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ABSTRACT

Very Cost Effective Partitions in Graphs

by

Inna Vasylieva

For a graph G = (V,E) and a set of vertices S ⊆ V , a vertex v ∈ S is said to be

very cost effective if it is adjacent to more vertices in V \ S than in S. A bipartition

π = {S, V \ S} is called very cost effective if both S and V \ S are very cost effective

sets. Not all graphs have a very cost effective bipartition, for example, the complete

graphs of odd order do not. We consider several families of graphs G, including

Cartesian products and cacti graphs, to determine whether G has a very cost effective

bipartition.
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1 INTRODUCTION

1.1 Basic Terminology of Graph Theory

As defined in [4], a graph G = (V,E) is a nonempty, finite set of elements called

vertices together with a (possibly empty) set of unordered pairs of distinct vertices

of G called edges . The vertex set of G is denoted by V (G) and the edge set of G is

denoted by E(G). When there is no risk of ambiguity, these are denoted V and E,

respectively. In Figure 1, we have an example of a graph.

Figure 1: House graph

In this thesis, we will be studying simple graphs, that is, graphs for which there

exists at most one edge between any two vertices and for which the endpoints of any

edge are distinct. If e = {u, v} is an edge of a graph G, then u and v are adjacent

vertices, while u and e are incident, as are v and e. Two adjacent vertices are called

neighbors of each other. The degree of a vertex v in a graph G is the number of edges

incident to v. A vertex of degree 0 in G is called an isolated vertex, while a vertex of

degree of 1 is referred to as a leaf or pendant. A vertex v is said to be even or odd,

according to whether its degree in G is even or odd.

Given any graph G, the order of G, denoted n(G) = |V (G)|, is the number of

vertices in G. The size of G, denoted m(G) = |E(G)|, is the number of edges in

G. If there is no risk of ambiguity, these are written as n and m, respectively. For
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example, for the graph G in Figure 1, the order n(G) = 5 and the size m(G) = 6.

A graph of order 1 is called a trivial graph, and a graph of order at least 2 is called

a nontrivial graph. A graph of size 0 is called an empty graph. A nonempty graph

has one or more edges. A u-v walk W of G is a finite, alternating sequence W : u =

u0, e1, u1, e2, ..., uk−1, ek = v of vertices and edges, beginning with vertex u and ending

with vertex v, such that ei = ui−1ui for i = 1, 2, ..., k. The number k (the number of

occurrences of edges) is called the length of W . A u-v walk is closed or open depending

on whether u = v or u 6= v. A u-v trail is a u-v walk in which no edge is repeated.

A u-v path is a u-v walk in which no vertex is repeated. A nontrivial closed trail of

a graph G is referred to as a circuit of G. A circuit v1, v2, ..., vn, v1(n ≥ 3) whose n

vertices vi are distinct is called a cycle. Paths on n vertices are denoted Pn and cycles

on n vertices are denoted Cn. A wheel graph Wn on n vertices is a graph consisting

of a cycle Cn and a single vertex which is adjacent to all vertices in the cycle (see

Figure 2).

A graph of n vertices is complete if every two of its vertices are adjacent. This is

denoted Kn. A graph G is k-partite, k ≥ 1, if it is possible to partition V (G) into

k subsets V1, V2, ..., Vk (called partite sets) such that every element of E(G) joins a

vertex of Vi to a vertex of Vj, i 6= j. For k = 2, such graphs are called bipartite. A

complete k-partite graph G is a k-partite graph with partite sets V1, V2, ..., Vk having

the added property that if u ∈ Vi and v ∈ Vj, i 6= j, then uv ∈ E(G). A complete

bipartite graph with partite sets V1 and V2, where |V1| = r and |V2| = s is denoted

by Kr,s. The graph K1,s is called a star.

A vertex v of a connected graph G is called a cut vertex of G if its removal

9



produces a disconnected graph. A nontrivial connected graph with no cut vertices is

called a nonseparable graph. A labeled graph H is a subgraph of a labeled graph G if

V (H) ⊆ V (G) and E(H) ⊆ E(G). A block of a graph G is a maximal nonseparable

subgraph of G. A cactus graph is a connected graph where each block is either an

edge or a cycle. A cactus graph having one cycle is called a unicyclic graph and a

connected cactus graph with no cycle is called a tree.

W1,5C5 K5

Figure 2: C5,W5, K5

The complement of G, denoted G, is a graph with V (G) = V (G) and E(G) = {ab

| ab 6∈ E(G)}. In other words, the complement G of a graph G is the graph with

vertex set V (G) such that two vertices are adjacent in G if and only if these vertices

are not adjacent in G. This means that both G and its complement G have the same

vertices, but G has precisely the edges that G lacks.

For any vertex v ∈ V (G), the open neighborhood of v is NG(v) = {u ∈ V (G) | uv ∈

E(G)}, and the closed neighborhood NG[v] = NG(v) ∪ {v}. For a set S ⊆ V (G),

its open neighborhood NG(S) = ∪v∈SNG(v), and its closed neighborhood NG[S] =

NG(S) ∪ S. These are sometimes denoted N(v), N [v], N(S) or N [S], respectively, if

there is no risk of ambiguity.

A set S ⊆ V (G) is a dominating set (abbreviated DS) if N [S] = V (G). In other

words, every vertex in V (G) \ S is adjacent to a vertex in S. Every graph has a DS

10



since V (G) is such a set. Among all DS of G, a DS with minimum cardinality is

said to be a γ(G)-set. Its cardinality is known as the domination number of G and

it is denoted by γ(G). An independent dominating set, abbreviated IDS, of a graph

G is a set S ⊆ V (G) that is a DS of G and is an independent set. The independent

domination number of G, denoted by i(G), is the minimum cardinality of an IDS of

G. An IDS of G of cardinality i(G) is called an i(G)-set.

1.2 Very Cost Effective Partitions in Graphs

Very cost effective partitions in graphs were first introduced in [11] and were

motivated by the studies of unfriendly partitions (i.e. [1, 8, 19, 20]). According to

[11], a vertex v in a set S is said to be cost effective if it is adjacent to at least as

many vertices in V \ S as in S. A vertex v is very cost effective if it is adjacent to

more vertices in V \ S than in S. A set S is a (very) cost effective set if every vertex

v ∈ S is (very) cost effective.

A bipartition π = {S, V \ S} is called cost effective if (i) for every vertex i ∈ S,

|N(i) ∩ (V \ S)| ≥ |N(i) ∩ S|, and (ii) for every vertex j ∈ V \ S, |N(j) ∩ S| ≥

|N(j)∩ (V \S)|. Thus, given a cost effective partition π = {S, V \S}, every vertex in

S is cost effective with respect to the set S, and every vertex in V \S is cost effective

with respect to the set V \ S.

Theorem 1.1 [11] Every connected graph G of order n ≥ 2 has a cost effective

partition.

Proof. Let π = {S, V \ S} be any bipartition of V (G) having the property that

the number of edges between S and V \ S is a maximum. To show that π is a cost
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effective partition, we assume to the contrary, that it is not. Then, without loss of

generality, we may assume S is not cost effective. Hence, there is a vertex, say v ∈ S,

having more neighbors in S than in V \S. In this case, moving v to V \S will increase

the number of edges between S and V \ S, contradicting the assumption that π has

a maximum number of edges between the two sets. 2

A bipartition π = {S, V \ S} of the vertices V of a graph G = (V,E) is very cost

effective if (i) for every vertex u ∈ S, |N [u]∩ (V \ S)| ≥ |N [u]∩ S|, and (ii) for every

vertex v ∈ V \S, |N [v]∩S| ≥ |N [v]∩ (V \S)|. Equivalently, every vertex in S is very

cost effective with respect to S, and every vertex in V \ S is very cost effective with

respect to V \ S. A graph G is called very cost effective if it has a very cost effective

bipartition.

Thus, we have seen that every nontrival graph G has a cost effective bipartition,

but not every graph has a very cost effective bipartition. In this work, we study several

families of graphs and determine whether they have a very cost effective bipartition.

1.3 Motivation and Applications

In terms of an application, we assume that maintaining edges in a network has an

associated cost, and thus they should be used effectively. We assume that an edge

between a vertex in a set S and a vertex in V \ S is being used effectively, while an

edge between two vertices in S is not necessarily being used cost effectively. Thus,

a vertex is considered to be cost effective if at least as many edges incident to it are

being used cost effectively as not.

Also, (very) cost effective partitions are motivated by business applications. For
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example, a company that offers service to both customers and employees would want

to be certain to make more money than it is spending. Let the edges inside S represent

services that employees are using (internal cost), and let edges between S and V \ S

represent income from customers paying the company for services. If the company

allows employees to use the services it offers for free or at a discounted price, then

the company needs to have more edges between S and V \ S to be able to make a

profit. Thus, for each vertex, v ∈ S it would be necessary for v to have at least as

many neighbors in V \ S as in S in order for the company to make money.

13



2 LITERATURE SURVEY

2.1 Unfriendly Partitions

Very cost effective partitions are derived from the study of unfriendly partitions

of graphs, as follows. Let C be a two-coloring of the vertices of a graph G, C : V →

{Red,Blue}. For every vertex i ∈ V , define B(i) = {j ∈ N(i), C(j) = Blue} and

R(i) = {j ∈ N(i), C(j) = Red}. Similarly, define B(V ) = {j ∈ V, C(j) = Blue}

and R(V ) = {j ∈ V, C(j) = Red}. A two-coloring produces a bipartition of V , π =

{B(V ), R(V )}. Given such a bipartition π, we say that an edge uv ∈ E is bicolored if

C(u) 6= C(v). A bipartition π is called an unfriendly partition if every vertex i ∈ B(V )

has at least as many neighbors in R(V ) as it does in B(V ), and every vertex j ∈ R(V )

has at least as many neighbors in B(V ) as it does in R(V ). That is, if C(i) = Blue,

then |B(i)| ≤ |R(i)|, and if C(i) = Red, then |R(i)| ≤ |B(i)|. These types of

partitions were defined and studied by Borodin and Koshtochka [3], Aharoni, Milner,

and Prikry [1], and Shelah and Milner [20], who called these unfriendly partitions.

They observed the following, simple proof of which we provide here since it formed

the basis for Theorem 1.1.

Theorem 2.1 [1] Every finite connected graph G of order n ≥ 2 has an unfriendly

partition.

Proof. Let π = {B(V ), R(V )} be any bipartition of V (G) having the property that

the number of bicolored edges is a maximum. It is easy to see that such a partition

is unfriendly. If π is not an unfriendly partition then there must exist a vertex, say

v ∈ R(V ), having more red neighbors than blue neighbors. In this case, moving v to

14



B(V ) will increases the number of bicolored edges, contrary to the assumption that

π has a maximum number of bicolored edges. 2

Unfriendly partitions have shown up indirectly in several other lines of research.

In [5, 6] the concept of α-domination in graphs is defined and studied. A set S ⊆ V

of vertices in a graph G = (V,E) is called an α-dominating set if for every vertex

v ∈ V \ S, |N(v) ∩ S|/|N [v]| ≥ α, where 0 ≤ α < 1. In the case where α ≥ 1/2

every vertex in V \ S meets the unfriendly condition in that it has at least as many

neighbors in S as it has in V \S. However, no unfriendly condition is imposed on the

vertices in S.

Similarly, in [7, 12, 13, 15, 17] global offensive alliances in graphs are defined and

studied. A set S ⊆ V of vertices is called a global offensive alliance if for every vertex

v ∈ V \ S, |N(v) ∩ S| ≥ |N [v] ∩ (V \ S)|. As with α-domination, if S is a global

offensive alliance, then every vertex v ∈ V \ S satisfies the unfriendly condition, in

that it has at least as many neighbors in S as it has in V \ S, if you count the vertex

v as one of its own neighbors. But no unfriendly condition is imposed on the vertices

in S.

A partition that is in some sense dual to an unfriendly partition is a bipartition

π = {B(V ), R(V )} called a satisfactory partition such that every vertex i ∈ B(V ) has

at least as many neighbors in B(V ) as it does in R(V ), and every vertex i ∈ R(V )

has at least as many neighbors in R(V ) as it has in B(V ). That is, if C(i) = Blue,

then |B(i)| ≥ |R(i)|, and if C(i) = Red, then |R(i)| ≥ |B(i)|. Satisfactory partitions

have been studied in [8, 9, 10, 19]. However, unlike unfriendly partitions, not every

graph has a satisfactory partition. In fact, it is an NP-complete problem to decide if
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an arbitrary graph has a satisfactory partition [2].

2.2 Cost Effective Domination

A related topic to very cost effective partitions is (very) cost effective domination.

Cost effective domination was introduced in [11] and studied further in [14, 16].

Definition 2.2 A set S is a cost effective dominating set if S is both a cost effective

set and a dominating set.

Definition 2.3 The cost effective domination number γcǫ(G) of a graph G equals

the minimum cardinality of a cost effective dominating set in G. The upper cost

effective domination number Γcǫ(G) equals the maximum cardinality of a cost effective

dominating set in G. A cost effective set of G with cardinality γcǫ(G) is called a γcǫ-

set of G. The very cost effective domination number and the upper very cost effective

domination number are defined similarly.

It should be pointed out that while the property of being a dominating set is

superhereditary, that is, every superset of a dominating set is also a dominating set,

the property of being a cost effective dominating set is not superhereditary. This

explains why the definition of the upper cost effective domination number does not

include the word “minimal” as it does in the definition of the upper domination

number. Without the word minimal in the definition of Γ(G), the value of Γ(G)

would equal n = |V | for all graphs.

Proposition 2.4 [11] Every independent dominating set S in a graph G is a cost

effective dominating set.

16



Proof. Let S ⊆ V be an independent dominating set of G. Then for each v ∈ S,

|N(v) ∩ S| = 0 ≤ |N(v) ∩ (V \ S)|. Thus, every vertex v ∈ S is cost effective. 2

Corollary 2.5 [11] For any graph G, γ(G) ≤ γcǫ(G) ≤ i(G).

The corona of graphs G and H , denoted G ◦ H , is the graph formed from one

copy of G and |V (G)| copies of H , where the ith vertex in V (G) is adjacent to every

vertex in the ith copy of H . We note that all four combinations of the inequalities in

Corollary 2.5 are possible (see Figure 3 where the darkened vertices represent a γcǫ-

set). In particular, for γ(G) < γcǫ(G) < i(G), let G be the corona G = Kt ◦K t−3, for

t ≥ 5. Then γ(G) = t, γcǫ(G) = 2t− 4, and i(G) = t2 − 4t+4. Figure 1(a) illustrates

K5◦K2. For graphs G having γ(G) < γcǫ(G) = i(G), let G be the treeK1,3◦K2. That

is, the tree formed by adding two leaf vertices adjacent to each vertex of the claw

K1,3. This graph has γ(G) = 4 < γcǫ(G) = i(G) = 5 (see Figure 3(b)). The cycles Cn

have γ(Cn) = γcǫ(Cn) = i(Cn) = ⌈n/3⌉ (see Figure 3(c) for the example, C10). The

doublestar is the tree having exactly two non-leaf vertices. Finally, for a graph G with

γ(G) = γcǫ(G) < i(G), let G be the doublestar where each non-leaf vertex is adjacent

to k ≥ 2 leaves, that is, G = K2 ◦Kk. Here γ(G) = γcǫ(G) = 2 < k + 1 = i(G) (see

Figure 3(d)).

The trees in Figure 3(b) show that not all trees have cost effective γ-sets. Similarly,

we can consider characterizing the graphs obtaining equalities in any of the bounds.

Also, [14] provides us with upper bound on the cost effective domination number of

trees and characterizes the trees obtaining this bound.

17



(b)(a)

(c) (d)

Figure 3: Inequalities of Corollary 2.5.

Theorem 2.6 [14] If T is a tree with γ(T ) ≥ 3, then γ(T ) ≤ γce(T ) ≤ 2γ(T ) − 3,

and these bounds are sharp.

In order to characterize the trees obtaining the bound, in [14] the authors define the

family F of trees Tt, which are obtained from the star K1,t with center x and leaves

x1, x2, ..., xt as follows. Add exactly t−1 new vertices adjacent to x, and for 1 ≤ i ≤ t,

add at least t− 1 new vertices adjacent to xi.

In general, we use notation and terminology of [11]. We will employ the following

terminology and results from [16].

Definition 2.7 [16] The minimum (very) cost effectiveness of a graph G, denoted

(vce(G)), ce(G) equals the minimum order of a maximal (very) cost effective set in

G, and the maximum (very) cost effectiveness of G, (V CE(G)), CE(G) equals the

maximum cardinality of a (very) cost effective set in G.

18



Proposition 2.8 [16] For any connected graph G of order n > 1, 1 ≤ vce(G) ≤

V CE(G) ≤ n− 1, and these bounds for vce(G) and V CE(G) are sharp.

Proof. Trivially, vce(K1) = vce(K3) = 1. In order to show that the upper bound for

V CE(G) is sharp note that for the star K1,n of order n+ 1, V CE(K1,n) = n. 2

It is natural to ask: for which classes of graphs is vce(G) = 1 and for which classes

of graphs is V CE(G) = n− 1?

Theorem 2.9 [16] Let G be a connected graph of order n > 1. Then (i) vce(G) = 1

if and only if G = K1 + (rK2 ∪ sK1), for r+ s ≥ 1, and (ii) V CE(G) = n− 1 if and

only if G = K1,n1
.

Proposition 2.10 [16] Every independent set S in a graph G without isolated vertices

is a very cost effective set.

The proof is similar to a proof of Proposition 1.4.

Observation 2.11 All bipartite graphs are very cost effective.

Corollary 2.12 [16] For any connected graph G of order n > 1, V CE(G) ≤ CE(G).

An interesting relation between very cost effective sets and the dominating sets is

established in the next proposition.

Proposition 2.13 [16] Every maximal very cost effective set in a connected graph G

is a dominating set.
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Proof. Let S ⊆ V be a maximal very cost effective set, and assume that S is

not a dominating set. Let v ∈ V \ N [S] be a vertex that is not dominated by

any vertex in S. Then it follows that S ∪ {v} is a very cost effective set since

|N(v) ∩ S = 0 < |N(v) ∩ (V \ S)|, contradicting the assumption that S is a maximal

very cost effective set. 2

We have already discussed the properties of cost effective domination. At this

point, we turn our attention to very cost effective domination since it is more closely

related to the field of our research. Thus, [16] suggests the following definitions.

Definition 2.14 A set S is a very cost effective dominating set if S is both a very

cost effective set and a dominating set.

Definition 2.15 The very cost effective domination number of a graph G, denoted

γvce(G), equals the minimum cardinality of a very cost effective dominating set in

G. The upper very cost effective domination number Γvce(G) equals the maximum

cardinality of a minimal dominating set in G that is very cost effective.

It should be pointed out that while the property of being a dominating set is super-

hereditary, that is, every superset of a dominating set is also a dominating set, the

property of being a very cost effective dominating set is not superhereditary. It is

easy to see that every isolate-free graph has a very cost effective dominating set since

every maximal independent set is both dominating and very cost effective.

Proposition 2.16 [16] For any graph G without isolated vertices, γ(G) ≤ γce(G) ≤

γvce(G) ≤ {vce(G), i(G)}, and all of these inequalities can be strict.
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Also, in terms of Γ we have the following inequalities.

Corollary 2.17 [16] For any connected graph G without isolated vertices, Γvce(G) ≤

Γce(G) ≤ Γ(G), and these bounds are sharp.

2.3 Variations of the Aharoni, Milner, Prikry Theorem

In Section 2, we gave a simple proof of Theorem 2.1 that every graph of order

n ≥ 2 has an unfriendly partition. This theorem can be represented equivalently by

the following algorithm, which was given in [1].

Algorithm Cost Effective 2-Coloring

Input: A graph G of order n ≥ 2.

Output: A partition V (G) into two cost effective sets.

1. Arbitrarily color the vertices red and blue.

2. While there exists a vertex v ∈ V having more neighbors of its own color

than the other color do change v’s color to the other color od.

This algorithm must terminate, since every change of color increases the number

of bi-colored edges. When this algorithm is finished, the set of vertices colored red

and the set of vertices colored blue will both be cost effective sets. It is easy to see

that one of these two sets must have cardinality at least n/2.

Corollary 2.18 [16] For any graph of order n ≥ 2, CE(G) ≤ n/2.

The following results hold for odd-regular graphs. They represent a family of very

cost effective graphs.
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Corollary 2.19 [16] The vertices of every graph of order n ≥ 2, in which every

vertex has odd degree, can be partitioned into two maximal very cost effective sets.

Corollary 2.20 [14] If G has a γce(G)-set that consists of only odd vertices, then

γce(G) = γvce(G).

Note that in particular, γce(G) = γvce(G) for cubic graphs.

We have previously observed that every nontrivial graph can be partitioned into

two cost effective sets, but not every graph can be partitioned into two very cost

effective sets, for example the odd order complete graphs K2n+1. However most

graphs can be partitioned into three very cost effective sets, using the following simple

algorithm given in [16].

Algorithm Very Cost Effective 3-Coloring (VCE3)

Input: A graph G of order n ≥ 3 having no isolated vertices.

Output: A partition V (G) into three non-empty, very cost effective sets.

1. Color one vertex red, one vertex white and one vertex blue. Then,

arbitrarily color each remaining vertex red, white or blue.

2. While there exists a vertex v ∈ V that has more neighbors of its own color

than it has of one of the other two colors do change v’s color to the color

appearing least frequently in N(v). od

Algorithm VCE3 must terminate since every change of color increases the number

of bicolored edges, or equivalently, decreases the number of mono-colored edges.

Corollary 2.21 [16] The vertices of any graph having order n ≥ 3 and no isolated

vertices can be partitioned into three very cost effective sets.
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Corollary 2.22 [16] For any graph having order n ≥ 3 and no isolated vertices,

V CE(G) ≥ n/3, and this bound is sharp. Notice that for cycles of order n =

3k, V CE(G) = n/3 = k.
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3 PRELIMINARY RESULTS

The research for this thesis was conducted in two phases. Results from the first

phase have already been published in [11]. In this section, we present results that

serve as an introduction to the main results of this thesis found in Section 4.

As we have observed, all nontrivial, connected graphs are cost effective, in that

they have a cost effective bipartition, but not all graphs are very cost effective. The

class of graphs that are not very cost effective includes the complete graphs of odd

order. We first establish four families of very cost effective graphs.

Proposition 3.1 The following classes of graphs are very cost effective:

(i) connected bipartite graphs G = (X, Y, E) of order n ≥ 2,

(ii) complete graphs K2k of even order,

(iii) the corona G ◦K1, where G is a nontrivial connected graph, and

(iv) the wheel W1,k for k 6= 4.

Proof.

(i) Since G = (X, Y, E) has no isolated vertices, it is easy to see that the natural

bipartition π = {X, Y } into two disjoint independent sets X and Y is very cost

effective.
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(ii) Simply partition the vertices of K2k into two sets X and Y of order k.

(iii) Since G is assumed to be connected and of order n ≥ 2, by Theorem 1.1, G

has a cost effective bipartition π = {R,B}. But this may not be a very cost

effective bipartition. However, if each leaf is colored differently than the vertex

to which it is adjacent, the resulting bipartition is very cost effective.

(iv) For the wheel, W1,k, we consider two cases based on the parity of k.

(Case 1) Let k = 2t+1. Color the vertices of the cycle C2t+1, 1, 2, 1, 2, . . . , 1, 2, 3,

and color the central vertex x with color 4. Let R be the set of vertices colored

1 together with the single vertex, say y, colored 3, and let B be the set of ver-

tices colored 2 together with the central vertex x colored 4. We show that the

bipartition π = {R,B} is very cost effective.

Notice that the set of vertices colored 1 is independent. Thus, if v is a vertex

colored 1, then 1 ≤ |N [v] ∩ R| ≤ 2, while 2 ≤ |N(v) ∩ B| ≤ 3. Also for y,

the only vertex colored 3, 2 = |N [y] ∩ R| = |N(y) ∩ B|. Similarly, the set

of vertices colored 2 is independent. Thus, if w is a vertex colored 2, then

|N [w] ∩ B| = |N(w) ∩ R| = 2. Also for x, the only vertex colored 4, 2 ≤

|N [x] ∩B| = |N(x) ∩R| = t+ 1. Thus, the bipartition π = {R,B} is very cost

effective.

(Case 2) Let k ≥ 6 be even, and let the vertices of the cycle Ck be labeled in

order v1, v2, . . . , vk. First color the center vertex x red. For the vertices vi, for
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1 ≤ i ≤ 6, color v1 and v4 red and v2, v3, v5, v6 blue. Then for vi, 7 ≤ i ≤ k,

alternately color the vertices red and blue (beginning with red). This coloring

forms a bipartition π = {R,B}, where R is the set of red vertices and B is

the set of blue vertices. Consider the set R. For the vertex x, |N [x] ∩ R| =

(k − 6)/2 + 3 < |N(x) ∩ B| = (k − 6)/2 + 4. For every other vertex, say

v ∈ R, |N [v] ∩ R| = 2 = |N(v) ∩ B|. For v ∈ B, 1 ≤ |N [v] ∩ B| ≤ 2 and

2 ≤ |N(v) ∩ R| ≤ 3. Thus, the bipartition π = {R,B} is a very cost effective

partition. 2

We note that the wheel W1,4 is not very cost effective. We next consider other families

of graphs that are not very cost effective.

Proposition 3.2 No cycle C2k+1 of odd order is very cost effective.

Proof. Any bipartition π = {R,B} of the vertices of an odd cycle into two non-

empty sets must place two adjacent vertices into either set R or set B. This follows

since odd cycles do not have partitions into two independent sets. Suppose that two

adjacent vertices, say u and v, are in the same set, say R. Let vertex w be the

second vertex adjacent to v on the cycle. If w ∈ R, then vertex v does not meet

the very cost effective condition, having no neighbors in B. While if w ∈ B, then

|N [v] ∩ R| = 2 > |N(v) ∩ B| = 1. Thus, C2k+1 does not have a very cost effective

bipartition. 2

Proposition 3.3 Let H = C5 − C5 be a graph obtained from two disjoint cycles C5

by adding one edge between any vertex in one C5 and any vertex in the other C5.

Then H is not very cost effective.
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Proof. Let the vertices of the first five-cycle ofH be labelled in order u1, u2, u3, u4, u5,

and those of the second five cycle of H be labelled v1, v2, v3, v4, v5. Assume that

vertices u1 and v1 are joined by an edge. We must show that this graph does not

have a very cost effective bipartition.

Assume that π = {R,B} is a very cost effective bipartition of the graph H .

Assume without loss of generality that u1 ∈ R. Vertex u1 is adjacent to vertices u2

and u5. If u2 ∈ R, then it cannot be very cost effective, having two vertices in its

closed neighborhood colored red, but at most one vertex in its neighborhood colored

blue. Thus, vertex u2 must be colored blue. The same argument applies to vertex

u5, and thus vertex u5 must be colored blue. Now by the same reasoning, vertex u3

cannot be colored blue, else vertex u2 is not very cost effective, having two vertices in

its closed neighborhood colored blue, and at most one colored red. Therefore, vertex

u3 must be colored red. But the same argument can be used to show that vertex u4

must also be colored red. Thus, neither u3 nor u4 is very cost effective. 2

Corollary 3.4 No graph G containing a C5 attached to the rest of the graph by a

connecting edge is very cost effective.

By much the same reasoning, it can be shown that no graph containing an attached

odd cycle has a very cost effective bipartition. This result is generalized even further

in Section 4 (see Theorem 4.5). A cactus is any connected graph having the property

that no edge is contained in two or more cycles. Thus, all trees are cacti, as are all

cycles. The class of cacti provide more examples of graphs that are not very cost

effective. Since all bipartite cacti are very cost effective, a cactus that is not very
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cost effective must contain an odd cycle. First note that a unicyclic graph is any

connected graph G of order n and size n. Equivalently, it is a graph obtained from

a tree by adding an edge between any two non-adjacent vertices of T . Of course,

every unicyclic graph is a cactus. It follows that if a unicyclic graph is not very cost

effective, then its only cycle has odd order. However, as we shall see in Section 4, a

unicyclic graph with an odd cycle can be very cost effective.

Recall that the Cartesian product of two graphs, G and H , is the graph denoted

G2H = (V (G)× V (H), E(G2H)), where two vertices (u, v) and (w, x) are adjacent

in G2H if and only if either u = w and v is adjacent to x in H , or u is adjacent to

w in G and v = x. In G2H , there exists a copy of H for each vertex in V (G) and

a copy of G for each vertex in H . To aid in our discussion, we let Hv represent the

copy of H in G2H corresponding to the vertex v in G. In other words, Hv is the

subgraph induced by the vertices of V (G2H) whose first coordinate is v.

Theorem 3.5 Let G = (X, Y, E) be a bipartite graph with no isolated vertices and

H be a nontrivial, connected graph. Then the Cartesian product G2H is very cost

effective.

Proof. Let G be an isolate-free, bipartite graph with partite sets X and Y , and let

H be a nontrivial, connected graph. Since H is connected, Theorem 1.1 implies that

H has a cost effective bipartition π = (V1, V2). We build a very cost effective partition

of G2H as follows. Let (u, v) ∈ V (G2H). First, assume that u is the partite set X

in G. If v ∈ V1(H), then color (u, v) red; and if v ∈ V2(H), then color (u, v) blue.

Next, let u ∈ Y (G). If v ∈ V1(H), then color (u, v) blue; and if v ∈ V2(H), then color

(u, v) red. In other words, for a copy of H corresponding to a vertex in the partite

28



set X of G, we use the cost effective partition of H , π = (V1, V2); and for a copy of

H corresponding to a vertex in the other partite set Y , we reverse the colors of those

in π. We note that since π = (V1, V2) is a cost effective partition for H , each vertex

(x, y) is cost effective in Hx. Also, every neighbor of (x, y) that is not in Hx is colored

a different color than (x, y). Since G is isolate-free, each vertex (x, y) has at least one

neighbor outside of Hx. Hence, each vertex (x, y) is very cost effective with respect

to its color class in G2H . It follows that the bipartition (R,B), where R is the set

of red vertices and B is the set of blue vertices, is a very cost effective bipartition of

G2H . 2

This result from our preliminary work raised several questions that we were able

to answer in the second phase of our research. Answers to the following questions

can be found in Section 4.

Question 1 If G is very cost effective, is G2H very cost effective for all graphs H?

Question 2 If G and H are both very cost effective, is G2H very cost effective?

Question 3 Is every Cartesian product G2H very cost effective?
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4 MAIN RESULTS

In this section we present the results from phase 2 of our research. In particular,

we present results on very cost effective partitions and explore families of graphs, such

as Cartesian products and cacti graphs. To aid in our discussion, given a partition

π = {R,B} of a graph G, we say the vertices of R are colored red and the vertices of

B are colored blue under π. If π is a very cost effective partition of G, then we say

that G is very cost effective under π.

4.1 General Results

The following result is shown in [16].

Theorem 4.1 [16] Every connected graph G of order n ≥ 3 can be partitioned into

three very cost effective sets.

Theorem 4.2 No very cost effective partition of G is a very cost effective partition

of its complement G.

Proof. Let π = {V1, V2} be a very cost effective partition of G. Assume to the

contrary that π is a very cost effective partition of G. Without loss of generality, let u

be a vertex in V1. Let |NG(u)∩V1| = k1 and |NG(u)∩V2| = k2. Then, k1 < k2 because

u is very cost effective in G. Also, |NG(v)∩V1| = |V1|−k1−1 < |V2|−k2 = |NG(v)∩V2|,

because according to our assumption, u is very cost effective in G under π. Since

k1 < k2, the last inequality can be written as |V1|−k2 < |V2|−k2. Hence, |V1| < |V2|.

On the other hand, an analogous argument for an arbitrary vertex in V2 shows that

|V2| < |V1|, a contradiction. 2
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As promised in Section 3, our next result generalizes Corollary 3.4.

Lemma 4.3 If G is a graph that has an odd cycle as an endblock, then G is not very

cost effective.

Proof. Let G contain an odd cycle endblock C, and label the vertices on C,

u1, u2, ..., u2k+1 such that u1 is the cut vertex on C. Suppose to the contrary that

π = {R,B} is a very cost effective bipartition of the graph G. Assume, without loss

of generality, that u1 ∈ R. Since C is an endblock and u1 is the cut vertex on C,

deg(uj) = 2 for 2 ≤ j ≤ 2k+1. Since π is a very cost effective partition, it follows

that u2 6∈ R, that is, u2 ∈ B. Further, u2i+1 ∈ R and u2i ∈ B for 1 ≤ i ≤ k. But

then u2k+1 ∈ R and |N(u2k+1) ∩ R| = |N(u2k+1) ∩ B| = 1, so u2k+1 is not very cost

effective under π, a contradiction. 2

Figure 4 is an example of a graph G that has an odd cycle endblock.

Figure 4: Graph G has an odd cycle endblock

4.2 Cartesian Product and Cacti Graphs

Here we answer the questions raised in Section 3 concerning Cartesian products.

Not every Cartesian product is very cost effective. For example, the C32C3 shown in

Figure 5 is not very cost effective.
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Figure 5: C32C3

On the other hand, in our next result, we prove that the Cartesian product of a

very cost effective graph and an arbitrary connected graph is very cost effective.

Theorem 4.4 Let G be a very cost effective graph. Then G2H is a very cost effective

graph for any connected graph H.

Proof. Let G be a graph with a very cost effective partition π1 = (V1(G), V2(G)).

If H is the trivial graph, then G2H = G, and, clearly, the result holds. Let H be

a non-trivial, connected graph. By Theorem 1.1, H has a cost effective partition

π2 = (V1(H), V2(H)). We define two colorings, C1 and C2, of H . Let C1 color the

vertices of V1(H) red and the vertices of V2(H) blue; and let the coloring C2 swap

the colors of C1. We consider u ∈ V (G) to determine the coloring of Hu in G2H . If

u ∈ V1(G), then use the coloring C1 for Hu; while if u ∈ V2(G), then use the coloring

C2 for Hu. Let R be the set of red vertices in G2H , and let B be the set of blue

ones. To see that π = (R,B) is a very cost effective partition of G2H , consider an

arbitrary vertex (u, v) ∈ V (G2H). Without loss of generality, assume that (u, v) is

colored red and Hu is colored by C1. Since C1 is a red-blue cost effective partition of

Hu, (u, v) has at least as many blue neighbors in Hu as red ones. It suffices to show

that (u, v) has more blue neighbors than red ones in Gv. Since (u, v) is red under C1

of Hu, it follows that (x, v) is red for all x ∈ V1(Gv). Moreover, (y, v) is blue for all
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y ∈ V2(Gv). Since π2 = (V1(Gv), V2(Gv)) is a very cost effective partition of Gv, we

have that (u, v) has more blue neighbors than red ones in Gv. Hence, π = (R,B) is

a very cost effective partition of G2H . 2

Figure 6 illustrates the Cartesian product K22C3, in which K2 is a very cost

effective graph and C3 is not.
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Figure 6: K22C3

Recall that a cactus graph is a connected graph where each block is either an edge

or a cycle. The cacti is a family of graphs that has many applications. According to

[18], cacti graphs are used as a data structure for comparing sets of related genomes.

Cacti graphs can represent duplications and general genomic rearrangements. Ad-

ditionally, they naturally decompose the common substructures in a set of related

genomes into a hierarchy of chains that can be visualized as two-dimensional multiple

alignments and nets that can be visualized in circular genome plots.

Given a block B and a vertex v in B of a cactus graph G, we define a v-branch

Bv to be a connected subgraph such that V (B) ∩ V (Bv) = {v}, and Bv is maximal

with this property. We say that v is the root of the v-branch Bv of B, and that B

supports Bv. To aid in our discussion, we say that a branch is bad if it is not very

cost effective. In Figure 7, we give an example of a v-branch. Let G be the graph

in Figure 7 and B be a block of G induced by the set {v6, v7, v8}. The v6-branch

of B is the subgraph induced by the set {v6, v9, v10, ..., v20}, and the v7-branch of

B is the subgraph induced by the set {v7, v1, v2, ...v5}. Also note that if B′ is the

block induced by the set {v6, v9, v10, v11, v12}. Then the v6-branch of B′ is the graph

G \ {v9, v10, v11, v12}.
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v1 v2

v3

v4 v5
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v9 v12

v11v10

v13
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v16

v17 v20

v19v18

Figure 7: Example of a branch

Theorem 4.5 A cactus graph G is very cost effective if and only if every odd cycle

block C of G supports two branches Cu and Cv, where u and v are adjacent vertices

on C and each of Cu and Cv is a very cost effective cactus.

Proof. We say that a cactus G has Property P if every odd cycle block C of G

supports two branches Cu and Cv, where u and v are adjacent vertices on C and each

of Cv and Cu is a very cost effective cactus.

We show that if G is a very cost effective cactus graph, then G has Property P

by proving the contrapositive. Assume that G is a cactus graph that does not have

Property P . Since Property P vacuously holds for graphs with no odd cycles, G has

an odd cycle, say C, that does not comply with Property P .

Suppose, for the purpose of a contradiction, that G is very cost effective, and let

π = {R,B} be a very cost effective partition of G. Since C is an odd cycle, under

π at least two adjacent vertices, say u and v, of C are colored the same color, say

red. Assume first that adjacent vertices u and v are roots of branches Cu and Cv,

respectively. Since G does not have Property P , we may assume without loss of

generality that Cu is not very cost effective. Since π is a very cost effective partition
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of G, all the vertices of Cu, except possibly u, are very cost effective under π in Cu.

Thus, u is not very cost effective under π in Cu, that is, u has at least as many red

neighbors as blue ones in Cu. Since u is very cost effective under π in G, that is, u

has more blue neighbors than red ones in G, we deduce that the two neighbors of u

on C are both blue. In particular, v ∈ B, a contradiction.

Hence, we may assume that at least one of u and v, say u, is not the root of

a branch. But since u and v are red under π and degG(u) = 2, u is not very cost

effective in G under π, a contradiction. Thus, the result holds.

For the converse, assume that G has Property P . To show that G is very cost

effective, we proceed by induction on the number c of odd cycles in G. If G has no odd

cycles, then G is bipartite and by Observation 2.11, G is very cost effective. Thus, we

may assume that G has an odd cycle. If c = 1, then let C be the odd cycle of G. Label

the vertices of C as u1, u2, ..., uk, u1, such that u1 and uk are a pair of adjacent vertices

with very cost effective branches, Cu1
and Cuk

, respectively. We show that G is very

cost effective by giving a very cost effective partition π = {R,B} of G. Let ui ∈ R if i

is odd and ui ∈ B if i is even. Then, both u1 and uk are red and each have exactly one

blue neighbor on C. Let pi′ = {V1, V2} be a very cost effective partition of H ′ = Cu1
.

If u1 ∈ Vi, then, in H ′, color the vertices of Vi red and the vertices of V3−i blue. Hence,

u1 is very cost effective in H ′, that is, u1 has more blue neighbors than red ones in H ′,

implying that |NG(u1)∩R| = |NH′(u1)∩R|+ 1 < |NH′(u1)∩B|+ 1 = |NG(u1)∩B|.

Hence, u1 is very cost effective in G. A similar argument shows that uk is also very

cost effective under π in G. For every ui, 2 ≤ i ≤ k − 1, if degG(ui) = 2, then ui is

very cost effective in G. Assume that deg(ui) ≥ 3, for some i, where 2 ≤ i ≤ k − 1,
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and let Cui
be the branch rooted at ui from C. Since Cui

has no odd cycles, Cui
is

bipartite, and so, by Observation 2.11, Cui
is very cost effective. Let π′ = {V1, V2} be

a very cost effective partition of Cui
. Relabeling the sets V1 and V2 if necessary, we

may assume that ui ∈ V1 of Cui
. If i is odd, then color the vertices of V1 red and the

vertices of V2 blue. If i is even, then we color the vertices of V1 blue and the vertices

of V2 red. Then in G, the vertices of Cui
are very cost effective under π = (R,B).

Hence if c = 1, then G is very cost effective, establishing our base case.

Let c > 1, and assume that any cactus graph with Property P having fewer than

c odd cycles is very cost effective. Let G be a cactus graph having c ≥ 2 odd cycles

and Property P . Begin with an odd cycle C of G. If every branch supported by

C is very cost effective, then using an argument similar to the case for c = 1, we

can show that G is very cost effective. Hence, we may assume that G has an odd

cycle that supports a bad branch. Among all odd cycles with bad branches, select

C to be one that minimizes the number of vertices in a bad branch supported by C.

Label the vertices of C as u1, u2, ..., uk, u1, such that u1 and uk are a pair of adjacent

vertices with very cost effective branches, Cu1
and Cuk

, respectively. Let Cui
be a

bad branch of C having the minimum number of vertices. Then, Cui
has at least one

odd cycle. Moreover, since C is not a cycle in Cui
, Cui

has fewer than c cycles. If Cui

has Property P , then applying our inductive hypothesis to Cui
, we have that Cui

is

very cost effective. This is a contradiction. Thus, we may assume that Cui
does not

have Property P . Since G has Property P , we conclude that ui is a vertex on an odd

cycle, say C ′, of Cui
, and C ′

ui
is a very cost effective branch supported by C ′. Since

G has Property P , there is a neighbor of ui, say x, on C ′, such that C ′

x is very cost
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effective. Coloring x the same color as ui and proceeding as in our base case, we can

show that all the vertices of C ′ are very cost effective. If every branch supported by

C ′ is very cost effective, then using an argument similar to the case for c = 1, we

can show that G is very cost effective. Thus, we may assume that for some vertex y

on C ′, C ′

y is a bad branch. But, since C ′

y is a proper subgraph of Cui
, C ′

y has fewer

vertices than Cui
, contradicting our choice of C. Hence, we conclude that G is very

cost effective. 2

Figure 8 illustrates how a graph having property P can be partitioned into two

very cost effective sets.

Figure 8: Graph G has property P
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5 CONCLUDING REMARKS

We have characterized the very cost effective cacti graphs and showed that if

a graph G or H has a very cost effective bipartition, then so does their Cartesian

product G2H . We conclude with some open problems suggested by this work:

1. Characterize the very cost effective graphs.

2. We have seen that the odd-regular graphs are very cost effective. Characterize

the even-regular graphs that are very cost effective.

3. Study very cost effective partitions in other families of graphs.

4. Characterize the very cost effective Cartesian products.
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