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ABSTRACT

Preferential Arrangement Containment in Strict Superpatterns

by

Martha Liendo

Most results on pattern containment deal more directly with pattern avoidance, or the

enumeration and characterization of strings which avoid a given set of patterns. Little

research has been conducted regarding the word size required for a word to contain

all patterns of a given set of patterns. The set of patterns for which containment

is sought in this thesis is the set of preferential arrangements of a given length.

The term preferential arrangement denotes strings of characters in which repeated

characters are allowed, but not necessary. Cardinalities for sets of all preferential

arrangements of given lengths and alphabet sizes are found, as well as cardinalities

for sets where reversals fall into the same equivalence class and for sets in higher

dimensions. The minimum word length and the word length necessary for a strict

superpattern to contain all preferential arrangements for alphabet sizes two and three

are also detailed.
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1 INTRODUCTION

A word, or string, is said to contain a pattern if any order-isomorphic subse-

quence to that pattern can be found within that word. Order-isomorphic subse-

quences are subsequences which contain equivalent ranking structures. For example,

the word 5371473 contains the subsequences 571, 574, and 473, each of which is order-

isomorphic to the string 231. We call the string 231 the pattern that is contained

in the word since it is comprised of the lowest possible ordinal numbers. In many

cases, the term pattern is reserved for strings of characters in which each character

is unique, as in [7, 10, 13]. This traditional definition of pattern is adhered to in

this thesis, while the term preferential arrangement denotes those strings of charac-

ters in which repeated characters are allowed, but not necessary. The example word

above also contains the subsequences 373 and 343 which are both order-isomorphic

to the string 121. Both the string 121 and the string 231 are unique preferential

arrangements contained in the word since they are comprised of the lowest possible

ordinal numbers that describe unique sets of order-isomorphic strings contained in

the word. This order-isomorphism on the preferential arrangements is equivalent to

a dense ranking system, where items that compare equal with respect to an ascend-

ing ranking order receive the same ranking number, and the next item(s) receive the

immediately following ranking number.

The concept of a systematic study of pattern containment, i.e., words which con-

tain all patterns of a given set of patterns, was first proposed by Herb Wilf in his 1992

address to the SIAM meeting on Discrete Mathematics [4]. However, most results on

pattern containment deal more directly with pattern avoidance, or the enumeration
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and characterization of strings which avoid a given pattern or set of patterns. Of the

few results available on pattern containment, most deal with specified sets of patterns

contained in fixed length permutations, i.e., strings without repeated letters, such as

in [2, 10, 13, 7]. Research in this area mainly includes enumerating occurrences of a

given set of patterns, which may only include one pattern, contained in a permutation

of fixed length. Burstein et al. [4, 5] have expanded this research further by not only

allowing repeated letters in the word that is to contain the set of patterns, but also

allowing repeated letters within the contained patterns themselves.

Very little research has been conducted regarding the word size required for a

word to contain all patterns or preferential arrangements of a given length. The only

exception seems to be the idea of a superpattern. A superpattern is a word which

contains all patterns of a given set of patterns. Eriksson et al.[6], Albert et al.[2],

and Miller [10] have all found bounds on the word length of superpatterns dealing

with permutations and pattern containment. Burstein et al. in [4] studied bounds

on shortest superpatterns without the permutation requirement under preferential

arrangement containment. In the second section of this thesis, cardinalities for sets

of all preferential arrangements of given lengths and alphabet sizes are found. In

addition, cardinalities for sets where reversals fall into the same equivalence class of

preferential arrangements and for sets in higher dimensions are given. The expected

word length necessary for a superpattern to contain all preferential arrangements for

alphabet sizes two and three is detailed in the third section.
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2 CARDINALITIES OF PREFERENTIAL ARRANGEMENTS

A word is a string of characters in which repeated occurrences of a character are

allowed, but not necessary.

Let [k] = {1, 2, . . . , k} be a totally ordered alphabet of k letters, meaning that for

all i, j ∈ [k] either i < j or j < i. Let [k]n denote the set of all words of length n over

this alphabet. For example, [3]2 = {11, 22, 33, 12, 13, 21, 23, 32, 31}.

The words, π = π(1), π(2), . . . , π(n) ∈ [k]n and π′ = π′(1), π′(2), . . . , π′(n) ∈ [k]n

are order-isomorphic if for all i, j ∈ [n], π(i) ≤ π(j) if and only if π′(i) ≤ π′(j).

In the above example, the words 12, 13, and 23 are order-isomorphic. This order-

isomorphism partitions [k]n into a set of equivalence classes, where the equivalence

class representative for each equivalence class is denoted here as π, such that [π] =

{π′ ∈ [k]n : π′ is order-isomorphic to π, π(i) ≤ π′(i) for all i ∈ [n]}. In other words,

π is the word with the lowest possible ordinal numbers in the set of words which are

all order-isomorphic to π and contained in [k]n. In the example of order-isomorphic

words given above, π is the word 12. The word π is called a preferential arrangement.

Preferential arrangements can also exist in higher dimensions, where the prefer-

ential arrangement in dimension d is an n1 × n2 × n3 × · · · × nd array. Of particular

interest is the set of all preferential arrangements in dimension d of length n with

k ≤ a ranks allowed, denoted as Πd(n, a). Dimension one is shown first.

Proposition 2.1 For all values of n ≥ 1 and a ≥ 1, Π1(n, a) =
∑a

k=1 k!S(n, k),

where S(n, k) =
∑k

i=0(−1)i
(

k

i

)

(k − i)n are Stirling numbers of the second kind.

Proof. Let [n] = {1, 2, . . . , n} be the length of a word and [k] = {1, 2, . . . , k} be

10



the canonical totally ordered alphabet of k letters. Consider the partition, P , of [k]n

into equivalence classes under order-isomorphism, with P = {[π] : π ∈ [k]n}. Define

φ as the order-isomorphism that maps each i ∈ [n] to π(i) ∈ [k]. Since each π(i) is

unique for each i ∈ [n], there exists at most n unique values for π(i), for all π(i) ≤ n.

Therefore, only values for k ≤ n are used in φ, making φ : [n] → [k] a surjective

function. This single mapping corresponds to a unique preferential arrangement of

length n over a k-letter alphabet. The total number of all such surjective functions

φ : [n] → [k] is k!S(n, k), where S(n, k) denotes Stirling numbers of the second kind

[3]. This corresponds to the count of all preferential arrangements of length n over a

k-letter alphabet. Therefore, the total number of preferential arrangements of length

n with k ≤ a ranks allowed is
∑a

k=1 k!S(n, k).

Table 1: Table of values for Π1(n, a)

a \ n 1 2 3 4 5 6 7 8 · · ·
1 1 1 1 1 1 1 1 1 · · ·
2 1 3 7 15 31 63 127 255 · · ·
3 1 3 13 51 181 603 1933 6051 · · ·
4 1 3 13 75 421 2163 10333 47875 · · ·
5 1 3 13 75 541 3963 27133 172875 · · ·
6 1 3 13 75 541 4683 42253 364395 · · ·
7 1 3 13 75 541 4683 47293 505515 · · ·
8 1 3 13 75 541 4683 47293 545835 · · ·
...

...
...

...
...

...
...

...
...

. . .

This table of values exists as entry number A000670 on the On-line Encyclopedia

for Integer Sequences [11].
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The following result ties the number of preferential arrangements in higher dimen-

sions to the number of preferential arrangements in one dimension.

Proposition 2.2 For all values of n ≥ 1, a ≥ 1, and d ≥ 1, Πd(n, a) = Π1(n
d, a).

Proof. The proof proceeds by induction on d.

If d = 1, then Π1(n, a) = Π1(n
1, a) by definition, so the theorem holds true for

d = 1.

Let d = 2. In two dimensions, each value of n represents an n × n matrix, caus-

ing there to exist n2 labeled elements. List each labeled element in the following

manner: n11, n12, . . . , n1n, n2n, n2(n−1), . . . , n21, n31, n32, . . . , n3n, . . . , nnn. This listing

corresponds to a unique preferential arrangement of the n2 labeled elements in di-

mension one that represents a unique preferential arrangement of the same labeled

elements in dimension two. Therefore, Π2(n, a) = Π1(n
2, a) and the theorem holds

true for d = 2.

Assume the theorem holds true for some value of d > 2. Thus, Πd(n, a) =

Π1(n
d, a).

In d+1 dimensions, each value of n represents an n1×n2×n3×· · ·×nd+1 array, caus-

ing there to exist nd+1 = n× nd elements. Following the listing technique used in di-

mension two, arrange the lists of each of the preferential arrangements represented by

the nd elements such that the last element of one nd list is adjacent to the first element

of another nd list in the d+1 dimension. One such arrangement of all the nd lists in this

manner corresponds to a unique preferential arrangement of the nd+1 labeled elements

in dimension nd that represents a unique preferential arrangement of the same labeled

elements in dimension nd+1. This arrangement consists of n lists of nd preferential
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arrangements in dimension nd. Therefore, Πd+1(n, a) = Π1(n × nd, a) = Π1(n
d+1, a)

by the induction hypothesis.

The reversal of a word π ∈ [k]n, commonly denoted by r(π), is obtained by writing

the labeled elements of π in the reverse order, that is, the i-th labeled element of r(π)

is equal to the (n−i+1)-th labeled element of π [7]. For example, r(1323) = 3231 and

r(12321) = 12321. One may wish to consider how setting the reversals of preferential

arrangements equal may affect the total number of preferential arrangements. Define

Π′
1(n, a) as the number of preferential arrangements in dimension one of n labeled

elements with k ≤ a ranks allowed and reversals equal. Clearly, some preferential ar-

rangements are self-reversals, or palindromic. The amount of this type of preferential

arrangement must be considered when determining the total count of Π′
1(n, a).

Lemma 2.3 The number of palindromic preferential arrangements in dimension one

on n labeled elements with k ≤ a ranks allowed is Π1(d
n
2
e, a).

Proof. For any palindromic preferential arrangement, π ∈ [k]n, each i-th labeled

element of π is equal to the (n − i + 1)-th labeled element of π. Thus, the first dn
2
e

labeled elements determine the last bn
2
c labeled elements. All preferential arrange-

ments of the first dn
2
e labeled elements with k ≤ a ranks allowed will therefore give all

unique rank-respecting palindromes of n labeled elements with k ≤ a ranks allowed.

So the number of palindromic preferential arrangements of n labeled elements with

k ≤ a ranks allowed is Π1(d
n
2
e, a).

Using this Lemma, the algebraic formula for Π′
1(n, a) is easily found.

13



Proposition 2.4 For all values of n ≥ 1 and a ≥ 1, Π′
1(n, a) = 1

2
[Π1(n, a) +

Π1(d
n
2
e, a)].

Proof. The number of preferential arrangements in dimension one of n labeled

elements with k ≤ a ranks allowed and reversals equal is the total number of non-

palindromic preferential arrangements with reversals equal plus the total number of

palindromic preferential arrangements. Since each unique non-palindromic preferen-

tial arrangement will equal its unique reversal, the total number of non-palindromic

preferential arrangements with reversals equal will be half the total number of non-

palindromic preferential arrangements. This is the total number of preferential ar-

rangements minus the total number of palindromic preferential arrangements. Thus,

Π′
1(n, a) =

1

2
[Π1(n, a)− Π1(d

n

2
e, a)] + Π1(d

n

2
e, a) =

1

2
[Π1(n, a) + Π1(d

n

2
e, a)].

Table 2: Table of values for Π′
1(n, a)

a \ n 1 2 3 4 5 6 7 8 · · ·
1 1 1 1 1 1 1 1 1 · · ·
2 1 2 5 9 19 35 71 135 · · ·
3 1 2 8 27 97 308 992 3051 · · ·
4 1 2 8 39 217 1088 5204 23475 · · ·
5 1 2 8 39 277 1988 13604 86475 · · ·
6 1 2 8 39 277 2348 21164 182235 · · ·
7 1 2 8 39 277 2348 23684 252795 · · ·
8 1 2 8 39 277 2348 23684 272955 · · ·
...

...
...

...
...

...
...

...
...

. . .
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3 CONTAINMENT LENGTHS OF STRICT SUPERPATTERNS

The general definition of a superpattern is a pattern or word which contains all

patterns of a given set of patterns. Superpatterns have been a topic of research

under permutation patterns for some time, with examples of such research found in

[2, 6, 10]. In all these cases, the set of patterns for which containment is sought are

permutation patterns and, in most cases, the superpattern is a permutation pattern

as well. Burstein et al.[4] studied superpatterns without the permutation requirement

under preferential arrangement containment. The main goal of previous research on

superpatterns, however, is to bound the length of the shortest superpattern. This

thesis seeks not only minimum values of superpattern length but also the expected

superpattern length needed for the containment of all preferential arrangements.

Further characterization of superpatterns is necessary for clarity in this thesis.

A minimal superpattern is a superpattern in which no two adjacent letters are the

same. Thus, a minimum superpattern is a minimal superpattern of the shortest

length possible in which every letter is necessary for the containment of all preferential

arrangements. A strict superpattern is a superpattern in which the last letter of the

superpattern is needed to complete one of the preferential arrangements contained in

the superpattern. Clearly, all minimum superpatterns are strict superpatterns.

Following the notation of Burstein et al.[4], let a superpattern for [k]m be a word

that contains every preferential arrangement of length m on at most k letters. Let

n(k, m) be the length of a strict superpattern for [k]m. Since preferential arrangements

follow a dense ranking system any word containing them can be reduced to a dense

ranking system, making n(k, m) = n(m, m) for m ≤ k. For this reason, we are only
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interested in the values of n(k, m) for m ≥ k, and most specifically for m = k.

The minimum length and the expected length of strict superpatterns for the cases

of n(2, 2) and n(3, 3) are specifically studied in detail in the following sections.

3.1 Strict Superpatterns for [2]2

In the binary case, a strict superpattern for [2]2 is a word that contains all the

preferential arrangements of [2]2, namely 11, 12, and 21, and the last letter of the

superpattern is needed to complete one of the preferential arrangements contained in

the superpattern. The minimum containment length for superpatterns of this case

are trivial and more interest lies in the expected containment length for n(2, 2)

3.2 Minimum Length for n(2, 2)

The minimum length for the trivial case of n(2, 2) is given as n(2, 2) = 3 by

Burstein et al. (see [4]). The minimum superpattern 121 is given as an example,

since 121 contains all the preferential arrangements of [2]2. The pattern 121 is, in

fact, the only minimum superpattern for [2]2 up to isomorphism.

3.3 Expected Length for n(2, 2)

For expected length, consider that for any word of length n to contain the patterns

11, 12, and 21 there must exist at least two runs on the first n−1 letters of the word.

The nth letter of this word must be the letter that correctly completes a minimum

superpattern for [2]2 that is contained within the word. The number of ways to

partition n − 1 letters into two parts is
(

n−2
1

)

= (n − 2). Since there are a total of

16



two minimum superpatterns for [2]2, namely 121 and 212, there are 2(n − 2) words

of length n − 1 out of the total 2n−1 words that exist on n − 1 that satisfy this

condition. Therefore, the probability that a word on n letters contains all preferential

arrangements of [2]2 is

p2(n) =
2(n − 2)

2n−1
×

1

2
=

n − 2

2n−1
.

By using different forms of the derivative of the geometric series, the expected waiting

time W till the sequence becomes a superpattern can be computed as follows,

E(W ) =
∑

n≥3

np2(n)

=
∑

n≥3

n(n − 2)

2n−1

=
1

4

∑

n≥3

(n − 1)(n − 2)

2n−3
+

1

4

∑

n≥3

n − 2

2n−3

=
1

4

∑

m≥2

(m)(m− 1)

2m−2
+

1

4

∑

m≥1

m

2n−1

=
1

4
×

2

(1 − 1
2
)3

+
1

4
×

1

(1 − 1
2
)2

= 4 + 1

= 5.
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Similarly, the variance is found to be

V (W ) = E(W 2) − E(W )2

= E(W (W − 1)) + E(W ) − E(W )2

=
∑

n≥3

n(n − 1)(n − 2)

2n−3
+ 5 − 25

=
1

4

∑

n≥3

n(n − 1)(n − 2)

2n−1
− 20

=
1

4
×

6

(1 − 1
2
)4

− 20

= 24 − 20

= 4.

The ordinary generating function is

G2(x) =
∑

n≥3

xn(n − 2)

2n−1

=
∑

n≥3

x(n−3+3)(n − 2)

2n−3+2

=
x3

4

∑

n≥3

x(n−3)(n − 2)

2n−3

=
x3

4

∑

m≥1

m
(x

2

)m−1

=
x3

4
×

1

(1 − x
2
)2

=
x3

22
×

1

(1 − x
2
)2

=
x3

(2 − x)2
.

18



3.4 Strict Superpatterns for [3]3

A superpattern for [3]3 is a word that contains all 13 preferential arrangements

of [3]3, namely 111, 112, 121, 211, 122, 212, 221, 123, 132, 213, 231, 312, and 321.

Following the notation of Bóna (see [3]), let π = π1, π2, . . . , πk be a partition of the

set [n] where n = n(3, 3) and πi denotes a block of π. Thus, a = (a1, a2, . . . , ak)

is a partition of the integer n where ai = |πi| and a1 ≥ a2 ≥ · · · ≥ ak ≥ 1 and

a1 + a2 + · · · + ak = n. For example, if n = 7, then one such partition of the integer

7 is (5, 1, 1). It should be noted that for any minimal superpattern no ai > dn
2
e

since this would cause adjacent letters to be the same letter. This fact, combined

with the following lemma, proves very useful in determining the word length of strict

superpatterns for [3]3.

Lemma 3.1 Any superpattern for [3]3 contains a jk and a kj pattern both before and

after at least one i, where i, j, k ∈ [3] with i 6= j 6= k.

Proof. Let σ be a superpattern for [3]3 and let i, j, k ∈ [3] with i 6= j 6= k.

Case 1: Assume σ does not contain a jk pattern before an i. Thus, σ does not

contain the pattern jki and σ is not a superpattern for [3]3. This is a contradiction

and therefore σ contains a jk pattern before at least one i.

Case 2: Assume σ does not contain a jk pattern after an i. Thus, σ does not contain

the pattern ijk and σ is not a superpattern for [3]3. This is a contradiction and

therefore σ contains a jk pattern after at least one i.

Case 3: Assume σ does not contain a kj pattern before an i. Thus, σ does not

contain the pattern kji and σ is not a superpattern for [3]3. This is a contradiction

19



and therefore σ contains a kj pattern before at least one i.

Case 4: Assume σ does not contain a kj pattern after an i. Thus, σ does not contain

the pattern ikj and σ is not a superpattern for [3]3. This is a contradiction and

therefore σ contains a kj pattern after at least one i.

Therefore, σ contains a jk and a kj pattern both before and after at least one i.

3.5 Minimum Length for n(3, 3)

The minimum length for n(3, 3) is found through theorems which count the total

number of strict minimal superpatterns of length n = n(3, 3). Clearly there are no

strict minimal superpatterns for n = 3 or n = 4 since in all partitions of the integers

3 and 4 into three parts there does not exist an ai ≥ 3 and therefore no 111 pattern

exists.

Lemma 3.2 There are no strict minimal superpatterns of length n = 5.

Proof. The integer 5 can be partitioned into three parts in two ways, namely (3, 1, 1)

and (2, 2, 1).

Case 1: Consider a strict minimal superpattern σ = σ(1), σ(2), . . . , σ(5) ∈ (3, 1, 1)

with ai = 3. Thus, σ(1) = σ(3) = σ(5) = i since no two adjacent letters are the same

letter. There cannot exist both a jk and a kj pattern before at least one i, which

contradicts σ as a strict minimal superpattern. Therefore, there is no strict minimal

superpattern σ ∈ (3, 1, 1).

Case 2: Consider a strict minimal superpattern σ = σ(1), σ(2), . . . , σ(5) ∈ (2, 2, 1).

There does not exist an ai ≥ 3 and, therefore, no 111 pattern exists. This contradicts

20



σ as a strict minimal superpattern. Therefore, there is no strict superpattern σ ∈

(2, 2, 1).

Thus, there are no strict minimal superpatterns of length n = 5.

Lemma 3.3 There are no strict minimal superpatterns of length n = 6.

Proof. The integer 6 can be partitioned into three parts in three ways, namely

(4, 1, 1), (3, 2, 1), and (2, 2, 2).

Case 1: Consider a strict minimal superpattern σ = σ(1), σ(2), . . . , σ(6) ∈ (4, 1, 1).

There exists an ai > dn
2
e = 3, causing two adjacent letters to be the same letter. This

contradicts σ as a strict minimal superpattern. Therefore, there is no strict minimal

superpattern σ ∈ (4, 1, 1).

Case 2: Consider a strict minimal superpattern σ = σ(1), σ(2), . . . , σ(6) ∈ (3, 2, 1)

with ai = 1. Let σ(a) = i for some a ∈ [6]. Thus, a ≥ 4 since there exists both a jk

and a kj pattern before i and a ≤ 3 since there exists both a jk and a kj pattern after

i. No such a exists and, therefore, there is no strict minimal superpattern σ ∈ (3, 2, 1).

Case 3: Consider a strict minimal superpattern σ = σ(1), σ(2), . . . , σ(6) ∈ (2, 2, 2).

There does not exist an ai ≥ 3 and, therefore, no 111 pattern exists, which contradicts

σ as a strict minimal superpattern. Therefore, there is no strict minimal superpattern

σ ∈ (2, 2, 2).

Thus, there are no strict minimal superpatterns of length n = 6.
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Lemma 3.4 There exist seven strict minimal superpatterns of length n = 7 up to

isomorphism.

Proof. The integer 7 can be partitioned into three parts in four ways, namely (5, 1, 1),

(4, 2, 1), (3, 3, 1), and (3, 2, 2).

Case 1: Consider a strict minimal superpattern σ = σ(1), σ(2), . . . , σ(7) ∈ (5, 1, 1).

Thus, there exists an ai > dn
2
e = 4, causing two adjacent letters to be the same letter,

which contradicts σ as a strict minimal superpattern. Therefore, there is no strict

minimal superpattern σ ∈ (5, 1, 1).

Case 2: Consider a strict minimal superpattern σ = σ(1), σ(2), . . . , σ(7) ∈ (4, 2, 1)

with ai = 1, aj = 4, and ak = 2. Let σ(a) = i for some a ∈ [7]. Thus, a ≥ 4

since there exists both a jk and a kj pattern before i and a ≤ 4 since there exists

both a jk and a kj pattern after i. Therefore, a = 4. Without loss of generality let

σ(1) = σ(3) = j and σ(2) = k. Since no two adjacent letters are the same letter,

σ(5) = σ(7) = j and σ(6) = k. There exists one such strict minimal superpattern

σ ∈ (4, 2, 1) up to isomorphism.

Case 3: Consider a strict minimal superpattern σ = σ(1), σ(2), . . . , σ(7) ∈ (3, 3, 1)

with ai = 1, aj = 3, and ak = 3. Let σ(a) = i for some a ∈ [7]. Thus, a ≥ 4

since there exists both a jk and a kj pattern before i and a ≤ 4 since there exists

both a jk and a kj pattern after i. Therefore, a = 4. Without loss of generality let

σ(1) = σ(3) = j and σ(2) = k. Since no two adjacent letters are the same letter,

σ(5) = σ(7) = k and σ(6) = j. There exists one such strict minimal superpattern

σ ∈ (3, 3, 1) up to isomorphism.

Case 4: Consider a strict minimal superpattern σ = σ(1), σ(2), . . . , σ(7) ∈ (3, 2, 2)
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with ai = 3, aj = 2, and ak = 2. Let σ(a) = σ(b) = σ(c) = i for some a, b, c ∈ [7]

with 1 ≤ a < b < c ≤ 7. Since no two adjacent letters are the same letter, 3 ≤ b ≤ 5.

Case 4.1: If b = 3, then a = 1 and c = 5, 6, or 7 since no two adjacent letters are the

same letter.

Case 4.1.1: If c = 5, then there does not exist both a jk and a kj pattern before at

least one i, which contradicts σ as a strict minimal superpattern. Therefore, c 6= 5.

Case 4.1.2: If c = 6, then without loss of generality let σ(2) = σ(5) = j and σ(4) = k

since there exists both a jk and a kj pattern before at least one i. Thus, σ(7) = k

since aj = ak = 2 and there does not exist an ij pattern after at least one k, which

contradicts σ as a strict minimal superpattern. Therefore, c 6= 6.

Case 4.1.3: If c = 7, then without loss of generality let σ(4) = σ(6) = j and σ(5) = k

since no two adjacent letters are the same letter. Thus, σ(2) = k since aj = ak = 2

and there does not exist an ik pattern after at least one j, which contradicts σ as a

strict minimal superpattern. Therefore, c 6= 7.

Therefore, b 6= 3.

Case 4.2: If b = 4, then a = 1 or 2 and c = 6 or 7 since no two adjacent letters are

the same letter.

Case 4.2.1: If a = 1 and c = 6, then without loss of generality let σ(2) = j and

σ(3) = k since no two adjacent letters are the same letter. Thus, σ(5) = j since both

a jk and a kj pattern exist before at least one i and σ(7) = k since aj = ak = 2.

There exist one such strict minimal superpattern σ ∈ (3, 2, 2) up to isomorphism.

Case 4.2.2: If a = 1 and c = 7, then without loss of generality let σ(2) = j and

σ(3) = k since no two adjacent letters are the same letter. If σ(5) = j then σ(6) = k
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since aj = ak = 2 and there exists one such strict minimal superpattern σ ∈ (3, 2, 2)

up to isomorphism. If σ(5) = k then σ(6) = j since aj = ak = 2 and there exists one

such strict minimal superpattern σ ∈ (3, 2, 2) up to isomorphism.

Case 4.2.3: If a = 2 and c = 6, then without loss of generality let σ(1) = σ(5) = j and

σ(3) = k since both a jk and a kj pattern exist before at least one i. Thus, σ(7) = k

since aj = ak = 2 and there exists one such strict minimal superpattern σ ∈ (3, 2, 2)

up to isomorphism.

Case 4.2.4: If a = 2 and c = 7, then without loss of generality let σ(3) = σ(6) = j and

σ(5) = k since both a jk and a kj pattern exist after at least one i. Thus, σ(1) = k

since aj = ak = 2 and there exists one such strict minimal superpattern σ ∈ (3, 2, 2)

up to isomorphism.

Case 4.3: If b = 5, then a = 1, 2, or 3 and c = 7 since no two adjacent letters are the

same letter.

Case 4.3.1: If a = 1, then without loss of generality let σ(2) = σ(4) = j and σ(3) = k

since no two adjacent letters are the same letter. Thus, σ(6) = k since aj = ak = 2

and there does not exist an ij pattern after at least one k, which contradicts σ as a

strict minimal superpattern. Therefore, a 6= 1.

Case 4.3.2: If a = 2, then without loss of generality let σ(3) = σ(6) = j and σ(4) = k

since there exists both a jk and a kj pattern after at least one i. Thus, σ(1) = k

since aj = ak = 2 and there does not exist an ik pattern after at least one j, which

contradicts σ as a strict minimal superpattern. Therefore, a 6= 2.

Case 4.3.3: If a = 3, then there does not exist both a jk and a kj pattern after at

least one i, which contradicts σ as a strict minimal superpattern. Therefore, a 6= 3.
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Therefore, b 6= 5.

Thus, there exist seven strict minimal superpatterns of length n = 7 up to isomor-

phism.

Corollary 3.5 The length of a minimum superpattern for [3]3 is n(3, 3) = 7.

Proof. There are no strict minimal superpatterns for n < 3 since n < 3 cannot

be partitioned into 3 parts. There are no strict minimal superpatterns for n = 3 or

n = 4 since no partition of 3 or 4 into 3 parts contains an ai ≥ 3, and therefore no

111 pattern exists for these cases. By Lemmas 3.2, 3.3, and 3.4 the result follows.

Burstein et al. (see [4]) gives a construction proof for n(`, `) ≤ `2 − 2` + 4 and

conjectures that n(`, `) = `2 − 2` + 4. The corollary above clearly supports that

conjecture for the case of n(3, 3).

The seven unique strict minimal superpatterns up to isomorphism of length n = 7

are 1213121, 1213212, 1231213, 1231231, 1231321, 1232123, and 1232132. Since the

alphabet size is 3, there are 3! ways to permute the letters isomorphically in each

strict minimal superpattern of length n = 7, giving a total of 3!(7) = 42 strict

minimal superpatterns of length n = 7.

3.6 Expected Length for n(3, 3)

For expected containment length, consider the total amount of possible minimal

superpatterns up to isomorphism of any length n. Since all minimal superpatterns are

comprised of an alternating pattern, then, up to isomorphism, the first two letters

can be fixed as i and j for i, j ∈ [3] with i 6= j. There exist 2n−2 total words on
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the remaining n− 2 positions that have alternating patterns since each letter can be

chosen from an alphabet size of 2. However, not all of these 2n−2 words will result

in a superpattern of [3]3 on length n. The following lemma aids in determining the

amount of words which fail to create a superpattern of [3]3 of length n.

Lemma 3.6 Any strict minimal superpattern, σ, for [3]3 of length n ≥ 7 contains

a minimum superpattern for [3]3 with the last letter of the minimum superpattern

occurring on the last letter of σ.

Proof. Consider a strict minimal superpattern σ = σ(1), σ(2), . . . , σ(n) up to iso-

morphism for [3]3 of length n ≥ 7. Let i, j, k ∈ [3] with i < j < k. Without loss

of generality, let σ(n) = i and σ(n − 1) = k since there are no two adjacent letters

the same. Thus, there exists some σ(b1) = i as the first occurrence of i in σ, and,

without loss of generality, there exists σ(c1), σ(c2) = kj with σ(c2) = i as the last

occurrence of j in σ where b1 < c1 < c2 < n − 1 since there exists both a jk and

a kj pattern after at least one i and, up to isomorphism, it can be assumed that a

kjk pattern satisfies this condition. If b1 > 3 then there exists a jk and a kj pattern

before it, causing σ to contain either a jkjikjk or a kjkikjk pattern, both of which

are strict superpatterns of length n = 7 and therefore σ(n) = i is unnecessary for the

the containment of all preferential arrangements. This contradicts the given fact that

σ is a strict minimal superpattern. Therefore, b1 ≤ 3.

Case 1: If b1 = 3, then σ(1), σ(2) = jk or kj. If σ(1), σ(2) = jk, then σ contains

the minimum superpattern jkikjki with the last letter of the minimum superpattern

occurring on the last letter of σ. If σ(1), σ(2) = kj, then σ contains the minimum

superpattern kjikjki with the last letter of the minimum superpattern occurring on
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the last letter of σ.

Case 2: If b1 = 2, then σ(1) = j or k. If σ(1) = j, then there exists the pattern

ki before σ(c2) = j since there exists a ki pattern before at least one j and thus it

must also exist before the last j. Thus, σ contains the minimum superpattern jikijki

with the last letter of the minimum superpattern occurring on the last letter of σ. If

σ(1) = k, then there exists a ji pattern before σ(n − 1) = k since there exists a ji

pattern before at least one k and σ(n − 1) is the last occurrence of k. Since no two

adjacent letters are the same letter, σ(3) = j or k. If σ(3) = j, then σ contains either

a kijikjk, a kijkijk, or a kijkjik pattern on the first n − 1 letters, all of which are

strict superpatterns of length n = 7 and therefore σ(n) = i is unnecessary for the the

containment of all preferential arrangements. This contradicts the given fact that σ

is a strict minimal superpattern. Therefore, σ(3) 6= j. If σ(3) = k, then σ contains

the minimum superpattern kikjiki with the last letter of the minimum superpattern

occurring on the last letter of σ.

Case 3: If b1 = 1, then σ(2) = j or k since no two adjacent letters are the same

letter. If σ(2) = j, then there exists a ki pattern before σ(c2) = j since there exists

a ki pattern before at least one j and σ(c2) is the last occurrence of j. Therefore,

σ contains the minimum superpattern ijkijki with the last letter of the minimum

superpattern occurring on the last letter of σ. If σ(2) = k, then σ(3) = i or j. If

σ(3) = i, note that there exists a ji pattern before σ(n − 1) = k since there exists

a ji pattern before at least one k and σ(n − 1) is the last occurrence of k and thus

σ contains the minimum superpattern ikijiki with the last letter of the minimum

superpattern occurring on the last letter of σ. If σ(3) = j, note that there exists a
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ki pattern where σ(2) = k is the k of the pattern before σ(c2) = j since there exists

a ki pattern before at least one j, σ(2) = k is the first occurrence of k, and σ(c2) is

the last occurrence of j. Thus, σ contains the minimum superpattern ikjijki with

the last letter of the minimum superpattern occurring on the last letter of σ.

Since any i, j, k ∈ [3] can be permuted by isomorphisms, all strict minimal superpat-

terns for [3]3 of length n ≥ 8 contain a minimum superpattern for [3]3 with the last

letter of the minimum superpattern occurring on the last letter of σ.

Therefore, the words that fail to create a superpattern of [3]3 do not contain a

complete embedding of one of the strict minimal superpatterns of length seven, since

by Lemma 3.6 all strict minimal superpatterns contain a strict minimal superpatterns

of length seven. All the words contain some portion of a strict minimal superpattern

of length seven up to isomorphism since the first two letters are fixed as i and j and

each strict minimal superpattern of length seven can be written in the same manner.

Define an i-fold progression as the amount of the 2n−2 words which contain the first

through the ith letters of a unique strict minimal superpattern of length seven but

not the i + 1st letter. Thus, 2-fold progression is guaranteed by the fixed i and j

occurring on the first and second positions of each word. The third position must be

an i or a k since no two adjacent letters are the same letter. Let the strict minimal

superpatterns of length seven with the first three positions containing the pattern iji

be called type A and the strict minimal superpatterns of length seven with the first

three positions containing the pattern ijk be called type B.

First, consider the strict minimal superpatterns of type A, namely ijikiji and

ijikjij, where i, j, k ∈ [3] with i 6= j 6= k. A word that satisfies 3-fold progression
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contains the pattern iji on the first three positions, but no k afterwards. There is

one such word, namely ijijij . . . , which satisfies a 3-fold progression. For a 4-fold

progression to occur, the word must contain the pattern iji on the first three posi-

tions followed by a k which has no i or j after it, otherwise a 5-fold progression will

occur. There is only one such word, namely ijijij . . . k, where the only occurrence

of k is at the end of the word which satisfies a 4-fold progression. Since any other

occurrence of k on the (n − 4) remaining positions results in a 5-fold progression,

there are n − 4 ways for the word to contain a 5-fold progression for each possible

letter that can follow k. It is guaranteed that the word will contain an i or a j after

any k not occurring on the last position, therefore a 5-fold progression is contained

in the word if the pattern ki is not followed by a j or the pattern kj is not followed

by an i. There are 2(n − 4) such words, namely any word which follows the pattern

ijijij . . . kikiki . . . or the pattern ijijij . . . kjkjkj . . . , which satisfy a 5-fold progres-

sion. In order for a word to contain a 6-fold progression, it must contain the 5-fold

progression pattern ijijij . . . kikiki . . . followed by a j or the 5-fold progression pat-

tern ijijij . . . kjkjkj . . . followed by an i. This corresponds to all the ways in which

non-consecutive choices can be made on length n − 3. There are 2
(

n−4
2

)

such words,

namely any word which follows the pattern ijijij . . . kikiki . . . jkjkjk . . . or the pat-

tern ijijij . . . kjkjkj . . . ikikik . . . , which satisfy a 6-fold progression. Therefore, the

total count for the amount of words which do not contain a complete embedding of

one of the type A strict minimal superpatterns of length seven is

BA(n) = 1 + 1 + 2(n − 4) + 2

(

n − 4

2

)

= n2 − 7n + 14.
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Next, consider the strict minimal superpatterns of type B, namely ijkijki, ijkikji,

ijkijik, ijkjijk and ijkjikj, where i, j, k ∈ [3] with i 6= j 6= k. There are no words

that satisfy a 3-fold progression since all words containing the pattern ijk on the first

three positions contain either an i or a j immediately afterwards and there exists

either the pattern ijki or the pattern ijkj on at least one of the strict minimal

superpatterns of type B. This causes at least a 4-fold progression to occur. For only a

4-fold progression to occur, the word must contain either the pattern ijki on the first

four positions with no j or k afterwards, which is impossible, or the pattern ijkj on

the first four positions with no i afterwards. Otherwise a 5-fold progression will occur.

There is only one such word, namely ijkjkjk . . . , which satisfies a 4-fold progression.

For a 5-fold progression to occur using the pattern ijki as a basis pattern on the first

four positions, the word must contain either the pattern ijkij on the first five position

with no i or k afterwards, which is impossible, or the pattern ijkik on the first five

positions with no j afterwards. Otherwise a 6-fold progression will occur. There is

only one such word, namely ijkikiki . . . , which satisfies a 5-fold progression using the

pattern ijki as a basis pattern on the first four positions. For a 5-fold progression to

occur using the pattern ijkj as a basis pattern on the first four positions, the word

must contain the pattern ijkij on the first five positions followed by an i which has no

j or k after it. Otherwise a 6-fold progression will occur. There is only one such word,

namely ijkjkjk . . . i, where the only occurrence of i after position four is at the end of

the word, which satisfies a 5-fold progression using the pattern ijkj as a basis pattern

on the first four positions. Since any other occurrence of i on the (n − 5) remaining

positions results in a 6-fold progression, there are n− 5 ways for the word to contain
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a 6-fold progression for each possible letter that can follow i using the pattern ijkj as

a basis pattern on the first four positions. It is guaranteed that the word will contain

a j or a k after any i not occurring on the last position, therefore a 6-fold progression

is contained in the word if the pattern ij is not followed by a k or the pattern ik is

not followed by a j. There are 2(n − 5) such words, namely any word which follows

the pattern ijkjkjk . . . ijijij . . . or the pattern ijkjkjk . . . ijijij . . . , which satisfy a

6-fold progression using the pattern ijkj as a basis pattern on the first four positions.

A word can also contain a 6-fold progression using the pattern ijkij as a basis pattern

on the first five positions if the word contains either the pattern ijkiji on the first six

positions with no k afterwards or the pattern ijkijk on the first six positions with

no i afterwards. There exists only one such word for each of these cases, namely

ijkijijij . . . and ijkijkjkjk . . . , which satisfy a 6-fold progression using the pattern

ijkij as a basis pattern on the first five positions. Lastly, a word can also contain a

6-fold progression if it contains the pattern ijkik as a basis pattern on the first five

positions followed by a j on one of the n− 5 remaining positions that is not followed

by an i. There are n − 5 such words, namely any word that follows the pattern

ijkikiki . . . jkjkjk . . . , which satisfy a 6-fold position using the pattern ijkik as a

basis pattern on the first five positions. Therefore, the total count for the amount of

words which do not contain a complete embedding of one of the type B strict minimal

superpatterns of length seven is

BB(n) = 1 + 1 + 1 + 2(n − 5) + 1 + 1 + (n − 5)

= 3n − 10.
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Therefore, the total amount of words that do not contain a complete embedding

of one of the strict minimal superpatterns of length seven and thus fail to create a

superpattern of [3]3 is

Btotal(n) = BA(n) + BB(n)

= n2 − 7n + 14 + 3n − 10

= (n − 2)2.

Thus, the total amount of minimal superpatterns up to isomorphism of any length

n is

Gtotal(n) = 2n−2 − (n − 2)2.

The sequence generated by Gtotal(n) exists as entry number A024012 in the On-

line Encyclopedia of Integer Sequences [11], but with no context. Submission of this

context is underway.

Lemma 3.7 For all n ≥ 7, the total amount of strict minimal superpattern of length

n, Sm(n) = (n − 4)2 − 2.

Proof. The last letter is unnecessary in a non-strict superpattern for the completion

of any preferential arrangement of [3]3, making the word on the first n − 1 letters

a valid minimal superpattern of length n − 1. There are two choices for the nth

letter since no two adjacent letters in the word are the same letter. Therefore, the

total amount of non-strict superpatterns of length n up to isomorphism is the total

amount of minimal superpatterns of length n− 1 up to isomorphism times two. The

amount of strict minimal superpattern of length n up to isomorphism, Sm(n), is the
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total amount of minimal superpatterns of length n up to isomorphism minus any

non-strict superpatterns of length n up to isomorphism. Therefore,

Sm(n) = Gtotal(n) − 2[Gtotal(n − 1)]

= [2n−2 − (n − 2)2] − 2[2n−3 − (n − 3)2]

= 2n−2 − n2 + 4n − 4 − 2n−2 + 2n2 − 12n + 18

= n2 − 8n + 14

= (n − 4)2 − 2.

The sequence generated by Sm(n) exists as entry number A008865 in the On-line

Encyclopedia of Integer Sequences [11], but with very little context. Submission of

this context is underway.

Lemma 3.7 only accounts for the amount of strict minimal superpatterns of length

n up to isomorphism. In order to obtain the amount of all strict superpatterns of

[3]3 of length n up to isomorphism, the amount of strict superpatterns of length n up

to isomorphism in which there exist occurrences of two adjacent letters as the same

letter must be added to the amount of strict minimal superpatterns of length n up

to isomorphism.

Lemma 3.8 For all n ≥ 8, the amount of strict superpatterns of length n up to

isomorphism in which there exist occurrences of two adjacent letters as the same

letter, Sa(n) =
∑n−1

m=7[(n − 4)2 − 2]
(

n−2
m−2

)

.

Proof. Any strict superpattern of length n up to isomorphism in which there exists

occurrences of two adjacent letters as the same letter will contain an embedded oc-
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currence of a strict minimal superpattern of length m, where 7 ≤ m < n. Therefore,

all such superpatterns up to isomorphism are found by inserting n−m letters which

cause two adjacent letters to be the same into strict minimal superpatterns of length

m. These insertions can take place anywhere in the word except before the last letter

since an occurrence of two adjacent letters as the same letter at the end of the word

contradicts the fact that the last letter is necessary for the completion of at least one

preferential arrangement of [3]3 contained in that superpattern. Therefore, there are

n − m insertions into n − 1 possible positions and there are
(

n−1
n−m

)

ways to do this.

Use of combination identities gives
(

n−1
n−m

)

=
(

n−1
(n−1)−(m−1)

)

=
(

n−1
m−1

)

. The total amount

ways to insert all m − 1 letters into the n − 1 positions is then
(

n−2
m−2

)

and since this

insertion method can be done for all strict minimal superpatterns of length m up to

isomorphism,

Sa(n) =
n−1
∑

m=7

Sm(n)

(

n − 2

m − 2

)

=
n−1
∑

m=7

[(n − 4)2 − 2]

(

n − 2

m − 2

)

.

Theorem 3.9 For all n ≥ 7 the total amount of strict superpatterns of length n,

S(n) = 6
∑n

m=7[(n − 4)2 − 2]
(

n−2
m−2

)

.

Proof. The total amount of strict superpatterns of length n ≥ 7, S(n), is six times

the total amount of strict minimal superpatterns of length n up to isomorphism plus

the six times the amount of strict superpatterns of length n up to isomorphism in
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which there exists occurrences of two adjacent letters as the same letter. Therefore,

S(n) = 6[Sm(n) + Sa(n)]

= 6
[

(n − 4)2 − 2 +
n−1
∑

m=7

[(n− 4)2 − 2]

(

n − 2

m− 2

)

]

= 6
n

∑

m=7

[(n − 4)2 − 2]

(

n − 2

m − 2

)

.

There are a total of 3n words of length n with alphabet size 3. Thus, the probability

that a word on n letters contains all preferential arrangements of [3]3 is

p3(n) =
6

3n

n
∑

m=7

[(n − 4)2 − 2]

(

n − 2

m − 2

)

.

It may be verified that p3(n) is a valid probability function by assuring that

∑

n≥7 p3(n) = 1. By using different forms of the derivatives of the geometric series,

the verification is given as follows,

∑

n≥7

p3(n) =
∞

∑

n=7

6

3n

n
∑

m=7

[(n − 4)2 − 2]

(

n − 2

m − 2

)

= 6

∞
∑

m=7

(m2 − 8m + 14)

∞
∑

n=m

(

n−2
m−2

)

3n

= 6
∞

∑

m=7

(m2 − 8m + 14)
∞

∑

l=m−2

(

l

m−2

)

3l+2+m−m

= 6
∞

∑

m=7

(m2 − 8m + 14)

3m

∞
∑

l=m−2

(

l

m−2

)

3l−(m−2)

= 6
∞

∑

m=7

(m2 − 8m + 14)

3m
×

3m−1

2m−1

= 2

∞
∑

m=7

(m2 − 8m + 14)

2m−1
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= 2

∞
∑

m=7

m2

2m−1
− 2

∞
∑

m=7

8m

2m−1
+ 2

∞
∑

m=7

14

2m−1

= 2
∞

∑

m=7

m2

2m−1
− 16

∞
∑

m=7

m

2m−1
+ 28

∞
∑

m=7

1

2m−1

=
33

8
− 4 +

7

8

= 1.

By using different forms of the derivatives of the geometric series, the the expected

wait time can be computed as follows,

E(W ) =
∞

∑

n=7

6n

3n

n
∑

m=7

[(n− 4)2 − 2]

(

n − 2

m− 2

)

= 6
∞

∑

m=7

(m2 − 8m + 14)
∞

∑

n=m

n
(

n−2
m−2

)

3n

= 6
∞

∑

m=7

(m2 − 8m + 14)
∞

∑

n=m
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∞
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(

l
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)
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∞
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×
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2m
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4
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2
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8
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8

(

4
)
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2

=
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8

= 11.875.

This validates a numerical analysis of the problem done in Matlab [9]which gives

the expected wait time for the creation of a strict superpattern as 11.820 using 1000

trials. See Appendix A for the Matlab code.

The ordinary generating function is
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]
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4 OPEN PROBLEMS

This work for the cases of n(2, 2) and n(3, 3) creates open problems of interest. A

few such question which require further investigation are:

(i) What are the lower bounds and containment length for cases of n(4, 4)?

(ii) What are the lower bounds and containment lengths for cases of n(m, m) with

m ≥ 5 and can some form of a generalization be arrived at for higher cases?

(iii) What are the lower bounds and containment lengths for cases in higher dimen-

sions?

Some investigation into case (i) has revealed that many difficulties will arise in the

achievement of a counting method and the fold method of counting used in the n(3, 3)

case for containment will not work for the case of n(4, 4). One major complication to

note is that a minimum superpattern for [4]4 of length 12 can be constructed using

the construction method found in [4], but there exist strict superpatterns for [4]4

of lengths larger than 12 which do not contain one of the minimum superpatterns.

One such example can be constructed following the construction of the type A strict

superpatterns for [3]3, i.e., 121312141213121.
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APPENDIX

Matlab Code

In this Appendix, the code used in Matlab [9] for the numerical analysis of p3(n)

is given verbatim. The reader should note that all comments given in Matlab are

preceded by the % symbol.

AverageLength

function AverageLength(k,a,t)

%Finds the average minimum length needed for a randomly generated string of

%numbers with a distinct elements to contain all preferential patterns of k

%distinct elements using t trials.

n=zeros(1,t);

for i=1:t

n(i)=FindLength(k,a);

end

M=mean(n);

V=var(n);
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fprintf(’Results for %d trials:\n’,t)

fprintf(’Average Length: %6.4f \n’,M)

fprintf(’Variance: %6.4f \n’,V)

The function AverageLength depends on other written functions, each of which is given

with internal comments.

FindLength

function Length = FindLength(k,a)

%Finds the minimum length, n, needed for a randomly generated string of

%numbers with a distinct elements to contain all preferential patterns of

%k distinct elements.

x=zeros(1,a);

for i=1:a

x(i)=1/i;

end

y=sum(x);
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c=ceil(a*k*y); %Gives expected average.

F=cell(c,1);

b=length(PreferentialArrangements(k,k));

f=cell(1,b*c);

for i=1:c

F{i}=FindPatterns(k,a,i); %Finds patterns in random text on length i.

if all(F{i})

F{i}=F{i};

else F{i}=[];

end

f{i}=size(F{i},1); %Finds sum of each cell array.

end

m=cell2mat(f); %Converts to matrix.

n=find(m==b,1,’first’); %Finds first b, which corresponds to minimum length

%of random text needed for all permutations to be

%found.

Length=n; %Displays minimum length.

end
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PreferentialArrangements

function pa = PreferentialArrangements(n,a)

%Finds all preferential arrangements of n labeled elements when only k<=a

%ranks are allowed.

m=min(n,a);

p=permsrep(1:m,n);

u=cell(length(p),1);

for i=1:length(p)

[r,r,r]=unique(p(i,:));

u{i}=r;

end

u=cell2mat(u);

u=unique(u,’rows’);

pa=u;

end
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FindPatterns

function positions = FindPatterns(k,a,n)

%Finds the positions of all preferential patterns of k distinct elements in

%randomly generated string of numbers with a distinct elements of length n.

P=permsrep(1:k,k);

P=num2str(P);

P=cellstr(P);

P=regexprep(P,’ ’,’’);

P=cell2mat(P);

R=randi(a,[1,n]);

R=num2str(R);

R=regexprep(R,’ ’,’’);

y=cell((k*length(P)),1);

x=zeros((k*length(P)),1);

for h=1:(length(P))

for j=1:k

i=j+(k*(h-1));

y{i}=strfind(R,P(h,j)); %Lists position values of patterns in cells.

x(i)=length(y{i}); %Gives length of each cell.
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end

end

s=max(x); %Finds the maximum length of all the cell lengths.

for i=1:(k*length(P))

y{i}(end+1+(s-length(y{i}))) = 0; %Pads cells with zeros to make all

%cells equal length.

end

Y=cell2mat(y); %Forms matrix Y from all the cells.

C=cell(length(P),1);

f=cell(length(P),1);

for i=1:length(P)

C{i}=Y((((i-1)*k)+1):(i*k),:); %Partitions Y into blocks.

f{i}=FindPositions2(C{i}); %Gives position values of each pattern.

if ischar(f{i})

f{i}=zeros(1,k);

end

end
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f=cell2mat(f);

u=cell(length(P),1);

for i=1:length(P)

[r,r,r]=unique(P(i,:));

u{i}=r;

end

u=cell2mat(u);

H=horzcat(u,f);

h=size(H,1);

for i=1:h-1

for j=i+1:h

if and(isequal(H(i,1:k),H(j,1:k)),

and(H(i,2*k)>H(j,2*k),H(j,2*k)>0))

H(i,:)=H(j,:);

elseif and(isequal(H(i,1:k),H(j,1:k)),

and(H(i,2*k)>H(j,2*k),H(j,2*k)==0))

H(j,:)=H(i,:);

elseif and(isequal(H(i,1:k),H(j,1:k)),

and(H(i,2*k)<H(j,2*k),H(i,2*k)>0))
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H(j,:)=H(i,:);

elseif and(isequal(H(i,1:k),H(j,1:k)),

and(H(i,2*k)<H(j,2*k),H(i,2*k)==0))

H(i,:)=H(j,:);

elseif and(isequal(H(i,1:k),H(j,1:k)),H(i,2*k)==H(j,2*k))

H(i,:)=H(j,:);

end

end

end

U=unique(H,’rows’);

positions=U; %Displays ordered position values of found preferential patterns

%in matrix form. Each row consists of 2k elements, the first k

%elements are the preferential pattern and the last k elements

%are the position values for that pattern.

end
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permsrep

function pr = permsrep(v,n)

%Finds all permutations of length n with replacement of the elements of

%the vector v. Majority of code due to Peter Acklam and found online at

%http://www.mathworks.com/matlabcentral/newsreader/view_thread/52610.

m = length(v);

X = cell(1, n);

[X{:}] = ndgrid(v);

X = X(end : -1 : 1);

y = cat(n+1, X{:});

y = reshape(y, [m^n, n]);

pr=y;

end

FindPositions2

function Position = FindPositions2(Y)

%Finds the position values in order for each preferential arrangement.

50



s=size(Y,2);

k=size(Y,1);

for h=2:k

for j=1:s-1

Y(1,2:end)=0; %Replaces all elements in first row except the first

%with zero.

if and(Y(h,j)<=max(max(Y(1:h-1,1:end))),Y(h,j)>0)

Y(h,1:j)=0; %Finds all values of a row that are less than the

%largest value of the preceding rows and replaces

%them with zeros.

elseif Y(h,j)>max(max(Y(1:h-1,1:end)))

Y(h,j+1:end)=0; %Finds the first value of a row that is greater

%than the largest value of the preceding rows

%and replaces every value to the right of it

%with zeros.

end

end

end

Y=transpose(Y); %Changes rows to columns so elements are listed in correct
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%order.

T=transpose(Y(Y>0)); %Finds all nonzero values of Y and lists them in

%vector form. This vector is the position values of

%the letters of the message in order.

if length(T)<k %Creates an error message for the event that the letters

%of the message could not be found in order in the text.

T=’Error: Entire message not found in this text.’;

end

t=sort(T);

if T==t %Takes care of anomaly in code. (If the last value of a

%row before the padded single zero is less than the

%largest value of the preceding rows, it is still displayed

%even though the code should replace it with a zero.)

else T=’Error: Entire message not found in this text.’;

end

Position=T; %Displays vector of position values of the message.

end
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