-z\left\{z^{2}-2-1 / n^{\prime}+4{\hat{p^{\prime}}}_{i}\left(n^{\prime}-n_{i}+1\right)\right\}^{1 / 2}\right] / b} \tag{16}\\
& {\left[2 n_{i}+z^{2}+1+z\left\{z^{2}+2-1 / n^{\prime}+4{\hat{p^{\prime}}}_{i}\left(n^{\prime}-n_{i}-1\right)\right\}^{1 / 2}\right] / b}
\end{align*}
$$

2.2.2 Chapman and Wilson Interval for Population Size

In a capture-recapture problem, a simple, approxiamate $100(1-\alpha) \%$ confidence interval from (3) and (4) is the standard

$$
\begin{equation*}
\frac{n_{1} n_{2}}{n_{11}} \pm z_{1-\alpha / 2} \sqrt{\frac{n_{1} n_{2} n_{12} n_{21}}{n_{11}^{3}}} \tag{17}
\end{equation*}
$$

Because the number n_{11} of marked animals in the second sample may be zero, the estimator does not have a finite variance. Therefore the following estimator \hat{N} modified (3) was proposed by Chapman [6]:

$$
\begin{equation*}
\hat{N}=\frac{\left(n_{1}+1\right)\left(n_{2}+1\right)}{n_{11}+1}-1 . \tag{18}
\end{equation*}
$$

An approximate unbiased estimator of the variance of the modified estimator is

$$
\begin{equation*}
\widehat{\operatorname{var}(\hat{N})}=\frac{\left(n_{1}+1\right)\left(n_{2}+1\right) n_{12} n_{21}}{\left(n_{11}+1\right)^{2}\left(n_{11}+2\right)} \tag{19}
\end{equation*}
$$

An approximate $100(1-\alpha) \%$ confidence interval for the Chapman estimator is

$$
\begin{equation*}
\hat{N} \pm z_{1-\alpha / 2} \sqrt{\widehat{\operatorname{var}(\hat{N})}} \tag{20}
\end{equation*}
$$

As pointed out by Bonett and Price [4], the new Wilson methods for the ratio of the proportions are easy to compute and perform as well or better than the traditional method. To achieve comparable results of an interval estimate for population size N, a Wilson interval is appealing here. Notice the width of the interval depends only on n_{11}, n_{12}, n_{21}. Thus (20) may be expressed as

$$
\begin{equation*}
\exp \left[\ln \left(\frac{n^{\prime} \hat{p}_{1}^{\prime} \hat{p}_{2}^{\prime}}{\hat{p}^{\prime}}{ }_{11}\right) \pm z_{1-\alpha / 2} \ln \left(\operatorname{se}\left\{\frac{n^{\prime}{\hat{p^{\prime}}}_{1}{\hat{p^{\prime}}}_{2}}{\hat{p}_{11}^{\prime}}\right\}\right)\right] . \tag{21}
\end{equation*}
$$

Assuming the value of k is

$$
\begin{equation*}
k=s e\left\{\ln \left({\hat{p_{1}}}^{\prime}\right)+\ln \left(\hat{p_{2}^{\prime}}\right)-\ln \left(\hat{p_{11}}\right)\right\} /\left[\operatorname{se}\left\{\ln \left({\hat{p_{1}}}^{\prime}\right)\right\}+s e\left\{\ln \left({\hat{p_{2}}}^{\prime}\right)+\ln \left(\hat{p_{11}}{ }^{\prime}\right)\right\}\right] \tag{22}
\end{equation*}
$$

The upper and lower bounds of (21) would be:

$$
\begin{align*}
& \exp \left[\ln \left(n^{\prime}\right)+U_{1}+U_{2}-L_{11}\right] \tag{23}\\
& \exp \left[\ln \left(n^{\prime}\right)+L_{1}+L_{2}-U_{11}\right] \tag{24}
\end{align*}
$$

where U_{1} is the upper bound for $\ln \left(\hat{p}_{1}^{\prime}\right), U_{2}$ is the upper bound for $\ln \left({\hat{p_{2}}}^{\prime}\right), L_{11}$ is the lower bound for $\ln \left({\hat{p_{11}}}^{\prime}\right), L_{1}$ is the lower bound for $\ln \left({\hat{p_{1}}}^{\prime}\right), L_{2}$ is the lower for $\ln \left({\hat{p_{2}}}^{\prime}\right), U_{11}$ is upper bound for $\ln \left({\hat{p_{11}}}^{\prime}\right)$. These are all using the adjusted z. The proposed $100(1-\alpha) \%$ confidence interval for N replaces the standard Wald interval estimates with Wilson interval estimates.

An estimate of k is needed to compute for Wilson interval here. To avoid problems with sampling zeros, we use $\left[\left(1-p_{i}^{*}\right) /\left\{\left(n^{\prime}+2\right) p_{i}^{*}\right\}\right]^{1 / 2}$ to estimate $\operatorname{se}\left\{\ln \left(\hat{p}_{i}^{\prime}\right)\right\}$ where $p_{i}^{*}=$ $\left(n_{i}+1\right) /\left(n^{\prime}+2\right)$ are Laplace estimates. We propose estimating $\operatorname{se}\left\{\ln \left({\hat{p_{1}}}^{\prime}\right)+\ln \left(\hat{p}_{2}^{\prime}\right)-\ln \left(\hat{p}_{11}^{\prime}\right)\right\}$ by using delta method as $\left\{1 / n_{11}-1 /\left(n^{\prime}+2\right)-\left(n_{12}+n_{21}+2\right) /\left(n_{1}+1\right)\left(n_{2}+1\right)\right\}^{1 / 2}$, where the lower limit is set to 0 . The confidence interval used by (15) and (16) will be referred to as Wilson and Wilson-cc methods respectively. Matlab code is given in the Appendix for the three methods that are compared in this thesis.

3 APPLYING REFERENCE ANALYSIS

3.1 The Comparison of the Three Intervals

In practice, we add to the actual Wilson and Wilson-cc confidence interval a correction, i.e., replace all n^{\prime} with $n^{\prime}+3$, all n_{i} and $n_{i j}$ with $n_{i}+2$ and $n_{i j}+1$ respectively, $i, j=1,2$. This adjustment was proposed to avoid sampling zeros and nonpositive numbers in the square root for Wilson-cc interval. Results of the computation suggests the mean exact coverage probabilities are close, but the adjusted Wilson CIs are truely better than unadjusted CIs in terms of interval width, especially for larger sampling.

We examined 3000 different 2×2 contingency tables for different sample probabilities in multinomial models (Tables 3-5). In this model, the two marginal probabilities were regarded as fixed, though unknown. The value of p_{1}, p_{2} was randomly generated from a Gamma $(1 / 2,1)$ distribution subjected to $p_{i j}>.0001$. The minimum exact probability, the mean coverage probability, and the median expected interval width are computed for all 2×2 contingency tables with respect to Chapman, Wilson and Wison-cc intervals for $N=5,10,30,50,100,150,200$ and $1-\alpha=.9, .95, .99$. A small adjustment $c=.25$ was performed on Chapman CI since n_{12} and n_{21} may be zeros.

When applying the hypergeometric model with fixed sample size n_{1} and n_{2}, for convenience we assume $n_{1}=n_{2}$. Since the hypergeometric model is applicable mainly when individuals are available to capture as desired, it is practical to simplify this model by equal sample size. We notice this model eliminates parameter p_{i} and leaves only N to be estimated, which allow us to get the exact coverage probability and width for each fixed sample and computation can be facilitated for larger sampling. Population size $N=10,50,100,200,500$
and $1-\alpha=.9, .95$ were chosen with different fixed values of n_{1} and n_{2} in Tables 6 and 7 . Some very small or very large samples were excluded by our study: a small value may result in a substantial deviation and yield an extremely low or even zero coverage probability while a large value has no more actual meaning.

The results in Tables 3-5 suggest that all of the three intervals can have a true coverage probability of zero. The Chapman interval is clearly the worst one in that its mean coverage is always no more than .80 even for $1-\alpha=.99$ and $N=200$ although its mean coverage probability increases as population size increases. The Wilson and Wilson-cc intervals have similar performance. They may have a mean coverage close to $1-\alpha$, although sometimes they still fall below $1-\alpha$ a bit. The Wilson-cc interval is slightly better than Wilson interval in terms of the actual coverage probability in small populations, say $N \leq 30$ and the Wilson interval is slightly better than Wilson-cc interval in terms of the actual coverage probability in larger population. Moreover, the Wilson-cc interval exhibits a better characteristic in narrowing the median width which is another primary consideration for our study.

From Tables 6 and 7 it can be seen that all of the three intervals have satisfactory coverage probabilities except for very small samples. In these hypergeometric tables it appears that they all perform better than in the multinomial table although we will interpret later that the two models are in fact equivalent. The Wilson interval still tends to be wider than the Wilson-cc interval and Chapman still has the worst performance among the three methods. Hence here we would say the Wilson and Wilson-cc intervals can be recommended for general use.

In [8], Darroch mentioned that the hypergeometric model may be regarded as a very useful device for eliminating the nuisance parameters p_{i} when n_{i} are variables. One feels
intuitively that to estimate N as if the n_{i} are constants, when in fact they are not, is not a serious misrepresentation, and this is supported by the discovery that the two models lead to the same estimate \hat{N} of N and to the same asymptotic estimate of $\operatorname{var}(\hat{N})$. Apart from demonstrating this, it may be wondered why there is any need to consider the multinomial model at all. The main reason is that it is capable of generalization which the hypergeometric model is unable to accommodate. Since the multinomial model in our study naturally includes each possible value of n_{1}, n_{2} through p_{1}, p_{2} and the hypergeometric model only covers appropriate chosen values of n_{1}, n_{2}, the mean coverage probability in Tables $3-5$ will be more likely to have lower value than that in the Tables 6 and 7 , and the same for the minimum coverage probability.

Table 3: Coverage Property Summary of Three Intervals for $1-\alpha=.90$

	Min	Cov		Mean	Cov		Med	Width	
N	Chap	Wil-cc	Wil	Chap	Wil-cc	Wil	Chap	Wil-cc	Wil
10	0.0000	0.9635	0.5640	0.3805	0.9940	0.9427	8.1218	34.4033	42.9913
30	0.0000	0.4342	0.1292	0.4826	0.9405	0.9101	24.0188	69.2462	96.4618
50	0.0000	0.0086	0.0715	0.5218	0.8834	0.8921	38.8833	96.6887	133.6375
100	0.0000	0.0002	0.0406	0.5891	0.8644	0.8767	72.2277	151.3313	185.3231
150	0.0000	0.0000	0.0326	0.6303	0.8659	0.8788	106.8450	191.8241	243.7200
200	0.0000	0.0000	0.0272	0.6446	0.8768	0.8774	129.7571	248.9656	274.8937

Table 4: Coverage Property Summary of Intervals for $1-\alpha=.95$

	Min	Cov		Mean	Cov		Med	Width	
N	Chap	Wil-cc	Wil	Chap	Wil-cc	Wil	Chap	Wil-cc	Wil
10	0.0007	0.9770	0.7139	0.4673	0.9947	0.9610	9.4993	40.6493	57.4718
30	0.0000	0.6211	0.1552	0.5248	0.9640	0.9281	28.5148	81.5489	126.6523
50	0.0000	0.0158	0.1891	0.5671	0.9128	0.9300	47.1717	112.0127	173.8949
100	0.0000	0.0012	0.0857	0.6464	0.8991	0.9239	88.0090	177.9665	253.6435
150	0.0000	0.0000	0.0795	0.6713	0.9015	0.9185	127.3137	243.3423	282.5242
200	0.0000	0.0001	0.1437	0.7004	0.9084	0.9219	161.1529	286.5510	327.1040

Table 5: Coverage Property Summary of Three Intervals for $1-\alpha=.99$

	Min	Cov		Mean		Cov		Med	Width
N	Chap	Wil-cc	Wil	Chap	Wil-cc	Wil	Chap	Wil-cc	Wil
10	0.0007	0.9813	0.8074	0.4907	0.9947	0.9718	12.7407	50.9118	94.7730
30	0.0020	0.9553	0.4930	0.5857	0.9905	0.9641	37.6153	102.3571	205.5328
50	0.0000	0.3022	0.2653	0.6166	0.9548	0.9559	60.1164	144.5744	278.1554
100	0.0000	0.0134	0.2905	0.6988	0.9368	0.9618	117.0141	236.6653	409.7357
150	0.0000	0.0030	0.3259	0.7217	0.9364	0.9609	163.4965	302.0030	481.9743
200	0.0000	0.0019	0.3552	0.7600	0.9413	0.9645	213.7892	358.0413	494.1940

Table 6: Coverage Property of Three Intervals with Fixed Sample Size for $1-\alpha=.90$

		Exact	Cov		Width		
N	n_{1}, n_{2}	Chap	Wil-cc	Wil	Chap	Wil-cc	Wil
10	1	--	0.9000	0.9000	--	14.5628	39.1880
10	2	0.6222	0.9778	0.9778	11.0453	22.4357	56.9836
10	3	0.8167	0.9917	0.9917	13.7900	29.4843	51.8550
10	4	0.8810	0.9952	0.8810	12.3175	30.7255	31.4707
50	5	0.5766	0.9282	0.9282	51.5070	61.0883	182.2700
50	10	0.6856	0.9819	0.9034	72.1728	109.9600	151.0685
50	15	0.7524	0.9767	0.9080	50.2647	81.7312	66.7883
50	20	0.8117	0.9772	0.8602	33.2816	47.9082	35.8838
100	5	--	--	0.7696	--	--	229.3699
100	10	0.7385	0.9400	0.7385	137.7927	148.9500	361.7927
100	20	0.8273	0.9363	0.9363	121.0957	180.7800	173.1040
100	40	0.8482	0.9399	0.8557	48.1634	58.1052	46.5609
200	10	0.5915	0.3268	0.9182	190.5761	158.5700	550.6330
200	20	0.6787	0.8778	0.8778	310.7522	362.1900	602.9639
200	40	0.8646	0.9315	0.9179	179.4076	236.0957	203.7034
200	60	0.8754	0.9213	0.9039	106.4456	123.2678	105.5214
500	10	--	--	0.8196	--	--	702.4753
500	25	0.6405	0.8776	0.8776	735.1968	649.9512	1570.0000
500	50	0.7793	0.8894	0.8855	627.8726	819.9072	822.0001
500	100	0.8877	0.9204	0.9044	289.9297	327.0182	293.2510

Table 7: Coverage Property of Three Intervals with Fixed Sample Size for $1-\alpha=.95$

		Exact	Cov		Width		
N	n_{1}, n_{2}	Chap	Wil-cc	Wil	Chap	Wil-cc	Wil
10	1	--	0.9000	0.9000	--	14.7436	52.9729
10	2	0.6222	0.9778	0.9778	13.1613	23.7910	77.6478
10	3	0.8167	0.9917	0.9917	16.4318	32.4121	69.7475
10	4	0.8810	0.9952	0.8810	14.6772	34.4425	40.7838
50	5	0.5766	0.9282	0.9282	61.3744	69.6557	248.8556
50	10	0.6856	0.9819	0.9034	85.9992	129.1636	196.4072
50	15	0.9094	0.9767	0.9094	59.8940	94.6461	81.6053
50	20	0.9295	0.9801	0.9262	39.6574	55.1449	43.0164
100	5	--	--	0.7696	--	--	314.9744
100	10	0.7385	0.9400	0.9400	164.1902	182.9894	485.6957
100	20	0.8273	0.9363	0.9363	144.2944	210.6808	214.9689
100	40	0.9272	0.9665	0.8979	59.3903	67.2107	55.6146
200	10	0.5915	0.9182	0.9182	227.0854	204.2069	748.2942
200	20	0.6787	0.9655	0.8778	370.2841	431.6111	785.5403
200	40	0.8646	0.9726	0.9315	213.7773	276.8388	246.1879
200	60	0.9339	0.9620	0.9213	126.8378	143.9254	126.1652
500	10	--	--	0.8156	--	--	960.5970
500	25	0.6405	0.8776	0.8776	876.0411	786.3512	2077.4000
500	50	0.8894	0.9517	0.9517	748.1564	957.8782	1016.5000
500	100	0.9354	0.9562	0.9204	345.4725	384.5816	351.0182

3.2 Two Examples

Example 1 : In a field study, $x=300$ mice are caught in traps, tagged, and released. A few days later the researchers go to the study area and independently capture $y=200$ mice, of which they find that $x=50$ have tags. The Chapman estimate for equation (18) is $N=1185.3$, the estimated variance is 16774.5 . The approximate 95% Chapman confidence interval is $(931.5,1439.1)$. The approximate 95% Wilson and Wilson-cc intervals are $(973.2,1467.3)$ and $(961.2,1486.9)$ respectively. Since the sample size is large enough, the three intervals give similar results. Using the Wilson-cc interval we conclude with 95% confidence that in this field the population of mice is between 961 to 1487.

Example 2: In a wildlife survey in which the samples are selected by canvassing a study region from a helicopter landing to mark 27 red deer detected on the first sampling occasion and later noting 3 of 37 observed on the second occasion are marked. The typical multinomial model may apply reasonably to this problem since neither sample size is fixed. The animals are assumed to be distributed evenly in this study region. The approximate 95% Chapman, Wilson and Wilson-cc confidence intervals for population size are (60.8, 495.2), (122.6, 882.3) and (101.2, 684.3) respectively. We can see some difference among them and all of them may be too wide to provide useful information for this small population. Either relocation for this single recapture problem or further multiple-recapture procedures may be required for future survey studies.

4 BAYESIAN STATISTICAL METHOD

4.1 Introduction to Bayesian Inference

Unlike methods of traditional statistical inference that are primarily based on a retrospective evaluation of the distribution of possible y values conditional on the true unknown parameter θ, Bayesian methods distinguish themselves explicitly by conditioning on the observed data to quantify uncertainty in statistical data analysis.In order to obtain such a probability statement about θ given y, we must begin with a model providing a joint probability distribution for θ and y. From probability theory, the joint probability density function can be written as a product of two densities, that are often referred to as the prior distribution $p(\theta)$ and the sampling distribution $p(y \mid \theta)$ respectively:

$$
\begin{equation*}
p(\theta, y)=p(\theta) p(y \mid \theta) \tag{25}
\end{equation*}
$$

Simple conditioning on the known value of the data y, using the basic property of conditional probability known as Bayes' rule, yields the posterior density:

$$
\begin{equation*}
p(\theta \mid y)=\frac{p(\theta, y)}{p(y)}=\frac{p(\theta) p(y \mid \theta)}{p(y)} \tag{26}
\end{equation*}
$$

where $p(y)=\sum_{\theta} p(\theta) p(y \mid \theta)$, and the sum is over all possible values of θ (or $p(\theta)=$ $\int p(\theta) p(y \mid \theta) d \theta$ in the case of continuous θ). An equivalent form of (26) omits the factor $p(y)$, which does not depend on θ and, with fixed y, can thus be considered a constant, yielding the unnormalized posterior density, which is the right side of:

$$
\begin{equation*}
p(\theta \mid y) \propto p(\theta) p(y \mid \theta) \tag{27}
\end{equation*}
$$

These simple expressions encapsulate the technical core of Bayesian inference: the primary task of any specific application is to develop the model $p(\theta, y)$ and perform the necessary
computations to summarize $p(\theta \mid y)$ in appropriate ways.
Using Bayes' rule with a chosen probability model means that the data y affect the posterior inference only through the function $p(y \mid \theta)$, which, when regarded as a function of θ, for fixed y, is called the likelihood function. In this way Bayesian inference obeys what is sometimes called the likelihood principle, which states that for a given sample of data, any two probability models $p(y \mid \theta)$ that have the same likelihood function yield the same inference for θ [2].

4.2 Multiparameter Models

Virtually every practical problem in statistics involves more than one unknown or unobservable quantity. It is in dealing with such problems that the simple conceptual framework of the Bayesian approach reveals its principal advantages over other methods of inference. Although a problem can include several parameters of interest, conclusions will often be drawn about one, or only a few, parameters at a time. In this case, the ultimate aim of a Bayesian analysis is to obtain the marginal posterior distribution of the particular parameters of interest. In principal, the route to achieving this aim is clear: we first require the joint posterior distribution of all unknowns that are not of immediate interest to obtain the desired marginal distribution. Or equivalently, using simulation, we draw samples from the joint posterior distribution and then look at the parameters of interest and ignore the values of the other unknowns. Parameters of this kind are often called nuisance parameters.

To express the idea of joint and marginal posterior distributions mathematically, suppose θ has two parts, each of which can be a vector, $\theta=\left(\theta_{1}, \theta_{2}\right)$, and further suppose that we are only interested in inference for θ_{1}, so θ_{2} may be considered a 'nuisance' parameter. We seek conditional distribution of the parameter of interest given the observed data; in this case, $p\left(\theta_{1} \mid y\right)$. This is derived from the joint posterior density,

$$
\begin{equation*}
p\left(\theta_{1}, \theta_{2} \mid y\right) \propto p\left(y \mid \theta_{1}, \theta_{2}\right) p\left(\theta_{1}, \theta_{2}\right) \tag{28}
\end{equation*}
$$

by averaging over θ_{2} :

$$
\begin{equation*}
p\left(\theta_{1} \mid y\right)=\int p\left(\theta_{1}, \theta_{2} \mid y\right) d \theta_{2} \tag{29}
\end{equation*}
$$

Alternatively, the joint posterior density can be factored to yield

$$
\begin{equation*}
p\left(\theta_{1} \mid y\right)=\int p\left(\theta_{1} \mid \theta_{2}, y\right) p\left(\theta_{2} \mid y\right) d \theta_{2} \tag{30}
\end{equation*}
$$

which shows that the posterior distribution of interest, $p\left(\theta_{1} \mid y\right)$, is a mixture of the conditional posterior distributions given the nuisance parameter, θ_{2}. The weights depend on the posterior density of θ_{2} and thus on a combination of evidence from data and prior modeling. We rarely evaluate the integral (30) explicitly, but it suggests an important practical strategy for both constructing and computing with multiparameter models. Posterior distributions can be computed by marginal and conditional simulation, first drawing θ_{2} from its marginal posterior distribution and then θ_{1} from its conditional posterior distribution, given the drawing of θ_{2}.

We will perform Bayesian analysis on this topic. Let's begin with multinomial model. Assume $n=\left(n_{11}, n_{12}, n_{21}\right), p=\left(p_{11}, p_{12}, p_{21}\right)$, where $p_{i j}, i, j=i, 2$, are the multinomial success probabilities in each cell as mentioned above. Thus the likelihood function is

$$
\begin{equation*}
P(n \mid p, N)=\binom{N}{n_{11} n_{12} n_{21} N-\sum n_{i j}} p_{11}^{n_{11}} p_{12}^{n_{12}} p_{21}^{n_{21}}\left(1-\sum p_{i j}\right)^{N-\sum n_{i j}} . \tag{31}
\end{equation*}
$$

The distribution is typically thought of as implicitly conditioning on the number of observations. The conjugate prior distribution is a multivariate generalization of the beta distribution known as Dirichlet,

$$
\begin{equation*}
P(p \mid \alpha) \propto p_{11}^{\alpha_{1}-1} p_{12}^{\alpha_{2}-1} p_{21}^{\alpha_{3}-1}\left(1-\sum p_{i j}\right)^{\alpha_{4}-1} \tag{32}
\end{equation*}
$$

A uniform density is obtained by setting $\alpha_{i}=1$ for all i; this distribution assigns equal density to any vector p. Setting $\alpha_{j}=0$ for all j results in an improper prior distribution that is uniform in the $\log \left(p_{i j}\right)$'s. The resulting posterior distribution is proper if there is at least one observation in each of the three categories, so that each component of n is positive. We continue to use a noninformative prior distribution for $N, P(N) \propto N^{-2}$.

Therefore, the joint posterior distribution for p and N is

$$
P(N, p \mid n) \propto P(N, p) P(n \mid N, p) \propto p(N) P(p) P(n \mid N, p)
$$

$$
\begin{equation*}
=\binom{N}{n_{11} n_{12} n_{21} N-\sum n_{i j}} p_{11}^{n_{11}+\alpha_{1}-1} p_{12}^{n_{12}+\alpha_{2}-1} p_{21}^{n_{21}+\alpha_{3}-1}\left(1-\sum p_{i j}\right)^{N-\sum n_{i j}+\alpha_{4}-1} N^{-2} . \tag{33}
\end{equation*}
$$

Given N and n, the components of p have independent posterior densities that are of the form $p_{11}^{A} p_{12}^{B} p_{21}^{C}\left(1-\sum p_{i j}\right)^{D}$, that is, Dirichlet densities since $P(N \mid n)=P(N, P \mid n) / P(p \mid N, n)$ should be free of p. Thus the joint density is

$$
\begin{gather*}
P(p \mid N, n)=\frac{\Gamma\left(N+\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)}{\Gamma\left(n_{11}+\alpha_{1}\right) \Gamma\left(n_{12}+\alpha_{2}\right) \Gamma\left(n_{21}+\alpha_{3}\right) \Gamma\left(N-\sum n_{i j}+\alpha_{4}\right)} \\
\quad \times p_{11}^{n_{11}+\alpha_{1}-1} p_{12}^{n_{12}+\alpha_{2}-1} p_{21}^{n_{21}+\alpha_{3}-1} F\left(1-\sum p_{i j}\right)^{N-\sum n_{i j}+\alpha_{4}-1} \tag{34}
\end{gather*}
$$

Choosing $\alpha_{j}=1 / 2$ for all j, the posterior distribution for N is obtained,

$$
\begin{equation*}
P(N \mid n)=\frac{\Gamma(N+1) \Gamma\left(n_{11}+1 / 2\right) \Gamma\left(n_{12}+1 / 2\right) \Gamma\left(n_{21}+1 / 2\right) \Gamma\left(N-\sum n_{i j}+1 / 2\right)}{\Gamma(N+2) \Gamma\left(n_{11}+1\right) \Gamma\left(n_{12}+1\right) \Gamma\left(n_{21}+1\right) \Gamma\left(N-\sum n_{i j}+1\right)} . \tag{35}
\end{equation*}
$$

Hence the distribution for population size could be simulated whenever the number of detected and undetected individuals in the frist and second sample are given. The following strategy is used here:

- Sample the cell probabilities $p_{i j}$ from prior distribution, $p_{i j} \sim \operatorname{Gamma}(1 / 2,1)$ which form a joint distribution $P(p) \sim \operatorname{Dirichlet}(1 / 2,1 / 2,1 / 2,1 / 2)$.
- Sample the $n_{i j}$ from multinomial distribution with success probability $p_{i j}$.
- For each $n=\left(n_{11}, n_{12}, n_{21}\right)$, sample N from its marginal posterior distribution $P(N \mid n)$ and so the confidence interval for N can be obtained through the previous procedure. Approximate minimum coverage, mean coverage probabilities, and the median width for confidence intervals of N are listed in Table 8.
- The fixed samples in multinomial distribution would allow us to apply Bayesian analysis for the hypergeometric model in a convenient way. The approximate coverage probability and width are shown in Tables 9 and 10.

Table 8: Coverage Property Summary of Intervals in Bayesian Analysis

	N	Appro Min Cov	Appro Mean Cov	Appro Med Width
$1-\alpha=.90$	50	0.0000	0.7126	40.7900
	100	0.0000	0.7378	78.1050
	150	0.0000	0.7422	114.6330
	200	0.0000	0.7441	149.8555
	300	0.0000	0.7470	222.1775
$1-\alpha=.95$	50	0.0000	0.8062	94.6447
	100	0.0000	0.8431	180.1073
	150	0.0000	0.8676	266.0961
	200	0.0002	0.8656	352.4288
	300	0.0000	0.8738	510.3923
$1-\alpha=.99$	50	0.0002	0.8250	137.0191
	100	0.0003	0.8620	265.3556
	150	0.0003	0.8834	385.6087
	200	0.0002	0.8912	513.6499
	300	0.0001	0.9015	770.7565

Compared with the Frequentist methods, the Bayesian analysis used here does not show better performance than the new Wilson and Wilson-cc intervals proposed in this thesis. However it tends to grow steadily as N increases; Wilson and Wilson-cc intervals appear more oscillating among the small N s. In the hypergeometric model, the Bayesian interval guarantees a coverage of probability which is close to $1-\alpha$ even for very low proportion of n_{1}, n_{2} to N whereas the approximate width in fact is too large to make sense. The Wilson-cc interval does not present the same characteristic. As a whole, the Bayesian interval provides a different and stable approach on the estimation of population size for capture-recapture problems. Whether the informative prior and hierarchical models should be used to improve

Table 9: Coverage Property in Bayesian Analysis with Fixed Sample Size for $1-\alpha=.90$

N	n_{1}, n_{2}	Appro Cov	Appro Width
50	5	0.9221	334.5250
50	10	0.8758	99.3000
50	15	0.8804	59.5750
50	20	0.8948	37.1508
100	5	0.8004	441.4519
100	10	0.9198	276.6543
100	20	0.8960	138.1500
100	40	0.8928	50.2471
200	10	0.9152	1071.0750
200	20	0.9100	410.8256
200	40	0.8926	191.2755
200	60	0.8916	108.2107
500	10	0.8296	1307.5758
500	25	0.8864	1319.7254
500	50	0.8926	656.5759
500	100	0.8816	291.4511

the level of coverage probabilities or not will remain an issue of debate in future study.

Table 10: Coverage Property in Bayesian Analysis with Fixed Sample Size for $1-\alpha=.95$

N	n_{1}, n_{2}	Appro Cov	Appro Width
50	5	0.9292	548.6125
50	10	0.9430	135.2625
50	15	0.9444	75.6256
50	20	0.9338	45.2000
100	5	0.9024	750.8755
100	10	0.9382	404.9625
100	20	0.9300	178.6749
100	40	0.9388	61.0443
200	10	0.9218	1537.7123
200	20	0.9533	559.9873
200	40	0.9333	231.9748
200	60	0.9356	130.7376
500	10	0.8604	1953.1769
500	25	0.9422	1824.5500
500	50	0.9406	826.7660
500	100	0.9348	345.6231

5 CONCLUSION

Different CIs in a generalized multinomial model could show any tendency of difference in coverage probabilities; more specific performance on conditional restriction is given by the hypergeometric model. Although all of the intervals could have a substantially low minimum coverage and an average coverage below $1-\alpha$, the new Wilson method should certainly be preferred over the Chapman CI based on their coverage criteria and width of intervals. The Bayesian interval provides an alternative estimation. Further studies including prior analyzing was recommended for improving Bayesian inference. For strengthening our conclusion, all of the above intervals need finer partitions on population size, as well as more coverage computation on larger N.

BIBLIOGRAPHY

[1] A. Agresti and B. A. Coull (1998), Approximate is better than exact for interval estimation of Binomial Proportions. Amer. Statist., 45, 119-126.
[2] A. Gelman, J. Carlin, H. Stern and D. Rubin (2004), Bayesian Data Analysis, second edition. London: Chapman \& Hall.
[3] C. C. Sekar and W. E. Deming (1949), On a method of estimating birth and death rates and the extent of registration. J. Amer. Statist. Assoc. , 44, 101-115.
[4] Douglas G. Bonett and Robert M. Price (2006), Confidence intervals for a ratio of binomial proportions based on paired data. Statistics in Medicine, 25, 3039-3047.
[5] E. B. Wilson (1927), Probable inference, the law of succession, and statistical inference. J. Amer. Statist. Assoc., 22, 209-212.
[6] G. A. F. Seber (1982), The estimate of Animal Abundance, second edition. London: Griffin.
[7] Steven K. Thompson (1992), Sampling (Wiley Series in Probability and Statistics). New York: Wiley Interscience.
[8] J. N. Darroch (1958), The multiple-recapture census: I. Estimation of a closed population. Biometrika, 45, 343-359.
[9] RG. Newcombe (1998), Interval estimation for the difference between independent proportions: Comparison of eleven methods. Statistics in Medicine, 17, 873-890.
[10] RG. Newcombe (1998), Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine, 17, 857-872.

APPENDICES

Appendix A: Matlab Code for Multinomial Model

```
% population size estimation for multinomial model
clear
%format compact
warning('off')
tic;
for alpha = [ . 05 ]
cc = 1 - alpha
z0 = icdf('norm',1 - alpha/2,0,1);
for samp = [50]
n = samp
parms = [];
p11s = [];
p12s = [];
p21s = [];
p22s = [];
%rand('state',4)
%rand('state',sum(100*clock));
y1 = random('gam', .4,1,3000,1);
y2 = random('gam', .4,1,3000,1);
y3 = random('gam', .4,1,3000,1);
```

```
y4 = random('gam',.5,1,3000,1);
sumy = y1 + y2 + y3 +y4 ;
p1s = y1./sumy;
p2s = y2./sumy;
p11s = p1s.*p2s;
p21s = p1s - p11s;
p12s = p2s - p11s;
p22s = ones(3000,1)-p11s-p12s-p21s;
n11= zeros(1);
n12 = zeros(1);
n21 = zeros(1);
k = 1;
while k < n +1
x1 = (0:k)';
x2 = (0:k)';
m = k+1;
n110 = kron(x1,ones(m,1));
n120 = kron(ones(m,1),x2);
F = [n110,n120];
t = find(sum(F') <= k);
F = F(t,:);
n210=(k- sum(F'))';
n11 = [n11', F(:,1)']';
```

```
n12 = [n12',F(:,2)']';
n21 = [n21',n210']';
k=k+1;
n22=n-n11-n12-n21;
nk = gammaln(n+1) - gammaln(n11+1) - gammaln(n12+1)
- gammaln(n21+1) -gammaln(n22+1);
% Chapman estimator
for c=0.25
n0=(n11+n21+1).*(n11+n12+1)./(n11+1)-1;
var=((n11+n21+1).*(n11+n12+1).*(n21+c).*(n12+c))./((n11+1).
*(n11+1).*(n11+2));
% Chapman interval
lbchap = n0-z0*sqrt(var);
ubchap = n0+z0*sqrt(var);
widthchap = ubchap - lbchap;
covchap = [];
totwidthchap= [];
% Wilson estimator ( to estimate var I use delta method)
p11p=(n11+c)./(n11+n12+n21+2);
p1p=(n11+n21+1)./(n11+n12+n21+2);
```

```
p2p=(n11+n12+1)./(n11+n12+n21+2);
p1pp=(n11+n21+2*c)./(n11+n12+n21+3*c);
p2pp=(n11+n12+2*c)./(n11+n12+n21+3*c);
p11pp=(n11+c)./(n11+n12+n21+3*c);
selnp11=sqrt((1-p11p)./((n11+n12+n21+2).*p11p));
selnp1=sqrt((1-p1p)./((n11+n12+n21+2).*p1p
));
selnp2=sqrt((1-p2p)./((n11+n12+n21+2).*p2p));
var1=1./(n11+c)-1./(n11+n12+n21+2)-(n12+n21+2)./((n11+n12+1).
*(n11+n21+1));
end
end
end
m=length(var1);
var3=[];
for i= 1:m
if var1(i)< 0
var3(i) = 0;
else var3(i)= var1(i);
end
end
var2 = var3';
k1=sqrt((var2))./(selnp11+selnp1+selnp2);
```

```
z=z0.*k1;
```

```
%lp1=[2.*(n11+n21+2)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+
4.*p1pp.*(n12+1+1))]./(2.*(n11+n12+n21+3+z.*z));
%lp2=[2.*(n11+n12+2)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+
4.*p2pp.*(n21+1+1))]./(2.*(n11+n12+n21+3+z.*z));
%up1=[2.*(n11+n21+2)+z.*z+1+z.*sqrt (z.*z+2-1./(n11+n12+n21+3)+
4.*p1pp.*(n12+1-1))]./(2.*(n11+n12+n21+3+z.*z));
%up2=[2.*(n11+n12+2)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+
4.*p2pp.*(n21+1-1))]./(2.*(n11+n12+n21+3+z.*z));
%lp11=[2.*(n11+1)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+
4.*p11pp.*(n12+n21+2+1))]./(2.*(n11+n12+n21+3+z.*z));
%up11=[2.*(n11+1)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+
4.*p11pp.*(n12+n21+2-1))]./(2.*(n11+n12+n21+3+z.*z));
lp1=[2.*(n11+n21+2)+z.*z-z.*sqrt(z.*z+4.*(1-p1pp).*(n21+n11+2))].
/(2.*(n11+n12+n21+3+z.*z));
lp2=[2.*(n11+n12+2)+z.*z-z.*sqrt (z.*z+4.*(1-p2pp).*(n12+n11+2))].
/(2.*(n11+n12+n21+3+z.*z));
up1=[2.*(n11+n21+2)+z.*z+z.*sqrt (z.*z+4.*(1-p1pp).*(n21+n11+2))].
/(2.*(n11+n12+n21+3+z.*z));
up2=[2.*(n11+n12+2)+z.*z+z.*sqrt (z.*z+4.*(1-p2pp).*(n12+n11+2))].
/(2.*(n11+n12+n21+3+z.*z));
```

```
lp11=[2.*(n11+1)+z.*z-z.*sqrt(z.*z+4.*(1-p11pp).*(n11+1))].
/(2.*(n11+n12+n21+3+z.*z));
up11=[2.*(n11+1)+z.*z+z.*sqrt(z.*z+4.*(1-p11pp).*(n11+1))].
/(2.*(n11+n12+n21+3+z.*z));
end
```

\%Wilson interval
ubwil=(n11+n12+n21+3).*up1.*up2./lp11;
lbwil=(n11+n12+n21+3).*lp1.*lp2./up11;
widthwil=ubwil-lbwil;
covwil = [];
totwidthwil = [];
for $i=1: 3000$
if p11s(i)>= . $0001 \& p 12 s(i)>=.0001 \& p 21 s(i)>=.0001 \& p 22 s(i)>=.0001$
lnkp $=n k+n 11 . * \log (p 11 s(i))+n 12 . * \log (p 12 s(i))+n 21 . * \log (p 21 s(i))+$
n22.*log(p22s(i));
prob $=\exp (l n k p) ;$
ind1 = (lbchap <= n \& n <= ubchap) ;
totchap $=$ sum(prob.*ind1);
covchap $=$ [covchap; totchap];
width1 = widthchap'*prob;
totwidthchap = [totwidthchap; width1];

```
ind2 = (lbwil <= n & n <= ubwil);
totwil = sum(prob.*ind2);
covwil = [covwil; totwil];
width2 = widthwil'*prob;
totwidthwil = [totwidthwil; width2];
else
end
end
Chap = [min(covchap),mean(covchap), median(totwidthchap)];
Wil = [min(covwil),mean(covwil), median(totwidthwil)];
toc;
```

Appendix B: Matlab Code for Hypergeometric Model

```
% This is hypergeometric model using both Chapman interval and
Wilson interval
clear
%format compact
warning('off')
tic;
for alpha = [ .1]
cc = 1 - alpha
z0 = icdf('norm',1 - alpha/2,0,1);
%generate counts and we assume the numbers of first and second sample
    are fixed.
%both of them are 300
for samp = [30]
n = samp
n11= zeros(1);
n12 = zeros(1);
n21 = zeros(1);
k =6;
x1 = (0:k)';
x2 = (0:k)';
m = k+1;
```

```
n11 = kron(x1,ones(m,1));
n12 = kron(ones(m,1),x2);
F = [n11,n12];
t = find(sum(F') == k);
F = F(t,: );
n11 = F(:,1);
n12 = F(:,2);
n21=(k- n11);
n22=n-n11-n12-n21;
```

\%Chapman estimator
for $c=0.25$
$\mathrm{n} 0=(\mathrm{n} 11+\mathrm{n} 21+1) . *(\mathrm{n} 11+\mathrm{n} 12+1) . /(\mathrm{n} 11+1)-1 ;$
$\operatorname{var}=((\mathrm{n} 11+\mathrm{n} 21+1) \cdot *(\mathrm{n} 11+\mathrm{n} 12+1) \cdot *(\mathrm{n} 21+\mathrm{c}) \cdot *(\mathrm{n} 12+\mathrm{c})) . /((\mathrm{n} 11+1)$.
(n11+1).(n11+2));
\% Wilson estimator (to estimate var I use delta method)
$\mathrm{p} 11 \mathrm{p}=(\mathrm{n} 11+\mathrm{c}) . /(\mathrm{n} 11+\mathrm{n} 12+\mathrm{n} 21+2)$;
$\mathrm{p} 1 \mathrm{p}=(\mathrm{n} 11+\mathrm{n} 21+1) . /(\mathrm{n} 11+\mathrm{n} 12+\mathrm{n} 21+2) ;$
$\mathrm{p} 2 \mathrm{p}=(\mathrm{n} 11+\mathrm{n} 12+1) . /(\mathrm{n} 11+\mathrm{n} 12+\mathrm{n} 21+2)$;
$\mathrm{p} 1 \mathrm{pp}=(\mathrm{n} 11+\mathrm{n} 21) . /(\mathrm{n} 11+\mathrm{n} 12+\mathrm{n} 21)$;
$\mathrm{p} 2 \mathrm{pp}=(\mathrm{n} 11+\mathrm{n} 12) . /(\mathrm{n} 11+\mathrm{n} 12+\mathrm{n} 21) ;$
p11pp=n11./(n11+n12+n21);

```
selnp11=sqrt((1-p11p)./((n11+n12+n21+2).*p11p));
selnp1=sqrt((1-p1p)./((n11+n12+n21+2).*p1p));
selnp2=sqrt((1-p2p)./((n11+n12+n21+2).*p2p));
```

$\operatorname{var} 1=1 . /(\mathrm{n} 11+\mathrm{c})-1 . /(\mathrm{n} 11+\mathrm{n} 12+\mathrm{n} 21+2)-(\mathrm{n} 12+\mathrm{n} 21+2) . /((\mathrm{n} 11+\mathrm{n} 12+1)$.
*(n11+n21+1));
m=length(var1);
$\operatorname{var} 3=[]$;
for $i=1: m$
if $\operatorname{var} 1(i)<0$
$\operatorname{var} 3(i)=0$
else $\operatorname{var} 3(i)=\operatorname{var} 1(i) ;$
end
end
end
$\operatorname{var} 2$ = $\operatorname{var} 3^{\prime}$
k1=sqrt((var2))./(selnp11+selnp1+selnp2);
$\mathrm{z}=\mathrm{z} 0 . * \mathrm{k} 1$;
$\operatorname{lp} 1=[2 . *(\mathrm{n} 11+\mathrm{n} 21+2)+\mathrm{z} . * \mathrm{z}-1-\mathrm{z} . * \mathrm{sqrt}(\mathrm{z} . * \mathrm{z}-2-1 . /(\mathrm{n} 11+\mathrm{n} 12+\mathrm{n} 21+3)+$
4.*p1pp.*(n12+1+1))]./(2.*(n11+n12+n21+3+z.*z));
lp2 $=[2 . *(\mathrm{n} 11+\mathrm{n} 12+2)+\mathrm{z} . * \mathrm{z}-1-\mathrm{z} . *$ sqrt $(\mathrm{z} . * \mathrm{z}-2-1 . /(\mathrm{n} 11+\mathrm{n} 12+\mathrm{n} 21+3)+$

```
4.*p2pp.*(n21+1+1))]./(2.*(n11+n12+n21+3+z.*z));
up1=[2.*(n11+n21+2)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+
4.*p1pp.*(n12+1-1))]./(2.*(n11+n12+n21+3+z.*z));
up2=[2.*(n11+n12+2)+z.*z+1+z.*sqrt (z.*z+2-1./(n11+n12+n21+3)+
4.*p2pp.*(n21+1-1))]./(2.*(n11+n12+n21+3+z.*z));
lp11=[2.*(n11+1)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+
4.*p11pp.*(n12+n21+2+1))]./(2.*(n11+n12+n21+3+z.*z));
up11=[2.*(n11+1)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+
4.*p11pp.*(n12+n21+2-1))]./(2.*(n11+n12+n21+3+z.*z));
%lp1=[2.*(n11+n21+2)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+
4.*p1pp.*(n12+1+1))]./(2.*(n11+n12+n21+3+z.*z));
%lp2=[2.*(n11+n12+2)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+
4.*p2pp.*(n21+1+1))]./(2.*(n11+n12+n21+3+z.*z));
%up1=[2.*(n11+n21+2)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+
4.*p1pp.*(n12+1-1))]./(2.*(n11+n12+n21+3+z.*z));
%up2=[2.*(n11+n12+2)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+
4.*p2pp.*(n21+1-1))]./(2.*(n11+n12+n21+3+z.*z));
%lp11=[2.*(1+n11)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+
4.*p11pp.*(n12+n21+2+1))]./(2.*(n11+n12+n21+3+z.*z));
%up11=[2.*(1+n11)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+
4.*p11pp.*(n12+n21+2-1))]./(2.*(n11+n12+n21+3+z.*z));
end
```

```
%wilson interval
ubwil=exp(log(n11+n12+n21+3)+log(up1.*up2./lp11));
lbwil=exp(log(n11+n12+n21+3)+log(lp1.*lp2./up11));
%chapman interval
lbchap = n0-z0.*sqrt(var);
ubchap = n0+z0.*sqrt(var);
widthchap = ubchap - lbchap;
widthwil=ubwil-lbwil;
% hypergeometric probability
prob= hygepdf(n11, 30,6,6);
ind1 = (lbchap <= n & n <= ubchap);
ind2=(lbwil <= n & n <= ubwil);
totchap = sum(prob.*ind1);
totwil=sum(prob.*ind2);
width1 = widthwil'*prob
width2=widthchap'*prob
totchap
totwil
end
toc;
```

Appendix C: R code for Multinomial Model in Bayesian Statistics

```
y1<-rgamma(1000, .5,1)
y2<-rgamma(1000,.5,1)
y3<-rgamma(1000, .5,1)
y4<-rgamma(1000,.5,1)
sum<-y1+y2+y3+y4
p11<-y1/sum
p12<-y2/sum
p21<-y3/sum
p22<-y4/sum
for (i in 1:1000){
if (p11[i]<=.0001|p21[i]<=.0001|p12[i]<=.0001|p22[i]<=.0001)
p11[i]<-rgamma(1,.5,1)
p12[i]<-rgamma(1,.5,1)
p21[i]<-rgamma(1,.5,1)
p22[i]<-rgamma(1,.5,1)
p11[i]<-p11[i]/sum(p11[i]+p12[i]+p21[i]+p22[i])
p12[i]<-p12[i]/sum(p11[i]+p12[i]+p21[i]+p22[i])
p21[i]<-p21[i]/sum(p11[i]+p12[i]+p21[i]+p22[i])
p22[i]<-p22[i]/sum(p11[i]+p12[i]+p21[i]+p22[i])}
samplen<-rmultinom(1000,50,c(p11[1],p12[1],p21[1],p22[1]))
n11=samplen[1,]
```

```
n12=samplen[2,]
n21=samplen[3,]
for (i in 2:1000){
samplen<-rmultinom(1000,50,c(p11[i],p12[i],p21[i],p22[i]))
n11<-rbind(n11,samplen[1,])
n12<-rbind(n12,samplen[2,])
n21<-rbind(n21,samplen[3,])}
mm<-dim(samplen)
pp<-function(N,n1,n2,n3){
p1<-lgamma (N+1)+lgamma (n1+1/2)+lgamma(n2+1/2)+lgamma(n3+1/2)+
lgamma(N-n1-n2-n3+1/2)-2*log(N)+700
p2<-lgamma(N+2)+lgamma(n1+1)+lgamma(n2+1)+lgamma(n3+1)+
lgamma(N-n1-n2-n3+1)
p<-p1-p2
return(exp(p))}
s99<-NA
s95<-NA
s90<-NA
mean1<-NA
t=n11+n12+n21+1
```

```
for (j in 1:1000){
sample1<-sample(t[j,1]:5000,1000,prob=pp(t[j,1]:
5000,n11[j,1],n12[j,1],n21[j,1]),replace=T)
for (i in 2:1000){
sample1<-rbind(sample1,sample(t[j,i]:5000,1000,prob=pp(t[j,i]:
5000,n11[j,i],n12[j,i],n21[j,i]), replace=T))
cred.intervals <- apply(sample1,1,quantile,
c(0.01,0.025,.05,.9,0.975,.99))}
ci99<-NA
ci95<-NA
ci90<-NA
for(i in 1:1000){
if(cred.intervals[1,i]<= 50 & 50 <=cred.intervals[6,i])
ci99[i]=1
else
ci99[i]=0
if(cred.intervals[2,i]<= 50 & 50 <=cred.intervals[5,i])
ci95[i]=1
else
ci95[i]=0
if(cred.intervals[3,i]<= 50 & 50 <=cred.intervals[4,i])
ci90[i]=1
else
```

```
ci90[i]=0}
s99<-cbind(s99,sum(ci99))
s95<-cbind(s95,sum(ci95))
s90<-cbind(s90,sum(ci90))
mean1<-cbind(mean1,apply(cred.intervals,1,mean))}
mean(s99[2:1000])/99
mean(s95[2:1000])/99
mean(s90[2:1000])/99
```

apply(mean1[,2:1000],1,quantile,c(.5))

Appendix D: R code for Hypergeometric Model in Bayesian Statistics

```
n1<-100
n2<-100
n11<-rhyper(5000,n1,500-n1,n2)
pp<-function(N,n1,n2,n11){
p1<-lgamma(N-n1+1)-lgamma(N-n1-n2+n11+1)-lgamma(N+1)+
lgamma(N-n2+1)-2*log(N)+700
return(exp(p1))}
t=n1+n2-n11+1
sample1<-sample(t[1]:5000,100,prob=pp(t[1]:
5000,n1,n2,n11[1]),replace=T)
for (i in 2:5000){
sample1<-rbind(sample1,sample(t[i]:
5000,100,prob=pp(t[i]:5000,n1,n2,n11[i]), replace=T))}
cred.intervals <- apply(sample1,1,quantile, c(0.025,.5,0.975))
dim(cred.intervals)
ci<-NA
for(i in 1:5000){
if(cred.intervals[1,i]<= 500 & 500 <=cred.intervals[3,i])
```

```
ci[i]=1
else
ci[i]=0}
sum(ci)/5000
median(cred.intervals[3,]-cred.intervals[1,])
```


VITA

XIAO ZHANG

Personal Data:	Date of Birth: April 4, 1980
	Place of Birth: Dalian, P. R. China
	Marital Status: Single
Education:	B.S. Mathematics (Applied Mathematics), Jilin University, Changchun, P. R. China, 2002
	M.S. Mathematics (Pure Mathematics), Jilin University, Changchun, P. R. China, 2004
	M.S. Mathematics, East Tennessee State Univeristy, Johnson city, Tennessee 2007
Professional Experience:	Graduate Assistant, Jilin University, Mathematics College, 2003-2004
	Data Analyst, Associate, Dalian East Market Research Co. LTD, Dalian, P. R. China, 2004-2005
	Graduate Assistant, East Tennessee State University, Mathematics Department, 2005-2007

