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ABSTRACT

Nested (2, r)-Regular Graphs and Their Network Properties

by

Josh Brooks

A graph G is a (t, r)-regular graph if every collection of t independent vertices is col-

lectively adjacent to exactly r vertices. If a graph G is (2, r)-regular where p, s, and m

are positive integers, and m ≥ 2, then when n is sufficiently large, then G is isomorphic

to G = Ks+mKp, where 2(p−1)+s = r. A nested (2, r)-regular graph is constructed

by replacing selected cliques with a (2, r)-regular graph and joining the vertices of the

peripheral cliques. For example, in a nested ‘s’ graph when n = s + mp, we obtain

n = s1+m1p1+mp. The nested ‘s’ graph is now of the form Gs = Ks1 +m1Kp1 +mKp.

We examine the network properties such as the average path length, clustering coef-

ficient, and the spectrum of these nested graphs.
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1 INTRODUCTION

Graph Theory is an area of mathematics that has grown considerably since the

introduction of the internet. Graphs can be used to model relationships. Such rela-

tionships could be a connection between individuals like as in a friendship or between

to web sites that share a common theme or link. In order to obtain a better under-

standing, we can use the techniques in Graph Theory to analyze the behavior of these

graphs or networks.

In this thesis, we will first give an overview of previous work on networks and their

properties, then implement these ideas on a particular family of graphs. We will also

develop a deterministic algorithm to generate a network and study the changes in its

properties.

Frequently, networks are changing and growing; their structure is dynamic. Re-

search by several parties, including Strogatz and Watts [14] to Albert and Barabási

[1], have shown that networks such as the power grid of the western United States [14]

and short-term memory are small world networks [5]. These small-world networks are

highly clustered yet have a low average path length. An example of a highly clustered

network would be a social networking site. We will formally define these properties in

the next section and investigate, in detail, this family of graphs in the next chapter.

1.1 Small World Graphs

The concept of small-world describes networks that despite being large in size, in

most cases, there is a relatively short path between any two vertices or nodes. The

distance is determined by the number of edges along the shortest path between two
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nodes. The most popular appearance is the “six degrees of separation” concept that

was studied by the psychologist Stanley Milgram [2]. The idea behind the six degrees

of separation is that every person in the world can be linked to another by at most

six individuals.

In 1967, Stanley Milgram was given funding of $680 by the Laboratory of Social

Relations at Harvard to study this small-world phenomenon [11]. He needed to de-

velop a method that would allow him to record the number of acquaintances that

linked two individuals. Milgram established two different starting points: the first in

Wichita, Kansas, and the second in Omaha, Nebraska. The target for the Kansas

Project was a wife of a divinity school student in Cambridge, Massachusetts, and the

target for the Nebraska project was a stockbroker that lived in Boston. During the

Nebraska project, 160 letters were sent to residents in Omaha to participate in the

experiment. The package that was sent included instructions of the experiment, a

roster to keep track of who got the letter, and tracer cards that were to be sent back

to Milgram for feedback on his study. The instructions stated that the individual

must forward the package to a friend or acquaintance of whom he or she were on a

first name basis. When the study was concluded the chains varied in length from two

to ten intermediate steps, and out of the 160 packages, 44 made the complete journey

to the man in Boston, while 126 dropped out. Milgram stated that the median of

those chains was five intermediates [11].

The notion of small-world networks was introduced in the 1998 paper, Collective

dynamics of ‘small-world’ networks, by Strogatz and Watts [14]. In this paper, they

started with a regular ring lattice graph and began to rewire the graph. A regular ring

10



Figure 1: Regular Ring Lattice

p = 0 p = 1

Regular Small-world Random

Figure 2: ‘Rewiring’ of the Ring Lattice

lattice is a graph with n nodes and m edges where every node in the ring is adjacent

to its first additional k neighbors and every node is of the same degree. Figure 1 is

an example of a regular lattice graph when k = 2.

Watts and Strogatz gave each edge a random probability p and began to rewire

the graph. By doing this, they were able to tune the graph from regular, where p = 0,

and completely random, p = 1, [14]. Figure 2 demonstrates the process in which they

rewired the ring lattice.

Watts and Strogatz described graphs, or networks, as small world if the graphs are

highly clustered like a regular graph, yet have a small average path length [14]. The

clustering coefficient is defined as follows. Suppose that a vertex v has kv neighbors;
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then at most kv(kv − 1)/2 edges can exist between them. Let Cv denote the fraction

of these allowable edges that actually exist. Define C as the average of Cv over all v.

The clustering coefficient can also be found a number of different ways. A path uvw

is said to be closed if the edge uw is present. The clustering coefficient can then be

defined as the fraction of closed paths of length two in the network,

C =
(number of closed paths of length two)

number of paths of length two
.

A different way to define the clustering coefficient is

number of triangles× 6

number of paths of length two
.

The clustering coefficient lies in the range from zero to one [12].The average path

length, L, is defined as the number of edges in the shortest path between two vertices,

averaged over all pairs of vertices [14]. They noticed that as the graph becomes

more and more random, the average path length, a global property, grows whereas

the clustering coefficient, a local property, remains relatively unchanged in a broad

interval between 0 < p < 1.

Small world networks have been found to be generic for many large, sparse net-

works found in nature. A few examples are the collaboration of film actors where an

edge represents that two actors have worked on a film together, the neural network

of the worm Caenorhabditis elegans, the power grid of the western United States

[14], and short-term memory uses small world networks between neurons [5]. The

research of such networks has lead into a new type of network modeling that deals

with properties of small world networks along with a network’s degree distribution,

namely scale-free networks.
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Scale-free networks is a term defined in 1999 by Réka Albert and Albert-László

Barabási [1]. A scale free network is a connected graph or network with the property

that the number of links originating from a given node exhibits a power law distri-

bution P (k) ∼ ck−γ. Barabási and Albert developed an algorithm on how to grow

a graph or network to be scale free. First, networks are expanded continuously with

the addition of new nodes, and then these new nodes are attached preferentially to

sites that are already well connected [1, 2]. They assumed that the probability
∏

that a new node will be connected to node i depends on the degree ki of node i such

that ∏
(ki) =

ki∑
j

kj

.

Watts and Strogatz introduced the concept of clustering coefficient and average

path length [14]. It later became apparent these properties alone are not sufficient

to characterize small-world networks. Albert and Barabási introduced the scale-free

property of small-world networks. In this work we will not investigate the scale-free

properties of the nested (2, r)-regular graphs that will be defined in Chapter 2, but

we gain motivation from the research on this property.

1.2 Pseudofractals and Hierarchical Graphs

Barabási, Erzébet Ravasz, and Tamás Vicsek introduced a deterministic algorithm

to construct networks with scale-free properties [3]. The construction of such networks

follows a hierarchical rule, where each iteration uses components that are created in

previous steps [3]. The construction can be as follows. Let the initial step be a vertex.

Then, in the next iteration, add two more vertices and connect them to the initial

13



vertex. You now have constructed a P3. In the next step, add two more copies of a

P3 and connect the mid-point of the initial P3 with the outer vertices of the two new

P3’s. This construction can be continued indefinitely [13]. Figure 3 is an example of

a hierarchical network or graph.

n = 0

n = 1

n = 2

Figure 3: Hierarchical Network

The pseudofractal is another example of a deterministic graph construction that

has been proposed by S. N. Dorogovstev, et al. to model the growth of scale-free

networks [6]. The graph is constructed in a similar manner to that of the hierarchical

graphs. The graph grows at each step by connecting together three copies of the

graph in the previous step [13]. Figure 4 gives an example of one such graph.

t = 0

t = 1

t = 2

Figure 4: Pseudofractal Graph
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1.3 (t, r)-Regular Graphs

As defined in [4], a graph G is a finite nonempty set of objects called vertices

together with a set of unordered pairs of distinct vertices of G called edges. The

vertex set of G is denoted by V (G), while the edge set is denoted by E(G).

The edge e = {u, v} is said to join the vertices u and v. If e = {u, v} is an edge

of a graph G, then u and v are adjacent vertices, while u and e are incident, as are v

and e. The cardinality of the vertex set of G is called the order of G and is commonly

denoted by n(G) or n. The cardinality of its edge set is the size of G and is often

denoted by m(G) or m. The degree of a vertex v in a graph G is the number of edges

of G incident with v, which is denoted by deg v.

For a connected graph G, we define the distance, denoted d(u, v), between two

vertices u and v as the minimum of the lengths of the u − v paths of G. The

eccentricity, denoted e(v), of a vertex v is the number maxu∈V (G)d(u, v). That is, e(v)

is the distance between v and a vertex farthest from v. The diameter of G, denoted

diam G, is the maximum eccentricity among the vertices of G.

A graph G is regular of degree r if deg v = r for each vertex v of G. Graphs

are called r-regular if all vertices are of the same degree r and a graph is complete

if every two of its vertices are adjacent. A complete graph is of order n and size

m is therefore a regular graph of degree n − 1 having m = n(n − 1)/2. We denote

this graph by Kn. The join G = G1 + G2, sometimes denoted G = G1

∨
G2, has

V (G) = V (G1)∪V (G2) and E(G) = E(G1)∪E(G2)∪{uv|u ∈ V (G1) and v ∈ V (G2)}.

Two vertices are independent if they are not adjacent to one another. Figure 5 is an

example demonstrating some of these properties.
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a

b e

c d

Figure 5: A 2-regular graph where a and d are independent and the diam G is 2.

A graph G is (t, r)-regular if every collection of t independent vertices is collectively

adjacent to exactly r vertices. An r-regular graph is a (1, r)-regular graph, and in a

1996 paper by R. Faudree and D. Knisley the characterization of (2, r)-regular graphs

was defined [7].

Theorem 1.1 [7] Let r, s, and p be nonnegative integers and let G be a (2, r)-regular

graph of order n. If n is sufficiently large, then G is isomorphic to Ks + mKp where

2(p− 1) + s = r. There are exactly b r+1
2
c such graphs.

Figure 6 is the generalized construction of these graphs.

Ks

Kp

Kp

Figure 6: General form of a (2, r)-regular graph

Consider the example in Figure 7. Notice that the cardinality of the neighborhood

of any two independent vertices is always 20 and hence this graph is a (2, 20)-regular

graph. The degree distribution of this graph is bimodal. In fact, all (2, r)-regular
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graphs of the form Ks + mKp have a bimodal degree distribution, where the vertices

have either a degree of s + mp or (p− 1) + s. Two examples of a (2, 3)-regular graph

are given in Figure 8.

Figure 7: K16 + mK3

To construct these graphs, we first need to solve the equation 2(p − 1) + s = r

for some value r. The kernel, denoted Kert(G), is the set of vertices that are not in

any of the independent sets of t of G. The shell, denoted Shellt(G), is the set of all

vertices excluding the kernel [8]. Here p is the order of the each peripheral clique in

the shell, and s is the order of the kernel. The graphs in Figure 7 are examples of

(2, r)-regular graphs, when r = 3.

To find p and s, we first set up the equation:

2(p− 1) + s = 3

We then solve for p and s, and our solutions are as follows: when p = 1, s = 3 and

17



when p = 2, s = 1.

Figure 8: Examples of (2,3)-regular graphs

The graphs in Figure 8 are the only solutions since p, s are elements of the positive

integers. As r increases, the number of (2, r)-regular graphs also increase for those

values. Figure 9 is an example of a (2, r)-regular graph when r = 6. To construct

such a graph, we use our equation defined above.

2(p− 1) + s = 6

Here we have the solution set {s, p, m} = {6, 1, 2}.

Figure 9: (2,6)-regular graph

In a 2003 paper by Jamison and Johnson, it was found that this characterization

does not hold for r ≥ 3, but the structure of such graphs are very similar to this

construction when the order of the graph is sufficiently large [8].

18



Corollary 1.2 For t ≥ 3, r ≥ 1, and n ≥ N(t, r), every (t, r)-regular graph of order

n may be constructed as follows: choose integers a ≥ 0, p ≥ 1, and m ≥ t such that

r = t(p − 1) + a and n = mp + a; if a = 0 take G = mKp; otherwise, take a graph

H with n(H) = a and α(H) < t and construct G by putting in some of the edges

between H and mKp in H
∨

mKp so that in G, for each k ∈ {1, ..., α(H)}, and each

independent set of vertices S ⊆ V (H) with |S| = k, no more than t − k − 1 of the

p-cliques of mKp contain vertices not adjacent to any vertex of S.

In this paper, Jamison and Johnson found that when r ≥ 3 that the kernel is almost

complete and the shell is mostly joined to the kernel [8].
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2 NESTED (2,r)-REGULAR GRAPHS

Recall that the clustering coefficient of a graph ranges from zero to one. In general,

a sparse graph is small-world if the clustering coefficient is high and the average path

length is low. We find that the (2, r)-regular graphs have a high clustering coefficient

and short average path length, but they are not sparse.

By motivation from the work on pseudofractals [3], and hierarchical graphs [13],

we developed a deterministic construction to reduce the number of edges in (2, r)-

regular graphs. In our construction, we explored the technique of ‘nesting’ or replacing

specific cliques of the graph with a (2, r)-regular graph of the same order as the clique

and only joining the vertices of the peripheral cliques. In this section, we will define

nested ‘s’, nested ‘p’, and nested ‘s, p’.

2.1 Nested ‘s’

For a nested ‘s’ graph, we replace the center clique, Ks, with a (2, r)-regular graph

of the form G1 = Ks1 + m1Kp1 . In the formula n = s + mp where s = s1 + m1p1,

we get that n = s1 + m1p1 + mp. The nested ‘s’ graph is now of the form Gs =

Ks1 + m1Kp1 + mKp. Figure 10 is the general form of the nested ‘s’ graphs.

Ks1

Kp1

Kp1

Kp

Kp

Figure 10: General form of a nested ‘s’ (2, r)-regular graph
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Figure 11 and 12 are examples of nesting a (2,r)-regular. The graph in Figure

11 is a (2, 10)-regular graph with 99 edges, and then we nested the graph with a

(2, 2)-regular graph of the form K2 + 4K1. The nested ‘s’ graph contains 69 edges.

By nesting the graph, we reduce the number of edges in the graph.

Figure 11: (2, 10)-regular graph

Figure 12: Nested (2, 2)-regular graph

2.2 Nested ‘p’

For a nested ‘p’ graph, we replace the peripheral cliques, Kp’s, with (2, r)-regular

graphs of the form G1 = Ks1 +m1Kp1 . In the formula n = s+mp where p = s1+m1p1,

21



we get that n = s + m(s1 + m1p1). The nested ‘s’ graph is now of the form Gp =

Ks1 + m(Ks1 + m1Kp1). Figure 13 is the general form of the nested ‘p’ graphs.

Ks

Kp1

Kp1

Kp1

Kp1

Ks1

Ks1

Figure 13: General form of a Nested ‘p’ (2, r)-regular graph

2.3 Nested ‘s, p’

For a nested ‘s, p’ graph, we replace both the center clique, Ks, and the peripheral

cliques, Kp’s, with a (2, r)-regular graph of the form G1 = Ks1 + m1Kp1 and G2 =

Ks2 + m1Kp2 . In the formula n = s + mp where s = s1 + m1p1 and p = s2 + m2p2, we

get that n = s1 + m1p1 + m(s2 + m2p2). The nested ‘s, p’ graph is now of the form

Gs,p = Ks1 + m1Kp1 + m(Ks2 + m2Kp2). Figure 14 is the general form of the nested

‘s, p’ graphs.
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Ks1

Kp1

Kp1

Kp2

Kp2

Kp2

Kp2

Ks2

Ks2

Figure 14: General form of a nested ‘s, p’ (2, r)-regular graph
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3 NETWORK PROPERTIES

In Network Properties of (t,r)-regular graphs for small t, Knisley et al. studied

the network properties of (2, r)-regular graphs [9].

Theorem 3.1 [9] Let s, m, and p be nonnegative integers and let r = 2(p − 1) + s.

Let G be a (2, r)-regular graph of the form Ks + mKp. If s and p are fixed constants

and m →∞, then L → 2 and C → 1.

In the proof of this theorem, the generalized formulas for the average path length

and clustering coefficients of the (2, r)-regular graph were determined. They found

the average path length to be

L =

(
s
2

)
+ smp + m

(
p
2

)
+ 2[

(
mp
2

)
−m

(
p
2

)
](

s+mp
2

)
and the clustering coefficient as

C =

s

(
(s−1

2 )+m(p
2)+mp(s−1)

(s+mp−1
2 )

)
+ mp

s + mp
.

We will now determine the network properties of the nested (2, r)-regular graphs.

3.1 Average Path Length of Nested (2, r)-Regular Graphs

Theorem 3.2 The average path length of a nested ‘s’ graph is

L = 1 +
p2

(
m
2

)
+ p2

1

(
m1

2

)
+ s1mp(

n
2

) .

Proof: Since the diameter of the graph is 2, the only possible paths are those of

length 1 and length 2. The total number of paths of length one are the total number of
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edges in the graph, therefore there are P1 =
(

s1

2

)
+m1

(
p1

2

)
+m

(
p
2

)
+s1m1p1 +m1p1mp.

By definition of average path length, we found that the total number of paths of

length 2 are P2 =
(

n
2

)
− P1. Average path length, for graphs of diameter 2, is defined

as follows

L =
P1 + 2P2(

n
2

) .

By substituting in our P1 and P2, we obtain the following

L =

(
s1

2

)
+ m1

(
p1

2

)
+ m

(
p
2

)
+ s1m1p1 + m1p1mp(

n
2

)
+

2(
(

n
2

)
−

(
s1

2

)
+ m1

(
p1

2

)
+ m

(
p
2

)
+ s1m1p1 + m1p1mp)(

n
2

) .

Which reduces to

L =

(
n
2

)
+ p2

(
m
2

)
+ p2

1

(
m1

2

)
+ s1mp(

n
2

) .

Thus, the average path length of a nested ‘s’ is

L = 1 +
p2

(
m
2

)
+ p2

1

(
m1

2

)
+ s1mp(

n
2

) .�

Theorem 3.3 The average path length of a nested ‘p’ graph is

L = 1 +

(
m
2

)
(4s1m1p1 + 3s2

1) + p2
1

(
mm1

2

)
+ sms1(

n
2

) .

Proof: The diameter of a nested ‘p’ graph is 4, and the only possible paths are of

length 1, 2, 3, and 4. The total number of paths of length 1 are P1 =
(

s
2

)
+ m

(
s1

2

)
+

mm1

(
p1

2

)
+ ms1m1p1 + smm1p1, paths of length 2 P2 = sms1 + p2

1

(
mm1

2

)
, paths of

length 3 P3 = m2s1m1p1 −ms1m1p1 and paths of length 4 P4 = s2
1

(
m
2

)
. The average

path length, for graphs of diameter 4, is defined as follows

L =
P1 + 2P2 + 3P3 + 4P4(

n
2

) .
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By substituting and simplifying, we obtain the following

L =

(
n
2

)
+

(
m
2

)
(4s1m1p1 + 3s2

1) + p2
1

(
mm1

2

)
+ sms1(

n
2

) .

Therefore, the average path length of a nested ‘p’ graph is

L = 1 +

(
m
2

)
(4s1m1p1 + 3s2

1) + p2
1

(
mm1

2

)
+ sms1(

n
2

) .�

Theorem 3.4 The average path length of a nested ‘s, p’ graph is

L = 1 +

(
m
2

)
(4s2m2p2 + 3s2

2) + p2
2

(
mm2

2

)
+ p2

1

(
m1
2

)
+ m(s1m2p2 + m1p1s2 + s1s2)(

n
2

) .

Proof: The diameter of a nested ‘s, p’ graph is 4, and the only possible paths

are of length 1, 2, 3, and 4. The total number of paths of length 1 are P1 =
(

s1

2

)
+

m1

(
p1

2

)
+ mm2

(
p2

2

)
+ m

(
s2

2

)
+ ms2m2p2 + mm1p1m2p2 + s1m1p1, paths of length 2

P2 = p2
1

(
m1

2

)
+p2

2

(
mm2

2

)
+ms1m2p2 +mm1p1s2, paths of length 3 P3 = ms2s1 +m(m−

1)s2m2p2 and paths of length 4 P4 = s2
2

(
m
2

)
. The average path length, for graphs of

diameter 4, is defined as follows

L =
P1 + 2P2 + 3P3 + 4P4(

n
2

) .

By substituting and simplifying, we obtain the following(
n
2

)
+

(
m
2

)
(4s2m2p2 + 3s2

2) + p2
2

(
mm2

2

)
+ p2

1

(
m1

2

)
+ m(s1m2p2 + m1p1s2 + s1s2)(

n
2

) .

Therefore, the average path length of a nested ‘s, p’ graph is

L = 1 +

(
m
2

)
(4s2m2p2 + 3s2

2) + p2
2

(
mm2

2

)
+ p2

1

(
m1
2

)
+ m(s1m2p2 + m1p1s2 + s1s2)(

n
2

) .�
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3.2 Clustering Coefficient of Nested (2, r)-Regular Graphs

Theorem 3.5 The clustering coefficient of a nested ‘s’ graph is

C =
s1(CU) + m1p1(CV ) + mp(CW )

s1 + m1p1 + mp
.

Proof: By the structure of the nested ‘s’ graph, there are only three distinct values

for the clustering coefficients of the vertices. Let Cu denote the set of vertices whose

clustering coefficient is CU =
m1(p1+s1−1

2 )−(m1−1)(s1−1
2 )

(s1−1+m1p1
2 )

, Cv denote the set of vertices

whose clustering coefficient is CV =
m(p1−1+p

2 )−m(p1−1
2 )+(p1−1+s1

2 )
(p1−1+s1+mp

2 )
, and Cw denote the set

of vertices whose clustering coefficient is CW =
m1(p−1+p1

2 )−(m1−1)(p−1
2 )

(p−1+m1p1
2 )

. The clustering

coefficient of the graph is defined as the sum of the clustering coefficients of the

graph divided by the total number of vertices in the graph. Therefore, the clustering

coefficient of a nested ‘s’ graph is

C =
s1(CU) + m1p1(CV ) + mp(CW )

s1 + m1p1 + mp
.�

Theorem 3.6 The clustering coefficient of a nested ‘p’ graph is

C =
s(CU) + mm1p1(CV ) + ms1(CW )

s + ms1 + mm1p1

.

Proof: By the structure of the nested ‘p’ graph, there are only three distinct

values for the clustering coefficients of the vertices. Let Cu denote the set of vertices

whose clustering coefficient is CU =
mm1(s−1p1

2 )−(mm1−1)(s−1
2 )

(s−1+mm1p1
2 )

, Cv denote the set of

vertices whose clustering coefficient is CV =
(p1−1+s

2 )+(p1−1+s1
2 )−(p−1

2 )
(p1−1+s+s1

2 )
, and Cw denote

the set of vertices whose clustering coefficient is CW =
m1(s1−1+p1

2 )−(m1−1)(s1−1
2 )

(s1−1+m1p1
2 )

. The

clustering coefficient of the graph is defined as the sum of the clustering coefficients
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of the graph divided by the total number of vertices in the graph. Therefore, the

clustering coefficient of a nested ‘p’ graph is

C =
s(CU) + mm1p1(CV ) + ms1(CW )

s + ms1 + mm1p1

.�

Theorem 3.7 The clustering coefficient of a nested ‘s, p’ graph is

C =
s1(CU) + m1p1(CV ) + mm2p2(CW ) + ms2(CX)

s1 + m1p1 + ms2 + mm2p2

.

Proof: By the structure of the nested ‘s, p’ graph, there are only four distinct

values for the clustering coefficients of the vertices. Let Cu denote the set of vertices

whose clustering coefficient is

CU =
m1

(
s1−1+p1

2

)
− (m1 − 1)

(
s1−1

2

)(
s1−1+m1p1

2

) ,

Cv denote the set of vertices whose clustering coefficient is

CV =

(
p1−1+s1

2

)
+ mm2

(
p1−1+p2

2

)
−mm2

(
p1−1

2

)(
p1−1+s1+mm2p2

2

) ,

Cw denote the set of vertices whose clustering coefficient is

CW =

(
p2−1+s2

2

)
+ m1

(
p2−1+p1

2

)
−m1

(
p2−1

2

)(
p2−1+s2+m1p1

2

) ,

and Cx denote the set of vertices whose clustering coefficient is

CX =
m2

(
s2−1+p2

2

)
− (m2 − 1)

(
s2−1

2

)(
s2−1+m2p2

2

) .

The clustering coefficient of the graph is defined as the sum of the clustering coeffi-

cients of the graph divided by the total number of vertices in the graph. Therefore,

the clustering coefficient of a nested ‘s, p’ graph is

C =
s1(CU) + m1p1(CV ) + mm2p2(CW ) + ms2(CX)

s1 + m1p1 + ms2 + mm2p2

.�
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4 SPECTRAL PROPERTIES OF (2, r)-REGULAR GRAPHS AND NESTED ‘s’

GRAPHS

The Laplacian Matrix is defined as

L = D − A

where L is the obtained Laplacian matrix, D is the diagonal matrix whose diagonal

consists of the degrees of the vertices, and A is the adjacency matrix. In the adjacency

matrix, if two vertices are adjacent to each other the element in the corresponding

matrix is a one, otherwise it is a zero [4]. The Laplacian of a (2, r)-regular graph, of

the form Ks + mKp, is of the form

L =


C −1T

P 0 · · · 0

−1 0 P
. . .

...
...

. . . . . . 0
0 · · · 0 P

 .

In the matrix above, −1 represents the mp× s matrix in which every entry is −1,

and the matrices C and P are of the form

C =


n− 1 −1 · · · −1

−1 n− 1
. . .

...
...

. . . . . . −1
−1 · · · −1 n− 1

 , P =


q −1 · · · −1

−1 q
. . .

...
...

. . . . . . −1
−1 · · · −1 q

 ,

where n = s + mp and q = p + s − 1. We then studied various (2, r)-regular graphs

and their eigenvalues. We observed that there was an overall pattern with the val-

ues, and searched for a generalized form of each of the distinct values in terms of

n, s, m, and p. In Table 1, we have shown the eigenvalues of five (2, r)-regular

graphs.
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Table 1: Eigenvalues of (2, r)-regular graphs

EigVal K10 + 4K3 K5 + 7K2 K11 + 3K6 K5 + 5K5 K2 + 11K9

λ1 0 0 0 0 0
λ2 10(3) 5(6) 11(2) 5(4) 2(10)
λ3 13(8) 7(7) 17(15) 10(20) 11(88)
λ4 22(10) 19(5) 29(11) 30(5) 101(2)

We observed that the eigenvalues of the Laplacian L are

• λ1 = 0 with multiplicity 1

• λ2 = s with multiplicity m− 1

• λ3 = p + s with multiplicity m(p− 1)

• λ4 = n with multiplicity s.

The Laplacian of a nested ‘s’ graph is of the form

L =



C1 −1T 0T

P 0 · · · 0

−1 0 P
. . .

... −1T
∗

...
. . . . . . 0

0 · · · 0 P
Q 0 · · · 0

0 −1∗ 0 Q
. . .

...
...

. . . . . . 0
0 · · · 0 Q


where −1 represents the s1 ×m1p1 matrix and −1∗ represents the mp×m1p1 matrix

in which every entry is −1. The matrices C1, P , and Q are of the forms

C1 =


s1 − 1 + m1p1 −1 · · · −1

−1 s1 − 1 + m1p1
. . .

...
...

. . . . . . −1
−1 · · · −1 s1 − 1 + m1p1

 ,
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P =


q∗ −1 · · · −1

−1 q∗
. . .

...
...

. . . . . . −1
−1 · · · −1 q∗

 , and Q =


y −1 · · · −1

−1 y
. . .

...
...

. . . . . . −1
−1 · · · −1 y


respectively, where q∗ = s1 + (p1 − 1) + mp and y = m1p1 + p− 1.

We attempted to find an overall pattern with the eigenvalues of our nested ‘s’

graphs. Tables 3 and 4 are examples of the eigenvalues of various nested ‘s’ graphs.

Here we have fixed all values except for the s1.

Table 2: Nested s graph where m1 = 4, p1 = 3, m = 6 and p = 1

EigVal s1 = 1 s1 = 2 s1 = 3 s1 = 4 s1 = 5 s1 = 6 s1 = 7

λ1 0 0 0 0 0 0 0
λ2 7 (3) 8 (3) 9 (3) 10 (3) 11 (3) 12 (3) 13 (3)
λ3 10 (8) 11 (8) 12 (8) 13 (8) 14 (8) 15 (8) 16 (8)
λ4 12 (6) 12 (6) 12 (6) 12 (6) 12 (6) 12 (6) 12 (6)
λ5 14 (1) 15 (2) 16 (3) 17 (4) 18 (5) 19 (6)
λ6 19 20 21 22 23 24 25

Table 3: Nested s graph where m1 = 4, p1 = 3, m = 7 and p = 1

EigVal s1 = 1 s1 = 2 s1 = 3 s1 = 4 s1 = 5 s1 = 6 s1 = 7

λ1 0 0 0 0 0 0 0
λ2 8 (3) 9 (3) 10 (3) 11 (3) 12 (3) 13 (3) 14 (3)
λ3 11 (8) 12 (8) 13 (8) 14 (8) 15 (8) 16 (8) 17 (8)
λ4 12 (7) 12 (7) 12 (7) 12 (7) 12 (7) 12 (7) 12 (7)
λ5 14 (1) 15 (2) 16 (3) 17 (4) 18 (5) 19 (6)
λ6 20 21 22 23 24 25 26
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5 CONCLUSION

At the beginning of this thesis we investigated the research on networks or graphs,

including their network properties. We observed that there is a growing interest in the

study of developing methods that can be used to grow a network in a deterministic

fashion. We began to develop our own deterministic method to reduce the number of

links or edges in a preexisting network and investigate its new network properties.

Our primary goal of this thesis was to develop a deterministic method to reduce

the number of edges in a (2, r)-regular graph using a nested graph approach. We

successfully achieved a new method in reducing edges in this particular family of

graphs. We were also able to define the clustering coefficient and average path length

of three distinct nested graphs.

We then investigated the Laplacian Matrices of the (2, r)-regular graphs and the

nested ‘s’ graphs. We were successful in showing the generalized forms of the matrices

of these graphs. In addition, we found the general form of the eigenvalues of the

(2, r)-regular graphs. In future work, one should determine the general form of the

eigenvalues of the nested ‘s’ graphs. We have opened the doors for further research

into these nested graphs. Some open problems which came out of this research are:

• Determine the Laplacian of the two remaining nested graphs.

• What is the general form of the set of eigenvalues of each of the nested graphs?

• What values do the average path length and clustering coefficient of each nested

graph approach as the graph grows?
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We have introduced a novel method to construct a network with high connectivity

properties. These graphs will be of interest to those working in the field.
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