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ABSTRACT

Error Correcting Codes and the Human Genome

by

Suzanne McLean Lyle

In this work, we study error correcting codes and generalize the concepts with a view

toward a novel application in the study of DNA sequences. The author investigates the

possibility that an error correcting linear code could be included in the human genome

through application and research. The author finds that while it is an accepted

hypothesis that it is reasonable that some kind of error correcting code is used in

DNA, no one has actually been able to identify one. The author uses the application

to illustrate how the subject of coding theory can provide a teaching enrichment

activity for undergraduate mathematics.
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1 CODING THEORY

1.1 Introduction to Coding Theory

Error correcting codes are components of a field called coding theory which is of

interest in engineering, computer science, and mathematics. Coding theory is the

study of transmitting a message effectively and accurately. The process involves a

starting place, called the information source, sending some kind of information,

called the message word, across a distance, called the communication channel.

For accuracy, the message word is encoded by the transmitter thus creating a code-

word. This codeword is received and decoded by a receiver and the message word

is then sent to its intended destination called the information sink. Coding the-

ory is necessary because the communication channels these messages are transmitted

across generally contain some kind of interferences, called noise, which may cause

the message to be received incorrectly [7]. Figure 1 below illustrates this process:

Figure 1: Coding Theory Process

To better understand Figure 1, consider a specific example such as receiving images

from the Voyager spacecraft. The Voyager would be the information source and the
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image would be the message word. The transmitter, a computer, would encode

the message word and send the created codeword through a physical medium, the

communication channel. In the case of the Voyager, this channel would be outer space.

Undesirable circumstances in the channel, such as sunspots or meteor showers, are

called noise and can cause the word received to be different from the codeword sent.

The receiver, another computer, receives the word and uses the code to detect and

correct any errors before sending the original message to the information sink, NASA.

Coding theory, as well as information theory, began with the ideas published in

the Bell System Technical Journal by Claude Shannon in the 1948 paper, The Math-

ematical Theory of Communication [16]. Coding theory became necessary due to the

invention of computers. Early computers were based on large banks of mechanical

relays and their reliability was very low compared to today’s computers. If a single

relay failed to work, the entire calculation was wrong; engineers developed ways to

detect faulty relays so they could be replaced. Richard Hamming, also at Bell Labo-

ratories, added to coding theory the idea that if a machine was capable of knowing

there was an error then perhaps it could also correct the error. The Hamming code

is both an error detecting and error correcting code [3].

At the same time that Shannon and Hamming were developing coding theory in

the United States, John Leech was inventing similar codes in Cambridge, England,

in his work on Group Theory [13]. As stated in [4], group theory is the branch of

mathematics that answers the question, ”What is symmetry?” With the group theory

codes, John Leech also helped develop the field of coding theory.

Coding theory is a very modern field of study. The transmission of data correctly
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is very important to many different industries. A few specific examples of the uses of

coding theory are the transmission of data and images from space, the transmission

of financial data related to credit cards, and the minimization of noise from compact

disc recordings.

1.2 Constructing a Code

To transmit a message, it must first be converted into a sequence of numbers. This

work will deal strictly with binary codes to do this conversion. A binary code is a

representation of information using a sequence of zeros and ones. Also, while there

are many classes of codes, this work will only be considering linear codes.

Definition: A linear code C is a code that contains the zero word and is closed under

addition of words [7].

Example 1: C = {000, 111} is a linear code since 000 ∈ C and 000 + 000 = 000 ∈

C, 000 + 111 = 111 ∈ C, 111 + 000 = 111 ∈ C, and 111 + 111 = 000 ∈ C.

A linear code contains message words from the original message plus a sequence of

parity check digits added onto the end of the message word to encode it. The

length of a word is the number of digits, zeros or ones, in the word. The length of

the message word is denoted k; the length of the parity check is denoted n−k.

Together, the message word and the parity check digits make up the codeword. The

length of the codeword is denoted n, and the number of codewords in a code

is denoted |C| = 2k.
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Thus a linear code has the following properties:

• length of codeword: n

• length of message word (also called dimension): k

• length of parity check: n− k

• number of codewords: |C| = 2k

In Example 1, |C| = 2, n = 3, k = 1, and n− k = 2.

An advantage to using linear codes is that the distance is easier to find. The

distance, often referred to as the Hamming distance, is the number of positions in

which two codewords disagree. In Example 1, the distance between the codewords

000, 111 is d(000, 111) = 3. The distance of a linear code is the minimum distance

among all pairs of codewords in the code.

Another important term when discussing linear codes is the Hamming weight.

The weight of a codeword is the number of times the digit 1 occurs in the word. In

Example 1, the weight of the codeword 111 is wt(111) = 3.

These two ideas of distance and weight can be used together to make finding the

distance of a linear code easier to calculate. The distance of a linear code is equal to

the minimum weight of any nonzero codeword [7]. The distance of C = {000, 111} in

Example 1 is the weight of the nonezero codeword, 111. Thus d(C) = 3.

One method to encode a set of messages, i.e. to construct a linear code C, is to

determine a generator matrix G for C. A generator matrix transforms the message

into a code.
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Definition: If C is a linear code of length n and dimension k, then any matrix whose

rows form a basis for C is called a generator matrix G for C [7].

A generator matrix is a k × n matrix of the form [Ik, X] where Ik represents a k × k

identity matrix augmented to a k(n− k) matrix X. Example 2 illustrates a method

for determining a generator matrix G for a given code C.

Example 2: Consider the linear code C = {00000, 10001, 01011, 00111, 11010, 01100,

10110, 11101} with n = 5, k = 3, and n− k = 2. Construct a generator matrix G of

C by considering S = {11101, 10110, 01011, 11010} ⊂ C. Note, S 6= {0} and S must

contain at least k codewords.

Let the codewords in S be the rows of a 4× 5 matrix, A.

A =


1 1 1 0 1
1 0 1 1 0
0 1 0 1 1
1 1 0 1 0

 (1)

A reduces to reduced row echelon form, RREF (A). Recall, reduced row echelon

form is a matrix in row-echelon form with all pivots equal to 1 and with zeros above

as well as below each pivot [6].

RREF (A) =


1 0 0 0 1
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0

 (2)

The nonzero rows of RREF(A) can be used to form the generating matrix G for the

code C.
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G =

 1 0 0 0 1
0 1 0 1 1
0 0 1 1 1

 (3)

To generate the code C, multiply a message word by the generator matrix G. Since

k = 3, the message words to be encoded are all the possible binary sequences of

length 3. In other words, let K = {0, 1} and let Kn be the set of all binary words

of length n such that Kn satisfies the conditions of a vector space. Then for k =

3, K3 = {000, 100, 010, 001, 110, 011, 101, 111} is the set of message words to be

encoded. Choose one of these message words, say v = 110, and multiply by G to

create a codeword in the code C.

vG =
(

1 1 0
) 1 0 0 0 1

0 1 0 1 1
0 0 1 1 1

 =
(

1 1 0 1 0
)

(4)

The codeword for the message word v = 110 is 11010. When this procedure is repeated

for all K3, the code C is generated: C = {00000, 10001, 01011, 00111, 11010, 01100, 10110,

11101}.

To summarize, encoding a message in coding theory can be viewed mathematically

as performing a vector transformation in a vector space as shown in Figure 2. The

message word can be viewed as an input vector in Rk. By multiplying the message

word to the generator matrix, G, one is performing a transformation from Rk to Rn.

The resulting codeword is the output vector in Rn.
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Figure 2: Correlation of Coding Theory to Vector Spaces

1.3 Linear Independence and Linear Codes

Consider S = {110, 011, 101, 111} where S is a subset of R3. The linear span <S>

is the set of all linear combinations of vectors in S and as such generates a linear code

C.

Theorem 1: For any subset S of Rn, the code C =< S > generated by S consists

precisely of the following words: the zero word, all words in S, and all sums of two

or more words in S [7].

Example 3: Given S = {110, 011, 101, 111}. By applying Theorem 1, the code C can

be generated. The code C woudl consist of the zero word, all the words in S and all

the sums of two or more words in S. So C = {000, 110, 011, 101, 111, 100, 010, 001}.

If S is linearly independent, then it is a basis for code C =< S >. A set of vectors

are a basis for C if it spans C and is linearly independent. If S is linearly dependent

and S 6= {0} then it contains a largest linearly independent subset B such that B is
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a basis for code C =< S >.

A set of vectors is linearly independent if none of them can be written as a linear

combination of finitely many other vectors in the collection.

Example 4: To test S = {110, 011, 101, 111} for linear independence, consider

a(110) + b(011) + c(101) + d(111) = 000.

This equation yields the system of scalar equations:

a + c + d = 0

a + b + d = 0

b + c + d = 0

which yields the solutions d = 0 and a = b = c = 1 or 0. Therefore, S is a linearly

dependent set.

Since 101 = 110 + 011, we will discard 101 from S to create S ′ = {110, 011, 111}.

To test S ′ = {110, 011, 111} for linear independence, consider

a(110) + b(011) + c(111) = 000.

This equation yields the system of scalar equations:

a + c = 0

a + b + c = 0

b + c = 0

which yields the solutions a = b = c = 0. Thus, S ′ is a linearly independent set and

a basis for C = < S ′ >.
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It is important in coding theory to determine if a set is linearly independent or

linearly dependent. It is true that any set of vectors containing the zero vector is

linearly dependent. Also, in the previous section, the rows of the generator matrix G

are a linearly independent set. All generator matrices are linearly independent.

1.4 Parity Check Matrices

A parity check matrix H is used to detect any errors once a codeword is received.

Given a received word w, if wH = 0 then w ∈ C and no errors have occured. If

wH 6= 0, then an error has occurred.

Theorem 2: A matrix H is a parity check matrix for some linear code C if and only

if the columns of H are linearly independent [7].

The relationship of H to the generator matrix G is given below:

For Gk×n =
(
Ik X

)
, Hn×(n−k) =

(
X
In−k

)
(5)

Thus the generator matrix G is a k × n matrix with the k × k identity matrix Ik

augmented to a k × (n − k) matrix X. For the n × (n − k) parity check matrix H,

the same k × (n− k) matrix X is put over a (n− k)× (n− k) identity matrix In−k.

Example 5: Consider C = {00000, 10001, 01011, 00111, 11010, 01100, 10110, 11101}

with k = 3, n− k = 2 and n = 5. The generator matrix G for C is as follows:

G =

 1 0 0 0 1
0 1 0 1 1
0 0 1 1 1

 =
(
Ik X

)
(6)

Then
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H =

(
X
In−k

)
=


0 1
1 1
1 1
1 0
0 1

 (7)

Suppose the received word is w = 11010. Then

wH =
(

1 1 0 1 0
)


0 1
1 1
1 1
1 0
0 1

 =
(

0 0
)

, so w ∈ C. (8)

If w = 11110, then

wH =
(

1 1 1 1 0
)


0 1
1 1
1 1
1 0
0 1

 =
(

1 1
)

, so w /∈ C. (9)

Recall the distance d of a linear code C is the minimum weight of any nonzero

codeword. The distance of the linear code C from Example 5 is d = 2.

One can also determine the distance of a linear code from the parity check matrix.

Theorem 3: Let H be a parity check matrix for a linear code C. Then C has

distance d if and only if any set of d − 1 rows of H is linearly independent and at

least one set of d rows of H is linearly dependent [7].

Consider the parity check matrix H for the linear code C with d = 2 from Example

5:

17



H =


0 1
1 1
1 1
1 0
0 1

 (10)

By Theorem 3, any d− 1 = 2− 1 = 1 rows of H must be linearly independent. Since

a single vector is always linearly independent, this statement is true. Also, at least

one set of d = 2 rows in H is linearly dependent. This is also true since 01 + 01 = 00

and 11 + 11 = 00. Thus, by parity matrix H, d = 2 for C.

1.5 Error Correcting Codes

In the previous section, it was shown that the parity check matrix H could detect an

error in a received word. Therefore, C in Example 5 is an error detecting code. In

error detecting codes, H can determine that a received word is not a codeword but

cannot determine which codeword was sent. To determine which codeword was sent,

a received word w must have a nearest neighbor in the code C. A nearest neighbor

codeword would be a codeword v in C that is closer to w than any other codeword

[7]. In terms of distance, d(v, w) is less than the distance between w and any other

codeword in C.

For the linear code C in Example 5, d = 2. Thus, each codeword in C differs in

at least two positions. Figure 3 is a diagram of two codewords, v1 and v2, of code C

in example 5 where d = 2:
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Figure 3: Node Graph for d = 2

For w = 11110 in Figure 3, there is not a nearest neighbor codeword in C. In such

cases, the decoder would not correct w but would either arbitrarily choose one of the

codewords closest to w or request a retransmission. However, in many occurrences,

neither of these choices is reasonable. In our Voyager example from Section 1.1 of

this work, precision would be desired and retransmission would be costly and likely

impossible.

The parity check matrix H in Example 5 also indicated that C was a single error

detecting code. For w = 11110, wH = [11] indicating an error. But because both

rows 2 and 3 of H are [11], it is impossible to determine if the error occurred in the

second or third digit of w. If it was in the second digit then w would be v1 = 10110.

If the error was in the third digit then w would be v2 = 11010.

For a linear code C to be a single error correcting code, d would need to be at

least 3. Then a received word w1 or w2 would be closest to only one codeword as

shown in Figure 4:
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Figure 4: Node Graph for d = 3

One can build an error correcting code with the knowledge that k = 3 and d = 3.

Recal thatl d = 3 means that each of the codewords differ in at least three places.

Example 6: Construct an error correcting code given k = 3 and d = 3. Starting with

the zero word, build a code by adding digits as necessary to K3 = {000, 100, 010, 001, 110,

011, 101, 111} taking care that d ≥ 3 between any two codewords and that the mini-

mum weight of any codeword is 3.

0 0 0 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
1 1 0 0 1 1
0 1 1 1 1 0
1 0 1 1 0 1
1 1 1 0 0 0

(11)

Thus an error correcting code with k = 3 and d = 3 is C = {000000, 100110, 010011, 001101,

110101, 011110, 101011, 111000}. However, building a code in this manner is time con-

suming and tedious work. It is made easier with the use of parity check equations.

Definition: The columns of the parity check matrix, H, are the coefficients of a
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system of linear equations whose solutions are precisely the codewords in C. These

linear equations are called parity check equations [14].

Example 7: Consider the [6, 3, 3] code from Example 6. A codeword could be written

as a1, a2, a3, a4, a5, a6. The parity check digits, a4, a5, a6, can be written as parity check

equations of the message digits, a1, a2, a3 in such a way that the equation can be set

equal to zero using addition base 2. For the above example, a4 = a1+a2, a5 = a1+a3,

and a6 = a2 + a3. To verify that these equations can be set equal to zero consider

v = a1, a2, a3, a4, a5, a6 = 011110.

For a4, the equation would be

1 = 0 + 1 −→ 0 + 1 + 1 = 0.

For a5, the equation would be the same,

1 = 0 + 1 −→ 0 + 1 + 1 = 0.

And for a6,

0 = 1 + 1 −→ 1 + 1 + 0 = 0.

Example 8: Consider the parity check matrix, H, from Example 5:

H =


0 1
1 1
1 1
1 0
0 1

 (12)
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Per the definition of parity check equations, the columns of H are the coefficients of

the parity check equations. So 01110 = 0a1+1a2+1a3+1a4+0a5 = 0 −→ a4 = a2+a3

and 11101 = 1a1 + 1a2 + 1a3 + 0a4 + 1a5 = 0 −→ a5 = a1 + a2 + a3.

1.6 Hamming Code

There are many types of error correcting codes. This work will discuss a special

case of error correcting linear codes called the Hamming code. Hamming codes are

considered to be perfect single error correcting codes [7].

Definition: Per [7], a code C of length n and odd distance d = 2t + 1 is called a

perfect code if C attains the Hamming bound:

|C| = 2n(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
t

) (13)

Definition: A Hamming code is defined as a binary code of length n = 2r−1, r ≥ 2,

where r = n−k, with parity check matrix H whose rows consist of all nonzero binary

vectors of length r, each used once [11].

Since a Hamming code is a linear code it has the same properties with slight modi-

fications to some of the notation. Recall that the length of a word is the number of

digits it contains.

Properties of a Hamming Code:

• number of parity check digits: n− k = r

• length of message word: k = 2r − 1− r, r ≥ 2
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• length of codeword: n = k + r = 2r − 1, r ≥ 2

• number of codewords: |C| = 2k

• distance of a code: d = 2t + 1

• number of errors corrected by a code: t

When t = 1, Hamming codes are single error correcting codes with d = 3. Another

notation for linear codes such as the Hamming code is [n, k, d] codes.

Example 9: To create a [7, 4, 3] Hamming code C, first create the parity check

matrix H which is a n× r matrix such that any d− 1 rows are linearly independent

and at least one set of d rows is linearly dependent.

H7x3 =



1 1 1
1 0 1
0 1 1
1 1 0
1 0 0
0 1 0
0 0 1


(14)

For H, any d−1 = 2 rows do not add to be zero but d = 3 rows 111+101+010 = 000.

The generating matrix G for the above the parity check matrix H is

Gkxn = G4x7 =


1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

 (15)
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Using G, the codewords for C can be generated. Recall, since k = 4, the message

words to be encoded are all the possible binary sequences of length 4, denoted by K4.

Let v1 = 1101 ∈ K4.

v1G =
(

1 1 0 1
)

1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

 =
(

1 1 0 1 1 0 0
)

(16)

Repeat this procedure for all elements in K4 and the resulting code is C = {0000000,

1000111, 0100101, 0010011, 0001110, 1100010, 0110110, 0011101, 1010100, 0101011,

1001001, 1110001, 0111000, 1011010, 1101100, 1111111}.

Figure 5: Summary of Coding Theory Process

To summarize, we return to the idea of vector spaces. Figure 5 is a diagram of the

process of coding theory. The message word is an input vector in Rk. By multiplying

the message word to the generator matrix, G, one is performing a transformation
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from Rk to Rn. The resulting codeword is an output vector in Rn. The parity check

matrix H takes the output vectors in the n− dimension vector space and translates

them back to the k − dimension vector space. The code is the kernel of H since it

translates back to zero.
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2 DNA, GENOME, AND GENES

2.1 Review of DNA, Genome, and Genes

One of the purposes of this work is to relate the study of coding theory to the human

genome. We begin with a short review of DNA, genome, and genes.

DNA, or deoxyribonucleic acid, is a nucleic acid that provides long term storage

of the genetic instructions used in the development and maintenance of all known

living organisms and some viruses [1]. DNA has been compared to a code since the

instructions in DNA construct other component of cells such as proteins and RNA

molecules [1]. DNA exists as base pairs of molecules that are held tightly together.

The four bases of DNA are adenine (A), cytosine (C), guanine (G), and thymine (T)

[1]. These bases are classified into two types of base pairs - AG and CT [1]. So it

is reasonable to think of these bases pairs in terms of a binary linear code where,

without loss of generality, AG = 0 and CT = 1.

DNA is organized into long structures called chromosomes. The set of chromo-

somes in a cell make up its genome. The human genome has approximately three

billion base pairs of DNA arranged into forty-six chromosomes [1]. The information

carried by DNA is held in the sequence of pieces of DNA called genes. Humans have

approximately 25,000 genes. Each gene has an average length of 3000 bases [1].

A gene contains both coding sequences that determine what the gene does and

non-coding sequences that determine when the gene is active or expressed [1]. When

a gene is active, the DNA of the gene undergoes two processes to become a pro-

tein transcription and translation [1]. To form RNA molecules only transcription is
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needed. First, in transcription, the codons of the gene are copied into messenger RNA

(mRNA). Codons are three-letter words formed from a sequence of three nucleotides

to form the genetic code. Next, the RNA is decoded by a ribosome to translate the

RNA into protein [1].

In humans, barely 2% of the genome consists of protein-coding DNA; much of the

DNA in the genome is without an identified function [17]. However, scientists are

now finding out that this extra DNA, once called junk DNA [17], plays important

roles in the regulation of gene activity although no one knows to what extent. Some

scientists have found that the sequence of the syllables in this DNA is not random

at all but contains some kind of coded information [17]. But, again, the code and

its function are as of yet unknown [17]. An interesting question then is: Could this

junk DNA be used as parity check digits for the genetic code? Particularly, could you

consider the gene as a message word (thus k = 3000) and determine how many parity

checks you would need to create a [n, k, d] linear code?

2.2 Coding Theory and the Human Genome

Mathematics and biology have had a long history, but recently gained in popularity

with the sequencing of the human genome which was declared finished by the Human

Genome Project in 2007 [5]. Mathematical biology studies the mathematical repre-

sentation, treatment, and modeling of biological processes using a variety of applied

mathematics techniques and tools [1]. In particular, genomic coding theory aims at

applying concepts and techniques from the field of coding theory to problems from

the field of molecular biology. Genomic coding theory is motivated by the redundant
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structure of genetic code, the existence of large evolutionary conserved non-coding

regions, and the existence of special sequences in coding regions [5].

Formalizing principles of genetic error correction into a coherent formal theory

has been elusive for decades but several researchers have added contributions to the

field. Yockey proposed one of the first models for gene expression using encoding and

decoding concepts from communication theory in 1992 [5]. Liebovitch et al. developed

the first efficient method to scan through DNA sequences to determine whether some

linear block code was present [5]. Years later, Rosen built on Liebovitch’s results and

constructed a method for the detection of linear block codes that accounts for possible

insertions and deletions in the DNA sequences [5]. Neither Rosen nor Liebovitch was

able to support the existence of simple error correcting codes in DNA. However, as

stated in by Liebovitch [8], if digital error correcting schemes are present in DNA,

they may be more subtle than such simple linear block codes [8]. In 2006, Battail

argues that due to the size of the human genome being far larger than needed there

could exist nested error correcting codes in the DNA [5]. Other hypotheses have been

a parity check code interpretation of nucleotide composition by MacDonaill and the

use of block and convolutional codes to model the process of translation initiation by

May et al [5].

Thus, can one prove the existence of some form of error correcting code in the

structure of DNA? Many researchers are intrigued by the possibility of a connection

between coding theory and DNA, but no one has managed to find it yet. The main

challenge lies in the multilevel structure of the genetic error correction system and

interactions not only among the different levels but also among other sub-systems in
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the cell. Since evolution has had a lot of time to optimize its information transmission

system, it might be a very complex code [5].
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3 USING CODING THEORY AND IT’S REAL LIFE APPLICATIONS AS

ENRICHMENT FOR STUDENTS OF MATHEMATICS

In this work, we have studied error correcting codes and how researchers are trying

to determine if there is a connection between coding theory and the non-coding DNA

in the genome. The field of genomic coding theory has emerged from these questions.

Coding theory, whose mathematical basis can be found in undergraduate linear

algebra, is a very current field of study. Such a clear connections between abstract

math ideas and real life applications can serve as powerful motivators for the gifted

student to pursue a degree in mathematics. The author proposes using the subject

of coding theory as a teaching enrichment activity for undergraduate mathematics to

encourage these students. The author has included sample teaching modules for this

enrichment activity in the Appendix.

Linear algebra is generally taught as a sophomore level course. Coding theory

could then be offered as a mathematic elective in the junior year or as a enrichment

activity in linear algebra or for mathematics honor students.
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APPENDIX

Module 1: Exploring the ASCII Code

Introduction

This activity will show students how something they use everyday, a computer key-

board, relates to coding theory.

Long Term Objectives

To familiarize students with ASCII code, the binary alphabet and binary (base 2)

notation.

Short Term Objectives

1. Students will correlate several of the keys on the computer keyboard with its

numerical representation in ASCII code.

2. Students will learn to encode several of the keys in ASCII code.

Materials

Access to the internet to research ASCII code, paper, pencil, calculator

Activity

Instructor:

A. Introduce the following terms:
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1. ASCII code (American National Standard Code for Information Interchange)

- a binary code used for coding the 256 characters customarily found on a

computer keypad. These characters are correlated to the numbers 0 through

255.

2. Binary alphabet - B = {0, 1}.

3. Binary (base 2) notation - The use of the binary alphabet to represent values;

how computers represent numbers and perform arithmetic.

B. Give the following example:

The letter S on the keyboard is assigned the number 83 (decimal) which is 01010011

(binary). To encode S (or 83) consider the powers base 2.

20 = 1

21 = 2

22 = 4

23 = 8

24 = 16

25 = 32

As you can see, for each term, nk, in binary notation you can determine the next

term by the equation nk+1 = 2(nk). A quick way to generate this set of powers base

2 is to use the table feature on a graphing calculator. In the equation window, type

Y1 = 2∧X, then go to the table window. It will show the above list for all X ∈ Z

Since 256 = 28, each character in the ASCII code will be represented by a sequence

of eight digits. Using the values of the powers base 2, one can determine that 83 =
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64 + 16 + 2 + 1. So in binary notation, 83 = 0(27) + 1(26) + 0(25) + 1(24) + 0(23)

+ 0(22) + 1(21) + 1(20) or 01010011.

Student:

A. Using the internet, find a table listing the correlation of the 256 characters of

ASCII code to the corresponding key on the computer keyboard. Determine what

decimal number represents the following characters:

1. ∼

2. Q

3. backspace

4. \

5. space bar

B. Now, determine the binary notation for the same characters.

Assessment

Take up and grade part B of the student activity. The answers should be as follows:

Character decimal binary
1. ∼ 126 01111110
2. Q 81 01010001
3. backspace 8 00001000
4. \ 47 00101111
5. space bar 32 00100000

Bonus: (Critical Thinking)
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When you looked up the ASCII tables you may have noticed that the tables are

divided. The most common table has the characters for decimals 0 - 127 and then

the next table has the characters for decimals 128 - 255. Give a possible explanation

for this division.
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Module 2: How Computers Use Parity Check Digits in ASCII Code

Introduction

This activity will show students how a computer uses a parity check digit to determine

if there is an error in the ASCII character retrieved.

Long Term Objectives

To familiarize students with the ideas of parity check digits and error detecting codes.

Short Term Objectives

1. Students will learn how to encode a message using a parity check digit.

2. Students will learn to use a generator matrix to encode the characters in ASCII

code.

3. Students will learn to use a parity check matric to check for errors in ASCII

code.

Materials

Paper and pencil.

Activity

Instructor:

A. Introduce the lesson:

38



The main purpose of coding theory is to detect and correct errors in received messages.

ASCII code uses a parity check digit. A parity check digit is a single 1 or 0 added at

the end of the code to make the number of 1s in the code even. When a computer

receives an encoded ASCII character, if the number of 1s is not even, the computer

knows an error has occured. This is called an error detecting code. Error correcting

codes will be discussed later.

B. Give the following example:

Recall the ASCII code for the letter S was 01010011. It has 4 1s, which is even, so to

encode it you would add a 0 to the end making the encoded S = 010100110.

For a single parity digit code it is easy enough to do by hand, even if you were doing

all 256 characters. But imagine you were doing thousands of characters or adding

many parity check digits to the message. You would want to have a better way of

encoding them.

Coding theory uses a generator matrix to generate a code. For ASCII code the

generator matrix G would be:

G =



1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1


(17)

To encde a word such as S = 01010011, multiply it by G using matrix multiplication.
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S∗G =
(

0 1 0 1 0 0 1 1
)


1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1


=
(

0 1 0 1 0 0 1 1 0
)

(18)

which is the same result we obtained before.

C. Give the following example:

To check an encoded message, a parity check matrix can be used. The parity check

matrix, H, for the ASCII code is

H =



1
1
1
1
1
1
1
1
1


(19)

To check the received message s = [0 1 0 1 0 0 1 1 0], again use matrix multiplication.

If you get zero, you know the received message is correct.
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s ∗H =
(

0 1 0 1 0 0 1 1 0
)



1
1
1
1
1
1
1
1
1


=
(

0
)

(20)

Now let’s see what happens when the message is not correct. Let’s change s to s′ =

[1 1 0 1 0 0 1 1 0] and check again.

s′ ∗H =
(

1 1 0 1 0 0 1 1 0
)



1
1
1
1
1
1
1
1
1


=
(

1
)

(21)

As you can see, you did not get a zero so you know an error occured. But you cannot

determine where the error occured, so ASCII is only an error detecting code; not an

error correcting code.

Student:

A. Determine the ASCII parity check code for the characters you determined in

Module 1:

1. ∼

2. Q
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3. backspace

4. \

5. space bar

B. Use the generator matrix, G, and the parity check matrix, H, discussed in class to

verify the work you did in A.

Assessment

Quiz:

A. Encode the following ASCII codes using the generator matrix G.

1. 00010110

2. 00110011

B. Determine if the follwing words are encoded ASCII characters using the parity

check matrix, H.

1. 01001011

2. 01110001
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