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ABSTRACT 

THE PRODUCTION, PROPERTIES, AND APPLICATIONS OF 

THE ZINC IMIDAZOLATE FRAMEWORK ZIF-8 

JOHN TATARKO 

April 21, 2015 

 

  Venna, Carreon, and Jasinski produced and characterized the first samples of the zinc 

imidazolate framework ZIF-8 at the University of Louisville in 2010. In this dissertation 

the production, properties, and applications of this unique metal-organic framework are 

explored. 

  Previously, only minute laboratory amounts  (1/4 gram), of ZIF-8 were produced via 

time-consuming and expensive processes. Production quantities have been synthesized 

via both a continuous and a batch process using a spray drying operation to effect 

separation of the solid product (ZIF-8) from the mother liquor. Approximately 85% of the 

mother liquor (methanol), can be recovered from the spray dryer resulting in magnitude-

of-order savings in time and money. 

  Before any engineering applications could be suggested it was necessary to quantify 

important physical properties of ZIF-8 not currently available. The density, thermal 

conductivity, specific heat, and BET surface area were measured via strict ASTM 

procedures and reported. It was hoped that the massive surface area of ZIF-8 (~ 1300 

m2/g), would  effect enhanced heat transfer in engineering applications. 
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  The Heat Transfer Laboratories at the University of Louisville, served as the testing site 

for the use of the microparticle ZIF-8 as an agent for enhanced heat transfer when mixed 

in small vol% in synthetic oil. Unfortunately ZIF-8 delivered no such enhancement. 
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INTRODUCTION 

 

  The Oxford English Dictionary 2
nd

 Ed. provides the following etymology for the term 

‘engineer’.  First used as a recognized word in English literature in 1592, the word is 

derived from Late Latin through Old French, Middle English and Modern French: 

ingeniatorem, engigneor, engyneour, and ingenieur.  In like manner, the term ‘energy’ 

while used by Aristotle, also finds its first appearance in an English publication in 1665.  

It too is derived from a Late Latin: energia.  The modern usage of both words is 

intimately connected. The engineer is a builder and modulator of energy. It is my claim 

that any engineering activity is folly if one does not include  economics.  Thus the 

engineer as an agent of change harnesses scarce resources (energy and money), for the 

betterment of society.  This dissertation is a study of the use of new materials to effect 

change.   

  The race to develop novel methods of energy production, utilization, and conservation is 

going to be catalyzed by the synthesis of superior materials. With radically different 

structures and properties than well-known (well worn) engineering materials, it is hoped 

that enhanced adsorption and transport properties will be welcome characteristics.  Metal 

organic frameworks have emerged as unique examples of a crystalline porous material 

with highly desirable properties such as uniform microstructure and high surface area. 

The exceptional thermal and chemical stability make these ideal candidates for mass and 

heat transfer applications. 
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   The zeolitic imidazolate framework-8 (ZIF-8) is just one of these metal organic 

frameworks (MOFs).  With unit-cell dimensions of 16.32 Å and large pores of 11.6 Å 

accessible through small apertures of 3.4 Å and a cubic space group (I-43m), it provides 

the surface area necessary for many transport operations.  Previous researchers have 

investigated the use of ZIF-8 in catalysis, membrane separations, and CO2 sequestration.  

However not all of the physical, transport, and thermal properties of ZIF-8 have been 

determined and only minute quantities have been produced during laboratory synthesis.  

The intellectual thrust of this dissertation is threefold: the determination of several 

thermal, transport, and physical properties of ZIF-8, the design and construction of a 

continuous chemical process to manufacture ZIF-8, and the determination of its 

effectiveness in heat transfer applications. 

The specific goals of this work are:  

1. The determination of the heat capacity, thermal conductivity, density, and 

surface    area  of ZIF-8 
  
2. The design of a continuous chemical process to synthesize, separate, and filter 

ZIF-8 via spray drying. 
 

3.   The analysis of ZIF-8 as a nanoparticle-addition into oil-based heat transfer 
media   

 
  This dissertation is divided into four sections.  Part I is an exposition of the theoretical 

aspects of the three specific goals mentioned above with heat transfer enhancement via 

nanoparticle addition to fluids the most prominent task. To date after more than 15 years 

of study there is still little consensus on the physical mechanisms involved.  A major 

component of this research was the scale-up of the laboratory synthesis of ZIF-8 into a 
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continuous chemical process. Initially ZIF-8 was only made in minute quantities: ¼ gram 

at a time. It was the author’s belief that a spray drying process could effect the separation 

of MOFs from the mother liquid more efficiently.  Spray drying entails simultaneous heat 

and mass transfer and is a complex process. A properly tuned spray dryer produces a 

uniform controlled-size nanoparticle and the fundamentals of the spray drying process are 

explained in this section. In addition the principles of the reactor design and process 

synthesis are also proffered here. 

  At the heart of scientific and engineering progress is meticulous experimentation, 

precise data collection and thoughtful analysis.  Having read hundreds of papers over the 

last 3 years this author has sadly come to the conclusion that much of what has been 

published in the so-called peer-reviewed journals is just garbage.  The dross from this has 

seeped into our culture and nurtured a hysteria-driven media. All researchers have the 

cloud of confirmation bias hanging over their heads and responsible scientists take pains 

to avoid this. As much as it distresses one to see years of experimentation dashed to 

pieces, researchers must make an effort to disprove all of their hypotheses. I am 

passionate about education and have made an effort to train my interns in proper data 

collection and analysis.  Tools are available for the diligent researcher to remove 

confirmation bias and the theory behind best-subsets regression and self-organizing 

feature maps (SOFMs) is exposed in Part I.  A caution is offered here. These techniques 

along with computer simulations and forecasting are for use by the discriminating 

scientist and one should not fall in love with any one method. All models are poor 

representations of reality. 
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  Part II consists of a fairly comprehensive literature review of the state-of-the-art with 

concentrations in heat transfer enhancement with nanofluids, spray drying, and MOFs 

(especially ZIF-8). A thorough search was made for commercial applications of heat 

transfer enhancement and even after more than 15 years of research there is a dearth of 

literature on any scaled-up successes. The author believes now is the time for this to 

change. The next step for funding on this project should be the purchase of a small 

HVAC chiller and the construction of a pilot-plant size cooling lab.  Part III comprises 

the most important part of this dissertation; the experimental methods and results. The 

last two years has been devoted to a massive amount of property determination, reactor-

design and construction, the study of novel separation processes (spray drying), and 

finally heat transfer experimentation. Adherence to scrupulous laboratory techniques and 

sound data collection and analysis yields meaningful results. Based on experience, it was 

decided to conform to strict ASTM protocols for the determination of important thermal 

and transport properties of ZIF-8.  The actual recipes are included as appendices.  The 

design of reactors and separation processes is the exclusive bailiwick of the chemical 

engineer and this researcher believes he has produced a winning scaled-up process. X-ray 

diffraction (XRD) studies confirm the synthesis of ZIF-8 in the continuous process which 

is modeled here. Molecular dynamics simulations of Brownian motion along with process 

simulations in Simulink are included in Part III.  Finally, viscosity studies of the 

nanofluid complete the compilation of parameters necessary for the heat transfer study.  

Brief descriptions of equipment, computer programs for simulations, and laboratory 

methods are included here with the formal procedures and algorithms relegated to 

appendices.  Careful attention to random and systematic errors along with rigorous 
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statistical methods was employed throughout the experimental scheme.  Unfortunately 

this has not been a hallmark of previous researchers in the Heat Transfer Laboratory at 

the University of Louisville. 

  An analysis of the experimental results, some conclusions, and suggestions for future 

work comprises Part IV.  Some have accused this author of overextending the scope of 

this dissertation.  The presentation of a thorough and comprehensive study has been the 

ultimate goal and yet there is still much fodder for those wishing to further the study of 

novel tunable materials, especially the MOFs, and applications in renewable energy, 

catalysis, and carbon dioxide sequestering. In summary, this work is devoted to the 

discovery, synthesis, characterization, and use of novel materials (MOFs) to effect 

efficient and economical energy utilization. It is accomplished through mathematical and 

chemical engineering analysis in conjunction with rigorous laboratory experimentation. 
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I 

THEORY 

 

1. The Physics of Nanofluid Behavior 

  A nanofluid is described as an engineered colloid (see Fig. I 1.3) consisting of a base 

fluid infused with nanoparticles.  Suspensions of these solid particles, (with major 

dimensions less than 100nm) flowing through a pipe, have long been thought to have the 

potential for enhanced transport properties.  Specifically, studies[53] show that there is a 

substantial increase in the convective heat transfer coefficient of a nanofluid when 

compared to the base fluid.  The increase depends on the size, geometry, and 

concentration of the particles along with the thermal properties of the base fluid and 

particles. The mechanism of heat transfer enhancement might be explained by the 

following proposals. 

1.  The thermal conductivity of the colloidal mixture is increased by the nanoparticles. 

2.  The random movement of the nanoparticles within the base fluid causes convection 
due  to various slip mechanisms.  

 
These convective currents flatten the temperature distribution within the nanofluid thus 

increasing the ΔT between the fluid and the pipe wall[54]. It is the increase in temperature 
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gradient that augments the heat transfer, see Fig. I 1.1.  If the two-phase mixture behaves 

as a continuous Newtonian fluid the continuity equation, equation of motion, and 

energy equation act as governance for the continuum flow regime.  Mathematical 

manipulation of these equations results in the derivation of the various forces acting on 

nanoparticles within the fluid-the slip mechanisms.  

 

                                        

Fig. I 1.1 This is an example of the standard fully-developed fluid flow and temperature 
profile in  a circular horizontal tube. A prevailing theory regarding the addition 
of nanoparticles to a base fluid suggests that the resulting thermal dispersion 
caused by the slip mechanisms ‘flattens’ the velocity profile causing greater Δ 
T between the nanofluid and the tube wall. Increased heat transfer is 
predicted[55]. 

 
 

For an incompressible, steady state, nanofluid the continuity equation becomes: 

                                         ∇ ・ v  =  0                                                                (I 1) 

Where v is the velocity vector.  Physically: what is going ‘out’ is what came ‘in’. 

Under similar conditions, the equation of motion is: 

                         ρ (D v / D t ) =  - ∇ P + μ Δ v                                                   (I 2) 

Physically: the change in fluid momentum (motion) is a result of changes in pressure and 

the resultant viscous forces throughout the velocity field. The energy equation is: 
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           ρ ( De /Dt ) = - ∂qi /∂xi -  P (∂Ui  / ∂xj) – τij (∂Ui  / ∂xj )                           (I 3) 

Physically: the time rate of change in energy per unit volume of fluid is equal to the 

supply of heat per unit area per unit time, the work per unit volume per unit time and the 

irreversible transfer of mechanical energy into heat per unit volume per unit time. 

                                                      

Fig. I 1.2  Here is an example of a ‘flattened’ flow profile and a schematic of   various 
forces, drag, Saffman’s lift, buoyancy, and gravity acting on a solitary particle 
infused into a fluid[55]. Now imagine the fluid with millions of these particles 

 

                                       

Fig. I 1.3  The chaotic random behavior of nanoparticles in a fluid known as Brownian 

motion
[56]. A fluid infused with suspended particles is known as a colloid. 

Surprisingly, it is theorized that Brownian motion does little to enhance heat 
transfer. 
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Fig. I 1.4  The thermophoresis effect generated in a field of temperature gradients   acts 
in a manner vis-a-vis the field as an attractive force[57].   

 

                   

                        

Fig. I 1.5 The magnus effect becomes evident in a flow field resulting in particle rotation 
and lift[58]. This principle describes the behavior of a curveball or ‘rising’ 
fastball thrown by a baseball pitcher. 

 
 

It is theorized that the sum of behaviors depicted in Fig. I 1.2 - Fig. I 1.5 inclusive might 

account for the energy exchange between the nanoparticles, base fluid, and tube wall. The 

term slip mechanism refers to the vectorial relationship between a nanoparticle  and the 

base fluid which results in an increase or decrease in the amount of energy exchange. The 

forces contributing to slip, seven in number, can be deduced from a scaling analysis of 

the governing equations of the fluid continuum. Scaling analysis permits the development 

of tractable mathematical models of transport processes.  The nanofluid is considered a 

8 
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continuum if the Knudsen number Kn, is ‘small’ (Kn < 0.3). The Knudsen number is 

defined: 

                                               Kn =  λ / dp                                                                 (I 4) 

where dp is the is the nanoparticle molecular diameter and λ is the mean free path of the 

base fluid molecules[54]. The mean free path is defined: 

 

                                                λ  =      RT                                                                 (I 5) 

                                                       π NAP √2 dm 

 

where R is the universal gas constant, T  is the absolute temperature, P is the absolute 

pressure, NA  is Avogadro’s number and dm  is the molecular diameter of the base.  The 

mean free path of our base fluids, Amsoil and Therminol 66 has been calculated as ≈ 

0.250.  Therefore for our ZIF-8 nanoparticles ranging in molecular diameter from 50 nm 

to 200 nm, the nanofluid qualifies as a continuum. Viscosity studies of the nanofluid will 

experimentally confirm the existence of the continuum. 

  The governing equations for the nanofluid then become a mass balance (continuity 

equation), a momentum balance (equation of motion), and an energy balance (energy 

equation) around the system. It is helpful and clarifying to consider the equation of 

motion of the nanoparticle in the Lagrangian frame of reference. 

                                               mp (dvp/dt) = ∑ F                                                       (I 6) 

                                ∑ F  =  FD + FG + FB + FT + FL + FR + FM                                 (I 7) 

9 
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The forces affecting the nanoparticle include the drag force FD, gravity FG, Brownian 

motion force FB, the thermophoresis force FT, Saffmen’s lift FL, a rotational force FR, and 

the Magnus effect FM. The author presents this lengthy exposition only to emphasize the 

complexity of the physics involved in the behavior of nanofluids. Inter-particle dispersive 

forces such as Van der Waals are neglected due to the small contributions to energy 

exchange.  All of the above forces are functions of nanoparticle concentration, geometry, 

the base fluid, nanoparticle velocities and densities, the thermal conductivities, and base 

fluid temperature gradients. Critical to the analysis is the time scale necessary for a 

nanoparticle to diffuse a length equal to its diameter under each of the seven forces and it 

is assumed that the model system is laminar fluid flow in an horizontal circular tube. An 

example of scaling analysis is depicted in the Sample Calculations section of the 

Appendix. 

  Brownian motion refers to the random motion and collisions of the nanoparticles within 

the base fluid. Temperature gradients within a nanofluid impose a force on infused 

nanoparticles opposite to the direction of the gradient. This is known as thermophoresis. 

Freely suspended particles subjected to shear flow within a fluid experience ‘lift’, 

Saffman’s force, and ‘rotation perpendicular to flow’ the Magnus force.  It is the sum  of 

these forces along with gravity, and drag that contribute to the degradation and/or 

augmentation of energy exchange. 

  For spherical particles, The Brownian and drag forces are only significant in nanofluids 

infused with particles measuring less than 10 nm in diameter[54].  Molecular Dynamics 

methods of simulation tend to corroborate the lack of any effect on energy exchange 

between the nanoparticle and base fluid due to Brownian motion. The other five forces 

10 
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contribute to enhanced energy exchange between the nanoparticle the base fluid and tube 

wall due to thermal dispersion.  This argument might lead to the belief that calculation of 

heat transfer enhancement due to the addition of nanoparticles into a base fluid would be 

simple and linear.  More than fifteen years of experimentation disproves that[2]. 

Recounting our original hypothesis: heat transfer is enhanced via conduction and 

convection when nanoparticles are added to a base fluid. At the solid (nanoparticle)-

liquid interface there exists molecular ordering (layering) which results in a type of 

thermal boundary layer known as the Kapitza resistance. This phenomena deteriorates 

conduction. Differences in the vibrational and electronic properties of various materials 

cause the scattering of an energy carrier as it attempts to traverse the interface. 

Mathematically, this might be portrayed as an extension of Fourier’s law:  

                                       Q = ΔT/R = GΔT                                                                (I 8) 

Where G is the thermal boundary conductance; the inverse of resistance R. There are 

instances where high thermal resistance is desirable; thermal isolation of components 

within the turbines of a jet engine.  There the macro-condition can be manipulated. 

However for the nanofluid the effects are more pronounced and deleterious due to the 

microscopic scale. It is difficult to quantify G for the nanofluid. 

  Agglomeration (see Fig. I 1.9) also results in the deterioration of both the conductive 

and convective transport modes in a nanofluid. In addition to deteriorating the thermal 

performance, there are few studies measuring the effects of nanoparticle agglomeration 

on rotating equipment such as pumps.  
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Fig.I 1.6 Timofeeva et al. devised a cartoon to show the various interactions at-play 
within the nanofluid[64]. Results from this present study corroborate the various 
synergies and deficiencies. Nanoparticle agglomeration in addition to 
decreasing effective heat transfer imposes a penalty on pumps and turbines by 
increasing the viscosity of the nanofluid. 

 

A surfactant lowers the interfacial tension between a liquid and a solid permitting more 

intimate contact and weak bonding forces (Van der Waals). In addition to the use of 

surfactants, some effort has been made to quantify the effect changes in pH (surface 

charge) will have on nanofluid stability. This is especially pronounced when novel 

materials such as ZIF-8 which is highly polar (charged), are used as a nanoparticle 

addition.               

   

                                             
  
 Fig. I 1.7 An example of a surfactant; one part ‘loves’ (hydrophil) the charged side. The 

other ‘hates’ (hydrophob) the charged side[66]. 
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  Heat transfer via conductivity is accomplished by electrons and phonons.  Thus in 

addition to convective currents created through the thermal dispersion process energy is 

also transmitted due to point-to-point contact of the nanoparticles with the base fluid and 

the tube or vessel walls.. Stimulation of the crystal lattice structure of a solid results in a 

quantized sound wave and the generation of the pseudo-particle phonon. Since the sound 

wave has a wavelength and a wave vector (momentum), energy can be transmitted. A 

phonon is the smallest possible excited state of a mechanical system [68 ]. 

 

                                       

Fig. I 1.8  As the crystal lattice structure is ‘stressed’ the resulting wave contains energy  
which can be transmitted in the form of a quasi-particle-a phonon. This effect 
occurs even at extremely low temperatures and thus it might be expected to 
contribute to the heat transfer enhancement attributed to nanoparticle addition to 
a base fluid[67]. 

 
 

Fig. I 1.6 is a pictorial depiction of the various parameters contributing to heat transfer 

enhancement in the nanofluid. There exists a subtle interplay between these factors that 

add or detract from the effects and thus it is difficult to predict exactly what changes in 

each parameter might accomplish.  Timofeeva[64] and her co-authors attempted to 

rationalize the various effects which are depicted in Table 1 on the next page.   



 

 
 

 

 

Table 1 Systems Engineering Approach to Nanofluid Design[64] 
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In summary, the addition of nanoparticles to a base fluid is predicted to increase the 

overall system heat transfer and this has been experimentally verified[53]. This effect 

occurs via various mechanisms some, but not all, which have been espoused in this 

section of the work. Of the three modes of heat transfer, it is permissible to state that 

conduction and convection will have the greatest effect upon engineering fluids flowing 

within a tube. Energy transfer via radiation will be negligible. 

  If the nanofluid exists as a continuum, the governing equations describing the fluid 

behavior are known as the equations of change: the continuity, momentum and energy 

equations.  Scaling analysis of these equations permit the development of tractable 

models of nanoparticle behavior within the base fluid and consequential enhancement of 

transport properties. 

  In addition, scaling analysis of the equations of change permits the generation of various 

dimensionless numbers so critical to analysis of complex engineering systems.  Among 

these are the Reynolds number Re, which describes fluid flow and the Peclet and Nussult 

numbers Pe and Nu which describe heat transfer both on macro and microscopic levels. 

Willing and Tatarko have been among the first to use these metrics to describe heat 

transfer enhancement due to nanoparticle addition to base fluids.  Innovative use of 

simple but powerful linear and non-linear regression techniques on the experimental data 

generated for this study clarifies and augments the information contained in Table 1. This 

analysis comprises an important part of this dissertation.  Most importantly, the 

intellectual thrust of this study is the improvement in the heat transfer coefficient h, due 

to the addition of nanoparticles into a flowing fluid system.  
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  There are two different approaches to heat transfer experiments; one with constant Q, 

the heat flow, and one with constant temperature. For this study the experiments were 

conducted with constant heat flow. 

                                                                                                             (I 9) 

Tw and Tf  are the temperatures of the tube wall and fluid respectively. The units for h are 

J / ̊ C. 

                                                                                                        (I 10) 

Where . is the mass flow rate is in kg/s, Cp is the specific heat in J / kg ̊ C and the area of 

the flow tube is in m2.  The constant Q is delivered electrically via a Variac-controlled 

heat tape wrapped around the flow tube (see Part III on the experimental set-up of the 

heat transfer rig) and the ΔT is the difference between the inlet and outlet temperatures. 

Combining the two equations results in the following: 

 

                                                                                          (I 11) 

 

Where ρ is the density in kg / m3 and V̇ is the volumetric flow rate in m3 / s. The symbols 

d and l refer to the diameter and length in meters of the heat transfer section of the flow 

tube.  
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Calculation of the Reynolds number Re, is among the first one makes when describing 

fluid flow[74]: 

                                                             (I 12) 

Where ρ is the density of the fluid in kg / m3, v is the velocity vector in m /s, L is the 

characteristic length in m, and μ is the dynamic viscosity of the fluid in kg / (m*s). 

Reynolds numbers >> 1.00 denote a condition where the force of the fluid flow 

predominates over the force of the fluid viscosity. There exists a value, highly dependent 

on the system geometry, where the flow transitions from laminar (layered orderly flow) 

to turbulent (chaotic swirling flow). In a circular tube, turbulent flow occurs when Re > 

3000. This dissertation contains studies and results from observations made during 

laminar flow. 

  Heat transfer at the boundary of a surface within a fluid is described by the Nusselt 

number Nu
[74]. 

                                                  (I 13) 

In a nanofluid, the surface of interest would occur at the nanoparticle/base-fluid interface. 

Intuitively, an engineer would think that analysis of the changes in Nu within a fluid 

system would characterize the heat transfer effects; k is in W / (m*K) 

  For the transport of heat within a flowing fluid system another dimensionless number 

generated from the scaling of the equations of change is the Peclet number Pe
[74]

: 

                                                                      (I 14) 
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This is the ratio of convective flow of heat (advection) to the thermal diffusion 

(conduction).  Experimentally, Tatarko[53] has shown that the Peclet number is perhaps 

the best descriptor of  heat transfer in a nanofluid. 

  The Prandtl number Pr is a dimensionless number often listed in material property 

tables for it is derived without any time-scaling of the equations of change[74]. 

                                                  (I 15) 

The Pr characterizes the relative thickness of the velocity boundary layer to the thermal 

boundary layer[74].  The Peclet number is the product of the Reynolds number and the 

Prandtl number. 

                                                      Pe = Re * Pr                                                          (I 16) 

 

For mass transfer applications, the Schmidt number Sc, relates the momentum boundary 

layer to mass diffusion boundary layer{74}: 

 

                              (I 17) 

 

Where D is the mass diffusivity in m2 /s  and υ is the kinematic viscosity in m2 / s. 

The Peclet number is the product of the Reynolds number and the Schmidt number. 

 

                                                     Pe = Re * Sc                                                            (I 18) 

These dimensionless numbers contain the independent variables that comprise the 

transport system and thus are helpful when submitting the experimental data for statistical 
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analysis. It is instructive to note that this researcher has shown[53]  that just as in the 

analysis of real chemical reactors, the condition of fluid flow is critical to the analysis of 

heat and mass transfer effects due to nanoparticle behavior. This is evident in the data 

obtained for heat transfer calculations and that also obtained for the calculation of 

simultaneous mass and heat transfer phenomena present during spray drying. The slip 

mechanisms that drive convective heat transfer during fluid flow within a circular tube 

are also responsible for the same effect within the cyclone during spray drying. 

  A literature search (Part II) of the latest research in the theoretical, computational, and 

experimental underpinnings of the physical mechanisms responsible for nanoparticle 

assisted heat transfer yields little consensus even after 20 years of study. The 

phenomenon is complex and a unified theory may never become available. This 

underscores the gravity of well-designed empirical data collection and analysis.  The 

mechanisms and theoretical analysis proffered in this section of Part I are as plausible 

and valid as those espoused in any number of journals.  Finally, in this section we discuss 

the validity of Brownian motion as one of the slip mechanisms responsible for the 

enhanced heat transfer behavior of nanoparticle infused base oils.  

  From kinetic theory[75]:   κB  = DB * Cp 

                                   Where:    κB  is the thermal conductivity of the nanoparticle 

                                       DB  is the thermal diffusivity of the nanoparticle 

                                       Cp   is the specific heat of the base fluid. 

Likewise for the base fluid:  κF  = DT * Cp  

                          Then:     κB / κF  =  DB / DT 
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The ratio of the Brownian motion contribution to thermal conductivity to the thermal 

conductivity of the base fluid is denoted by the ratio of the nanoparticle diffusivity to the 

thermal diffusivity of the base fluid[75]. As an example in a water suspension: 

                          Let the nanoparticle have a radius:     r = 5 nm 

                          DT for water is:                                 DT = 1.4 * 10-7 m2 / s 

                          η the viscosity for water is:               η  =  1.3 * 10-3 kg /m s 

The Stokes-Einstein formula:                                    DB  =  kB * T / η * 6 * π *r 

                         Where kB  Boltzmann’s constant;      kB  =  1.4 *1023 J / K 

                          Yields:                                              DB  =  4.5 *10-11 m2 /s 

 Then :                                   κB / κF  =  DB / DT   = 3.2 * 10-4 

The very small ratio shows that Brownian motion has little effect on thermal transport[75]. 

Heat transfer via conduction (thermal diffusivity DT) is faster than particle diffusivity DB. 

This can be shown experimentally via simulation (Part III). 

 

                           

 

 

Fig. I 1.9 Thermodynamically, all systems seek to minimize the total free energy and   
the surface energy in particular. As the surface area is maximized, the free 
energy decreases. This leads to particle agglomeration. For a nanofluid this 
condition results in a decrease in performance due to the loss of thermal 
dispersion[59]. Nanoparticle agglomeration can be avoided by providing 
suitable surfactants which maximize the attractive forces between unlike 
molecules compared to those of like molecules. 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&docid=AWFHe9jFA0KcnM&tbnid=cYjx7pnv167PJM:&ved=0CAcQjRw&url=http%3A%2F%2Fwww.sepscience.com%2FTechniques%2FLC%2FArticles%2F702-%2FHPLC-Solutions-10-Pore-Size-vs-Particle-Size&ei=QtYoVPewL9DlsATWs4HwAw&bvm=bv.76247554,d.aWw&psig=AFQjCNG1f4O1bM4UY5mkjbE_TTntt13z_Q&ust=1412048792635505
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&docid=AWFHe9jFA0KcnM&tbnid=cYjx7pnv167PJM:&ved=0CAcQjRw&url=http%3A%2F%2Fwww.sepscience.com%2FTechniques%2FLC%2FArticles%2F702-%2FHPLC-Solutions-10-Pore-Size-vs-Particle-Size&ei=QtYoVPewL9DlsATWs4HwAw&bvm=bv.76247554,d.aWw&psig=AFQjCNG1f4O1bM4UY5mkjbE_TTntt13z_Q&ust=1412048792635505
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2. The Zeolitic Imidazolate Framework ZIF-8 

 

   Zeolitic imidazolate frameworks (ZIFs) are a subclass of metal organic frameworks 

(MOFs). Like traditional zeolites, high surface areas, cage-like structures and thermal, 

mechanical, and chemical stability are well represented within this class of materials. In 

ZIFs, a metal such as zinc is linked through nitrogen atoms by ditopic imidazolate to 

form neutral frameworks. Proper synthesis and curing methods results in tunable pore 

sizes formed by the 4-,6-,8- and 12-membered-ring ZnN4. The well-studied[47] ZIF-8 has 

large pore diameters of 11.6 Å and has been suggested as a candidate for catalysis, 

carbon dioxide sequestration, and other novel separation processes. Because of ease of 

synthesis; common materials and room-temperature reaction conditions, and a relatively 

large surface area we propose ZIF-8 as a nominee for use in the study of nanoparticle-

enhanced heat transfer media.  Willing and Tatarko have studied the effects of copper 

nanoparticles introduced into oil-based fluids at low wt% with resulting heat transfer 

enhancement up to 25%. The full mechanism explaining this phenomenon is a source of 

intense research and some heated debate.  

   In contrast to the basic zeolitic structure, ZIF-8 uses the imidazole structure as a bridge 

instead of oxygen: (T-Im-T). Fig.I 2.2 shows a schematic of this polar, planar 5-

membered ring with the formula: (CH)2N(NH)CH. Imidazole is amphoteric, that is, it can 

act as either an acid or base. While this fact is not especially important for physical 

applications such as heat transfer, this organic linker provides adsorption sites necessary 

for carbon dioxide capture which can then react at the Zn vertices of the structure. Fig. I 

2.3  exemplifies the synthesis pathway of ZIF-8. The polarity of the imidazole molecule 

requires consideration when introducing these structures into nonpolar oils.  
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     Fig. I 2.1 The basic zeolite structure of ZSM-5 showing cage-like formations and a 
microporous crystalline structure. Over 206 different frameworks have 
been identified and synthesized. About 40 occur in nature[88]. ZSM-5 
consists of pentasils; 8 five-membered rings. Like all zeolites, oxygen acts 
as a bridge between the metals (T-O-T, where ‘T’ is a metal).  In this case 
silicon and aluminum are at the vertices.  

 

                                                           

    Fig. I 2.2  The imidazole molecule has a proton (H+), which can be located on either of 
the nitrogen atoms resulting in 2 tautomeric forms. Because it is polar it is 
readily soluble in water yet it is also aromatic due to the presence of 2 π-
electrons on the protonated nitrogen and one π-electron from each of the 
other 4 members of the ring. This molecule acts as an organic linker in the 
ZIF-8 structure[47]. 

 

In a typical synthesis, 0.3 g of zinc nitrate hexahydrate [Zn(NO3)2·6H2O], is dissolved in 

11.3 g of methanol and stirred vigorously. A solution of 0.66 g of 2-methylimidazole 

[C4H6N2], and 11.3 g of methanol is simultaneously prepared, added to the former 

http://en.wikipedia.org/wiki/File:Zeolite-ZSM-5-3D-vdW.png
http://en.wikipedia.org/wiki/File:Imidazole_2D_full_aromatic.svg
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solution, and stirred for various times. The resultant product, suspended particles, is twice 

washed and centrifuged at 3000 rpm. The yield is quite small; less than 0.25 g. 

  

 Fig. I 2.3    The synthesis of ZIF-8 is depicted by the addition of the ZnN4 tetrahedra 
with the imidazole molecule. Carbon atoms are in black and the nitrogen 
molecules are green. Hydrogen has been omitted. The yellow inscribed 
sphere represents the maximum size of any adsorbed molecule. Amazingly, 
it has been reported that the ZIF-8 structure has a surface area of up to 
2000m2 per gram[47,49]. All transport phenomena and heat transfer in 
particular are highly dependent upon surface area. 

    

  Venna, Jasinski, and Carreon[49] have pioneered the synthesis and characterization of the 

zeolitic imidazolate framework, ZIF-8.  Of paramount importance is the elucidation of 

the crystalline growth kinetics via the Avrami model.  Fig. I 2.4 a schematic of the 

transformation, reveals 3 separate regions. 

The dependence of transformation on pH leads to the belief that some solution-based 

metastable phase initiates the crystal growth and coexists in equilibrium with increasing 

population of ZIF-8[49]. Since we know the residence times necessary for the size of  ZIF-

8 crystal desired and the kinetics of growth it is possible to design a continuous stirred-

tank reactor  (CSTR),  for a chemical process whether it be a batch or continuous 

process. As the reaction occurs in methanol, a flammable solvent, a nitrogen ‘blanket’ on 
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the mixing, reaction, and separation portions of the process is required.  Thus, the CSTR 

makes the most sense in choice of reactors. 

                

Fig. I 2.4    A plot of the growth of ZIF-8 crystals via Avrami kinetics: y= 1-exp(-kt
n
). In 

this case k, the scaling constant = 5.1 x 10-7 and n ≈ 4. Interpretation of the 
values for n follows some loose guidelines. Here a value of 4 suggests 
random homogeneous nucleation within the parent liquor resulting in 
spherical shapes[84].  Region I corresponds to the nucleation phase which 
establishes the conditions for crystal growth. The majority of transformation 
occurs in region II and there is little further change in Region III.   

 

ZIF-8 is a highly polar molecule and its infusion into a base oil as an agent of heat 

transfer enhancement must be accompanied by a surfactant (cf. Fig. I 1.8).  Aggregates of 

these are known as micelles.  The action of these agents may be classified as adsorption, 

which signifies attachment onto a surface rather than into it (absorption). 

Adsorption occurs by way of to 2 different mechanisms; chemisorption and 

physisorption. 
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  Physisorption is a relatively weak mechanical or electrostatic process which results from 

van der Waals attraction between two different chemical species including those in 

different phases (gas/solid, solid/solid).  The chemical properties of each species are not 

affected in this process which may occur continuously and on a multilayer basis.  The 

results can be easily reversed (desorption).  Thus catalysts, some of which are zeolites 

themselves, can be reclaimed by drying which may drive-off the adsorbed species. 

  Chemisorption is a strong chemically induced attraction which entails chemical bonds 

between the adsorbed molecule and an active site on another surface. This occurs only on 

a single-layer basis and might require an activation energy for initiation.    

 

Fig. I 2.5. The cartoon above portrays the difference between the adsorption and 
absorption. The deep dip of the energy curve represented as chemisorption 
is characteristic of the strong Lennard-Jones interaction between molecules. 
Energies less than zero denote attraction[77]. Chemisorption is an irreversible 
process. 

 

Few of the thermal properties of ZIF-8 necessary for heat transfer studies have been 

measured and reported in the literature.  A significant portion of this dissertation is 

devoted to the determination of the thermal conductivity k, true density ρ, and specific 

heat Cp. The determination of total surface area of the ZIF-8 molecule via the BET 

method is an example of the physisorption process. 
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3. Spray Drying 

  A liquid feed consisting of a pure fluid and a solid fraction can be transformed into dried 

particles by a well-engineered introduction into a closed chamber with a suitable warm 

drying agent. This process of simultaneous heat and mass transfer is known as spray 

drying. This is a rather novel process yet applications in pharmaceuticals, foods, and fine 

chemicals abound.  The basic theory revolves around the drying kinetics of the 

droplets[60].  This is not as simple as it sounds for the feed may consist of a slurry, paste, 

suspension (colloid), or a solution. In addition this is not an equilibrium-staged unit 

operation but rather a rate-based separation process.  The model can be further refined by 

the addition of particle-particle interactions including those affected by chemistry (pH), 

or those physically induced such as temperature and pressure gradients and surface 

tension. 

  The spray dryer consists of an atomizer which transforms the liquid feed into droplets 

and contact chamber where the droplets can intimately contact a stream of hot gas 

usually consisting of steam or air[60].  The moisture content of the drying gas increases as 

droplet evaporation continues finally yielding a product of desired dryness.  A detailed 

description of atomizer design and operation  is beyond the scope of this dissertation yet 

it must be noted that there exist families of geometries some rotary or fixed, pneumatic or 

sonic, some based on gravity feed, some based on centrifugal feed…etc.  The geometry 

and height of the contact chamber can also be varied depending on flow of the drying 

agent.  A  counter-current, co-current, or mixed gas flow can be used. The most versatile 

and well-designed (expensive!) of these spray dryers can be re-configured (atomizer and 

gas flow) depending on the type of feed. See Fig. I 3.1. 
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Fig. I 3.1   This is the basic schematic of the spray drying operation imbedded in a 
continuous chemical process. The feed and drying gas are running co-  
currently and it is possible to recycle the gas and liquid fraction after 
purging[62]. 

  

                             

Fig. I 3.2     The Buchi B 290 Mini-Spray Dryer processed the ZIF-8 nanoparticle used 
for the heat transfer experiments in this study. Presently the Buchi 
Corporation does not make a commercial-scale dryer yet this model has 
been found in many continuous food and pharmaceutical operations[63]. 

 
 
 

A schematic of the drying process applicable to feeds containing soluble or undissolved 

solids is displayed in Fig. I 3.3. 
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Fig. I 3.3  This schematic of  the spray drying process delineates 3 specific periods in the 
formation of a solid particle. During the period from 0 to 1 no evaporation of 
solute occurs as the feed and drying gas equilibrate. During the period from 1 

to 2 the evaporation of solvent is proportional to the surface area of the droplet 
(see Fig. I 3.4). In the last period of the operation 2 to 3, the rate of 
evaporation of solvent decreases as solidification increases and the remaining 
process is diffusion rate-limited[69].   

 
  
The droplet drying history is modeled after material and energy balances are performed 

on a spherical shell, Fig. I 3.4. 

                                         

Fig. I 3.4  Since the feed droplet is spherical, temperature and concentration fields are 
assumed to be radially symmetric and thus for modeling purposes the θ and ψ 
directions contain no variations{69}. 

 
A complete derivation of the material and energy balances for the drying kinetics of a 

single droplet in spherical coordinates is included in Breen[70]. In the final analysis both 
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Breen and Mezhericher[60] concur that the droplet drying process is controlled by the 

Peclet number Pe. 

                                      

In a nanoparticle such as ZIF-8 with much porosity and the ability to trap molecules 

internally it is understandable that at some point solvent diffusion would predominate 

over evaporation in the production of a solid particle. Both κ and D are in m2/s. 

  The change in the concentration of solids radially, is proportional to the concentration 

itself and the constant of proportionality is the Peclet  number[60]. 

 

                                                                              

This is in fact the boundary condition for the material balance on the spherical feed 

droplet.  The final product morphology is governed by process parameters such as 

temperature and flow rate of the drying gas and the latent heat and diffusion coefficient 

of the solute[69].  For the production of the ZIF-8 nanoparticle, the solid itself was an 

insoluble within the methanol solution which was almost completely recovered.  Thermal 

and pressure gradients generated during the spray drying process are sufficient to damage 

the structure of fragile molecules and it is a testament to the robustness of the ZIF-8 

molecule that it came out unscathed during drying. 

  We attempt to examine in some detail the intricacies of the transport phenomena that 

comprise spray drying. 

                  

        (I 2 0) 

(I 1 9) 
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Fig. I 3.5 Within the spray drying process simultaneous heat, mass, and momentum 
transfer drive the conversion from a colloid/gas mixture to a discrete particle, 
along with a ’wet’ gas, and a reclaimed solvent[76]. 

 
The heat and mass transfer between the gas and the particles is derived from the motion 

of the particles in the Lagrangian frame[76]: 

                                (I 21) 

The mass transfer rate (evaporation) between the particles in solution and the dry gas 

is[76]: 

 

                                                          (I 22) 

Where:   h is the heat transfer coefficient 

              kc is the mass transfer coefficient 

              hfg is the latent heat of the colloid solution 
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             Ap is the area of the particle 

             Ys
* is the saturation humidity of the gas 

             Yg is the gas humidity 

The heat and mass transfer coefficients can be calculated from correlations[76].                            

                                           (I 23) 

 

                                     (I 24) 

 

Di,m is the diffusion coefficient of the mother liquid vapor (in this case methane) and kta is 

the thermal conductivity of the parent fluid. As a review[76] the Prandtl and Schmidt 

numbers: 

 

                                                                                                (I 25) 

 

                                                                                       (I 26) 
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4. The Design of a Chemical Reactor for the Production of ZIF-8 
 

  The design of chemical reactors is perhaps the defining characteristic of the chemical 

engineering profession.  Something as mundane as a cigarette qualifies as a type of 

tubular rector yet the modeling, construction and control of actual reactors to effect 

efficient chemical production is complicated and often highly non-linear in nature.  Lack 

of a realistic, mathematically tractable model inhibits the design of a control system. 

  The continuous stirred-tank reactor (CSTR) is used throughout the process industry for 

the continuous inflow of multi-fluid reactants resulting in the outflow of a reacted 

product.  These types of reactors are easy to construct out of a variety of alloys or non-

alloys (glass), and can be clad with a jacket for heating and/or cooling so temperature 

control is possible.  The CSTR can be modeled as one with perfect mixing and thus it is 

assumed that the product composition leaving the vessel is identical to that of contents 

within.  The product of the chemical reaction within the CSTR is a function of the 

residence time within the vessel τ, and the rate of reaction of component ‘A’ rA.  As a 

choice of reactor, conversion within the CSTR is not optimum so a large volume is 

required. It is the benchmark reactor however whenever a liquid-phase reaction must be 

experimentally verified and it is the choice of control systems designers when testing new 

algorithms or hardware. PIDs, and robust controllers along with adaptive, fuzzy, and 

predictive-type systems have been successfully tested-on and fitted to these reactors. 

The performance equation for the CSTR is: 

                                                   V / FA  = XA / -rA                                                     (I 27) 

Where V is the reactor volume, FA is the flow rate of component A, XA is the conversion 

of component A, and rA is the reaction rate of component A.  
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Fig. I 4.1 This reactor designed by Pfaudler Inc is the perfect example of a Continuous 
Stirred Tank Reactor (CSTR)[66]. This particular model is glass-lined for the 
production of highly corrosive materials Our nanoparticle ZIF-8 may best be 
produced in a reactor of this type. 

 
The residence time , is the average amount of time a discrete quantity of reagent spends 

inside the tank. Along with the performance equation (I 27), the design of the CSTR can 

be accomplished by realizing: 

                                                          =  V / V0                                                             (I 28) 

In a chemical process the reactor may not always be limiting operation and thus the 

volume of the reactor can be sized accordingly. V0  is the flow rate of the product in m3/s. 
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Fig. I 4.2 Here is the actual design of the CSTR system used for the production of ZIF-8 
for this study.  It consists of two mixing tanks each equipped with a peristaltic 
pump which had to be calibrated for flow rates.  The Armfield CSTR itself is 
approximately 1 liter in volume and is fitted with a probe for measuring 
conductivity and/or pH. In addition it is possible to add various control 
schemes to the operation[71]. For this process the spray dryer throughput was 
the limiting step; 1 liter of liquid per hour. 

 
 
  Critical to the analysis of chemical reactors is the calculation of 2 different 

dimensionless numbers which characterize the process. The Dahmkohler number relates 

the reaction time scale to the rate of mass transfer via convection. 

                        

For Da >> 1, the reaction rate is much greater than diffusion and reaches equilibrium 

very quickly compared to species migration. When Da << 1, diffusion comes to 

equilibrium before the chemical reaction.  Equally important is the Peclet number which  

relates advective to dispersive transport; the mixing characteristics of  real reactors. 

                                                                    

     (I 29) 

      (I 30) 
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When the kinetics of the reaction are known Da and Pe can be calculated. There are two 

forms of the Peclet number. For thermal transport: 

                                            Pe   =   Re Pr                                                                   (I 31) 

Where Re is the Reynolds number and Pr the Prandtl number. 

For mass transfer: 

                                            Pe   =   Re Sc                                                                   (I 32) 

Where Sc is the Schmidt number. 

The Reynolds number is defined as: 

                                             Re  =   ρ v D                                                                    (I 33) 

                                                            μ   

The Prandtl number is defined as: 

                                             Pr   =   Cp μ                                                                      (I 34) 

                                                            k 

The Schmidt number is defined as: 

                                             Sc    =    μ                                                                         (I 35) 

                                                          ρ D  

Where: 

           ρ    is the density in kg/m3 

           D   is the characteristic diameter in m 

           Cp  is the specific heat in J / kg  ̊ C 

            μ   is the kinematic viscosity in m2 / s 

            k   is the thermal conductivity in  
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5.  Data Analysis 

 

  The collection and analysis of data both qualitative and quantitative is at the heart of all 

experimentation. There is a huge and ever increasing cadre of so-called researchers 

poorly trained in the proper use of statistical methods for data analysis. This is not 

opinion. Scrutiny of the ‘peer-reviewed’ journals confirms that assertion. Couple that 

with confirmation bias, the desire to ‘force’ the experimental results to confirm your 

scientific hypothesis: one wonders how much grant money has been wasted and how 

much scientific progress has been thwarted. 

  Regression analysis describes a family of statistical techniques that attempts to provide 

relationships between independent and dependent variables so inferences about the future 

might be obtained.  The specific algorithm employed depends on the amount, type, and 

condition of the experimental data and the manner in which it was collected.  A 

thoughtful researcher realizes these subtleties and carefully chooses the optimum 

technique and metric.  Systematic and random errors are accounted for and the 

propagation of these within any experiment and calculation is noted. Judicious selection 

of the proper technique does much to diminish the effects of confirmation bias. It is rarely 

admitted. Tatarko[53] in a series of papers was surprised to learn that a common measure 

of heat transfer, the Nusselt number Nu, provided confounding results and provided little 

insight into the effectiveness of nanoparticles as agents of enhanced energy transfer (Fig. 

I 5.1). The Peclet number Pe, which is the product of the Reynolds number and Nusselt 

number, was more informatrive (Fig. I 5.2).  This fact was only exposed by submitting 

the heat transfer data to an augmented form of analysis known as best subsets regression.  
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Let’s look at the tools the data analyst has at hand. What might be called exploratory data 

analysis (EDA). 

 

  

 

Fig. I 5.1 In a study by Tatarko conducted in 2011, the effectiveness of copper 
nanoparticles  60 nm in diameter, infused into a base oil of Amsoil 0W-30 
was investigated. The measure of effectiveness was the increase in h, the 
heat transfer coefficient over the base oil h0. The Nusselt number is a 
recognized predictor of heat transfer behavior yet this plot offers little 
insight into any trends. In fact in 2 instances the heat transfer coefficient got 
worse (< 1.000) as Nu increased. 

 

Cheap computing power has made the management of huge data sets tractable and there 

exists the so-called trinity of selection
[72 ]. 

1. Statistical tests: chi-square, t-tests, significance, F, … etc. 

2. Criteria: R-squared, adjusted R-squared, Mallows’ Cp, MSE… etc. 

3. Stopping Rules: p-value flags. 

In addition the statistician must decide how to deal with outliers, gaps, and clumps. The 

correct regression algorithm is one that permits all of the data to be represented without 
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bias.  The choice of variable selection is not always easy.  In experiments that comprise 

this dissertation there exist a multitude of variables effecting the flow of energy from the 

nanoparticles to and from the base oil and to and from the tube wall (cf. Part 1). 

 

Fig. I 5.2  Under the same conditions as in Fig. 5.1, calculation of Pe provided a clearer 
picture of the heat transfer enhancement. The Peclet number is the product of 
the Reynolds number and the Prandtl number:  Pe = Re * Pr.  Thus the 
enhancement results in a combination of effects created by the fluid flow (Re) 
and the thermal properties (Pr) of the base fluid and the nanoparticle. The 
decision to investigate other predictors of heat transfer behavior was guided 
by insights gained through the use of best subsets regression of the huge data 
set. 

 
 

The best subsets regression algorithm helps the statistician choose the model that best 

represents the data based on statistical criteria. Each, some, or all of the independent 

variables and any combination or multiple of them can be submitted for analysis. It is at 

this point that engineering expertise must prevail. The analyst must submit as detailed a 

collection of independent variables as necessary to describe the process, yet, the model 

must not be too complicated.  The best subsets regression technique while powerful must 

be used by the discriminating scientist or engineer. In the hands of the novice it might 
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lead to dangerous conclusions.  The dimensionless numbers (Re, Pr, Pe, …etc.), so 

common to engineering analysis are particularly suited for inclusion into best subsets 

regression data sets because these are groupings of the independent variables and are on 

the order of one.   

The self-organizing feature map (SOFM), or Kohonen map provides another powerful 

non-statistical technique for organizing and analyzing data. This technique takes elements 

of topology, linear algebra, and probability to provide a non-linear ordering of 

experimental measurements.  A multidimensional (say p), data set of variable 

measurements is converted to a 2-dimensional set of results. 

 

Fig. I 5.3  This is a basic schematic[73] of the process that generates the Kohonen (SOFM) 
map. The input space has a dimension of p while the output space has a 
dimension of l, usually 2 or 3. The output space is known as a neuronal space 

and the spatial location of each neuron in the topographic map corresponds 
to a particular domain or feature of the input[73]. It is the competition and 
cooperation between neurons that capture the behavior of the input. The V 

matrix provides the original position of the m neurons. 
 
The map formation requires a learning algorithm that includes competition and 

cooperation between neurons.  During competition, each input vector x(n) is compared to 
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a weight vector from W the weight matrix and its relation to the position of a neuron in 

V(k(n)). The ‘winning’ neuron is based on the minimum distance: 

                                                      xT (n) – W ( k(n), :)                                                (I 36) 

During the cooperation phase, each neuron within the ‘neighborhood’ (a distance ρ(j)) of 

the ‘winning’ neuron has its ‘strength’ ʌ(j)  updated by a Gaussian function. 

                         ʌ(j)  =  exp ( ρ2(j) / 2*σ2)                                                           (I 37) 

where σ2 is the spread of the Gaussian function. So the SOFM algorithm consists of:  

1. Compile a weight matrix W with a random set of m input vectors. 

2. Determine the ‘spread’ σ2 of the ‘neighborhood’ function (Gaussian) 

3. For every input vector x(n) determine the ‘winning’ neuron k(n) and its position 

V(k) 

4. Calculate the ‘neighborhood’ function and modify the weights of all neurons 
proportional to the ‘neighborhood’ function and the distance of each respective 
weight vector in relation to the input vector. 

 
5. Continue until ‘distances’ = 0 and all neurons have been ordered. 

 

In a previous study, Tatarko[53] submitted a large data set of experimental heat transfer 

data for best subsets regression to determine the optimum model of heat transfer 

enhancement. Subsequently the results were also submitted for Kohonen mapping 

(SOFM) with the following results (Fig. I 5.4). 

  The results from all analytical tests, but especially those generated automatically via 

canned software must be viewed with skepticism and engineering savvy.  The Kohonen 

maps provide an insightful transformation of multidimensional data into 2 dimensions; 
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that which we can visualize and understand. For this particular set of data both the best 

subsets regression and the SOFM corroborate the uselessness of the Nusselt number 

when analyzing the heat transfer enhancement of nanofluids. Surprisingly the % wt. 

fraction results are not conclusive either. Does it mean that this variable is unimportant?  

Hardly! It is just that this data set does not reveal information on this variable. Perhaps 

another analytical technique would glean more information. The thoughtful and diligent 

researcher appreciates that. 

 

       

 

 

 

 

 

 

 

 

 

 

 

Fig. I 5.4  The results of submitting a huge data set of experimental heat transfer data for 
Kohonen mapping subsequent to best subsets regression analysis.  The 
enhancement ratio ER, is a comparison of the heat transfer coefficient of the 
nanoparticle-enhanced fluid to the base oil. It is to be maximized at 1.15. The 
7 maps correspond topologically on a one-to-one basis. Thus the particle size 
should be kept small: 29.3nm. The Reynolds number and temperature should 
be kept low. The Prandtl number and thus the Peclet number should be kept in 
the medium to low range. The mappings for the wt% and Nusselt number are 
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more problematical. There are ‘hot’ spots roaming throughout the map. There 
is no definitive classification and this must be observed by the discriminating 
researcher. Compare the mathematical approach to data analysis afforded by 
the SOFM versus the intuitive effort compiled in Table 1. 

 

  Systematic and random errors encountered during data collection along with the effects 

of propagation must be accounted for by the conscientious analyst.  Systematic errors 

include those involved in the operation of laboratory test equipment.  Most instruments 

have a standard of known value against which calibration can be made.  It is part of the 

researcher’s task to instruct technicians in the proper methods and intervals.  It should be 

noted that a particular piece of equipment in the Heat Transfer Laboratories at the 

University of Louisville has been a massive source of systematic error.  This problem is 

addressed in Part III of this dissertation.  Random errors can never be eliminated yet the 

effects and propagation of these effects throughout the calculation of results must be 

addressed. The propagation of measurement errors of items such as temperature, fluid 

velocity, and density may render any experimental results and conclusions meaningless. 

  The determination of property values for ZIF-8 is crucial in determining its 

effectiveness as an agent of heat transfer enhancement.  In order to assure a confidence 

level of 95% it was calculated that at least 25 different measurements of properties such 

as density, specific heat, and BET were to be made.  Graphs of results are to include the 

appropriate error bars and any other values are to be reported with the appropriate 

statistics.  Before reporting values for any chemical or physical properties to a peer-

reviewed journal, samples should be submitted to another independent testing agency for 

corroboration. For this dissertation the error bars consisted of the standard error (std. 

err.).                          std. err.  =  std. dev. / √ sample size 
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It is tempting to assume that all measurements and associated errors are normally 

distributed.  This should be demonstrated. 

  This researcher is passionate about education and has assumed the role of mentor to 2 

interns. Instruction in the proper calibration, use, and maintenance of laboratory 

equipment along with the use of personal protection items comprises an important part of 

the education of an engineer and scientist.  This is the necessary first step in the 

collection and analysis of meaningful data. 
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II 

LITERATURE REVIEW 

 

1.  Heat Transfer Enhancement via Nanoparticles 

 

  One of the major goals of the National Nanotechnology Initiative (NNI) strategic plan in 

2007 was advancement of a world-class nanotechnology research and development 

program. In this plan, fundamental nanoscale phenomena and processes were to be 

among the most important research areas spanning multiple disciplines with applications 

in solar energy, heating, ventilation, and air conditioning (HVAC), and renewable 

resources.  

  The term “nanofluids” was coined by researchers at Argonne National Laboratory and 

refers to a two-phase mixture composed of a continuous liquid phase and dispersed 

nanoparticles in suspension[2].  The nanoparticles added are typically on the order of 100 

nm or less at volume fractions less than 5%.  Even at these low volume fractions, 

significant thermal conductivity enhancements have been reported based on the 

nanomaterials and base fluids used.[2-7] Since the first report of nanofluids, there have 

been hundreds of articles written on the subject of nanofluids. One early study by Choi 

and colleagues [8] which utilized CNTs of 25nm in diameter and 50μm in length dispersed 

in a poly (α-olefin) (PAO) oil found that the thermal conductivity was enhanced by 160% 

over the base fluid at a volume fraction of only 1%. A more recent study by Chen and 
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Xie [79]. observed a 10% to 28% enhancement in thermal conductivity of silicon oil-based 

multi-walled carbon nanotubes (MWNT) nanofluid. 

  Practically, the heat transfer coefficient of a nanofluid is more important than the 

thermal conductivity since this determines how effectively the heat can be transferred 

within a system. Different particle sizes, shapes, aspect ratios, and volume fraction have 

been studied by research groups around the world[10-13]. Commonly used base fluids 

include water and ethylene glycol (EG). Jwo et al.[80] applied Al2O3/water nanofluid to a 

multi-channel heat exchanger system. The overall heat transfer coefficient was enhanced 

by a maximum of 19% at 1.0 wt %. Xie et al [13]  observed a significant increase of heat 

transfer coefficient of up to 152% using MgO nanoparticles dispersed in a mixture of 

distilled water and ethylene glycol over a Reynolds number range of 300 to 1500. 

  There are limited results for heat transfer enhancement using oils either in laminar or 

turbulent flow reported in literature. Chun et al.[81] determined that heat transfer 

coefficients increased as particle loading increased from 0 to 0.5 vol% for 

Al2O3/transformer oil  nanofluids. It was also found that over a Reynolds number (Re) 

range of 100 to 450, larger nanoparticle sizes (43nm) showed a slightly larger 

enhancement in heat transfer coefficients when compared to smaller nanoparticle sizes 

(27-43nm). A more interesting result showed that rod-like alumina (7 nm diameter with 

an aspect ratio of 50 to 200) displayed higher heat transfer coefficients at lower Re but 

lower heat transfer coefficients at higher Re when compared to the larger nanoparticles 

over the Re range of 100 to 450. The researchers postulate that this may be due to 

alignment of the rods at the thermal boundary layer in the pipe at lower Re. Choi and 

colleagues [11] used spherical and rod-shaped Al2O3 and AlN dispersed in transformer oil 
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to make nanofluids. All three types of nanofluids showed small enhancement of heat 

transfer coefficient at a Reynolds number range of 100 to 500. A maximum of 20% 

increase was observed for AIN/transformer oil based nanoparticles at a volume fraction 

of 0.5%. Yang et al.[82] found that  a graphite nanoparticle loading of 2 vol%, in a mixture 

of two synthetic oil based nanofluid showed little enhancement of the heat transfer 

coefficient. However at a particle loading of 2.5 vol%, there was a 22% increase in the 

heat transfer coefficient at a temperature of 50°C at low Reynolds. As the temperature 

increased to 70°C, the enhancement of heat transfer coefficient decreased slightly to 15%.  

  To date, most of the work done in the field of heat transfer enhancement via 

nanoparticle addition involved the use of metals or metal oxides with high conductivities. 

These nanoparticles did have rather small total surface areas. The ZIF-8 molecule has a 

low conductivity but extremely large surface area: approximately 1000 m2 / g. If there is 

to be enhanced heat transfer with this nanoparticle some insight into possible mechanisms 

might be forthcoming. 

                      

Fig. II 1.1 A comparison of the conductivities of various compounds/elements[83].  
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Saidur et al [84] discussed some of the challenges of potential commercial applications of 

nanofluids while expounding rapturously about the benefits and long-term outlook. The 

challenges revolved around colloid stability, increased pumping requirements, and the 

cost of  production. It should be noted that the discussion of economics in this paper is 

rare and welcome. If 

                                                    Q = h A ΔT                                                                (II 1) 

There are three items we can change to effect increased heat transfer; Q. 

 

Fig. II 1.2 A cartoon depicting the comparative size scale of various items. Most people 
have little understanding of these relationships and that is part of the inertia 
behind the lack of commercial application of nanoparticles in HVAC 
systems[84].  

 

The area (A) may be increased, the temperature difference (ΔT) increased, or the heat 

transfer coefficient (h) increased. Microelectronic applications are size-restricted and 

some materials are heat-sensitive so the alternative is an amplification of the heat transfer 

coefficient. This is the goal of nanoparticle addition to fluids. Fig. II 1.3 is a depiction of 

the various current applications. Most of us as consumers would not recognize many of 

these. 
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Fig. II 1.3  Current and hoped-for applications of nanoparticles. Few of these are 
consumer-identifiable and most have limited use. It will be in this 
generation that huge breakthroughs come into vogue[85]  

 

Interestingly, this paper mentions the effect of surfactants as perhaps an unrecognized 

key to the enhancement mechanism. The optimum amount of ‘stabilizer’ (Saidur’s term 

for surfactant), reduces nanofluid viscosity and permits minimum agglomeration. This 

could be an area for more research. As a testament to this research, Saidur emphasizes the 
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enormous disparity in the results obtained by different researchers, the lack of a coherent 

theoretical mechanism, and the unpredictability of long-term nanofluid stability. 

Mentioned are glowing reports in the fields of HVAC, solar energy, machining, 

transportation, and medicine. Not surprisingly, few of these involve commercial 

applications. This review article purports that the nanoparticle business is currently 

approaching $1 billion per year. 

  Pang[86] 
et al, authored a review paper on  thermal conductivity, the most studied 

property, of nanofluids. Included is an exposition of various mathematical models for 

calculating the effective thermal conductivity along with theoretical mechanisms that 

may explain the behavior of nanoparticles infused into a base fluid. It is claimed that 

among the most controversial topics concerning nanofluids are theories surrounding 

aggregation due to Brownian motion, formative nano-convection, and the molecular 

nanolayer.  

                                    

Fig. II 1.4  The molecular nanolayer, theorized by Yu and Choi, is used to explain the 
enhanced thermal conductivity afforded by the nanoparticle. Effective 

medium theory did not accurately predict this effect for particles < 1μm. 
Thermal diffusion takes place in the layer δ.  This is not to be confused with 
the Kapitza resistance layer which is prevalent among agglomeration of 
nanoparticles. There has been no experiment yet to determine the thickness 
of δ[86]. 
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The development of the molecular nanolayer is just one part of the thermal conductivity 

model. It is followed by the layering mechanism which helps to explain bulk thermal 

disffusion. 

                              

Fig. II 1.5  The layering effect of nanoparticles. It is speculated that thermal conductivity 
is enhanced due to increased ordering along the backbone. This composite 
theory by Yu and Choi is plausible only when Brownian motion plays an 
integral part. It has been shown that thermal diffusion via bulk motion is 
orders of magnitude greater than that afforded by Brownian motion[86]. 

 

The authors posit two forms of Brownian motion within the nanofluid: collisions between 

the nanoparticles which can cause agglomeration, and nano-convection.  There exists an 

optimum level of agglomeration that enhances thermal conductivity. The actual sizes and 

shapes of the nanoparticles greatly influence the level of agglomeration. Whenever 

experiment did not coincide with the theory the authors stooped to blaming the Kapitza 

resistance. This is dubious science yet the authors claim some success with larger 

nanoparticles. Pang includes a collection of correlations for calculating the effective 

value of themal conductivity.  
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  The long term stability of nanofluids is addressed in a paper composed by Nine et al
[87].  

His premise: the lack of commercial applications of nanofluids is attributed to the almost 

certain degradation and destabilization of nanoparticles in the base fluid.  In a series of 

experiments, metallic nanoparticles were shown to have been oxidized and agglomerated 

with loss of thermal conductivity. Repeated cycling between hot and cold temperatures 

accelerated this degradation. More importantly once the nanofluid has been subjected to a 

boiling cycle, amounts of nanoparticles were shown to have been deposited (fouling) on 

heat transfer surfaces[87]. 

 

Fig. II 1.6  Fouling and corrosion of heat exchangers is a massive expense in the process 
industries. Nine[87] is the first author to report the deposition of nanoparticles 
on heat transfer surfaces after a cycling period. Surface tension and 
roughness play roles in the process. Changes in these surfaces affect the heat 
transfer coefficient. These photos were taken after only 2 weeks of cycling. 
The heat transfer rig at the University of Louisville may have already been 
fouled due to years of use. 

 

Since the volume fraction of nanoparticles within the base is so small any fluid 

destabilization or deposit of material on heat transfer surfaces may render the thermal 

enhancement negligible. 
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Fig. II 1.7 Increased agglomeration [A] of Cu nanoparticles after 24 hours of 
cycling[87].This  was expected. What was not expected was an actual 
decrease in the size along with a change of shape of the nanoparticles 
themselves [B]. Fluid stability and the thermal enhancement is nullified. 

 

This paper offers experimental evidence depicting the rapid degradation of a nanoparticle 

infused base oil.  Fouling of heat transfer surfaces along with morphological changes of 

the nanoparticle portray as more sources of systematic error.  How many experiments 

were done and papers written without consideration of  this phenomena?  

  Zerradi and his co-authors presented a paper purporting a new correlation for 

calculateing the Nusselt number of various nanofluids and subsequently the thermal 

conductivity[88].  Table 2 on the next page is a compilation of previously popular 

incarnations. Although Tatarko[53] has shown that the Nusselt number is not an accurate 

predictor of heat transfer behavior within the nanofluid, these correlations could become 

welcome additions in the search for accurate values of conductivity, k. The general form 

of Nu: 
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            (II 2) 

Where the subscripts f and p refer to the base fluid and nanoparticle respectively. The 

density is denoted by ρ and the volume fraction θ.  

Table 2
[88]

   Popular correlations for the Nusselt number 

         

 

 

The authors proposed to use the elegant and simple Gnielinski correlation as a 

foundation.  Instead of using the standard Reynolds number, the authors used the 

Brownian motion Reynolds number based on kinetic theory and convective flow in the 

Stokes region. 

                                                                                    (II 3) 

The kinematic viscosity is ν, and Boltzmann’s constant is kb. The temperature is T and ρ 

and d refer to the density of the base fluid and the particle diameter. Thus the functional 

relationship becomes: 

                                                                          (II 4) 
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This results from the authors’ claims that the Nusselt number is a function of the 

nanoparticle alone[88].  It is posited that via Monte Carlo simulation and experiment the 

new correlation predicts the Nusselt number and thermal conductivity within about 4%. 

 

Two points need to be made. In a previous paper, Tatarko[53] proposed the use of 

dimensionless numbers based solely on the nanoparticle. From personal experience, 4% 

accuracy is about all one can expect from molecular simulation studies. This may not 

qualify as technical accuracy since it only justifies 2 significant figures.  

   (II 5) 

Notice the terms α, β, χ, and δ. These are coefficients rendered when experimental data is 

‘fit’ to the equation; a common numerical technique. This is the authors’ equation-of-

choice for the correlation[88].  

  As important as the measurement of transport properties of the nanofluid so too is the 

method of preparation. This is the premise of a paper submitted by Haddad et al
[89]. 

Metallic and non-metallic nanoparticles seem to require different treatment when 

attempting to infuse these into a base fluid. Two opposed processes dominate here; 

agglomeration and sedimentation.  Nanofluids are thermodynamically unstable due to the 

high surface energies of the particles themselves. In an attempt to minimize this energy, 

particles motivated by Van der Waals forces tend to agglomerate and maximize the 

surface area. Gravity forces sedimentation.  One of the premises underpinning the 

definition of nanofluid is that no chemical reaction occurs between the base fluid and the 
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particle.  The authors present a review of the preparation techniques for 11 different 

nanofluids and compile a lengthy table of the results. What is best gleaned from this tome 

is the dependence of nanofluid stability on the zeta potential. The zeta potential ξ, is the 

voltage difference between the base fluid and a thin layer of fluid surrounding the 

nanoparticle (cf Fig. II 1.8) 

                     

Fig. II 1.8 A diagram showing the parameters that comprise the zeta potential, a key 
indicator of colloid (nanofluid) stability[90]. At the isoelectric point, the 
solution has no net charge. Thermodynamically, charged surfaces tend to 
form double layers and changing the pH of a nanofluid can alter the 
isoelectric point and thus the stability. 

 

Colloidal solutions (nanofluids) with the zeta potential < 5 mv agglomerate immediately. 

Values above 30 mv are stable while those greater than 60 mv render enhanced 

stability[89].  In summary it is a challenge to effect homogeneity at the optimum level of 

aggregation without altering the thermal or transport properties of a nanofluid. Often a 

combination of techniques is necessary to accomplish long term success.  Sonication, the 
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use of sound waves for mixing, along with pH control, and the use of surfactants round 

out the three accepted methods[89]. The future commercial successes of nanotechnology 

revolve around the ability to keep the particles in solution while inhibiting sedimentation 

and agglomeration. 

  P.D. Shima and John Philip[91] espoused the use of the effective mean theory (EMT) 

originated by J.C. Maxwell in 1881 for calculating k the thermal conductivity of a 

nanofluid. 

                                                                    (II 6) 

Where k is the conductivity of the nanofluid, kf   the base fluid, θ, the volume fraction of 

the nanoparticle and  β  = ( kp – kf ) / ( kp – 2 kf  ). 

  Ali, El-Leathy, and Al-Sofyany experimented with an Al2O3 / water nanofluid in the 

radiator of an automobile[92]. Similar to results obtained by scores of researchers 

including Tatarko, heat transfer enhancement ~ 14% occurs at an optimum volume 

fraction of 1% and decreases dramatically at higher concentrations.  The goal here is the 

miniaturization of the automobile cooling system because of the increased heat transfer 

and thus a reduction in weight. This was strictly a laboratory demonstration and made no 

mention of the fouling of  system components or the degradation of the nanofluid over 

time. 

  Hussein, et al
[93] conducted laboratory experiments and molecular simulations in the 

laminar and turbulent flow regions with the standard Al2O3 and water-glycol system. The 
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usual results were obtained however what is notable is the suggestion that perhaps 

circular tubes do not offer the most surface area and best platform for heat transfer 

enhancement via nanofluid technology. More testing and analysis was to follow. 

  In a beautifully designed apparatus Anoop, Cox, and Sadr[93] examined the efficacy of a 

SiO2-water nanofluid in heat exchangers (Fig. II 1.9). With much hope the researchers 

found that the heat transfer enhancement afforded by the nanofluids ~ 5% was nullified 

by the increase in pressure drop, degradation of thermal properties and the fouling of heat 

transfer surfaces within the heat exchangers. At this time it appears that the use of 

nanofluids within heat exchangers will be limited. 

  

Fig. II 1.9  A heat exchanger train designed and built by Anoop et al
[93]. Although no 

samples were removed from the system to determine the extent of fouling or 
nanofluid degradation the authors verified the increase in pressure drop 
throughout the test rig. The meager heat transfer enhancement of 5% could 
not justify the increased pumping costs. It appears that the addition of 
surfactant necessary for sustained suspension of the nanaoparticles in fact 
alters some of the thermal properties. 
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Referencing Fig. II 1.4, It is theorized by Xuan, Li, and Tie[95], that the addition of 

surfactants greater than 0.1 wt% affects the thermal boundary layer so aversely that heat 

transfer enhancement is negligible. This provides a plausible explanantion for the wide 

disparity in results obtained by many researchers over the last 20 years. Increased 

attention to the roles of surfactants and pH is warranted.   

  As important as thermal conductivity is so is specific heat Cp . In a comprehensive 

review paper Sharul et al
[96]

, presented results of more than fifty researchers on the 

specific heats of various nanoparticle/base-fluid couples. What is particularly noteworthy 

is the lack of agreement between experimental values and those obtained from accepted 

correlations. The best results were obtained by generating an equation through a ‘fit’ to 

the experimental data.  Even so, there is an average error in the results of about 2 %[96].  

This is disconcerting for now we have errors beginning to mount-up. The error in thermal 

conductivity is also between 2 % and 5 % [91]. There is the concern with the addition of 

surfactants to the base fluid necessary for a stable nanofluid, and the increased (yet 

unmeasured) thermal resistance generated during fouling. Compounding the problem is 

unknown systematic error associated with laboratory equipment along with natural 

variation.  A back-of-the-envelope calculation indicates that experimental heat transfer 

enhancement less than 7 % is probably meaningless. Improved methods of analysis of the 

important thermal, caloric, and transport ptoperties of these nanofluids is warranted. 

  An accepatble correlation for the specific heat of the nanofluid[96]: 

             (II 7) 
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Where φ  is the volume fraction of the nanoparticle and the subscripts f and n refer to the 

base fluid and nanoparticle respectively. The density is ρ. The article in conclusion claims 

that specific heat varies with temperature, particle size and shape, and volume fraction.  

This is the standard (monotonous) claim of all of the previously cited scripts. 

  In an attempt to theoretically account for particles size in the model and correlation for 

thermal conductivity, a group of researchers in Singapore[97] developed a beautifully 

conceived extended model of Maxwell’s classical treatise on conductivity.  

  Much has been made-of the conductive and convective properties of the nanoparticle-

enfused base oil and this has been exhaustedly analyzed ad nauseum. Said et al
[98] 

investigated the radiative properties of  nanofluids with an eye to enhancing heat transfer 

within solar energy applications. This was accomplished via study of the optical 

properties of the nanofluids through electromamgentic wave analysis.  The absorption 

properties of nanofluids within the visisble spectrum (sunlight) is dependent on size, 

shape and concentration. More precisely, these researchers found that for solar energy 

applications the concentration (volume fraction) had to be closely controlled. High 

concentrations (> 1%) resulted in the creation of a boundary layer at the nanofluid-solar 

panel interface: think Kapitza resistance. Radiation and thus thermal absorption was great 

but much was immediately lost to the surroundings with little transfered to the nanofluid 

within the solar panel.  Volume fractions at the low end did not adequately capture 

available radiation[98].  Again we must remember that the composition of the nanofluid is 

dependent on the synthetic process, single-step or two step, and the negation of 

agglomeration.  The two-step method involves the infusion of previously synthsized 
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nanoparticles into a suitable base oil along with copious amounts of dispersants. Stearic 

and Van der Waals forces are neutralized and the pH altered to enhance stability. 

  The current state-of-the-art in solar energy applications is the direct absorption solar 

collecter (DAC). Water a fluid with a notoriously low thermal conductivity has 

traditionally been used as the thermal transfer agent. Some researchers claim 5% to 10% 

improvement in heat transfer upon the addition of  carbon nanotubes, graphite, or silver 

nanoparticles[98].  The goal of solar energy applications is the reduction of carbon dioxide 

and dependence on fossil fuels. 

  Interestingly, the radiative absorption properties of water within the solar collectors was 

increased nine times upon the addition of nanoparticles.  This led to a heat transfer 

enhancement of aproximately 10%.  This effect decreased dramatically after  just a few 

heating-cooling cycles[98]. The researchers were certain that this difference was caused by 

a disintegration of  nanofluid stability.  Recall that it was previously mentioned in this 

work that fouling and nanoparticle metamorphosis was apparent in nanofluid systems 

after just a few cooling-heatng cycles[87]. Shear forces have a huge effect.  The key to 

harnessing the radiative absorption properties of nanofluids is in the understanding of 

light scattering; Rayleigh and Mie theory.  This dissertation is not an expose on the 

matter of light yet Said and his coauthors[98] make a compelling theoretical argument for 

pusuing radiative enhancement of  thermal fluids with nanoparticles and present 2 figures 

that help us understand the effects.  Controlled and efficient absorption of light, critical to 

solar energy applications, is intimately related to synthesis of an optically stable 

nanofluid composed of rock-sold nanoparticles and thermally efficient base fluids.  
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  Fig. II 1.10 A summary of items[98] mentioned throughout this work that affect the heat 
transfer performance of nanofluids. Notice the cross-linking effects. 
Additives such as dispersants have a marked effect on viscosity and 
thermal conductivity.  What is missing from this figure is the effect of  pH 
which can also be adjusted with various compounds. A significant amount 
of work  in this dissertation was devoted to the determination of the 
density, specific heat, and thermal conductivity of ZIF-8. To the best of my 
knowledge this work is the first to record these values. 

 

Fig. II 1.10 and Fig. II 1.11 depict the effects and significance of particle size and the 

absorption and scattering of light.  The control of particle size and shape, (tunable 

properties) is part of the panache of nanoparticle technology. There are a number of 

synthetic tricks available to the thoughtful and diligent researcher which produce a 

desired particle geometry. A true triumph.  What cannot be emphasized enough is the 

lack of  nanofluid stability demonstrated and documented in paper after paper reviewed 

by this author of this dissertation. A cursory review of theses and dissertations prepared 

by my predecessors displays a lack of understanding of this phenomenon.      
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Fig. II 1.11  This schematic[98] presents a guide for the synthesis of  nanoparticles 
suitable for use in a solar collector. The solar collector takes radiative 
energy from the sun and transfers it to a fluid, typically water.  The 
addition of nanoparticles is said to enhance this heat transfer. The vertical 
axis, known as the size parameter α, is the ratio π*D / λ where D is the 
particle diameter and λ is the wavelength of light. Since the wavelength 
of visible light is about 10 times greater than the diameter of most 
nanoparticles (< 100 nm), Rayleigh light theory predominates[99]. Turning 
attention to the horizontal axis, the volume fraction, it can be seen that 
there exists a relatively small set of size/geometry/concentration 
combinations that will effect enhancement. Said and his co-authors[98] 
reviewed 122 papers that reveled in the ability to create tunable 
nanoparticles that satisfied these requirements and enhanced heat transfer 
in solar collectors by as much as 10%.  Sadly in the conclusion, the 
researchers admitted that much of the purported results were short-lived 
due to nanofluid instability and in reality many of the results were 
irreproducible. Interestingly, most of the work in the reviewed papers was 
completed with carbon nanotubes and/or silver nanoparticles.  The ZIF-8 
nanoparticle is characterized by the preponderance of the imidazole linker 
over the zinc molecule (cf Part I Fig. I 1.10). It is more ‘organic’ than 
‘metallic’. What optical properties of this nanoparticle could be 
exploited? 

 

Boqi, Xiao, Yi, and Lingxia[100] developed a novel method of determining thermal 

conductivity of nanoparticles using Brownian motion and fractals. The fractal 
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dimension of a nanoparticle can be used to help analyze the behavior of nanofluids. The 

following relation characterizes the fractal dimension df. 

                                          Φ = β
 2- d

f                                                      (II 8) 

where φ is the nanoparticle concentration and β is the ratio Dmin / Dmax of  the nanoparticle 

diameters in a fluid. The authors claim that nanoparticles in a nanofluid  are fractal 

objects.  Thus fractal theory can be used to predict transport properties of nanofluids[100].  

The complete analysis hinges upon the consideration of Brownian motion as an important 

contributor to heat transfer enhancement. A fractal expression of the average nanoparticle 

diameter Davg is given by: 

                                  Dmax  =  [ ( 4 – df ) / df ]
 1/4 

* Davg                                                 (II 9) 

The co-authors[100] claim that the thermal conductivity k, of the nanofluid is a function of 

the thermal conductivities of the base fluid and nanoparticles, the  average diameter of 

the nanoparticles in the base fluid, the nanoparticle concentration, the fractal dimension, 

and the physical properties of the base fluid. A fractal is a geometric entity that repeats 

in various configurations. The fractal dimension is a measure of complexity and need 

not be a whole number: a line segment would have a fractal dimension of ‘2’. The 

molecule that is the basis of this dissertation ZIF-8, the cage-like synthetic zeolite, is a 

prime example of a fractal (cf. Part I, Fig. I 2.2, Fig. I 2.3, Fig. I 2.4).  The authors 

make some curious logical leaps when rationalizing the calculation of the thermal 

boundary layer. It was claimed that the hydrodynamic boundary layer of each base-fluid 

molecule could be approximated by the following relation: 

                                                          δ = 3 * Df                                                            (II 10) 
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where Df  is the diameter of the base fluid molecule and δ is the diameter of the 

hydrodynamic boundary layer.  The thermal boundary layer δT can then be expressed 

by[100]: 

                                             δT =  δ / Pr                                                                       (II 11) 

where Pr is the Prandtl number.  The fractal dimension is used in calculating the average 

radius of the nanoparticle in the base fluid. The researchers finally arrive at an equation 

that depicts the effective thermal conductivity kc of the nanofluid [100]: 

                                  (II 12) 

The parameters in equation (15) have been previously defined but the most important 

parameter above is ‘C’ which has an empirically determined value of 236. This value was 

necessary to fit the experimental data to the equation. Although the authors use a thermal 

boundary layer based on Brownian motion (previously shown to be unimportant), their 

experimental results and conclusions corroborate some of the results obtained by Tatarko 

and Willing [53]. The effective thermal conductivity of the nanofluid decreases with an 

increase in the average size of the nanoparticle[100]. Smaller nanoparticles infused into a 

base fluid at a relatively low concentration have an increased thermal conductivity and 

thus enhanced heat transfer. It might be possible to correlate the fractal dimension with 

optical and absorption properties of nanofluids. In a humorous aside, Boqui et al sneak 

into the last section of the paper a disclaimer concerning the use of Brownian motion as 

basis for this analysis. They readily admit that nanoparticles greater than 16 nm do not 
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correlate with Maxwell’s effective medium theory for the calculation of thermal 

conductivity and a correction might be necessary to the  empirical constant ‘C’ based on 

the size of the nanoparticle. Is it any wonder the value of ‘C’ was 236? 

  Michaelides[101] presents a very thorough review paper on transport properties of 

nanofluids explaining in more detail most of the topics presented in Part I of this 

dissertation. In laminar flow of nanofluids at least 2 distinct length-scales must be 

considered; that of the nanoparticle with length α and that of the base fluid L. Turbulent  

flow might also require consideration of eddy-current lengths. In addition there are time-

scales related to the thermal behavior of the nanoparticle and the base fluid[101]: 

                 (II 13)  

In addition there are timescales involved in the flow (equation of motion) of the 

nanoparticle and the advective flow of the nanofluid[101]: 

                                           (II 14) 

These terms though foreign-looking are just derived from the Navier-Stokes equations 

and represent an attempt to render them dimensionless. In this case the drag coefficient 

and thermal conductivity become equal to 1 and solutions to the equations for various 

geometries and boundary conditions become tractable. All of the dimensionless numbers 
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so prevalent in chemical engineering are ratios of the pertinent timescales that relate 

momentum, heat, and mass transfer. 

             

Fig II 1.12  This seemingly innocuous diagram shows a total volume V composed of the 
base fluid Vf and clusters of nanoparticles Vi which comprise a continuum.  
What delineates the nanofluid from a colloid is the ratios of volume to 
surface area[101]. The Vi is composed of ‘n’ uniform spheres with radii α. 
The surface to volume ratio is 3 / α. As the numbers n increase while 
keeping the total volume the same (smaller particles) the surface to volume 
ratio increases. Any processes dependent on surface area such as absorption, 
heat transfer, catalysis, or chemical reaction should be enhanced with the 
addition of nanoparticles. 

 

Relative positions of nanoparticles within the base fluid are determined by these various 

forces[101]: 

1. Bulk fluid motion 

2. Various slip (lift) mechanisms 

3. Electric forces between particle 
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4. Hydrodynamic forces between particles and particle-to-wall interactions.  

Agglomeration is highly dependent on electric surface charges and the dielectric 

properties of the base fluid. 

 

Fig. II 1.13 A potential energy diagram showing force versus distance.  The primary 
minimum corresponds to agglomeration. The negative slope of the energy 
curve indicates particle–to-particle attraction. The ‘deep’ well portends a 
very strong bond which would be hard to break. The secondary minimum 
points to a much weaker attraction (shallow well) known as flocculation. 
These clusters flocs are easily broken during shearing, turbulence, or 
particle-wall interactions[101]. 

 

From an engineering point of view it would seem that volumetric flow through a channel 

is more important than viscosity[101]. This bulk viscosity is a function of nanoparticle  

distribution and should probably be measured via capillary tube and a differential 

pressure rather than a rotating viscometer. Fig. II 1.14 on the next page describes effects 

of  nanoparticle distribution. 
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Fig II 1.14 Nanoparticles oriented according to Case ub (lower figure) will have a greater 
viscosity than Case ua above. It should now be apparent how critical electric 
forces between particles are. The two cases are analogous to ‘laminar’ versus 
‘turbulent’ flow[101]. Note that the sizes and numbers of particles in each case 
are equal. 

 

Michaelides makes an important point concerning the preparation of nanofluids for 

testing. It is not uncommon in peer-reviewed articles for the type and concentration of an 

added surfactant to be omitted.  Surfactants have a substantial effect on the viscosity of 

nanofluids.  Paradoxically, the thermal conductivity k, is dependent on aggregates and 

chain formation. Thus referring to Fig II 1.15, the thermal conductivity of Case b is 

greater than Case a. Remember it was previously mentioned that nanoparticles were often 

deformed and reduced in size subsequent to shearing after passing through a pump or 

turbine. Thus the thermal conductivity of a nanofluid may not be constant. 
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Fig. II 1.15 Thermal conductivity k of a nanofluid is enhanced when aggregates and 
chains are formed[101]. This is not a static condition and thus k may not 
remain constant. The thermal conductivity of Case b is greater than Case 
a

[101.  

 

In a paper that has important implications for the Heat Transfer Laboratories at the 

University of Louisville, Leong et al
[118] studied entropy generation of nanofluids in 

circular tube flow.  Based on the first and second laws of thermodynamics, a thermal 

system is optimized when entropy generation is minimized[118].  Enhanced heat transfer 

reduces entropy generation and irreversibility. The authors concluded the following: 

1. Entropy generation is decreased as nanoparticle volume fraction is 
increased. 

2. Entropy generation is decreased when the circular tube length is increased. 

3. Entropy generation increases with increasing temperature. 

4. Diameter changes of the circular tube have little effect on entropy 
generation[118]. 

5. Increased mass flow rate increases entropy generation. 

The entropy discussed above is in fact a dimensionless quantity ψ defined as : 
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                               Ψ =  Sgen /  [Q / ( Tw – Ti )]                                             (II 15) 

In a problem that has yet to be resolved in the pumping of nanofluids through an enclosed 

thermo-fluid system it must be remembered that higher pressure drops require increased 

pumping power. Both the Stanton number and Eckert number are required when 

attempting to minimize entropy generation within a thermal system[118].  The Stanton 

number is defined: 

                                                                                                 (II 16) 

The Eckert number is defined as[118]: 

                                                                                                           (II. 17) 

The convective heat transfer of the nanofluid, hnf : 

                                                                                                        (II 18)  

 

Fig. II 1.16 One of two possible ways to study energy effects and nanofluid flow. By 
contrast The University of Louisville heat transfer rig is supplied with 
constant heat, Q and the temperature differences measured[118]. 
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where Nu is the Nusselt number and knf  is the thermal conductivity of the nanofluid. The 

velocity of the nanofluid through the tube is unf  and the temperature at the wall of the 

circular tube is Tw.  

  Computational fluid dynamics (CFD) has recently become an important investigational 

tool for the determination of process parameters, equipment dynamics, or material 

properties too difficult or impossible to measure directly. It is a complement to 

experimentation. Kamyar, Saidur, and Hasanuzzaman[119] in 2012 authored a paper on the 

use of CFD for the analysis of nanofluid behavior. The basic dissection of a problem 

involves these three steps[119]: 

1. Integration of all of the conservation equations over a defined control volume. 

2. Changing the obtained integral equations into algebraic equations via 
discretization. 

3. Solution of the algebraic equations via numerical iterative methods. 

The researchers rightly assert that for nanofluid flow with Peclet numbers greater than 10, 

the assumption of single-phase flow might not be justified[119]. Indeed they also posit the 

concept of the Richardson number Ri as a possible portent of two-phase flow. The 

Richardson number is a measure of buoyancy within a system: 

                                                     Ri =  Gr / Re
2                                                        (II 19) 

where Gr is the Grashof number.  An increasing Richardson number is indicative of non-

uniform particle distribution within the nanofluid[119]. The thermophoresis and Dufour 

effects, both slip mechanisms that increase heat transfer within a nanofluid, suggest the 

use of a two-phase nanofluid model as the optimum for use in CFD studies.  This results 

in a modified expression of the conservation equations necessary for modeling[119].  
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  There is a substantial gap between 10 years of research on heat transfer enhancement 

and bona fide engineering applications. Wu and Zhao in a review paper from 2013[120], 

posit on many of the contradictory experimental results, lack of fundamental explanatory 

theory, and irrational assumptions used by a host of researchers. They decry the lack of a 

comprehensive database of nanofluid thermo-physical properties yet do little to discuss 

some of the results presented by others on specific hard-core engineering problems: 

fouling, nanoparticle shearing and size degradation, nanofluid stability, and experimental 

error propagation. More positively they do suggest that CFD studies may give insights 

into the interactions of nanoparticles and the flow boundary layers[120].  

  As a counterpoint to the paper of Wu and Zhao, Liu and his co-authors[121] presented on 

the enhancement of heat exchanger efficiency due to nanofluids.  This is an example of 

old-school hard-core engineering meeting state-of-the-art technology.  Heat exchanger 

design and analysis had gone through decades of evolution and there was little to be 

gained from changes to the physical model itself.  The authors use the concept of 

number of transfer units (NTU) in their exposition.  

  Assuming a two-stream (m1 and m2) heat exchanger with one stream m1 enhanced with 

nanoparticles, the NTU is related to the overall heat transfer coefficient U by[121]: 

                                                                                           (II 20) 

where A is the overall surface area and Cmin is the minimum of  Cp1*m1 and Cp2 * m2. 

The enhanced NTU is described by: 
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                                                                                               (II 21) 

where the subscript 0 refers to the baseline. This is similar to quantities generated in the 

Heat Transfer Laboratories at the University of Louisville: h / ho, the enhancement factor. 

The authors were sure to also explain that the enhancement was optimal for a shell and 

tube heat exchanger with 2 liquids involved. A cross-flow exchanger with ambient air as 

a cooling agent did not experience much enhancement. This is standard in the industry. 

Air-cooled heat exchangers whether via natural or forced convection are cheap yet not 

very effective at removing massive amounts of energy. Nanoparticle-enhanced fluids  do 

little to improve this. 

  Hung and his co-authors[128] help understand the heat-exchanger concept further. The 

heat transfer coefficient of air in natural convection is approximately 5-25 W/m2K and 

for forced convection,  10-200 W/m2K. Water however has a much larger coefficient: for 

natural convection, 20-100 W/m2K and for forced convection, 50-10,000 W/m2K. The 

researchers hope to find a particular nanoparticle to enhance the heat transfer coefficient 

h, so that the design of the heat exchanger can be made smaller. A very solid attempt is 

made to quantify the uncertainty in the measurement of thermal conductivity, flow rate, 

voltage, weight, and temperature[128]. The uncertainty in the thermal conductivity is[128]: 

                                                               (II 22) 

If the thermal conductivity is accurate to ± 5% and the weights accurate to ± 0.01 gram 

and the temperature measurement accurate to ± 0.05º C, the best accuracy of the 
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experiment is about 5 %. This is consistent with calculations done by this researcher. 

Heat transfer enhancement less than 5% is not worthy of consideration due to 

propagation of errors. 

 

Fig. II 1.17 The heat transfer rig designed and built by Hung et al
[128] This is much more 

sophisticated than the apparatus available for use in the Heat Transfer 
Laboratories at the University of Louisville. The presence of the fan makes 
studies of forced convection possible. However the presence of more 
equipment adds to increased sources of error. 

 

As it has been found in our own heat transfer laboratories, the best enhancement occurs at 

low temperatures, 30-40º C. This results in a decreased heat exchanger area of about 1% 
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for every percent of enhancement. Unfortunately the high volume-percent of 

nanoparticles in the base oil required to effect this results in increased pumping power. 

To summarize the literature regarding heat transfer enhancement with nanoparticles over 

the last 15 years: 

1. Experimental results of heat transfer studies obtained are rarely reproducible. 

2. Nanoparticles processed via mechanical pumps and compressors are subject to 
agglomeration and physical distortion. 

 

3. Nanoparticle addition to heat transfer agents may lead to hastened and increased 
fouling of tubes and pipes. 

 

4. Heat transfer enhancement less than 5% may be considered negligible due to 
increased pumping costs and propagation of errors in calculations. 
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2.  ZIF-8 Synthesis and Properties 

 

   The synthesis of ZIF-8 has been somewhat problematic.  It is relatively easy to make 

[47,49] yet the yield is quite small; only ¼ gram per reaction. For any type of testing 

purpose or use as an engineering material this is unacceptable. In addition there is much 

waste of methanol, the mother liquor. Demir et al
 [102] proposed a scheme to reduce this 

waste thus making favorable effects environmentally and economically. In a typical 

synthesis, 2.4 g of zinc nitrate hexahydrate [Zn(NO3)2 * 6H2O] was dissolved in 90.4 g of 

methanol. An additional solution of  5.3 g of 2-methyl imidazole was dissolved in 90.4 g 

of methanol. The solutions were combined, stirred for up to one hour, and centrifuged to 

obtain a solid product. The mother liquor was poured off and retained. The product was 

washed and centrifuged 2 additional times before drying for 24 hours in an oven at 80°C 

[47,49,102]. The molar composition of the mixture prior to centrifuging was 1 Zn 2+ to 7.9  2-

methyl imidazole, to 695 methanol. This reaction and a scaled-up version for spray 

drying analysis, produced the ZIF-8 used for study in this dissertation. The ratio of 

methanol to Zn 2+ determines the average particle size, in nanometers, of the product. In 

this case 238nm [102]. The authors of the article tried three separate techniques to make 

use of the retained original solution for further synthesis of ZIF-8. 

   The mother liquor was aged for 24 hours before any additional processing. In process 

A, additional amounts of [Zn(NO3)2 * 6H2O] were added and centrifuged to obtain 

additional ZIF-8 product. In process B and C the pH of the solution was raised from 7 to 

9 and additional amounts of [Zn(NO3)2 * 6H2O] added [102]. The flow chart on the next 

page depicts the recycle process. 
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Fig. II 2.1 A flow chart depicting the recycle of the mother liquor for additional synthesis 
of ZIF-8. The adjustment of pH in process B helps precipitate additional 
product. XRD patterns produced by the authors show the characteristic 
fingerprint of ZIF-8. The reuse of the mother liquor doubles the product[102]. 

 

It will be shown in Part III that while the author’s efforts are laudable, the spray drying 

process is far superior in the production of product and the reclamation of  methanol. 

   Chen, Yang, Zhu, and Xia [103] in an article published in the Journal of Materials 

Chemistry A, also espouse some additional methods of ZIF-8 synthesis. It should be 

remembered that ZIF-8, a metal-organic framework, (MOF), falls in the class of materials 
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known as zeolites.  It is estimated that the world-wide market for zeolites is currently at 

350 billion dollars annually [103].   Table 2.1
[103] below shows relationships between 

traditional zeolites and the newer class of MOF’s. 

 

  

 

Fig. II 2.2 The current state of the art[103] in the production of a newer class of zeolites  
known as MOF’s, metal organic frameworks. Work at the University of 
Louisville has produced world-class examples of product in each category. 
The work in this dissertation is focused on the production of powder-based 
ZIF-8 via a solvent based synthesis. Researchers in Prof. M. Carreon’s group 
have produced ZIF film 

Table 2.1 
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   The authors claim that the addition of sodium formate enhances the production of 

tunable crystal sizes in the range of 10 nm to 65 nm. The current rage in ZIF-8 synthesis 

revolves around the use of aqueous ammonia [103]. It also is supposedly a modulator of 

particle size and in fact much cheaper than solvent methods using organics. 

   The solvent based methods are quite inefficient and thus costly. Large-scale production 

of ZIF’s via this method is just not possible. Most recently, some mechanico-chemical 

methods using ion and liquid-assisted grinding in a ball mill in the presence of salts has 

produced acceptable forms of ZIF-8. Fig.2.3 below gives a schematic of the process [103]. 

 

Fig. II 2.3 This is a schematic of three simultaneously occurring processes that facilitate 
the production of ZIF-8 from zinc oxide in the presence of 2-methyl-
imidazole and ammonium salts. Interestingly enough, the original size of the 
ZnO determines the size of the resulting ZIF-8 crystal [103]. 

 

Researchers have realized that the future for these MOF’s, regardless of the outstanding 

properties hinges on cost-effective production.    
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   Tan, Bennett, and Cheetham[104] in a paper published in 2010 reported some physical 

properties of the ZIF-8 molecule. These were closely tied to the framework density. The 

authors claimed an elastic modulus of 3 to 10 GPa and a hardness of 300 MPa to 1.1 GPa. 

A physical density of 0.95 g/cm3 was reported[1002]. Elastic modulus, is a measure of 

intrinsic stiffness under load[104] while hardness indicates a resistance to plastic 

deformation. The elastic modulus in this paper was determined via a nano-indentation 

technique and was inversely correlated to the porosity. The ZIF-8 molecule resides in the 

lower end of densities in the MOF/ZIF family; it is highly porous with a large void 

space[104], yet it still retains a robust elastic modulus.  It has become evident to this 

researcher that the ZIF-8 molecule is more ‘organic’ than metallic. 

   Previous studies have shown ZIF-8 to have very large surface areas ~1200 m2/g which 

are available for the capture and adsorption of various molecules such as carbon dioxide. 

A number of researchers are exploring alternate methods of synthesis in hopes of 

achieving more plentiful yields. Low et al
[105] recently published a paper devoted to the 

production of  the 3-dimensional sphere-like ZIF-8 from the 2-dimensional layered ZIF-L 

via a phase transformation. The usual method of MOF synthesis is one of reaction, 

crystallization and transformation within one pot. The authors claim that their more novel 

method of construction may open-up new avenues for the tuning of physical properties. 

   The researchers Chen, Bai, Zhu, and Xia[106] attempted to take a different approach to 

the synthesis of ZIF-8.  The usual one-pot approach as noted in the previous paragraph 

required an inordinately large ratio of 2-methyl imidazole (MIm) to Zn 2+ ; 70:1.  This led 

to much waste and has prompted some to seek out better paths to construction of a 

‘greener’   
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Fig. II 2.4  This schematic is a particularly informative picture of two of the most 
important physical properties of a material; its elastic modulus and its 
hardness. Notice where ZIF-8 fits into the hierarchy of nano-porous molecules 
and more traditional engineering materials[104].  

 

ZIF-8 molecule.   Kida et al
[107], claimed to have built the ZIF-8 molecule from an 

aqueous solution at room temperature with a ratio of  MIm to Zn 2+ of 20 to 1. This 

researcher has attempted to reproduce these results and has failed three times. This has 

led to some jaded views on research and truthfulness within the scientific community.  

Chen et al, attempted to synthesize ZIF-8 in in an aqueous ammonia solution at 
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stoichiometric ratios. Two mmoles of zinc nitrate hexahydrate (0.585 g), were dissolved 

in water an added to a solution of water with 35 wt % ammonia and 4 mmoles of  2-

methyl imidazole  (0.323 g). The reaction produces, it is claimed, at room temperature, 

true crystalline ZIF-8 after 24 hours. As usual the product was centrifuged ,washed, and 

dried numerous times. The authors produced SEM micrographs and XRD patterns that 

compared favorably with the prototypes synthesized by Venna[47,49].  

                               

Fig. II 2.5 The XRD patterns generated by the product of the synthesis of Venna et al.  
The structural evolution of ZIF-8 over time: a) 20 minutes, b) 30 minutes, c) 
40 minutes, d.) 50 minutes, e) 60 minutes, f) 12 hours, g) 24 hours[47,49]. This 
was a solvent-based reaction instituted with a massive excess of MIm. The 
kinetics of this transformation follow Avrami’s law[47,49]. 
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Fig. II 2.6  TEM micrographs of ZIF-8 generated by the solvent based process of Venna 
et al

[47,49]. 

         
Fig. II 2.7  The XRD patterns generated by the synthesis of ZIF-8 in an aqueous solution 

of 35% ammonia. The Zn 2+ MIm ratio of 1:1 is somewhat suspect, (there 
appears to be another product), yet the other reactions produce a product that 
compares favorably with those depicted in Fig. 2.5 at a more reasonable ratio 
of reactants[107]. 

 

                               

Fig. II 2.8  SEM micrographs of a ZIF-8 product synthesized from an aqueous ammonia 
solution (35%) in a Zn2+ / MIm / ammonia molar ratio of 1:4:400. The sizes 
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and morphology compare with the molecules depicted in Fig 2.6
[107]. Like all 

ZIFs this product required a long drying period; about 24 hours. 

 

The production of ZIF-8 requires a stoichiometric ratio of Zn 2+ to 2-methyl imidazole at 

1:2.  The researchers claim that the size and morphology of the ZIF-8 crystal can be 

controlled by adjusting the concentration of ammonia. If this report is valid and the 

results reproducible, this method provides an efficient and cost-effective path to the 

synthesis of ZIF-8[107].  An economic analysis is always germane to engineering 

proposals.   

  The previous discussion centered around novel and enhanced synthetic regimes for the 

production of ZIF-8. A paper generated in 2014 by Bazer-Bachi et al
[108], noted that while 

many alternative schemes for the synthesis of various MOFs are currently being 

proposed, little effort has been made to explore alternative methods of framework 

shaping.  Since the catalytic and adsorption properties are so highly valued in a material 

like ZIF-8 are there mechanical methods available to shape the highly porous framework? 

This might be called extreme tuning. These researchers submitted 0.1 gram samples of 

ZIF-8 to compression testing at 18 kN.  About 90% of the crystallinity and total BET 

surface area (1433 m2/g) was preserved. It was previously noted that ZIF-8 had decent 

hardness and elastic modulus properties[104]. The application of a compression force and 

the determination of subsequent physical characteristics will provide information 

necessary for scaled-up production of these MOFs for use in industrial reactors and 

separation columns. In fact these ZIF-8 molecules are being pelletized. The authors claim 

that the catalytic activity remained the same after tableting (compression), and in fact 

when considering the 10% reduction in area the activity had increased[108]. The result; 
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more pellets (of smaller size), can be introduced into a packed-bed reactor. The 10% loss 

of crystallinity and resulting amorphization was also inconsequential. A schematic on the 

next page gives a pictorial of the process. 

 

                                                 

Fig. II 2.9  The tablets shown in the photograph are a result of compressing ZIF-8 at a 
force of 6.8 kN. It can be seen that there would be a definite advantage in 
the mechanical loading of these tablets into a reactor or column[108]. 

 

                          
Fig. II 2.10  This graph while seemingly contradictory shows that as the microporous 

surface area of ZIF-8 decreased dramatically during compression, the 
external surface area remained constant or increased. If the catalytic 
activity remained constant that leads to the belief that almost all of the 
reactions / separations are taking place at the surface and not within the 
voids[108]. 
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The Fig. II 2.10 above may provide some information on the thermal properties of ZIF-8. 

It is well known that this MOF is going to have massive surface area. Is all of that area 

available for heat transfer? Will this be an example of an ‘organic’ nanoparticle that 

might act as an enhancer of heat transfer? The results will come in Part III. 

 

 

Fig. II 2.11  This schematic depicts the compression (pelletizing) of ZIF-8.  As more 
force is applied the area of amorphous regions increases[1008]. Is there an 
optimum region? 

 

ZIF-8 is usually synthesized via a solvent-based, microwave initiated, or ammonia-

enhanced aqueous solution.  Cho, Jun Kim, Se-Na Kim, and Ahn proposed a 

sonochemical approach to synthesis in a pH-adjusted solution. The sonic waves cause the 

collapse of the ZIF-8 crystal structure and thus a reduced size[109].  After pelletizing (cf. 

Fig. II 2.9 and Fig. II 2.11) the catalytic properties remained the same. In contrast to 

other synthetic routes, the researchers claimed a near stoichiometric ratio of Zn 2+ to MIm 

along with small amounts of triethylamine were introduced into a custom-made tube 

reactor fitted with a sonic bar. The yield was approximately 85%[109].  The tableted ZIF-8 
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products measured in the 400-500 μm diameter range.  The authors after much 

experimentation claimed that this technique could reduce the total synthesis/pelletizing 

process down to about 2-3 hours. This would be highly desirable for industrial 

applications. 

  In an issue of the Journal of Physical Chemistry C, Zhang and Jiang used molecular 

dynamics simulation to extract the thermal conductivity of ZIF-8 and reported it as 0.165 

W/mK [110].  This simulation is particularly interesting because of the ‘organic’ nature of 

ZIF-8.  Molecular dynamics simulation measures the forces between colliding molecules. 

Prescriptions from statistical thermodynamics translates these forces into physical 

properties. Statistical thermodynamics is the bridge between classical mechanics and 

thermodynamics. The formula for thermal conductivity κ is: 

                                                                        (II 23) 

where V is the volume, kb is Boltzmann’s constant, T is temperature, and J is the heat 

flux.  The brackets < > denote time average[110]. In turn, the heat flux J̅  is: 

                                                                            (II 24) 

where vi is the velocity of atom i, Ei  is the total energy both kinetic and potential, and Si 

is the symmetric stress tensor[110]: 
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                                                                                       (II 25) 

The stress tensor includes contributions from stretching, bending, torsion, Lennard-Jones, 

and columbic interactions.  This set of parameters is run in what is known as the NVT 

ensemble where the volume and temperature are held constant. A number of molecules 

are placed in a ‘box’ (mathematical) and allowed to collide. The force of each collision is 

measured and averaged over time. The transport properties can then be calculated.  As a 

check, the molecules are then submitted to the NVE ensemble and any statistical 

anomalies in calculated property values noted. Interestingly Zhang and Jiang ran another 

set of simulations in an attempt to deduce any lattice vibrations (phonons) due to heat 

flux.  Remember from Part I, it was noted that phonon transport was one possible 

mechanism for enhanced heat transfer due to the addition of nanoparticles. 
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Fig. II 2. 12 In an analogous yet inverse manner to the original NVT simulation, a heat 
flux is imposed on a set of atoms and the side-to-side-interactions 
(vibrations) measured. The mathematical ‘box’ contains 10 unit cells in each 
direction[110]. 

 

The heat flux from JA


 B,α  that is from A to B in the α direction is given by: 

                                                          (II 26) 

where S is the cross-sectional area between A and B, Fijα is the force between atoms i and 

j in the α direction and viα and vjα are velocities of the i and j molecules[110].  The majority 

of phonon contribution to the overall thermal conductivity, (60%), comes from vibrations 

in the z direction[110]. 

  To summarize the literature search on the topic of ZIF-8 properties and production it 

should be emphasized that little was available on actual determination of hardcore 

properties such as thermal conductivity, specific heat, and density. That left the bulk of 

that work to us in the Heat Transfer Laboratories at the University of Louisville. Some 

progress has been made in alternative and more efficient methods of synthesis of the ZIF-

8 molecules with an eye to engineering economy.  For all of the efforts found in the 

literature search this author still believes the use of a spray dryer as separation unit will 

afford greater yields and possible recovery of most of the methanol solvent. 

Experimentally, it will be interesting to see whether all of the surface area of the ZIF-8 

molecule will be available for heat transfer. The literature indicates that it will not (cf Fig 

II. 2.10). 
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3. Spray Drying 

 

  One of the problems encountered when this study of ZIF-8 was begun was the tedious 

method of production and resulting low yield from its synthesis. A large excess of 2-

methyl imidazole was required for the reaction to proceed and much of the methanol 

mother liquor was discarded. It took approximately 2.5 hours to make ¼ gram. It was 

thought that perhaps a more efficient and economical path might be found. In the 

previous section (II. 2) a number of authors proposed different synthetic routes. This 

researcher chose a different tack and approached the problem from a unit operations 

perspective; the use of spray drying to separate the solid ZIF-8, the product of reaction, 

from the mother liquor in production-size quantities. 

  Vehring, Foss, and Lechuga-Ballesteros authored a paper[111] on the theoretical and 

experimental foundation for the use of spray dryers in industry. This tome is in fact a 

compilation, review and expansion on much of the previous work done on spray drying. 

In addition to providing an analytical model and a numerical solution to the coupled heat 

and mass transfer equations, the researchers built an improved droplet-chain chamber to 

study the time evolution of single droplets. Experimental verification of the heat and 

mass balances during spray drying is complicated by many droplet-to-droplet 

interactions. The droplet-chain technique generates a single droplet at a time via a 

vibrating orifice into an atmosphere of controlled humidity. The time to distance 

relationship vis-à-vis the droplet size and shape can be correlated.  Droplet-droplet 

collisions are minimized.  The difference between the vapor pressure of the solvent and 

its partial pressure in the gas phase is the driving force for drying.  The rate of 

evaporation is balanced by the energy flux required for the enthalpy of vaporization and 
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the energy flux to the droplet surface[111].  As solvents evaporate solutes migrate to the 

droplet center. 

                                               

Fig II.3.1 The improved droplet-chain chamber constructed by Vehring et al. One of the 
probes, a laser, determines the droplet size by measuring the elastic scattering 
pattern. The second laser measures the time-distance evolution[111]. 

 

The equation governing the evolution of the solvent free particle is expressed by Fick’s 

2nd law of diffusion: 

                                  (II 27)          

where ci is the concentration of the solvent Di the diffusion coefficient of solute i, and rs 

is the droplet radius. R = r / rs is the normalized radial coordinate[111]. The steady-state 

evaporation of the solvent is proportional to the surface area.  This equation has an 

analytical solution which does not take into account the changing diffusion coefficient.  
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However the droplet-chain technique permits calculation of the initial drop diameter d0 

emerging from the vibrating orifice plate exactly[111]: 

                                                                                              (II 28)                    

where ρ is the density of the particle, cf is the concentration of the solute and dg is the 

final particle diameter. It was determined that two dimensionless parameters described 

the particle formation succinctly: the Peclet number Pe, which describes the change in 

surface accumulation due to diffusion  and the solute saturation S, which predicts 

precipitation[111]. To be sure, particle formation includes nucleation, crystal growth, and 

shell buckling mechanisms, yet the above numbers accurately predict the particle 

formation well. This knowledge along with use of the improved droplet-chain mechanism 

can help tune particle sizes and design possible coatings for enhanced heat and mass 

transport.   

  Anandharamakrishna in an interesting article[112], claims that an important parameter to 

considered in the spray-drying process is the residence time distribution (RTD) of the 

particle in the chamber. In review, spray drying involves 4 distinct processes: 1.) 

atomization of the liquid feed, 2.) contact between the spray and the drying medium 

(usually hot air or nitrogen), 3.) moisture evaporation, and 4.) separation of the particle 

from the drying stream.  A schematic on the next page Fig II. 3.2, depicts the location of 

these processes[112]. Complete tomes could be written on each of these yet the author uses 

computational fluid dynamics (CFD) to promote the concept of RTD. This concept is 

particularly important when dealing with temperature-sensitive proteins and 
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pharmaceuticals. Excessive RTD denatured some proteins. At this time no methods exist 

to measure the RTD of individual particles. Thus CFD studies were necessary. 

Complicating the issue further is the fact that the particle-particle and particle-drying gas 

interactions occur in the turbulent regime.  

 

Fig. II 3.2  The spray drying process depicting 1.) atomization, 2.) spray-gas contact, 3.) 
evaporation, and 4.) separation. Residence time distribution is critical in 
sections 2.) and 3.)[112]. 

 

In contrast to the work by Vehring et al
[111], Vincente et al

[113] studied the kinetics of the 

drying process on a molecular level. These researchers claim that fast evaporation and 

short drying times promote smooth spherical particles while the concentration solute in 

the feed cf  determines the relative thickness of the particle skin. Thus drying is controlled 

by droplet size dD temperature Tout and concentration cf
[113]. While it seems that this writer 

has reviewed a number of papers with similar titles in this dissertation it is important to 

note that this is only a small fraction of what has been read. Each paper presented has 
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offered an augmentation of previous information. Vincente and his co-authors have tried 

to present a rational approach to identifying and quantifying the various parameters 

affecting the spray drying process[113]. A schematic detailing their work is presented in 

Fig. II 3. 3. This is a vast improvement in a similar cartoon presented by Masters[115]. 

 

Fig. II 3.3 The schematic[113] outlining the various factors affecting the spray drying 
process. This explanation is valid for both the simple evaporation of solvent 
from an already created solid and the actual creation of a solid from 
solution. These are two separate processes. 

 

The outline above is a result of massive experimentation by the authors. Their work is 

replete with SEM photomicrographs of varying particle sizes and morphologies as a 

result of varying the three major parameters. 
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  Mezhericher, Levy and Burde[114] authored a review paper in 2010 that summarized the 

theoretical models of single droplet drying kinetics.  What is especially noteworthy about 

this contribution to the literature is the compilation and explanation of various boundary 

conditions and assumptions necessary to solve the material and energy balance equations.  

In addition, the authors attempted to correlate results obtained from CFD simulations 

with analytical and       

 

 
Fig. II 3.4 Notice how three parameters T, cf , and dD affect the size and morphology of 

the resulting particle. This schematic is a rationalization and simplification of 
the many factors involved in spray drying[113]. Particles are shriveled at slow 
drying times and low temperatures. The optimum shape is the sphere. 

 

numerical solutions to the equations of change. The goal of any analysis is the prediction 

of size and shape of the particle. 

  Perhaps one of the best of the papers reviewed by the author of this dissertation was 

written in 2009, by Dobry et al
[116].  It was posited that though spray drying had long 
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been a prominent unit operation in the pharmaceutical industry it was only after extensive 

pilot plant testing and statistical analysis of the product attributes could an industrial-

scale process be constructed. Two specific but important control volumes are identified 

within the spray drying chamber and the thermodynamics therein investigated. The goal 

was through the use of fundamental models a quick definition of a complete process 

could be delineated.  The macroscopic control volume encompasses the entire spray 

drying chamber. The microscopic control volume is enclosed in the macroscopic control 

volume[116]. Fig II 3.5 below is a beautifully descriptive schematic of the process. 

 
Fig II 3.5 Two separate control volumes are depicted in this schematic of the spray 

drying process. Notice the time scale delineated on the right side of the 
drawing[116]. The control volumes permit the use of thermodynamics to aid in 
the construction of a process. 
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For spray drying, the key thermodynamic process parameters are[116]: 

1. Msoln: The mass flow rate of the feed.   

2. Mgas:  The drying gas flow rate. 

3. Tin and Tout 

4. % RSout: The relative saturation (humidity) at the spray dryer outlet.    

The energy require to vaporize the solvent is[116]: 

                                                                        (II 29) 

where  xsolids is the mass fraction of solids in the solution. 

The energy lost by the drying gas is: 

                                                                           (II 30)    

This is an example of energy ‘out’ and energy ‘in’ assuming a well insulated drying 

chamber and no loss of heat to the surroundings.  

                                                                                          (II 31)     

The thermodynamic process parameters can thus be determined[116]. 

                                                           (II 32)    

 

                 (II 33)                               
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where  Pchamber is the total pressure in the spray drying chamber and P*
Tout is the vapor 

pressure of the feed solvent at the outlet conditions[116]. Thus to summarize the design of 

a feasible spray drying process not only must the drying kinetics of the single droplet be 

considered but also the thermodynamic totality. 

  Maximum Tout might be determined by the sensitivity of the dried product to 

degradation by excessive heat.  Maximum Tin would be determined from Tout and perhaps 

a minimum specific drying ratio Msoln / Mgas to insure economical process throughput[116].  

           

 

Fig II 3.6 Presented above is a schematic of a rationalized approach to the design of a 
commercial spray drying process. Note that there does exist a need for 
simulation studies (CFD) to approximate the product droplet size and thus the 
choice of atomizing nozzle[116].  

 

Thus the development of a commercial spray drying process is dependent on 

fundamentals (thermodynamics), single-droplet drying kinetics, simulations (CFD), and 

state-of-the-art process characterization. 

98 
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Fig  II  3.7 A concise diagram displaying some elements present during spray drying[117]. 
The forced convection is governed by correlations for the Nusselt, Sherwood, 
and Schmidt numbers. 
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III 

 EXPERIMETATION 

 

1. The production of ZIF-8 

 

   Prior to the publication of this tract the production of ZIF-8 has only been 

accomplished on a laboratory scale. The addition of 2.4 grams of zinc nitrate 

hexahydrate to 45.2 grams of methanol resulted in a solution that was combined with 

a solution of  5.28 grams of methylimidazole in 44.0 grams of methanol. The 

resulting mixture was stirred for up to 1 hour. The zinc imidazolate framework, 

ZIF-8 was captured as product after the mother-liquor was decanted off subsequent to 

2-3 washings and centrifugations. The yield was approximately ¼ gram. There was 

substantial waste of methanol. As part of this dissertation it was proposed to attempt a 

more efficient and expanded method of production. It was decided to produce ZIF-8 

by two different pathways; first via a continuous process using a continuous stirred-

tank reactor (CSTR) and secondly via a batch process. 

  Venna et al
[47,49] deduced important characteristics concerning the kinetics of 

crystallization and structure of ZIF-8. The diagram on the next page Fig. III 1.1, is a 

representation of  ZIF-8 production. This particular organization is known as Avrami 

kinetics. The most important sector to consider here is region II where the bulk of 
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formation occurs; 12 to 60 minutes. The shape of this particular graph and its 

mathematical formulation hints at a sigmoid or Gaussian. When designing the CSTR 

is it necessary to include the y=1-exp(-kt
n
) mathematical expression when 

determining the reaction rate?  No, region II can be approximated as a straight line 

with a slope of 6 units of  % crystallinity  per minute. The ideal reactor residence time 

τ, would be about between 20 and 40 minutes. The space velocity is the reciprocal of 

the residence time. 

 

                            

Fig. III 1.1 Venna’s[47,49] use of Avrami’s kinetics to describe the formation of ZIF-8  (cf. 
Fig I 2.4). For the purpose of reactor design only region II need be considered 
and the formation of product approximated as a first order reaction. 

 
 

To date, no heat effects have been realized during this synthesis and thus this reaction is 

considered to be isothermal. The reactor design and start-up is relatively easy. The 

performance equation for the CSTR is: 
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                                                   V / FA  = XA / -rA                                                   (III.1) 

Where V is the reactor volume, FA is the flow rate of component A, XA is the conversion 

of component A, and rA is the reaction rate of component A.  

The residence time , is the average amount of time a discrete quantity of reagent spends 

inside the tank. Along with the performance equation (III.1), the design of the CSTR cam 

be accomplished by realizing: 

                                                         =  V / FA                                                             (III.2) 

In a chemical process the reactor may not always be limiting operation and thus the 

volume of the reactor can be sized accordingly. FA  is the flow rate of the product in 

liters/minute. For most first order reactions the time to reach steady state in the CSTR is 3 

to 4 times τ. The reactor was sized at 1.0 liter capacity and it was decided to use only 

85% 0f the total volume. With a residence time of 30 minutes, the total flow rate is 

0.02833 liters/minute.   This is split between two mixing tanks. The first contains 52. 8 

grams of methylimidazole with 440 grams of methanol. The second contains 24 grams of 

zinc nitrate hexahydrate and 452 grams of methanol. To provide for adequate time to 

reach steady state the total flow rate to the CSTR was reduced to 0.0094 liters per minute. 

After 90 minutes, about 3 to 4 times the residence time, the reactor was assumed to have 

reached steady state and product from the CSTR was released and captured in another 

vessel. The total product obtained measured 1210 ml. It took approximately 8 hours to 

decant off the mother liquor and harvest the wet ZIF-8 crystals. The yield was 12.0 grams 

of ZIF-8 after drying at 70° C (cf. Fig. I 4.2).  This yield while better than the typical 

laboratory synthesis is still not economically viable from a production standpoint. The X-

ray diffraction pattern (XRD) is the ‘crystalline’ fingerprint for ZIF-8 and we use the  
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Fig. III 1.2 A continuous process to produce ZIF-8 nanoparticles at room temperature. 
Mixing tank 1 consists of methanol and zinc nitrate hexahydrate. Mixing 
Tank 2 consists of methanol and 2-methylimidazole.  Nitrogen at 1.25 atm. 
pressure must be pumped into all of the vessels to displace oxygen and 
prevent fire. It is proposed to insert an additional separation via nanopore 
filtration to capture any stray product and recycle the methanol. The Buchi 
B2909 spray dryer facilitates the recapture of solvents under a nitrogen 
blanket and can process 1 liter per hour of slurry. 

 
 
results obtained  by Venna[47,49] as our template. The first XRD pattern obtained was 

highly irregular and bore no resemblance to the standard. The results are displayed in Fig.  

III 1.3, Fig. III 1.4 and  Fig. III 1.5. The first chart displays the classical XRD pattern 

generated by ZIF-8 while the second shows a raw ZIF-8 sample obtained from the CSTR 

with no washing and little drying. The original scheme was to have the product from the 

CSTR enter the spray dryer immediately. 

Mixing Tank 2      CSTR 

Filter & Recycle 

Spray Dryer 

ZIF-8 

Mixing Tank 1 
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Fig. III 1.3 The XRD pattern generated by ZIF-8 as it progresses through time from a) 12 
minutes through g) 24 hours. This chart was obtained after numerous 
washings and centrifugations, (3) with drying at 70° C for 24 hours[47,49]. 

 
 
 
 

 
                                                 
                                                     2θ (degrees) 

 
Fig. III 1.4 This XRD pattern is a composite of 2 samples obtained from the CSTR 

process with no washing and minimal drying. At first appearance it seems 
that the product is not ZIF-8. 
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                                               2θ (degrees) 

 

Fig. III 1.5 This is the CSTR product after 2 washings and centrifugations with drying. 
At 70° C for 24 hrs. The XRD scale is shifted from Fig. III 1.3 yet shows the 
characteristic peaks of ZIF-8. This sample would probably need more drying 
time. The massive surface area and intrinsic polarity of ZIF-8 makes this MOF 
capable of grabbing any impurities into its cage-like structure.  

 
 
While the XRD is the definitive fingerprint, two other analytical tests help solidify the 

characterization of a crystalline product; the Brunauer-Emmett-Teller (BET) surface area 

and a scanning electron micrograph (SEM). As a template for comparison we use the 

results of the solvosynthesis generated by Pan et al
[126] from 2011. His group used a 

synthetic route much like Venna[47,49] and provided BET isotherms and SEM photos of 

their product. Unlike the work presented in this dissertation, their work was done on a 

laboratory scale.     

  The BET surface area test was carried out on a micromeritics Tristar 3000 porosimeter 

using liquid nitrogen as a coolant.  The synthesized ZIF-8 was degassed at 160°C for 160 

minutes.  The single point surface area (P/P0 = 0.314) was 1302 m2 g-1.  The BET and 
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Langmuir surface areas for a ZIF-8 studied in literature[126] are 1079 and 1173 m2 g-1, 

respectively.  These surface areas are comparable and within a similar range. The plots 

for the isotherms of the experimental and literature ZIF-8 can be seen in Fig. III 1.6 and 

Fig. III 1.7, respectively.  These two isotherms have a similar shape, even though the 

amount adsorbed in Pan’s sample is almost twice that of the experimental sample. 
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Fig. III 1.6 The Brunauer-Emmett-Teller (BET) plot of a ZIF-8 sample harvested from 
the solvosynthetic reaction within the CSTR designed for this dissertation. 
Compare this chart with the one generated by Pan’s group, Fig. III 1.7

[126] 

 

 

The results for this test carried out in the Materials Characterization Laboratory at the 

University of Louisville are postulated on Langmuir and BET adsorption theory. This is 

briefly explained in Part I.  It was thought that perhaps a 5-point BET analysis might 

provide more insight into the total surface area of the crstalline ZIF-8 product and plans 

were made to generate this test.  
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Fig. III 1.7  Here is the BET isotherm generated by the product of a solvosynthesis 

completed in the laboratories of Pan et al
[126]. Notice that half of the 

amount of nitrogen gas has been adsorbed in this ZIF-8 sample. 
 
 

                                     

Fig. III 1.8 SEM microgaphs of ZIF-8 generated by Pan’s lab group. It appears the 
spherical particles are less  than 100 nm in size; a true nanoparticle[126]. 
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Fig. III 1.9 SEM micrographs generated via the product of the CSTR solvosynthesis in  

this dissertation. The particles are not spherical and more that 100 μm in 
size. The increased nitrogen adsorption (double) might now be understood. 
The size of these ZIF-8 crystals qualifies them as macroparticles. 

 
 
In an attempt to predict future reaction histories with the CSTR designed for this 

dissertation, it was decided to model the process in Simulink, The MATLAB simulation 

module. The models prepared were done in the most generic and flexible of fashions. 

             

Fig. III 1.10 This is the Simulink configuration of the CSTR performance equation  
(III.1). The flow rate Fa can be adjusted along with the concentration 
Ca

[127]. 
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Fig. III 1.11 Here is the actual Simulink model of the process to make ZIF-8. The CSTR 

process from Fig. III 1.10 is inserted above as a subsystem. It was decided 
to insert a discrete-time integrator rather than a continuous model: most 
often the data for the reaction will come in the form of chart of values 
compiled from conductivity or concentration measurements[127].  

 

              
Fig. III 1.12 Output of the Simulink/Matlab program for CSTR production of ZIF-8. A 

set of difference equations modeled the reactor behavior. This would be 
similar to the use of a collection of data points generated by conductivity or 
concentration measurements.    
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  I traveled to the Research Laboratories of the Buchi Corporation in Wilmington, 

Delaware in March of 2014 to conduct tests on the Mini B-290 Spray Dryer with the 

hopes of improving process yield and efficiency. These tests comprised the batch 

process aspect of the synthesis. The B290 Spray Dryer is capable of about 1000 ml of 

throughput per hour. The process reagents were prepared in the same manner as for the 

CSTR process.  The reactants were split between two mixing tanks. The first contained 

52. 8 grams of methylimidazole with 440 grams of methanol. The second contained 24 

grams of zinc nitrate hexahydrate and 452 grams of methanol. This consisted of a total of 

about 1200 ml. The first batch process was permitted to react for 20 minutes before being 

submitted to the spray drying process. The ZIF-8 product obtained from this separation 

operation measured 44.53 grams and more importantly 1050 ml of methanol was 

recovered. The flow rate of ZIF-8/methanol slurry through the dryer was recorded at 20 

ml/min. with the N2 drying flow rate recorded at 40 mm/min. The nitrogen  temperature 

was maintained between 90 and 100º C. It was presumed that a portion of the methanol 

mother liquor remained occluded within the ZIF-8 cage with the rest mixing with the 

drying agent and vented to the fume hood. The nitrogen gas was used as a drying agent 

due to the flammability of methanol and the total process lasted 1.5 hours.   

  A second batch was run with a reaction time of 40 minutes before submission to the 

spray drying process. This time 40.20 grams of ZIF-8 product was harvested along with 

1015 ml of methanol. This process lasted 1.75 hours. In a little more than 3 hours, 84.73 

grams of ZIF-8 was produced and almost 85% of the methanol mother liquor recovered. 

This amount 84.73 grams of ZIF-8 would have taken about 170 days to make in the 
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laboratory at 0.5 grams per day. The samples were to be submitted to testing for 

verification of  product. 

  Powder X-ray diffraction was first investigated, using a Bruker D8-Discover 

Diffractometer in the Materials Characterization Laboratories at the University of 

Louisville .  The XRD pattern for the ZIF-8 material experimentally synthesized is shown 

in Fig. III 1.13. 

                            

 

 
 

Fig. III 1.13 This is the powder XRD pattern generated by the ZIF-8 product produced 
during the 20 minute batch process and then submitted to the Buchi Mini 
290 Spray Dryer. Compare this with the pattern generated by the laboratory 
synthesis of Venna et al Fig. III 1. 3 This product was dried in an oven at 
70º C for 24 hours. 

 
  The ZIF-8 product was submitted to the Particle Technology Laboratory of Downers 

Grove Illinois for 5-point BET determination as a conclusive proof of product. This 

particular laboratory uses strict ASTM procedures for property determination. The 

Micrometrics Tristar II Surface Area and Porosity system was used to generate BET 
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surface plot according to the ASTM 3663-99 (Appendix) protocol. The plot is shown in 

Fig. III 1.14. 

 

Fig. III 1.14  Here is the 5-point BET plot generated by the ZIF-8 sample from the 20 
minute batch reaction. This analysis yielded a BET surface area of 1578 m2 
/ gram ± 63.08 m2 / gram. This area compares favorably with the 1302 m2 / 
gram generated via the single point method. The size of the particles 
produced by the spray drying process was approximately 13.0 microns.  

 
The Buchi corporation has always claimed that the Mini 290 was capable of high 

throughput with controlled particle size. The batch process along with the spray dryer  

(and an additional  tray-drying  sequence) seems to produce an acceptable ZIF-8  product. 

It remains to be seen whether the CSTR product would be improved by passing it through 

the spray dryer. As of now, the CSTR product is barely acceptable.  
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2. The Properties of ZIF-8 

 

  Before any engineering work and heat transfer analysis could be done it was necessary 

to determine important physical properties of ZIF-8 which had yet to be published. It was 

naïve of this author to think that density of the cage-like ZIF-8 could be measured with a 

pycnometer.  I traveled to Particle Technology Laboratory in Downers Grove IL to make 

use of their Micrometrics AccuPyc II which uses the ASTM B-293-10 method of helium 

gas pycnometry to determine density. Helium, a quantum gas, is small enough to 

penetrate the pores of ZIF-8. The results for the ZIF-8 samples from both the continuous 

and batch processes were similar. After 10 separate measurements: 

                               The volume V, of ZIF-8 sample was 0.2263 cm2  ± 0.0002 cm2. 

                               The density ρ, of ZIF-8 sample was 1.4902 g/cm3 ± 0.0015 g/cm3. 

The ASTM procedure is included in the Appendices. 

  The determination of thermal conductivity k, proved to be a problem. The test apparatus 

at the University of Louisville could not provide accurate and repeatable results. I 

traveled to the laboratories of Dynelyn in Easton, PA to observe determination of thermal 

conductivity via ASTM D5470 (Appendices). This used a simple but accurate test 

chamber and the formation of a tightly controlled sample size to determine thermal 

conductivity. The sample was measured 5 different times using 5 different samples. 

                                 The thermal conductivity k, measured  0.113 W/m K. 

It is interesting to compare the test results with those of the molecular simulation 

conducted by Zhang[110] which reported a k of 0.165 W/m K. This is an error of 46%.  
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Molecular simulations that do not provide result within 5% of the true value are 

worthless. 

 

 

Fig. III 2.1 This a plot of the specific heat of ZIF-8 conducted according to the test 
method of Max Slaton which is compiled in the Appendices. This test was repeated 25 
times. Notice how small the error bars are. 
 
   

The specific heat of ZIF-8 was determined in the Materials Characterization Laboratories 

at the University of Louisville.  Really, only a small portion of the ZIF-8 specific heat 

contributes to the calculation of the nanofluid heat capacity: the volume fractions of 

microparticle in the base fluid are minute. 
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3.  ZIF-8 as a Heat Transfer Agent 

 

  Systematic error in laboratory experimentation is only evident once it is found.  This 

was particularly manifested with measurements taken from the heat transfer rig in the 

Heat Transfer Laboratory at the University of Louisville. 

                

Fig. III 3.1 The heat transfer rig used for nanofluid studies at the University of 
Louisville.  After a laboratory accident in October 2014, the rig was dismantled, 
refurbished and re-assembled. During this process it was found that some of the 
thermocouple connections (T1- T6), were faulty thus leading to incorrect measurements. 
This discovery has led to the establishment of a baseline test for rig integrity. The 
baseline standard shall be Amsoil 0 wt Synthetic Motor Oil. 
 
 
Heat transfer coefficients of prepared base/nanofluids were measured using a lab-built 

test rig. A schematic of heat transfer test rig is shown in Fig. III 3.1. The entire system is 

made from ¼ inch stock copper tubing and fittings. In the flow system, a copper pipe 

serves as a reservoir for the nanofluids and is capable of holding 2 liters of fluid. The 

fluid flows from the reservoir through a variable speed gear pump (Grainger 6NY97). 

The gear pump is sized to cover a wide range of flowrates up to 4.8 gal/min. Based on the 

properties of the nanofluid, particularly viscosity, the pump will cover a Re range from 

50 to 7000. Flowrates are measured using an inline flowmeter connected to an electronic 
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readout. From here the fluid flows through a copper coil held in a hot water bath which 

can maintain the test fluid from room temperature up to 96°C. The fluid then enters the 

heat exchange section. There are two thermocouples placed in the fluid at both the inlet 

and outlet of this section. The section itself is formed form ¼ inch high thermal 

conductivity copper refrigerator tubing. Six type-T thermocouples are attached 

equidistant along the exterior of the copper tube in this section. The entire heat exchange 

section is wrapped in heat tape which provides a constant heat flux to the fluid. Two 

layers of insulation are wrapped around the heating tape to ensure low heat loses within 

the heat exchange section.  Temperatures are monitored in real time using a Labview 

program designed for the system. The program also provides real time calculation of the 

heat transfer coefficient based on the fluid properties and flowrates. By altering the 

control variables; heating power, inlet fluid temperature, and fluid flow rate, a series of 

tests were conducted to determine the heat transfer coefficients of base/nanofluids. The 

ratio of heat transfer coefficient of nanofluid h, to base fluid ho, was calculated to 

determine if there was any enhancement h/ ho. In an effort to reduce experimental bias, 

the flow rates were adjusted in a non-linear manner.       

   Three samples of the Amsoil / ZIF-8 were prepared in the following manner. The ZIF-8 

sample was mixed with PAO oil at 0.50, 1.0, and 2.0 wt % using a Model 500 Sonic 

Dismembrator from Fisher Scientific that is able to deliver up to 400 watts of power. 

Dodecanethiol at 0.1 wt% was used as a surfactant to help stabilize fluid suspension.  

Each sample was sonicated for 20min. All the samples were left to sit for 48 hours after 

sonicating and shaken well before further testing. Viscosity measurements of the 

mixtures were taken to insure Newtonian fluid behavior. 



118 
 

Viscosity vs. Temperature ZIF Solutions in Amsoil 
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Fig. III 3.2 Viscosity measurements of the ZIF-8 / Amsoil mixtures. This behavior is 
reminiscent of Newtonian fluid behavior. Also it is important to note these measurements 
are consistent with Amsoil data sheets. 
 
 

It was hoped that the massive surface area of ZIF-8 would afford enhanced heat transfer; 

heat transfer is all-about surface area. In comparison the surface area of 10nm copper 

surface area is approximately 10 m2 / gram. The surface area of our ZIF-8  molecule is 

about 1400 m2 / gram;  140 times the difference. Unfortunately the thermal conductivity 

of  ZIF-8 is only 0.113 W/m K which when compared to copper is about 850 times less. 

Is there a possibility of increased phonon effect due to the size of the molecule? The 

accompanying Excel spreadsheets on the following pages reveal that in fact the ZIF-8 

molecule fails miserably as a heat transfer agent. The molecule is more ‘organic’ than 

‘metallic’. Since Therminol 66 is so expensive, no further testing was done with this as a 

base oil. No further data analysis was necessary.  
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IV 

CONCLUSIONS AND FURTHER WORK 

 

  ZIF-8 is remarkable molecule in the class of MOFs. This author has shown that it can be 

made via a continuous and batch process with an order of magnitude savings both in time 

and money. The spray drying unit operation is the key to this.  The density, specific heat, 

thermal conductivity, and BET surface area were determined experimentally. To our 

knowledge we are the first to report this. Unfortunately the low thermal conductivity, 

0.113 W/m K renders the ZIF-8 molecule useless as an enhancer of heat transfer in a base 

fluid. The systematic error in the heat transfer rig at the University of Louisville has been 

discovered and eliminated. The literature suggests that experimental results of 

nanoparticle heat transfer experiments are rarely reproducible. Enhancement ratios less 

than 1.05 may be considered useless due to experimental error. This has inhibited 

commercial applications. 

  For further investigation: 

1. Fouling of the heat transfer rig components after nanofluid processing. 

2. Nanoparticle deformation after processing. 

3. Use of high-flow, low-shear pumps for nanofluid processing. 

4. Spray drying of CSTR products as a unit operation. 

5. Use of ZIF-8 in other mass transfer operations. 
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APPENDIX A 

 

MATLAB Code for Brownian Motion[129] 

 

N = 1000; 

displacement = randn(1,N); 

plot(displacement); 

 

hist(displacement, 25); 

 

x = cumsum(displacement); 

plot(x); 

ylabel('position'); 

xlabel('time step'); 

title('Position of 1D Particle versus Time'); 

 

particle = struct(); 

particle.x = cumsum( randn(N, 1) ); 

particle.y = cumsum( randn(N, 1) ); 

plot(particle.x, particle.y); 

ylabel('Y Position'); 

xlabel('X Position'); 

title('position versus time in 2D'); 

 

dsquared = particle.x .^ 2 + particle.y .^ 2; 

plot(dsquared); 

 

d    = 1.0e-6;              % radius in meters 

eta  = 1.0e-3;              % viscosity of water in SI units (Pascal-

seconds) at 293 K 

kB   = 1.38e-23;            % Boltzmann constant 

T    = 293;                 % Temperature in degrees Kelvin 

 

D    = kB * T / (3 * pi * eta * d) 

 

ans = 

      4.2902e-013 

 

dimensions = 2;         % two dimensional simulation 

tau = .1;               % time interval in seconds 

time = tau * 1:N;       % create a time vector for plotting 

 

k = sqrt(D * dimensions * tau); 

dx = k * randn(N,1); 

dy = k * randn(N,1); 

 

x = cumsum(dx); 

y = cumsum(dy); 
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dSquaredDisplacement = (dx .^ 2) + (dy .^ 2); 

 squaredDisplacement = ( x .^ 2) + ( y .^ 2); 

 

plot(x,y); 

title('Particle Track of a Single Simulated Particle'); 

 

 

clf; 

hold on; 

plot(time, (0:1:(N-1)) * 2*k^2 , 'k', 'LineWidth', 3);      % plot 

theoretical line 

 

plot(time, squaredDisplacement); 

hold off; 

xlabel('Time'); 

ylabel('Displacement Squared'); 

title('Displacement Squared versus Time for 1 Particle in 2 

Dimensions'); 

 

simulatedD = mean( dSquaredDisplacement ) / ( 2 * dimensions * tau ) 

 

ans =  

     4.2192e-013 

 

standardError = std( dSquaredDisplacement ) / ( 2 * dimensions * tau * 

sqrt(N) ) 

actualError = D - simulatedD 

 

standardError =  

               1.3162e-014 

 

actualError   =  

               7.1019e-015 

 

 

dx = dx + 0.2 * k; 

dy = dy + 0.05 * k; 

 

x = cumsum(dx); 

y = cumsum(dy); 

 

dSquaredDisplacement = (dx .^ 2) + (dy .^ 2); 

 squaredDisplacement = ( x .^ 2) + ( y .^ 2); 

 

simulatedD    = mean( dSquaredDisplacement ) / ( 2 * dimensions * tau ) 

standardError = std(  dSquaredDisplacement ) / ( 2 * dimensions * tau * 

sqrt(N) ) 

actualError = D - simulatedD 

 

plot(x,y); 

title('Particle Track of a Single Simulated Particle with Bulk Flow'); 

 

simulatedD    =   

               4.2926e-013 

standardError =   
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               1.3694e-014 

actualError   =  

              -2.3859e-016 

 

clf; 

hold on; 

plot(time, (0:1:(N-1)) * 2*k^2 , 'k', 'LineWidth', 3);      % plot 

theoretical line 

plot(time, squaredDisplacement); 

hold off; 

 

xlabel('Time'); 

ylabel('Displacement Squared'); 

title('Displacement Squared versus Time with Bulk Flow'); 

 

particleCount = 10; 

N = 50; 

tau = .1; 

time = 0:tau:(N-1) * tau; 

particle = { };             % create an empty cell array to hold the 

results 

 

for i = 1:particleCount 

    particle{i} = struct(); 

    particle{i}.dx = k * randn(1,N); 

    particle{i}.x = cumsum(particle{i}.dx); 

    particle{i}.dy = k * randn(1,N); 

    particle{i}.y = cumsum(particle{i}.dy); 

    particle{i}.drsquared = particle{i}.dx .^2 + particle{i}.dy .^ 2; 

    particle{i}.rsquared = particle{i}.x .^ 2 + particle{i}.y .^ 2; 

    particle{i}.D = mean( particle{i}.drsquared ) / ( 2 * dimensions * 

tau ); 

    particle{i}.standardError = std( particle{i}.drsquared ) / ( 2 * 

dimensions * tau * sqrt(N) ); 

 

help SimulateParticles 

 

particle = SimulateParticles(N, particleCount, tau, k); 

  

usage: out =  

SimulateParticles( N, particleCount, tau, k ) 

 

N is the number of samples 

particleCount is the number of particles 

tau is the sample period 

k is the standard deviation of dx and dy 

  

returns a cellular array of length particleCount 

 

clf; 

hold on; 

for i = 1:particleCount 

    plot(particle{i}.x, particle{i}.y, 'color', rand(1,3)); 

end 

 

xlabel('X position (m)'); 

ylabel('Y position (m)'); 
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title('Combined Particle Tracks'); 

hold off; 

 

% compute the ensemble average 

rsquaredSum = zeros(1,N); 

 

for i = 1:particleCount 

    rsquaredSum = rsquaredSum + particle{i}.rsquared; 

end 

 

ensembleAverage = rsquaredSum / particleCount; 

 

% create the plot 

clf; 

hold on; 

plot(time, (0:1:(N-1)) * 2*k^2 , 'b', 'LineWidth', 3);      % plot 

theoretical line 

 

plot(time, ensembleAverage , 'k', 'LineWidth', 3);          % plot 

ensemble average 

legend('Theoretical','Average','location','NorthWest'); 

 

for i = 1:particleCount 

    plot(time, particle{i}.rsquared, 'color', rand(1,3));   % plot each 

particle track 

end 

 

xlabel('Time (seconds)'); 

ylabel('Displacement Squared (m^2)'); 

title('Displacement Squared vs Time'); 

hold off; 

 

clear D e dx; 

 

% extract the D value from each simulation and place them all into a 

single 

% matrix called 'D' 

for i = 1:particleCount 

    D(i) = particle{i}.D; 

    dx(i,:) = particle{i}.dx; 

    e(i) = particle{i}.standardError; 

end 

 

% compute the estimate of D and the uncertainty 

averageD = mean(D) 

uncertainty = std(D)/sqrt(particleCount) 

 

% plot everything 

clf; 

hold on; 

 

plot(averageD * ones(1,particleCount), 'b', 'linewidth', 

3);                    % plot estimated D 

plot((averageD + uncertainty) * ones(1,particleCount), 'g-', 

'linewidth', 1);   % plot upper error bar 

plot((averageD - uncertainty) * ones(1,particleCount), 'g-', 

'linewidth', 1);   % plot lower error bar 
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errorbar(D,e,'ro');                                                    

         % plot D values with error bars 

 

xlabel('Simulation Number'); 

ylabel('Estimated Diffusion Coefficient'); 

title('Estimated Diffusion Coefficient with Error Bars') 

legend('Average Value of D', 'location', 'NorthWest'); 

 

hold off; 

 

averageD    =  

             4.2886e-013 

 

uncertainty =  

             2.3294e-014 
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APPENDIX B 

 

SAMPLE CACULATIONS 

 

Derivation of Peclet Number from the species transport equation. 

 

                     ∂c / ∂t  + vx ∂c /∂x  +  vy ∂c /∂y  = 0                                                      (B 1) 

 

Let’s define characteristic scales. 

 

vi
* 

 = vi / U    Where vi is a velocity in the ith direction and U is a scaling velocity. 

 

xi
* 

 = xi / L    Where xi is a length in the ith direction and L is a scaling length. 

 

c
*
 = c / co    Where co is a characteristic concentration. 

 

∂j
*
 is the derivative with respect to the dimensionless spatial variable xj

* 

 

Substituting into the species transport equation (B 1): 

 

                         (Uco / L)  vj
* 

 ∂j
*
 c

*
  = (D co / L

2
) ∂j

*∂j
*
 c

* 

 

The Peclet number thus becomes (U L / D) where D is the mass diffusivity. 

 

The Peclet number for mass transport is the ratio of convection to diffusion. 
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The Peclet number for heat transfer is similar with the diffusivity D replaced with α, the  

thermal diffusivity. 

 

Calculations for processing parameters for nanofluids (such as thermal conductivity k), 
are  

based on % volume fractions  NOT % weight fractions. 

 

                                                               (B 2) 

 

Where k is the conductivity of the nanofluid, kf   the base fluid, θ, the volume fraction of 

the nanoparticle and  β  = ( kp – kf ) / ( kp – 2 kf  ). 

For the specific heat: Cp 

 

                                                                                                                                  (B 3) 

 

Where φ  is the volume fraction of the nanoparticle and the subscripts f and n refer to the  

base fluid and nanoparticle respectively. The density is ρ.  
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APPENDIX C 

BET Surface Area Analyzer Instructions 
By Zachary Herde 

Signing Up for Times/Log Book 

Before beginning any experiments, you must first book your time in the log book as well 
as fill out the required information in the logging portion. 

1. Sign up for time 
2. Place all information in the logging portion 

 

 

 

 

Degassing Sample 
To begin, you must degas your sample to remove any gas that could be trapped in the 
pores and other surfaces of your material, this ensures that you get an accurate reading 
when you use the machine.  

1. Zero the balance with the metal, red, pencil cup on the platform. 
2. Weigh a clean and dry tube by placing it in the pencil cup and record the mass. 

(You will need this later.)  
3. Weigh out between 0.1 and 0.5 grams of your sample. 
4. Using the plastic cylinder funnel, pour the sample into your sample tube and then 

take the mass of the tube with the sample and record. (You will want this for 
comparison.) 
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5. Repeat steps 1-4 as necessary for all your samples. 
6. To degas, your material must be heated. The temperature will depend on how well 

your sample can stand up to heat. However, the temperature generally used is 
160˚C. Adjust the degas system to your temperature using the arrow buttons on 

the degas machine. (Note, the red display is the actual 
temperature and the green display is the temperature that 
the system is set to.) 

 

 

 

 

7. Take the first needle/hose mechanism and slide it into your tube until the tip of 
the metal piece is right above your sample. 

 

 

8. Place one of the rubber 
cylinders into the mouth of the 

tube to hold the metal piece in place. 

139 



140 
 

9. Place the tube in the heating side (red border) of the degas machine and flip the 
switch above where the hose leads into the machine to the open position. (This 
allows any gas coming off of the sample to be removed.) 

10.  Repeat for your other samples. 
11. Allow the tubes to heat for your desired time. (Usually about 2-3 hours) 
12. After degas, remove the hose, flip the switch back, and weigh the tube using the 

pencil cup again. (Hold your finger over the tube opening to prevent any gas from 
getting in during transport from the machine to the balance. This mass should be 
less than your previous mass measured in step 4. If not, try again by zeroing the 
balance. If it still does not end up being less, then something is not correct.) 
 

13. Place one of the glass filler rods into the tube to prevent gas from getting into the 
tube and place the tube into the cooling side of the degas machine. 

 

 

 

 

 

 

14. Repeat for all your samples. 
15. Turn the degas machine’s temperature back down to zero. 

Entering Sample Information 

1. Click on File→Open→Sample Information 
2. A Box will appear with file selections and a number in the file name box. Press ok 

without selecting anything. 
3. A Box will appear saying that the file number does not exist and do you want to 

create it. Click yes. 
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4. A new window will appear. This is where you will enter the data for your sample. 
In the sample information tab you will enter the sample name, your name as the 
operator, and the mass in the mass bar. To calculate the mass, take the mass of 
your tube with the degassed sample and subtract the mass of the tube by itself. 

 
 

5. In the sample tube tab you will not have to do anything. 
 

6. The Degas conditions tab allows you to set up the parameters by which you did 
your degas. Change the soak temperature to the temperature that you degassed 
your samples at. Leave the ramp rate alone and change the soak time to the 
amount of time in minutes that you degassed your samples. 

 

7. The Analysis Conditions tab allows you to change the points and various 
pressures at which the machine will take data. Click on “Pressures”, then a new 
window will appear. Click on “insert predefined”. Another window will appear 
with four drop down boxes. For surface area, select “5 point low pressure”. For t-
plot micropore, select “10 Point”. And for BJH Adsorption and Desorption, select 
“20 Point” for both. Click “ok”. 
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8. When you click ok, a chart with X’s will appear. For the first two columns (BET 
and Langmuir), click in every box that 0.30000>. Fill in the third column by 
clicking the boxes from 0.06000 to 0.550000.  

 

9. Ignore Alpha-S and f-Ratio Columns. 
 

10. Fill the BJH Ads. Column from 0.010000 to 0.989000. At that point, there should 
be an X right next to it in the BJH Des. Column. Leave that one marked and then 
fill the rest of the BJH Des. column. Click “ok” when finished. 
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11. Skip the adsorptive properties tab.  
12. In the report options tab, click on replace and a window will pop up. Select the 

“full report set” and click “ok”. Click on “save’ and then “close”. 

    

13. Repeat the above steps for your other samples. 

 

Placing the Tubes into the Machine 

1. Take the large metal dewar and dewar gauge and fill the dewar with liquid 
nitrogen obtained from the large tank until the level of the nitrogen is between the 
bottom of the gauge and the hole on the gauge. (Make sure to mark on the 
calendar next to the liquid nitrogen tank that you used it for BET. Cover with a 
piece of paper while you finish set-up.)  
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2. Place the dewar back on the platform inside the machine. 
3. The machine has three ports total. There is a diagram on the back panel of the 

machine that explains which port is which. When loading the tubes, always load 
from the back if you are using all three ports. (Ex. I have three samples; I load my 
3rd sample into port 3 first.) 

4. Take the isothermal jacket and slide it over the sample tube until the bottom of the 
jacket reaches the red line on the tube. 

 
5. Slide the circular foam piece onto the metal rod in the machine and then place 

your tube through the appropriate hole in the foam. 

 
6. Take a metal coupler and slide it over the sample tube, it should be on top of the 

foam. 
7. Take a black o-ring and place on the sample tube.  

 
8. Gently push the tube straight up into the port and screw the couple in until it is 

tight. (Sometimes it is easier to push the ring in with the inner couple first to 
straighten the tube and get it into place before screwing it all together.) 
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9. Repeat for other sample tubes. 
10. Close the door panels. 

Starting the Experiment 

1. Click on the Unit 1 menu at the top of the screen and then sample analysis. 

   
2. The information bars for three samples will come up. Each information section 

corresponds to a port on the machine. Make sure to place the correct sample 
information into the correct port section. 

3. Click on browse to search for your sample. Change the status to “no analysis” and 
find your file from that selection. (It will appear as the 
name of the sample you entered earlier.) 
 

4. Click on your sample file and then “open” 
5. Repeat for the remaining ports. 
6. Click start and let it run. The process usually takes 

about 4-5 hours. In most cases you will start it in the 
afternoon and can leave it overnight. 

Clean Up and Data Acquisition 

1. Remove the tubes by carefully unscrewing them and removing them from the 
ports. 

2. Return or dispose your sample and clean out the tube using water and/or acetone 
and allow to air dry. 

3. To obtain data, click on the report buttons at the top for each port. 
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4. When you open a report, there will be a button on the side that says “Save As”. 
Click on it and save the file as an excel sheet to the local disk in the DATA 1 
folder or to a flash drive. (The flash drive will allow you to take the data with 
you.) 

5. Cover the dewar with the foam piece or a piece of paper if there is liquid nitrogen 
still inside the dewar. 

6. Fill out remaining information in the log book. Let Tatiana know if there are any 
issues. 
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APPENDIX D 

 

VISCOMETER PROCEDURE 

 

General Start Up (For cp-40 cone) 

1. Make sure viscometer is level. Make sure bubble on top of unit is inside the 
circle. 

2. Turn viscometer on. The switch is on the back. 
3. Viscometer will prompt you to remove spindle and do auto-zero. 
4. Remove plate and cone from viscometer. 
5. Press button to start auto-zero. 
6. When auto-zero is complete replace spindle. 
7. Make sure viscometer has the correct spindle selected. Should say CP-40 in top 

right corner. 
8. Add 0.5 mL of fluid to center of plate and reassemble. Try not to make contact 

with cone. 

Operating Viscometer 

1. To start rotation of cone, simply type in what rpm you want to set it to and hit 
next. 

2. The sheer stress, sheer speed, and viscosity can be read off the display and 
toggled through by pressing “Select Display”. 

3. Typically a range of sheer speed will want to be used to check for non-Newtonian 
behavior. 

4. To turn off rotation either press “motor off” button or set RPM to “0”. 

Shut down of Viscometer 

1. Make sure motor is off. 
2. Turn viscometer off. 
3. Remove Plate and clean out fluid. 
4. Gently wipe of cone and remove cone. 
5. Finish cleaning cone. 
6. Replace cone and plate. 

Operating Water Bath. 

1. Fill one liter beaker with water and place on hot plate. 
2. Make sure tubing is set up for pump, fluid flows into viscometer through the 

bottom connection and out through the top connection. 
3. Pump need to be placed below the beaker to maintain fluid pressure. 
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4. Run electrical leads to the variable voltage and current connections on 
transformer. 

5. Set knobs to half of max voltage and current. 
6. Make sure all tubing is connected and the two ends are submerged in the water. 
7. Before you turn the pump on make sure that the tubing doesn’t start to fly around 

and spray water everywhere. THIS WILL HAPPEN IF YOU ARE NOT 
CAREFUL. 

8. Place thermocouple for viscometer in the center of the water bath. 
9. Turn on the hot plate and let water circulate and heat up. The hot plate can reach a 

range of 40 to 100 oC with a setting of 2.5 to 4.5. 

 

NOTE if a different cone is used an additional start up procedure is required. This 
can be found in the appendix 1 of the Brookfield DV-II owners manual. It 
requires raising and lowering the cone. 
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APPENDIX E 

 

Sonicator Microtip Operating Procedure  

The microtip attachment is to be used when processing a sample of 5 to 50 mL in 
volume. Be sure to use a tall cylindrical vial to hold your sample. The microtip directs all 
of the sound waves DOWN, out of the tip. Thus a thin and tall vial is ideal when using 
the micotip. 

Attaching microtip 

1. Ensure sonicator unit is turned off before attaching microtip. 

2. Lay sonicator flat on the lab counter. 

3. Using wrench, remove the flat tip from the sonicator.  

4. Using Ethanol or DI water, clean the threading to remove debris. 

5. Attach microtip and tighten using wrench. (Do not use excessive force when 

tightening) 

 
Note: Be sure to inspect the microtip before proceeding to make sure it is clean 
and undamaged. Some of the microtips have visible wear and tear, these should 
not be used. 

 

Using Sonicator 

1. Prepare cooling bath for the sample. 
 
Note: Sonication produces excessive amounts of heat, this can cause oil to ‘burn’ 
and can also cause damage to the microtip. If a sample with a relatively low 
viscosity is being used an ice water bath is recommended. If a sample with a 
higher viscosity is being used a water bath is recommended and sonication should 
be done in 5-10 minute intervals to ensure extreme temperature are not reached. 
Sonication works by producing sound waves that cause small bubbles in the fluid 
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to form and collapse causing mixing. The higher the fluid viscosity the harder it 
will be to cause this to happen. 
 

2. Place sample in ice bath and support by clamping it to the ring stand. 
 

3. Clamp sonicator to ring stand so the tip is at least submerged ½ inch. (2 times tip 
diameter) Never allow the sonicator tip to touch the walls of the processing 
vessel. This WILL cause damage to the tip and can cause the vessel to break. 
 
 
Note: Never attach a clamp to any part of the sonicator except the convertor (the 
top and largest part of the sonicator). Attaching a clamp to the horn (immediately 
below convertor) can cause damage to sonicator. A stable set up is sitting 
sonicator on the black ring clamp (stop from falling down) and then attaching 
clamp to convertor (stop from sliding back and forth.  
 

4. Turn sonicator on, set processing time and power setting.  
 
Note: Never use a power setting above 70% when operating the microtip. An 
operating value around 30-40% typically is enough. Start low and work up. 
 

5. Start sonicator and watch the sample. There should be obvious fluid movement in 
the container. If not turn sonicator off and reposition. 
 
Note: For first time operating the microtip using a sample with no nanoparticles 
may be ideal. This will allow you to easily see the movement of the fluid in the 
container to understand how far down or up the tip needs to be. 
 

6. Allow sonication to proceed. Typical processing lengths are 20-40 minutes total, 
depending on particle and fluid properties. During sonication it is considered good 
lab etiquette to try and suppress the loud piercing noise generated from the 
sonicator for the mental health of those around. Do so by placing a large 
cardboard box over the unit. If you are short, ask someone to help you with this so 
you don’t knock over the sonicator or your sample.  
 
Note: If a very high pitch squealing noise is coming from the sonicator, turn 
sonicator off and ensure the microtip is securely attached to the horn and make 
sure the tip is not in contact with the sides of the vessel. If the sound still proceeds 
you may try a different microtip or different power amplitudes to see if this 
remedies the situation. 
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7. After sonication is complete turn sonicator off. 

Clean Up 

1. Ensure sonicator is turned off. 

2. Remove sonicator from sample and wipe off micro tip. 

3. Using the wrench remove the microtip and place back in lab drawer. 

4. Reattach the flat tip and tighten using wrench.  

5. Remove sample from clamp and empty the cooling bath in the sink. Make sure 

the lab bench is as clean or cleaner then the way you found it.  
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