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ABSTRACT

Confidence Intervals for Population Size in a Capture-Recapture Problem

by

Xiao Zhang

In a single capture-recapture problem, two new Wilson methods for interval estimation of

population size are derived. Classical Chapman interval, Wilson and Wilson-cc intervals

are examined and compared in terms of their expected interval width and exact coverage

properties in two models. The new approach performs better than the Chapman in each

model. Bayesian analysis also gives a different way to estimate population size.
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1 INTRODUCTION

1.1 The Problem of the Capture-Recapture

In capture-recapture sampling to estimate the total number of individuals in a population,

an initial sample is obtained and the individuals in that sample are marked or otherwise

identified. A second sample is independently marked. If the second sample is representative

of the population as a whole, then the sample proportion of marked individuals should be

about the same as the population proportion of marked individuals. From this relationship,

the total number of individuals in the population can be estimated.

Capture-recapture methods were originally developed in the wildlife biology to monitor

the census of bird, fish, and insect populations [7]. They have been used to estimate the

abundance of animal populations, to estimate the detectability of animals for other survey

methods, and to estimate survival and other population parameters. Recently, these methods

have been utilized to estimate the abundance of elusive human populations such as the

homeless, to adjust for census undercounts of minority groups, and to estimate the number

of vital events such as accidents in a population [7].

The animals or other individuals need not literally be captured or marked or recaptured.

If it is possible to identify individual animals by natural markings, then two independent

sighting surveys may be carried out, and the number of individuals sighted in both surveys

is the number of “recaptures”. Similarly, if a number of animals in a population has been

fitted with radio transmitters and hence has known locations, then in a survey in which

observers detect animals by some means independently of the transmitters, the number of

transmitter-fitted animals detected is the number of recaptures. For other species, however,
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it may be necessary to capture the animals by such means as traps or nets, and to mark

them with bands, tags, coded wire implants, paint, or streamers.

For human populations, the two samplers often consist of two lists. For instance, the

first list may be from the census data and the second list may be data from a follow-up

survey. Or the first list may be health department records of accidents, and the second list,

insurance company records.

In more complex capture-recapture animal studies, animals may be captured and released

on several different occasions, with the capture history of any animal in the sample identifi-

able from the previous marks. Complicating factors include capture probabilities that vary

from animal to animal or from sample to sample, mortality caused by tagging, mortality

between sample times, births, immigration and emigration from the study area, and animals

becoming “trap happy” or “trap shy” through the handling procedure [7].
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1.2 2× 2 Contingency Table

In the following summary of simple capture-recapture methods, a 2×2 contingency table

is used to facilitate consideration of sampling design aspects (Table 1). The total number

of marked individuals in the population, which is also the number of individuals in the

initial sample, is n1. The number of individuals in the second sample is n2, of which n11 are

detected. The total number N of animals in the population may then be estimated.

Table 1: 2× 2 Contingency Table

First Sample Total
n11 n21 n2 Second Sample
n12 n22

Total n1 N

In the general 2× 2 contingency table for a single capture and recapture of a closed pop-

ulation, the capture or detection history of any animal in the population can be categorized

into exactly one of four categories: detected on both first and second occasions, detected on

first but not on second, detected on second but not on first, detected on neither occasion.

Here we restrict our model and assume that the detection probability is the same for each

individual in the population during a sampling occasion. Independence between the two

sampling occasions is also assumed. If the second sample is representative of the population

as a whole, the proportion of marked animals in the sample will be about the same as the

proportion of the whole population in the sample. The total number N of animals in the

population may be estimated by assuming that the proportion of marked animals in the

second sample is representative of the proportion of marked animals in the population, i.e.,
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by setting

n11

n2

=
n1

N
(1)

and solving for the unknown population size N . Equivalently, the proportion of marked

animals in the population that is captured in the second sample should approximately equal

the proportion of the population as a whole captured in the second sample, that is,

n11

n1

=
n2

N
. (2)

Solving either equation for the unknown population total N gives the Petersen estimator

N̂ =
n2n1

n11

. (3)

An estimator of the variance of N [3] is

̂var(N̂) =
n1n2n12n21

n3
11

. (4)

The maximum likelihood estimator of the probability p1 of capture in the first sample is

p̂1 = n1/N . The MLE of capture probability for the second sample is p̂2 = n2/N .
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2 ESTIMATION AND INFERENCE IN SIMPLE CAPTURE-RECAPTURE MODELS

2.1 Multinomial and Hypergeometric Models

In a multinomial model, N individuals are regarded as being multinomially distributed

into a number of capture histories, the observable ones with probability pij, i, j = 1, 2, and the

unobservable category with the probability 1−p∗, where p∗ =
∑

pij ≤ 1. Thus, a multinomial

model, with the four probabilities for the four cells adding to one, applies to the capture

history of each animal. If, in addition, on each sampling occasion the detection outcomes

for different individuals are independent, then the model for the numbers of individuals with

each capture history will be a product of multinomials. In the general model, the probability

of detection may be different for different sampling occasions. The general models contain

too many parameters in relation to the number of observations, so that further restrictions

are needed for effective estimation of N or of detection probabilities.

One such restricted model assumes that detection probability is the same for each indi-

vidual in the population during a sampling occasion, but may differ for the two samples.

Independence between the two sampling occasions is also assumed. With this model, the

maximum likelihood estimator of population total is the integer part of the Petersen estima-

tor N̂ = (n2n1)/n11. Even if capture probabilities are different for different individuals at the

first sample but equal at the second sample, the estimator is still the Petersen estimator. If a

single capture probability p applies to both samples and to all individuals, with independence

between samples, the maximum likelihood estimators of p and N are p̂ = 2n11/(n1 +n2) and

N̂ = (n1 + n2)/2p̂.

If the numbers n1 and n2 of individuals in the two samples are fixed and the second
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sample is a simple random sample of the individuals in the population, we now try to find

P ({nij}i,j=1,2|n1, n2), the conditional density of nij given the number of samples. It is easily

deduced from the multinomial model that n1, n2 are independent binomial variables B(N, pi),

i = i, 2. Therefore

P (n1, n2) =
2∏

i=1

(
N

ni

)
pni

i (1− pi)
N−ni . (5)

We notice that

P ({nij}i,j=1,2) =

(
N

n11 n12 n21 n22

)
pn11

11 pn12
12 pn21

21 pn22
22 (6)

=

(
N

n11 n12 n21 n22

)
pn1

1 pn2
2 (1− p1)

N−n1(1− p2)
N−n2

and

P ({nij}i,j=1,2|n1, n2) =

(
N

n11 n12 n21 n22

)(
N
n1

)(
N
n2

) (7)

=
n1! n2! (n21 + n22)! (n12 + n22)!

N ! n11! n22! n12! n21!
=

(
n1

n11

)(
N−n1

n21

)(
N

n21

) ,

where 0 ≤ n11 ≤ n1, 0 ≤ n12, n21 ≤ min{n1, n2}, with the linear constraints n11 + n12 = n1,

n11 + n21 = n2, (7) is the generalized hypergeometric density. Then the number n11 of

marked animals in the second sample has a hypergeometric distribution. With equal capture

probabilities among individuals, this is the conditional distribution under the multinomial

model of n11 given n1 and n2. Under this model, the maximum likelihood estimator of N is

again the integer part of the Petersen estimator.

In a multinomial model the sample size ni, i = 1, 2, are random variables while pi, i = 1, 2,

are parameters. This model is therefore applicable when the effort put into the catching

of every sample is fixed before the experiment begins since the pi are then fixed, though

unknown. The hypergeometric model, on the other hand, involves the ni as parameters and

should be used only when the experimenter is determined to catch no more and no less than
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ni individuals at the ith sample; and he or she will only be able to do this when animals are

fairly easily caught. In fact, if we had to generalize, we could say that the hypergeometric

model is likely to be appropriate when the main limiting factor on sample size is the trouble

involved and the multinomial model is more appropriate when the limiting factor is the

source of difficulty in catching them [8].
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2.2 Chapman Interval and Wilson Interval for the Paired Data

2.2.1 Wald and Wilson Interval for the Binomial Parameters

Assume that nij follows a multinomial distribution with parameters N and pij. The

corresponding probabilities for the 2 × 2 contingency table are shown in Table 2 where

p1 = p11 + p12 and p2 = p11 + p21 are the marginal probabilities of interest.

Table 2: 2× 2 Contingency Table

First Sample Total
p11 p21 p2 Second Sample
p12 p22

Total p1 1

A Wald confidence interval for a single proportion is defined as

p̂i ± zα/2

√
p̂i(1− p̂i)/N (8)

where P (Z > zα/2) = α/2, i = 1, 2.

A binomial method, noted for its computational simplicity, was recently proposed by

Agresti and Coull [1]. The Agresti-Coull interval is defined as

p̃i ± zα/2

√
p̃i(1− p̃i)/(N + 4) (9)

where p̃i = (ni + 2)/(N + 4).

Wilson [5] gave a general approach, sometimes referred to as a score interval, that was

derived by inverting an approximate normal test using a standard error estimate under the

constraint of the null hypothesis. It has the form

p̃i ±
zα/2

Ñ

√
Np̃i(1− p̃i) +

z2
α/2

4
(10)
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where Ñ = N + z2
α/2.

An approximate 100(1− α)% Wald confidence interval for p1 − p2 is

p̂1 − p̂2 ± zα/2

√
(p̂2 + p̂1 − (p̂1 − p̂2)2)/N. (11)

An alternative for p1 − p2 is

p̃1 − p̃2 ± zα/2

√
(p̃2 + p̃1 − (p̃1 − p̃2)2)/(N + 2) (12)

where p̃i = (ni + 1)/(N + 2).

In some applications, a ratio of marginal proportions p1/p2 may be more interesting or

meaningful than a difference. A 100(1 − α)% transformed Wald interval for θ = p1/p2 has

the simple form

exp[ln(n1/n2)± zα/2{(n12 + n21)/n1n2}1/2]. (13)

Newcombe [10] describes Wilson intervals for a single proportion with and without a con-

tinuity correction and Newcombe [9] combines two Wilson confidence intervals to obtain a

confidence interval for the difference in proportions using independent samples. Bonett and

Price [4] proposed an alternative to the Wald interval that combines two Wilson confidence

intervals. The width of the interval could only depend on n11, n12 and n21, so if we let

n′ = n11 + n21 + n12, p̂′1 = n1/n
′ and p̂′2 = n2/n

′, and a proposed 100(1 − α)% Wilson

confidence interval for p1/p2 may be expressed as

[exp{ln(L1)− ln(U2)}, exp{ln(U1)− ln(L2)}] = (L1/U2, U1/L2), (14)

where ln(L1) = ln(p̂′1) − kz1−α/2se{ln(p̂′1)}, ln(U1) = ln(p̂′1) + kz1−α/2se{ln(p̂′1)}, ln(L2) =

ln(p̂′2) − kz1−α/2se{ln(p̂′2)}, ln(U2) = ln(p̂′1) + kz1−α/2se{ln(p̂′2)}, and k = se{ln(p̂′1) −

17



ln(p̂′2)}/[se{ln(p̂′1)}+ se{ln(p̂′2)}].

The Wilson interval for p̂′i without a continuity correction is

[2ni + z2 ± z{z2 + 4ni(1− p̂′i)}1/2]/b (15)

where b = 2(n′ + z2) and z = kz1−α/2. The lower and upper endpoint of Wilson interval for

p̂′i with a continuity corretion are

[2ni + z2 − 1− z{z2 − 2− 1/n′ + 4p̂′i(n
′ − ni + 1)}1/2]/b (16)

[2ni + z2 + 1 + z{z2 + 2− 1/n′ + 4p̂′i(n
′ − ni − 1)}1/2]/b.

18



2.2.2 Chapman and Wilson Interval for Population Size

In a capture-recapture problem, a simple, approxiamate 100(1−α)% confidence interval

from (3) and (4) is the standard

n1n2

n11

± z1−α/2

√
n1n2n12n21

n3
11

. (17)

Because the number n11 of marked animals in the second sample may be zero, the esti-

mator does not have a finite variance. Therefore the following estimator N̂ modified (3) was

proposed by Chapman [6]:

N̂ =
(n1 + 1)(n2 + 1)

n11 + 1
− 1. (18)

An approximate unbiased estimator of the variance of the modified estimator is

̂var(N̂) =
(n1 + 1)(n2 + 1)n12n21

(n11 + 1)2(n11 + 2)
. (19)

An approximate 100(1− α)% confidence interval for the Chapman estimator is

N̂ ± z1−α/2

√
̂var(N̂). (20)

As pointed out by Bonett and Price [4], the new Wilson methods for the ratio of the pro-

portions are easy to compute and perform as well or better than the traditional method. To

achieve comparable results of an interval estimate for population size N , a Wilson interval

is appealing here. Notice the width of the interval depends only on n11, n12, n21. Thus (20)

may be expressed as

exp[ln(
n′p̂′1p̂

′
2

p̂′11
)± z1−α/2 ln(se{n′p̂′1p̂

′
2

p̂′11
})]. (21)

Assuming the value of k is

k = se{ln(p̂1
′) + ln(p̂2

′)− ln(p̂11
′)}/[se{ln(p̂1

′)}+ se{ln(p̂2
′) + ln(p̂11

′)}] (22)
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The upper and lower bounds of (21) would be:

exp[ln(n′) + U1 + U2 − L11] (23)

exp[ln(n′) + L1 + L2 − U11] (24)

where U1 is the upper bound for ln(p̂1
′), U2 is the upper bound for ln(p̂2

′), L11 is the lower

bound for ln(p̂11
′), L1 is the lower bound for ln(p̂1

′), L2 is the lower for ln(p̂2
′), U11 is upper

bound for ln(p̂11
′). These are all using the adjusted z. The proposed 100(1−α)% confidence

interval for N replaces the standard Wald interval estimates with Wilson interval estimates.

An estimate of k is needed to compute for Wilson interval here. To avoid problems

with sampling zeros, we use [(1 − p∗i )/{(n′ + 2)p∗i }]1/2 to estimate se{ln(p̂i
′)} where p∗i =

(ni +1)/(n′+2) are Laplace estimates. We propose estimating se{ln(p̂1
′)+ln(p̂2

′)− ln(p̂11
′)}

by using delta method as {1/n11 − 1/(n′ + 2)− (n12 + n21 + 2)/(n1 + 1)(n2 + 1)}1/2, where

the lower limit is set to 0. The confidence interval used by (15) and (16) will be referred to

as Wilson and Wilson-cc methods respectively. Matlab code is given in the Appendix for

the three methods that are compared in this thesis.
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3 APPLYING REFERENCE ANALYSIS

3.1 The Comparison of the Three Intervals

In practice, we add to the actual Wilson and Wilson-cc confidence interval a correction,

i.e., replace all n′ with n′+3, all ni and nij with ni+2 and nij+1 respectively, i, j = 1, 2. This

adjustment was proposed to avoid sampling zeros and nonpositive numbers in the square

root for Wilson-cc interval. Results of the computation suggests the mean exact coverage

probabilities are close, but the adjusted Wilson CIs are truely better than unadjusted CIs

in terms of interval width, especially for larger sampling.

We examined 3000 different 2 × 2 contingency tables for different sample probabilities

in multinomial models (Tables 3-5). In this model, the two marginal probabilities were

regarded as fixed, though unknown. The value of p1, p2 was randomly generated from a

Gamma (1/2, 1) distribution subjected to pij > .0001. The minimum exact probability,

the mean coverage probability, and the median expected interval width are computed for

all 2 × 2 contingency tables with respect to Chapman, Wilson and Wison-cc intervals for

N = 5, 10, 30, 50, 100, 150, 200 and 1 − α = .9, .95, .99. A small adjustment c = .25 was

performed on Chapman CI since n12 and n21 may be zeros.

When applying the hypergeometric model with fixed sample size n1 and n2, for con-

venience we assume n1 = n2. Since the hypergeometric model is applicable mainly when

individuals are available to capture as desired, it is practical to simplify this model by equal

sample size. We notice this model eliminates parameter pi and leaves only N to be estimated,

which allow us to get the exact coverage probability and width for each fixed sample and

computation can be facilitated for larger sampling. Population size N = 10, 50, 100, 200, 500
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and 1 − α = .9, .95 were chosen with different fixed values of n1 and n2 in Tables 6 and 7.

Some very small or very large samples were excluded by our study: a small value may result

in a substantial deviation and yield an extremely low or even zero coverage probability while

a large value has no more actual meaning.

The results in Tables 3-5 suggest that all of the three intervals can have a true coverage

probability of zero. The Chapman interval is clearly the worst one in that its mean coverage

is always no more than .80 even for 1 − α = .99 and N = 200 although its mean coverage

probability increases as population size increases. The Wilson and Wilson-cc intervals have

similar performance. They may have a mean coverage close to 1 − α, although sometimes

they still fall below 1−α a bit. The Wilson-cc interval is slightly better than Wilson interval

in terms of the actual coverage probability in small populations, say N ≤ 30 and the Wilson

interval is slightly better than Wilson-cc interval in terms of the actual coverage probability

in larger population. Moreover, the Wilson-cc interval exhibits a better characteristic in

narrowing the median width which is another primary consideration for our study.

From Tables 6 and 7 it can be seen that all of the three intervals have satisfactory coverage

probabilities except for very small samples. In these hypergeometric tables it appears that

they all perform better than in the multinomial table although we will interpret later that

the two models are in fact equivalent. The Wilson interval still tends to be wider than the

Wilson-cc interval and Chapman still has the worst performance among the three methods.

Hence here we would say the Wilson and Wilson-cc intervals can be recommended for general

use.

In [8], Darroch mentioned that the hypergeometric model may be regarded as a very

useful device for eliminating the nuisance parameters pi when ni are variables. One feels
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intuitively that to estimate N as if the ni are constants, when in fact they are not, is not a

serious misrepresentation, and this is supported by the discovery that the two models lead

to the same estimate N̂ of N and to the same asymptotic estimate of var(N̂). Apart from

demonstrating this, it may be wondered why there is any need to consider the multinomial

model at all. The main reason is that it is capable of generalization which the hypergeometric

model is unable to accommodate. Since the multinomial model in our study naturally

includes each possible value of n1, n2 through p1, p2 and the hypergeometric model only

covers appropriate chosen values of n1, n2, the mean coverage probability in Tables 3-5 will

be more likely to have lower value than that in the Tables 6 and 7, and the same for the

minimum coverage probability.
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Table 3: Coverage Property Summary of Three Intervals for 1− α = .90

Min Cov Mean Cov Med Width
N Chap Wil-cc Wil Chap Wil-cc Wil Chap Wil-cc Wil
10 0.0000 0.9635 0.5640 0.3805 0.9940 0.9427 8.1218 34.4033 42.9913
30 0.0000 0.4342 0.1292 0.4826 0.9405 0.9101 24.0188 69.2462 96.4618
50 0.0000 0.0086 0.0715 0.5218 0.8834 0.8921 38.8833 96.6887 133.6375
100 0.0000 0.0002 0.0406 0.5891 0.8644 0.8767 72.2277 151.3313 185.3231
150 0.0000 0.0000 0.0326 0.6303 0.8659 0.8788 106.8450 191.8241 243.7200
200 0.0000 0.0000 0.0272 0.6446 0.8768 0.8774 129.7571 248.9656 274.8937

Table 4: Coverage Property Summary of Intervals for 1− α = .95

Min Cov Mean Cov Med Width
N Chap Wil-cc Wil Chap Wil-cc Wil Chap Wil-cc Wil
10 0.0007 0.9770 0.7139 0.4673 0.9947 0.9610 9.4993 40.6493 57.4718
30 0.0000 0.6211 0.1552 0.5248 0.9640 0.9281 28.5148 81.5489 126.6523
50 0.0000 0.0158 0.1891 0.5671 0.9128 0.9300 47.1717 112.0127 173.8949
100 0.0000 0.0012 0.0857 0.6464 0.8991 0.9239 88.0090 177.9665 253.6435
150 0.0000 0.0000 0.0795 0.6713 0.9015 0.9185 127.3137 243.3423 282.5242
200 0.0000 0.0001 0.1437 0.7004 0.9084 0.9219 161.1529 286.5510 327.1040

Table 5: Coverage Property Summary of Three Intervals for 1− α = .99

Min Cov Mean Cov Med Width
N Chap Wil-cc Wil Chap Wil-cc Wil Chap Wil-cc Wil
10 0.0007 0.9813 0.8074 0.4907 0.9947 0.9718 12.7407 50.9118 94.7730
30 0.0020 0.9553 0.4930 0.5857 0.9905 0.9641 37.6153 102.3571 205.5328
50 0.0000 0.3022 0.2653 0.6166 0.9548 0.9559 60.1164 144.5744 278.1554
100 0.0000 0.0134 0.2905 0.6988 0.9368 0.9618 117.0141 236.6653 409.7357
150 0.0000 0.0030 0.3259 0.7217 0.9364 0.9609 163.4965 302.0030 481.9743
200 0.0000 0.0019 0.3552 0.7600 0.9413 0.9645 213.7892 358.0413 494.1940
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Table 6: Coverage Property of Three Intervals with Fixed Sample Size for 1− α = .90
Exact Cov Width

N n1, n2 Chap Wil-cc Wil Chap Wil-cc Wil
10 1 −− 0.9000 0.9000 −− 14.5628 39.1880
10 2 0.6222 0.9778 0.9778 11.0453 22.4357 56.9836
10 3 0.8167 0.9917 0.9917 13.7900 29.4843 51.8550
10 4 0.8810 0.9952 0.8810 12.3175 30.7255 31.4707
50 5 0.5766 0.9282 0.9282 51.5070 61.0883 182.2700
50 10 0.6856 0.9819 0.9034 72.1728 109.9600 151.0685
50 15 0.7524 0.9767 0.9080 50.2647 81.7312 66.7883
50 20 0.8117 0.9772 0.8602 33.2816 47.9082 35.8838
100 5 −− −− 0.7696 −− −− 229.3699
100 10 0.7385 0.9400 0.7385 137.7927 148.9500 361.7927
100 20 0.8273 0.9363 0.9363 121.0957 180.7800 173.1040
100 40 0.8482 0.9399 0.8557 48.1634 58.1052 46.5609
200 10 0.5915 0.3268 0.9182 190.5761 158.5700 550.6330
200 20 0.6787 0.8778 0.8778 310.7522 362.1900 602.9639
200 40 0.8646 0.9315 0.9179 179.4076 236.0957 203.7034
200 60 0.8754 0.9213 0.9039 106.4456 123.2678 105.5214
500 10 −− −− 0.8196 −− −− 702.4753
500 25 0.6405 0.8776 0.8776 735.1968 649.9512 1570.0000
500 50 0.7793 0.8894 0.8855 627.8726 819.9072 822.0001
500 100 0.8877 0.9204 0.9044 289.9297 327.0182 293.2510
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Table 7: Coverage Property of Three Intervals with Fixed Sample Size for 1− α = .95
Exact Cov Width

N n1, n2 Chap Wil-cc Wil Chap Wil-cc Wil
10 1 −− 0.9000 0.9000 −− 14.7436 52.9729
10 2 0.6222 0.9778 0.9778 13.1613 23.7910 77.6478
10 3 0.8167 0.9917 0.9917 16.4318 32.4121 69.7475
10 4 0.8810 0.9952 0.8810 14.6772 34.4425 40.7838
50 5 0.5766 0.9282 0.9282 61.3744 69.6557 248.8556
50 10 0.6856 0.9819 0.9034 85.9992 129.1636 196.4072
50 15 0.9094 0.9767 0.9094 59.8940 94.6461 81.6053
50 20 0.9295 0.9801 0.9262 39.6574 55.1449 43.0164
100 5 −− −− 0.7696 −− −− 314.9744
100 10 0.7385 0.9400 0.9400 164.1902 182.9894 485.6957
100 20 0.8273 0.9363 0.9363 144.2944 210.6808 214.9689
100 40 0.9272 0.9665 0.8979 59.3903 67.2107 55.6146
200 10 0.5915 0.9182 0.9182 227.0854 204.2069 748.2942
200 20 0.6787 0.9655 0.8778 370.2841 431.6111 785.5403
200 40 0.8646 0.9726 0.9315 213.7773 276.8388 246.1879
200 60 0.9339 0.9620 0.9213 126.8378 143.9254 126.1652
500 10 −− −− 0.8156 −− −− 960.5970
500 25 0.6405 0.8776 0.8776 876.0411 786.3512 2077.4000
500 50 0.8894 0.9517 0.9517 748.1564 957.8782 1016.5000
500 100 0.9354 0.9562 0.9204 345.4725 384.5816 351.0182
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3.2 Two Examples

Example 1 : In a field study, x = 300 mice are caught in traps, tagged, and released.

A few days later the researchers go to the study area and independently capture y = 200

mice, of which they find that x = 50 have tags. The Chapman estimate for equation

(18) is N = 1185.3, the estimated variance is 16774.5. The approximate 95% Chapman

confidence interval is (931.5, 1439.1). The approximate 95% Wilson and Wilson-cc intervals

are (973.2, 1467.3) and (961.2, 1486.9) respectively. Since the sample size is large enough,

the three intervals give similar results. Using the Wilson-cc interval we conclude with 95%

confidence that in this field the population of mice is between 961 to 1487.

Example 2 : In a wildlife survey in which the samples are selected by canvassing a study

region from a helicopter landing to mark 27 red deer detected on the first sampling occasion

and later noting 3 of 37 observed on the second occasion are marked. The typical multinomial

model may apply reasonably to this problem since neither sample size is fixed. The animals

are assumed to be distributed evenly in this study region. The approximate 95% Chapman,

Wilson and Wilson-cc confidence intervals for population size are (60.8, 495.2), (122.6, 882.3)

and (101.2, 684.3) respectively. We can see some difference among them and all of them may

be too wide to provide useful information for this small population. Either relocation for

this single recapture problem or further multiple-recapture procedures may be required for

future survey studies.

27



4 BAYESIAN STATISTICAL METHOD

4.1 Introduction to Bayesian Inference

Unlike methods of traditional statistical inference that are primarily based on a retro-

spective evaluation of the distribution of possible y values conditional on the true unknown

parameter θ, Bayesian methods distinguish themselves explicitly by conditioning on the

observed data to quantify uncertainty in statistical data analysis.In order to obtain such

a probability statement about θ given y, we must begin with a model providing a joint

probability distribution for θ and y. From probability theory, the joint probability density

function can be written as a product of two densities, that are often referred to as the prior

distribution p(θ) and the sampling distribution p(y|θ) respectively:

p(θ, y) = p(θ)p(y|θ). (25)

Simple conditioning on the known value of the data y, using the basic property of conditional

probability known as Bayes’ rule, yields the posterior density:

p(θ|y) =
p(θ, y)

p(y)
=

p(θ)p(y|θ)
p(y)

, (26)

where p(y) =
∑

θ p(θ)p(y|θ), and the sum is over all possible values of θ (or p(θ) =∫
p(θ)p(y|θ)dθ in the case of continuous θ). An equivalent form of (26) omits the factor

p(y), which does not depend on θ and, with fixed y, can thus be considered a constant,

yielding the unnormalized posterior density, which is the right side of:

p(θ|y) ∝ p(θ)p(y|θ). (27)

These simple expressions encapsulate the technical core of Bayesian inference: the primary

task of any specific application is to develop the model p(θ, y) and perform the necessary
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computations to summarize p(θ|y) in appropriate ways.

Using Bayes’ rule with a chosen probability model means that the data y affect the

posterior inference only through the function p(y|θ), which, when regarded as a function of

θ, for fixed y, is called the likelihood function. In this way Bayesian inference obeys what

is sometimes called the likelihood principle, which states that for a given sample of data,

any two probability models p(y|θ) that have the same likelihood function yield the same

inference for θ [2].
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4.2 Multiparameter Models

Virtually every practical problem in statistics involves more than one unknown or unob-

servable quantity. It is in dealing with such problems that the simple conceptual framework

of the Bayesian approach reveals its principal advantages over other methods of inference.

Although a problem can include several parameters of interest, conclusions will often be

drawn about one, or only a few, parameters at a time. In this case, the ultimate aim of a

Bayesian analysis is to obtain the marginal posterior distribution of the particular parame-

ters of interest. In principal, the route to achieving this aim is clear: we first require the

joint posterior distribution of all unknowns that are not of immediate interest to obtain the

desired marginal distribution. Or equivalently, using simulation, we draw samples from the

joint posterior distribution and then look at the parameters of interest and ignore the values

of the other unknowns. Parameters of this kind are often called nuisance parameters.

To express the idea of joint and marginal posterior distributions mathematically, suppose

θ has two parts, each of which can be a vector, θ = (θ1, θ2), and further suppose that we are

only interested in inference for θ1, so θ2 may be considered a ‘nuisance’ parameter. We seek

conditional distribution of the parameter of interest given the observed data; in this case,

p(θ1|y). This is derived from the joint posterior density,

p(θ1, θ2|y) ∝ p(y|θ1, θ2)p(θ1, θ2), (28)

by averaging over θ2:

p(θ1|y) =

∫
p(θ1, θ2|y)dθ2. (29)

Alternatively, the joint posterior density can be factored to yield

p(θ1|y) =

∫
p(θ1|θ2, y)p(θ2|y)dθ2, (30)
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which shows that the posterior distribution of interest, p(θ1|y), is a mixture of the conditional

posterior distributions given the nuisance parameter, θ2. The weights depend on the posterior

density of θ2 and thus on a combination of evidence from data and prior modeling. We rarely

evaluate the integral (30) explicitly, but it suggests an important practical strategy for both

constructing and computing with multiparameter models. Posterior distributions can be

computed by marginal and conditional simulation, first drawing θ2 from its marginal posterior

distribution and then θ1 from its conditional posterior distribution, given the drawing of θ2.

We will perform Bayesian analysis on this topic. Let’s begin with multinomial model.

Assume n = (n11, n12, n21), p = (p11, p12, p21), where pij, i, j = i, 2, are the multinomial

success probabilities in each cell as mentioned above. Thus the likelihood function is

P (n|p, N) =

(
N

n11 n12 n21 N −
∑

nij

)
pn11

11 pn12
12 pn21

21 (1−
∑

pij)
N−
P

nij . (31)

The distribution is typically thought of as implicitly conditioning on the number of ob-

servations. The conjugate prior distribution is a multivariate generalization of the beta

distribution known as Dirichlet,

P (p|α) ∝ pα1−1
11 pα2−1

12 pα3−1
21 (1−

∑
pij)

α4−1. (32)

A uniform density is obtained by setting αi = 1 for all i; this distribution assigns equal

density to any vector p. Setting αj = 0 for all j results in an improper prior distribution

that is uniform in the log(pij)’s. The resulting posterior distribution is proper if there is at

least one observation in each of the three categories, so that each component of n is positive.

We continue to use a noninformative prior distribution for N , P (N) ∝ N−2.

Therefore, the joint posterior distribution for p and N is

P (N, p|n) ∝ P (N, p)P (n|N, p) ∝ p(N)P (p)P (n|N, p)
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=

(
N

n11 n12 n21 N −
∑

nij

)
pn11+α1−1

11 pn12+α2−1
12 pn21+α3−1

21 (1−
∑

pij)
N−
P

nij+α4−1N−2.

(33)

Given N and n, the components of p have independent posterior densities that are of the form

pA
11 pB

12 pC
21 (1 −

∑
pij)

D, that is, Dirichlet densities since P (N |n) = P (N, P |n)/P (p|N, n)

should be free of p. Thus the joint density is

P (p|N, n) =
Γ(N + α1 + α2 + α3 + α4)

Γ(n11 + α1)Γ(n12 + α2)Γ(n21 + α3)Γ(N −
∑

nij + α4)

×pn11+α1−1
11 pn12+α2−1

12 pn21+α3−1
21 F (1−

∑
pij)

N−
P

nij+α4−1. (34)

Choosing αj = 1/2 for all j, the posterior distribution for N is obtained,

P (N |n) =
Γ(N + 1) Γ(n11 + 1/2) Γ(n12 + 1/2) Γ(n21 + 1/2) Γ(N −

∑
nij + 1/2)

Γ(N + 2) Γ(n11 + 1) Γ(n12 + 1) Γ(n21 + 1) Γ(N −
∑

nij + 1)
. (35)

Hence the distribution for population size could be simulated whenever the number of

detected and undetected individuals in the frist and second sample are given. The following

strategy is used here:

• Sample the cell probabilities pij from prior distribution, pij ∼ Gamma(1/2,1) which

form a joint distribution P (p) ∼ Dirichlet(1/2,1/2,1/2,1/2).

• Sample the nij from multinomial distribution with success probability pij .

• For each n = (n11, n12, n21), sample N from its marginal posterior distribution P (N |n)

and so the confidence interval for N can be obtained through the previous procedure.

Approximate minimum coverage, mean coverage probabilities, and the median width

for confidence intervals of N are listed in Table 8.
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• The fixed samples in multinomial distribution would allow us to apply Bayesian analy-

sis for the hypergeometric model in a convenient way. The approximate coverage

probability and width are shown in Tables 9 and 10.

Table 8: Coverage Property Summary of Intervals in Bayesian Analysis

N Appro Min Cov Appro Mean Cov Appro Med Width
1− α = .90 50 0.0000 0.7126 40.7900

100 0.0000 0.7378 78.1050
150 0.0000 0.7422 114.6330
200 0.0000 0.7441 149.8555
300 0.0000 0.7470 222.1775

1− α = .95 50 0.0000 0.8062 94.6447
100 0.0000 0.8431 180.1073
150 0.0000 0.8676 266.0961
200 0.0002 0.8656 352.4288
300 0.0000 0.8738 510.3923

1− α = .99 50 0.0002 0.8250 137.0191
100 0.0003 0.8620 265.3556
150 0.0003 0.8834 385.6087
200 0.0002 0.8912 513.6499
300 0.0001 0.9015 770.7565

Compared with the Frequentist methods, the Bayesian analysis used here does not show

better performance than the new Wilson and Wilson-cc intervals proposed in this thesis.

However it tends to grow steadily as N increases; Wilson and Wilson-cc intervals appear

more oscillating among the small Ns. In the hypergeometric model, the Bayesian interval

guarantees a coverage of probability which is close to 1− α even for very low proportion of

n1, n2 to N whereas the approximate width in fact is too large to make sense. The Wilson-cc

interval does not present the same characteristic. As a whole, the Bayesian interval provides

a different and stable approach on the estimation of population size for capture-recapture

problems. Whether the informative prior and hierarchical models should be used to improve
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Table 9: Coverage Property in Bayesian Analysis with Fixed Sample Size for 1− α = .90
N n1, n2 Appro Cov Appro Width
50 5 0.9221 334.5250
50 10 0.8758 99.3000
50 15 0.8804 59.5750
50 20 0.8948 37.1508
100 5 0.8004 441.4519
100 10 0.9198 276.6543
100 20 0.8960 138.1500
100 40 0.8928 50.2471
200 10 0.9152 1071.0750
200 20 0.9100 410.8256
200 40 0.8926 191.2755
200 60 0.8916 108.2107
500 10 0.8296 1307.5758
500 25 0.8864 1319.7254
500 50 0.8926 656.5759
500 100 0.8816 291.4511

the level of coverage probabilities or not will remain an issue of debate in future study.
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Table 10: Coverage Property in Bayesian Analysis with Fixed Sample Size for 1− α = .95
N n1, n2 Appro Cov Appro Width
50 5 0.9292 548.6125
50 10 0.9430 135.2625
50 15 0.9444 75.6256
50 20 0.9338 45.2000
100 5 0.9024 750.8755
100 10 0.9382 404.9625
100 20 0.9300 178.6749
100 40 0.9388 61.0443
200 10 0.9218 1537.7123
200 20 0.9533 559.9873
200 40 0.9333 231.9748
200 60 0.9356 130.7376
500 10 0.8604 1953.1769
500 25 0.9422 1824.5500
500 50 0.9406 826.7660
500 100 0.9348 345.6231
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5 CONCLUSION

Different CIs in a generalized multinomial model could show any tendency of difference

in coverage probabilities; more specific performance on conditional restriction is given by

the hypergeometric model. Although all of the intervals could have a substantially low

minimum coverage and an average coverage below 1 − α, the new Wilson method should

certainly be preferred over the Chapman CI based on their coverage criteria and width of

intervals. The Bayesian interval provides an alternative estimation. Further studies including

prior analyzing was recommended for improving Bayesian inference. For strengthening our

conclusion, all of the above intervals need finer partitions on population size, as well as more

coverage computation on larger N .
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APPENDICES

Appendix A: Matlab Code for Multinomial Model

% population size estimation for multinomial model

clear

%format compact

warning(’off’)

tic;

for alpha = [ .05 ]

cc = 1 - alpha

z0 = icdf(’norm’,1 - alpha/2,0,1);

for samp = [50]

n = samp

parms = [];

p11s = [];

p12s = [];

p21s = [];

p22s = [];

%rand(’state’,4)

%rand(’state’,sum(100*clock));

y1 = random(’gam’,.4,1,3000,1);

y2 = random(’gam’,.4,1,3000,1);

y3 = random(’gam’,.4,1,3000,1);
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y4 = random(’gam’,.5,1,3000,1);

sumy = y1 + y2 + y3 +y4 ;

p1s = y1./sumy;

p2s = y2./sumy;

p11s = p1s.*p2s;

p21s = p1s - p11s;

p12s = p2s - p11s;

p22s = ones(3000,1)-p11s-p12s-p21s;

n11= zeros(1);

n12 = zeros(1);

n21 = zeros(1);

k = 1;

while k < n +1

x1 = (0:k)’;

x2 = (0:k)’;

m = k+1;

n110 = kron(x1,ones(m,1));

n120 = kron(ones(m,1),x2);

F = [n110,n120];

t = find(sum(F’) <= k);

F = F(t,:);

n210=(k- sum(F’))’;

n11 = [n11’, F(:,1)’]’;
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n12 = [n12’,F(:,2)’]’;

n21 = [n21’,n210’]’;

k=k+1;

n22=n-n11-n12-n21;

nk = gammaln(n+1) - gammaln(n11+1) - gammaln(n12+1)

- gammaln(n21+1) -gammaln(n22+1);

% Chapman estimator

for c=0.25

n0=(n11+n21+1).*(n11+n12+1)./(n11+1)-1;

var=((n11+n21+1).*(n11+n12+1).*(n21+c).*(n12+c))./((n11+1).

*(n11+1).*(n11+2));

% Chapman interval

lbchap = n0-z0*sqrt(var);

ubchap = n0+z0*sqrt(var);

widthchap = ubchap - lbchap;

covchap = [];

totwidthchap= [];

% Wilson estimator ( to estimate var I use delta method)

p11p=(n11+c)./(n11+n12+n21+2);

p1p=(n11+n21+1)./(n11+n12+n21+2);
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p2p=(n11+n12+1)./(n11+n12+n21+2);

p1pp=(n11+n21+2*c)./(n11+n12+n21+3*c);

p2pp=(n11+n12+2*c)./(n11+n12+n21+3*c);

p11pp=(n11+c)./(n11+n12+n21+3*c);

selnp11=sqrt((1-p11p)./((n11+n12+n21+2).*p11p));

selnp1=sqrt((1-p1p)./((n11+n12+n21+2).*p1p

));

selnp2=sqrt((1-p2p)./((n11+n12+n21+2).*p2p));

var1=1./(n11+c)-1./(n11+n12+n21+2)-(n12+n21+2)./((n11+n12+1).

*(n11+n21+1));

end

end

end

m=length(var1);

var3=[];

for i= 1:m

if var1(i)< 0

var3(i) = 0;

else var3(i)= var1(i);

end

end

var2 = var3’;

k1=sqrt((var2))./(selnp11+selnp1+selnp2);
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z=z0.*k1;

%lp1=[2.*(n11+n21+2)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+

4.*p1pp.*(n12+1+1))]./(2.*(n11+n12+n21+3+z.*z));

%lp2=[2.*(n11+n12+2)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+

4.*p2pp.*(n21+1+1))]./(2.*(n11+n12+n21+3+z.*z));

%up1=[2.*(n11+n21+2)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+

4.*p1pp.*(n12+1-1))]./(2.*(n11+n12+n21+3+z.*z));

%up2=[2.*(n11+n12+2)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+

4.*p2pp.*(n21+1-1))]./(2.*(n11+n12+n21+3+z.*z));

%lp11=[2.*(n11+1)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+

4.*p11pp.*(n12+n21+2+1))]./(2.*(n11+n12+n21+3+z.*z));

%up11=[2.*(n11+1)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+

4.*p11pp.*(n12+n21+2-1))]./(2.*(n11+n12+n21+3+z.*z));

lp1=[2.*(n11+n21+2)+z.*z-z.*sqrt(z.*z+4.*(1-p1pp).*(n21+n11+2))].

/(2.*(n11+n12+n21+3+z.*z));

lp2=[2.*(n11+n12+2)+z.*z-z.*sqrt(z.*z+4.*(1-p2pp).*(n12+n11+2))].

/(2.*(n11+n12+n21+3+z.*z));

up1=[2.*(n11+n21+2)+z.*z+z.*sqrt(z.*z+4.*(1-p1pp).*(n21+n11+2))].

/(2.*(n11+n12+n21+3+z.*z));

up2=[2.*(n11+n12+2)+z.*z+z.*sqrt(z.*z+4.*(1-p2pp).*(n12+n11+2))].

/(2.*(n11+n12+n21+3+z.*z));
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lp11=[2.*(n11+1)+z.*z-z.*sqrt(z.*z+4.*(1-p11pp).*(n11+1))].

/(2.*(n11+n12+n21+3+z.*z));

up11=[2.*(n11+1)+z.*z+z.*sqrt(z.*z+4.*(1-p11pp).*(n11+1))].

/(2.*(n11+n12+n21+3+z.*z));

end

%Wilson interval

ubwil=(n11+n12+n21+3).*up1.*up2./lp11;

lbwil=(n11+n12+n21+3).*lp1.*lp2./up11;

widthwil=ubwil-lbwil;

covwil = [];

totwidthwil = [];

for i = 1:3000

if p11s(i)>= .0001 & p12s(i)>= .0001 & p21s(i)>= .0001& p22s(i)>= .0001

lnkp = nk + n11.*log(p11s(i)) + n12.*log(p12s(i)) + n21.*log(p21s(i))+

n22.*log(p22s(i));

prob = exp(lnkp);

ind1 = (lbchap <= n & n <= ubchap);

totchap = sum(prob.*ind1);

covchap = [covchap; totchap];

width1 = widthchap’*prob;

totwidthchap = [totwidthchap; width1];
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ind2 = (lbwil <= n & n <= ubwil);

totwil = sum(prob.*ind2);

covwil = [covwil; totwil];

width2 = widthwil’*prob;

totwidthwil = [totwidthwil; width2];

else

end

end

Chap = [min(covchap),mean(covchap), median(totwidthchap)];

Wil = [min(covwil),mean(covwil), median(totwidthwil)];

toc;
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Appendix B: Matlab Code for Hypergeometric Model

% This is hypergeometric model using both Chapman interval and

Wilson interval

clear

%format compact

warning(’off’)

tic;

for alpha = [ .1]

cc = 1 - alpha

z0 = icdf(’norm’,1 - alpha/2,0,1);

%generate counts and we assume the numbers of first and second sample

are fixed.

%both of them are 300

for samp = [30]

n = samp

n11= zeros(1);

n12 = zeros(1);

n21 = zeros(1);

k =6;

x1 = (0:k)’;

x2 = (0:k)’;

m = k+1;
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n11 = kron(x1,ones(m,1));

n12 = kron(ones(m,1),x2);

F = [n11,n12];

t = find(sum(F’) == k);

F = F(t,:);

n11 = F(:,1);

n12 = F(:,2);

n21=(k- n11);

n22=n-n11-n12-n21;

%Chapman estimator

for c=0.25

n0=(n11+n21+1).*(n11+n12+1)./(n11+1)-1;

var=((n11+n21+1).*(n11+n12+1).*(n21+c).*(n12+c))./((n11+1).

*(n11+1).*(n11+2));

% Wilson estimator ( to estimate var I use delta method)

p11p=(n11+c)./(n11+n12+n21+2);

p1p=(n11+n21+1)./(n11+n12+n21+2);

p2p=(n11+n12+1)./(n11+n12+n21+2);

p1pp=(n11+n21)./(n11+n12+n21);

p2pp=(n11+n12)./(n11+n12+n21);

p11pp=n11./(n11+n12+n21);
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selnp11=sqrt((1-p11p)./((n11+n12+n21+2).*p11p));

selnp1=sqrt((1-p1p)./((n11+n12+n21+2).*p1p));

selnp2=sqrt((1-p2p)./((n11+n12+n21+2).*p2p));

var1=1./(n11+c)-1./(n11+n12+n21+2)-(n12+n21+2)./((n11+n12+1).

*(n11+n21+1));

m=length(var1);

var3=[];

for i= 1:m

if var1(i)< 0

var3(i) = 0

else var3(i)= var1(i);

end

end

end

var2 = var3’

k1=sqrt((var2))./(selnp11+selnp1+selnp2);

z=z0.*k1;

lp1=[2.*(n11+n21+2)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+

4.*p1pp.*(n12+1+1))]./(2.*(n11+n12+n21+3+z.*z));

lp2=[2.*(n11+n12+2)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+
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4.*p2pp.*(n21+1+1))]./(2.*(n11+n12+n21+3+z.*z));

up1=[2.*(n11+n21+2)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+

4.*p1pp.*(n12+1-1))]./(2.*(n11+n12+n21+3+z.*z));

up2=[2.*(n11+n12+2)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+

4.*p2pp.*(n21+1-1))]./(2.*(n11+n12+n21+3+z.*z));

lp11=[2.*(n11+1)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+

4.*p11pp.*(n12+n21+2+1))]./(2.*(n11+n12+n21+3+z.*z));

up11=[2.*(n11+1)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+

4.*p11pp.*(n12+n21+2-1))]./(2.*(n11+n12+n21+3+z.*z));

%lp1=[2.*(n11+n21+2)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+

4.*p1pp.*(n12+1+1))]./(2.*(n11+n12+n21+3+z.*z));

%lp2=[2.*(n11+n12+2)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+

4.*p2pp.*(n21+1+1))]./(2.*(n11+n12+n21+3+z.*z));

%up1=[2.*(n11+n21+2)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+

4.*p1pp.*(n12+1-1))]./(2.*(n11+n12+n21+3+z.*z));

%up2=[2.*(n11+n12+2)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+

4.*p2pp.*(n21+1-1))]./(2.*(n11+n12+n21+3+z.*z));

%lp11=[2.*(1+n11)+z.*z-1-z.*sqrt(z.*z-2-1./(n11+n12+n21+3)+

4.*p11pp.*(n12+n21+2+1))]./(2.*(n11+n12+n21+3+z.*z));

%up11=[2.*(1+n11)+z.*z+1+z.*sqrt(z.*z+2-1./(n11+n12+n21+3)+

4.*p11pp.*(n12+n21+2-1))]./(2.*(n11+n12+n21+3+z.*z));

end
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%wilson interval

ubwil=exp(log(n11+n12+n21+3)+log(up1.*up2./lp11));

lbwil=exp(log(n11+n12+n21+3)+log(lp1.*lp2./up11));

%chapman interval

lbchap = n0-z0.*sqrt(var);

ubchap = n0+z0.*sqrt(var);

widthchap = ubchap - lbchap;

widthwil=ubwil-lbwil;

% hypergeometric probability

prob= hygepdf(n11,30,6,6);

ind1 = (lbchap <= n & n <= ubchap);

ind2=(lbwil <= n & n <= ubwil);

totchap = sum(prob.*ind1);

totwil=sum(prob.*ind2);

width1 = widthwil’*prob

width2=widthchap’*prob

totchap

totwil

end

toc;
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Appendix C: R code for Multinomial Model in Bayesian Statistics

y1<-rgamma(1000,.5,1)

y2<-rgamma(1000,.5,1)

y3<-rgamma(1000,.5,1)

y4<-rgamma(1000,.5,1)

sum<-y1+y2+y3+y4

p11<-y1/sum

p12<-y2/sum

p21<-y3/sum

p22<-y4/sum

for (i in 1:1000){

if (p11[i]<=.0001|p21[i]<=.0001|p12[i]<=.0001|p22[i]<=.0001)

p11[i]<-rgamma(1,.5,1)

p12[i]<-rgamma(1,.5,1)

p21[i]<-rgamma(1,.5,1)

p22[i]<-rgamma(1,.5,1)

p11[i]<-p11[i]/sum(p11[i]+p12[i]+p21[i]+p22[i])

p12[i]<-p12[i]/sum(p11[i]+p12[i]+p21[i]+p22[i])

p21[i]<-p21[i]/sum(p11[i]+p12[i]+p21[i]+p22[i])

p22[i]<-p22[i]/sum(p11[i]+p12[i]+p21[i]+p22[i])}

samplen<-rmultinom(1000,50,c(p11[1],p12[1],p21[1],p22[1]))

n11=samplen[1,]
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n12=samplen[2,]

n21=samplen[3,]

for (i in 2:1000){

samplen<-rmultinom(1000,50,c(p11[i],p12[i],p21[i],p22[i]))

n11<-rbind(n11,samplen[1,])

n12<-rbind(n12,samplen[2,])

n21<-rbind(n21,samplen[3,])}

mm<-dim(samplen)

pp<-function(N,n1,n2,n3){

p1<-lgamma(N+1)+lgamma(n1+1/2)+lgamma(n2+1/2)+lgamma(n3+1/2)+

lgamma(N-n1-n2-n3+1/2)-2*log(N)+700

p2<-lgamma(N+2)+lgamma(n1+1)+lgamma(n2+1)+lgamma(n3+1)+

lgamma(N-n1-n2-n3+1)

p<-p1-p2

return(exp(p))}

s99<-NA

s95<-NA

s90<-NA

mean1<-NA

t=n11+n12+n21+1
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for (j in 1:1000){

sample1<-sample(t[j,1]:5000,1000,prob=pp(t[j,1]:

5000,n11[j,1],n12[j,1],n21[j,1]),replace=T)

for (i in 2:1000){

sample1<-rbind(sample1,sample(t[j,i]:5000,1000,prob=pp(t[j,i]:

5000,n11[j,i],n12[j,i],n21[j,i]), replace=T))

cred.intervals <- apply(sample1,1,quantile,

c(0.01,0.025,.05,.9,0.975,.99))}

ci99<-NA

ci95<-NA

ci90<-NA

for(i in 1:1000){

if(cred.intervals[1,i]<= 50 & 50 <=cred.intervals[6,i])

ci99[i]=1

else

ci99[i]=0

if(cred.intervals[2,i]<= 50 & 50 <=cred.intervals[5,i])

ci95[i]=1

else

ci95[i]=0

if(cred.intervals[3,i]<= 50 & 50 <=cred.intervals[4,i])

ci90[i]=1

else
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ci90[i]=0}

s99<-cbind(s99,sum(ci99))

s95<-cbind(s95,sum(ci95))

s90<-cbind(s90,sum(ci90))

mean1<-cbind(mean1,apply(cred.intervals,1,mean))}

mean(s99[2:1000])/99

mean(s95[2:1000])/99

mean(s90[2:1000])/99

apply(mean1[,2:1000],1,quantile,c(.5))
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Appendix D: R code for Hypergeometric Model in Bayesian Statistics

n1<-100

n2<-100

n11<-rhyper(5000,n1,500-n1,n2)

pp<-function(N,n1,n2,n11){

p1<-lgamma(N-n1+1)-lgamma(N-n1-n2+n11+1)-lgamma(N+1)+

lgamma(N-n2+1)-2*log(N)+700

return(exp(p1))}

t=n1+n2-n11+1

sample1<-sample(t[1]:5000,100,prob=pp(t[1]:

5000,n1,n2,n11[1]),replace=T)

for (i in 2:5000){

sample1<-rbind(sample1,sample(t[i]:

5000,100,prob=pp(t[i]:5000,n1,n2,n11[i]), replace=T))}

cred.intervals <- apply(sample1,1,quantile, c(0.025,.5,0.975))

dim(cred.intervals)

ci<-NA

for(i in 1:5000){

if(cred.intervals[1,i]<= 500 & 500 <=cred.intervals[3,i])

55



ci[i]=1

else

ci[i]=0}

sum(ci)/5000

median(cred.intervals[3,]-cred.intervals[1,])
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