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ABSTRACT
Error Correcting Codes and the Human Genome

by

Suzanne McLean Lyle

In this work, we study error correcting codes and generalize the concepts with a view
toward a novel application in the study of DNA sequences. The author investigates the
possibility that an error correcting linear code could be included in the human genome
through application and research. The author finds that while it is an accepted
hypothesis that it is reasonable that some kind of error correcting code is used in
DNA, no one has actually been able to identify one. The author uses the application
to illustrate how the subject of coding theory can provide a teaching enrichment

activity for undergraduate mathematics.
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1 CODING THEORY

1.1 Introduction to Coding Theory

Error correcting codes are components of a field called coding theory which is of
interest in engineering, computer science, and mathematics. Coding theory is the
study of transmitting a message effectively and accurately. The process involves a
starting place, called the information source, sending some kind of information,
called the message word, across a distance, called the communication channel.
For accuracy, the message word is encoded by the transmitter thus creating a code-
word. This codeword is received and decoded by a receiver and the message word
is then sent to its intended destination called the information sink. Coding the-
ory is necessary because the communication channels these messages are transmitted
across generally contain some kind of interferences, called noise, which may cause

the message to be received incorrectly [7]. Figure 1 below illustrates this process:

info transmitter communication receiver info
source — » | encoder —» | channel — % | decoder | —» | sink
noise

Figure 1: Coding Theory Process

To better understand Figure 1, consider a specific example such as receiving images

from the Voyager spacecraft. The Voyager would be the information source and the



image would be the message word. The transmitter, a computer, would encode
the message word and send the created codeword through a physical medium, the
communication channel. In the case of the Voyager, this channel would be outer space.
Undesirable circumstances in the channel, such as sunspots or meteor showers, are
called noise and can cause the word received to be different from the codeword sent.
The receiver, another computer, receives the word and uses the code to detect and
correct any errors before sending the original message to the information sink, NASA.

Coding theory, as well as information theory, began with the ideas published in
the Bell System Technical Journal by Claude Shannon in the 1948 paper, The Math-
ematical Theory of Communication [16]. Coding theory became necessary due to the
invention of computers. Early computers were based on large banks of mechanical
relays and their reliability was very low compared to today’s computers. If a single
relay failed to work, the entire calculation was wrong; engineers developed ways to
detect faulty relays so they could be replaced. Richard Hamming, also at Bell Labo-
ratories, added to coding theory the idea that if a machine was capable of knowing
there was an error then perhaps it could also correct the error. The Hamming code
is both an error detecting and error correcting code [3].

At the same time that Shannon and Hamming were developing coding theory in
the United States, John Leech was inventing similar codes in Cambridge, England,
in his work on Group Theory [13]. As stated in [4], group theory is the branch of
mathematics that answers the question, ”What is symmetry?” With the group theory
codes, John Leech also helped develop the field of coding theory.

Coding theory is a very modern field of study. The transmission of data correctly



is very important to many different industries. A few specific examples of the uses of
coding theory are the transmission of data and images from space, the transmission
of financial data related to credit cards, and the minimization of noise from compact

disc recordings.

1.2 Constructing a Code

To transmit a message, it must first be converted into a sequence of numbers. This
work will deal strictly with binary codes to do this conversion. A binary code is a
representation of information using a sequence of zeros and ones. Also, while there

are many classes of codes, this work will only be considering linear codes.

Definition: A linear code C is a code that contains the zero word and is closed under

addition of words [7].

Example 1: C' = {000,111} is a linear code since 000 € C' and 000 + 000 = 000 €

C, 000+ 111 = 111 € C, 111 +000 = 111 € C, and 111 + 111 = 000 € C.

A linear code contains message words from the original message plus a sequence of
parity check digits added onto the end of the message word to encode it. The
length of a word is the number of digits, zeros or ones, in the word. The length of
the message word is denoted k; the length of the parity check is denoted n — k.
Together, the message word and the parity check digits make up the codeword. The
length of the codeword is denoted n, and the number of codewords in a code

is denoted |C| = 2*.
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Thus a linear code has the following properties:

e length of codeword: n

e length of message word (also called dimension): k
e length of parity check: n —k

e number of codewords: |C| = 2F

In Example 1, |C| =2, n=3, k=1,and n — k = 2.

An advantage to using linear codes is that the distance is easier to find. The
distance, often referred to as the Hamming distance, is the number of positions in
which two codewords disagree. In Example 1, the distance between the codewords
000, 111 is d(000, 111) = 3. The distance of a linear code is the minimum distance
among all pairs of codewords in the code.

Another important term when discussing linear codes is the Hamming weight.
The weight of a codeword is the number of times the digit 1 occurs in the word. In
Example 1, the weight of the codeword 111 is wt(111) = 3.

These two ideas of distance and weight can be used together to make finding the
distance of a linear code easier to calculate. The distance of a linear code is equal to
the minimum weight of any nonzero codeword [7]. The distance of C' = {000,111} in
Example 1 is the weight of the nonezero codeword, 111. Thus d(C) = 3.

One method to encode a set of messages, i.e. to construct a linear code C, is to
determine a generator matrix GG for C'. A generator matrix transforms the message
into a code.

11



Definition: If C'is a linear code of length n and dimension k, then any matrix whose

rows form a basis for C' is called a generator matrix G for C' [7].

A generator matrix is a k X n matrix of the form [I;, X| where I represents a k X k
identity matrix augmented to a k(n — k) matrix X. Example 2 illustrates a method

for determining a generator matrix G for a given code C.

Example 2: Consider the linear code C' = {00000, 10001,01011,00111, 11010, 01100,
10110, 11101} with n =5, k = 3, and n — k = 2. Construct a generator matrix G of
C by considering S = {11101, 10110,01011,11010} C C. Note, S # {0} and S must

contain at least k codewords.

Let the codewords in S be the rows of a 4 x 5 matrix, A.

11101
10110

A= 01011 ()
11010

A reduces to reduced row echelon form, RREF(A). Recall, reduced row echelon
form is a matrix in row-echelon form with all pivots equal to 1 and with zeros above

as well as below each pivot [6].

1000 1
01011

RREF(A) = | o 4 | | . 2)
00000

The nonzero rows of RREF(A) can be used to form the generating matrix G for the

code C.

12



1000 1
G=[01011 (3)
00111

To generate the code C', multiply a message word by the generator matrix G. Since
k = 3, the message words to be encoded are all the possible binary sequences of
length 3. In other words, let K = {0,1} and let K™ be the set of all binary words
of length n such that K™ satisfies the conditions of a vector space. Then for k =
3, K3 = {000,100,010,001,110,011,101,111} is the set of message words to be
encoded. Choose one of these message words, say v = 110, and multiply by G to

create a codeword in the code C.

10001
vG=(110)l01011]=(11010) (4)
00111

The codeword for the message word v = 110 is 11010. When this procedure is repeated
for all K3, the code C'is generated: C' = {00000, 10001,01011,00111, 11010, 01100, 10110,
11101},

To summarize, encoding a message in coding theory can be viewed mathematically
as performing a vector transformation in a vector space as shown in Figure 2. The
message word can be viewed as an input vector in R¥. By multiplying the message
word to the generator matrix, G, one is performing a transformation from R¥ to R™.

The resulting codeword is the output vector in R".

13



message — G — codeword

l l l

input vector in RE generator matrix output vector in R®

l

transformation from
RL: » Ro

Figure 2: Correlation of Coding Theory to Vector Spaces

1.3 Linear Independence and Linear Codes

Consider S = {110,011, 101,111} where S is a subset of R?. The linear span <S>
is the set of all linear combinations of vectors in S and as such generates a linear code

C.

Theorem 1: For any subset S of R", the code C' =< S > generated by S consists
precisely of the following words: the zero word, all words in S, and all sums of two

or more words in S [7].

Example 3: Given S = {110,011, 101, 111}. By applying Theorem 1, the code C' can
be generated. The code C' woudl consist of the zero word, all the words in S and all

the sums of two or more words in S. So C' = {000, 110,011,101, 111, 100,010, 001}.

If S is linearly independent, then it is a basis for code C' =< S >. A set of vectors
are a basis for C'if it spans C' and is linearly independent. If S is linearly dependent

and S # {0} then it contains a largest linearly independent subset B such that B is

14



a basis for code C' =< S >.
A set of vectors is linearly independent if none of them can be written as a linear
combination of finitely many other vectors in the collection.

Example 4: To test S = {110,011, 101,111} for linear independence, consider

a(110) + b(011) + ¢(101) 4 d(111) = 000.

This equation yields the system of scalar equations:

a+c+d=0
a+b+d=0
b+c+d=0

which yields the solutions d = 0 and a = b = ¢ = 1 or 0. Therefore, S is a linearly
dependent set.
Since 101 = 110 + 011, we will discard 101 from S to create S = {110,011, 111}.

To test S’ = {110,011, 111} for linear independence, consider

a(110) + b(011) + ¢(111) = 000.

This equation yields the system of scalar equations:

a+c=0
a+b+c=0
b+c=0

which yields the solutions a = b = ¢ = 0. Thus, S’ is a linearly independent set and

a basis for C = < 5" >.
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It is important in coding theory to determine if a set is linearly independent or
linearly dependent. It is true that any set of vectors containing the zero vector is
linearly dependent. Also, in the previous section, the rows of the generator matrix G

are a linearly independent set. All generator matrices are linearly independent.

1.4 Parity Check Matrices

A parity check matrix H is used to detect any errors once a codeword is received.
Given a received word w, if wH = 0 then w € C and no errors have occured. If

wH # 0, then an error has occurred.

Theorem 2: A matrix H is a parity check matrix for some linear code C' if and only

if the columns of H are linearly independent [7].

The relationship of H to the generator matrix G is given below:

X
For kan = ( Iy X )7 an(n—k) = ( I, & > (5)

Thus the generator matrix G is a k X n matrix with the k x k identity matrix I}
augmented to a k x (n — k) matrix X. For the n x (n — k) parity check matrix H,

the same k x (n — k) matrix X is put over a (n — k) x (n — k) identity matrix I,,_.

Example 5: Consider C' = {00000,10001,01011,00111,11010,01100,10110, 11101}

with £k =3, n — k = 2 and n = 5. The generator matrix G for C is as follows:

Q
I
O O =
O = O
—_— o O
——_ O

Then



I
VR
~
3
e
Bl
~~_
|
O = = = O
_ O~ =
Y
\]
S—

Suppose the received word is w = 11010. Then

O = == O
— O = =

wH=(11010) =(0 0),s0weC. (8)
If w = 11110, then
0 1
11
wH=(11110)[11[=(11),s0w¢C. (9)
10
01

Recall the distance d of a linear code C' is the minimum weight of any nonzero
codeword. The distance of the linear code C from Example 5 is d = 2.

One can also determine the distance of a linear code from the parity check matrix.

Theorem 3: Let H be a parity check matrix for a linear code C'. Then C has
distance d if and only if any set of d — 1 rows of H is linearly independent and at

least one set of d rows of H is linearly dependent [7].

Consider the parity check matrix H for the linear code C' with d = 2 from Example

17



I
R e
—_ O = = =

—~

[S—Y

S

S—

By Theorem 3, any d —1 =2 —1 = 1 rows of H must be linearly independent. Since
a single vector is always linearly independent, this statement is true. Also, at least
one set of d = 2 rows in H is linearly dependent. This is also true since 01 + 01 = 00

and 11 + 11 = 00. Thus, by parity matrix H, d = 2 for C.

1.5 Error Correcting Codes

In the previous section, it was shown that the parity check matrix H could detect an
error in a received word. Therefore, C' in Example 5 is an error detecting code. In
error detecting codes, H can determine that a received word is not a codeword but
cannot determine which codeword was sent. To determine which codeword was sent,
a received word w must have a nearest neighbor in the code C'. A nearest neighbor
codeword would be a codeword v in C that is closer to w than any other codeword
[7]. In terms of distance, d(v,w) is less than the distance between w and any other
codeword in C.

For the linear code C' in Example 5, d = 2. Thus, each codeword in C differs in
at least two positions. Figure 3 is a diagram of two codewords, v; and vy, of code C

in example 5 where d = 2:

18



v = 1011 vy = 11010

w=11110

Figure 3: Node Graph for d = 2

For w = 11110 in Figure 3, there is not a nearest neighbor codeword in C'. In such
cases, the decoder would not correct w but would either arbitrarily choose one of the
codewords closest to w or request a retransmission. However, in many occurrences,
neither of these choices is reasonable. In our Voyager example from Section 1.1 of
this work, precision would be desired and retransmission would be costly and likely
impossible.

The parity check matrix H in Example 5 also indicated that C' was a single error
detecting code. For w = 11110, wH = [11] indicating an error. But because both
rows 2 and 3 of H are [11], it is impossible to determine if the error occurred in the
second or third digit of w. If it was in the second digit then w would be v; = 10110.
If the error was in the third digit then w would be v, = 11010.

For a linear code C' to be a single error correcting code, d would need to be at
least 3. Then a received word w; or wy would be closest to only one codeword as

shown in Figure 4:

19



vy =10110 v = 11011

~_

W1 W2
Figure 4: Node Graph for d = 3

One can build an error correcting code with the knowledge that £ = 3 and d = 3.
Recal thatl d = 3 means that each of the codewords differ in at least three places.
Example 6: Construct an error correcting code given k = 3 and d = 3. Starting with
the zero word, build a code by adding digits as necessary to K = {000, 100,010, 001, 110,
011,101,111} taking care that d > 3 between any two codewords and that the mini-

mum weight of any codeword is 3.

(11)

—_— =0 = OO = O
— O = = O = OO
_ =0 = OO0
SRR, OO F~=O
OO R~ = OO
O~ O == OO

Thus an error correcting code with k = 3 and d = 3 is C' = {000000, 100110, 010011, 001101,
110101,011110, 101011, 111000}. However, building a code in this manner is time con-

suming and tedious work. It is made easier with the use of parity check equations.

Definition: The columns of the parity check matrix, H, are the coefficients of a

20



system of linear equations whose solutions are precisely the codewords in C'. These

linear equations are called parity check equations [14].

Example 7: Consider the [6, 3, 3] code from Example 6. A codeword could be written
as ay, as, ag, a4, as, ag. 1he parity check digits, a4, as, ag, can be written as parity check
equations of the message digits, a1, as, asz in such a way that the equation can be set
equal to zero using addition base 2. For the above example, ay = a1 +as, a5 = a1 +as,

and ag = as + a3. To verify that these equations can be set equal to zero consider

v = ai,as, as, ay, as, ag = 011110.

For a4, the equation would be

1=04+1—0+1+4+1=0.

For as, the equation would be the same,

1=04+1—70+1+4+1=0.

And for ag,

0=1+1—1+1+0=0.

Example 8: Consider the parity check matrix, H, from Example 5:

I
O === O
—_ O = =
—~
—_
[\
N—

21



Per the definition of parity check equations, the columns of H are the coefficients of
the parity check equations. So 01110 = Oa;+1as+1las+1las+0as = 0 — a4 = as+as

and 11101 = lay + las + las + 0as + las = 0 — a5 = a; + az + as.

1.6 Hamming Code

There are many types of error correcting codes. This work will discuss a special
case of error correcting linear codes called the Hamming code. Hamming codes are

considered to be perfect single error correcting codes [7].

Definition: Per [7], a code C of length n and odd distance d = 2t 4 1 is called a

perfect code if C' attains the Hamming bound:

IC| = (13)

O R W B
0 1 t
Definition: A Hamming code is defined as a binary code of length n = 2" —1,r > 2,

where r = n — k, with parity check matrix H whose rows consist of all nonzero binary

vectors of length r, each used once [11].

Since a Hamming code is a linear code it has the same properties with slight modi-
fications to some of the notation. Recall that the length of a word is the number of
digits it contains.

Properties of a Hamming Code:
e number of parity check digits: n — k=1

e length of message word: k =2"—1—r,r > 2
22



length of codeword: n=k+r=2"—1,r > 2

number of codewords: |C| = 2*

distance of a code: d =2t + 1

number of errors corrected by a code: t

When t = 1, Hamming codes are single error correcting codes with d = 3. Another

notation for linear codes such as the Hamming code is [n, k, d] codes.

Example 9: To create a [7,4,3] Hamming code C, first create the parity check
matrix A which is a n X r matrix such that any d — 1 rows are linearly independent

and at least one set of d rows is linearly dependent.

(14)

=

)

W

|
OO R RO R
O~ O = O K
_ OO O O = =

For H, any d—1 = 2 rows do not add to be zero but d = 3 rows 11141014010 = 000.

The generating matrix G for the above the parity check matrix H is

O OO =
o O = O
o= O O
_ o O O
— O =
_ = O
O =

23



Using G, the codewords for C' can be generated. Recall, since k = 4, the message
words to be encoded are all the possible binary sequences of length 4, denoted by K*.

Let v; = 1101 € K*.

1000111
0100101

wG=(1101) 0070011 |=(1101100) (16
0001110

Repeat this procedure for all elements in K* and the resulting code is C' = {0000000,
1000111, 0100101, 0010011, 0001110, 1100010,0110110,0011101, 1010100, 0101011,

1001001, 1110001, 0111000, 1011010, 1101100, 1111111}.

kernel
of H

ZETO

n-dim

Figure 5: Summary of Coding Theory Process

To summarize, we return to the idea of vector spaces. Figure 5 is a diagram of the
process of coding theory. The message word is an input vector in R¥. By multiplying

the message word to the generator matrix, G, one is performing a transformation

24



from R* to R™. The resulting codeword is an output vector in R”. The parity check
matrix H takes the output vectors in the n — dimension vector space and translates
them back to the k — dimension vector space. The code is the kernel of H since it

translates back to zero.

25



2 DNA, GENOME, AND GENES

2.1 Review of DNA, Genome, and Genes

One of the purposes of this work is to relate the study of coding theory to the human
genome. We begin with a short review of DNA, genome, and genes.

DNA, or deoxyribonucleic acid, is a nucleic acid that provides long term storage
of the genetic instructions used in the development and maintenance of all known
living organisms and some viruses [1]. DNA has been compared to a code since the
instructions in DNA construct other component of cells such as proteins and RNA
molecules [1]. DNA exists as base pairs of molecules that are held tightly together.
The four bases of DNA are adenine (A), cytosine (C), guanine (G), and thymine (T)
[1]. These bases are classified into two types of base pairs - AG and CT [1]. So it
is reasonable to think of these bases pairs in terms of a binary linear code where,
without loss of generality, AG = 0 and CT = 1.

DNA is organized into long structures called chromosomes. The set of chromo-
somes in a cell make up its genome. The human genome has approximately three
billion base pairs of DNA arranged into forty-six chromosomes [1]. The information
carried by DNA is held in the sequence of pieces of DNA called genes. Humans have
approximately 25,000 genes. Each gene has an average length of 3000 bases [1].

A gene contains both coding sequences that determine what the gene does and
non-coding sequences that determine when the gene is active or expressed [1]. When
a gene is active, the DNA of the gene undergoes two processes to become a pro-

tein transcription and translation [1]. To form RNA molecules only transcription is

26



needed. First, in transcription, the codons of the gene are copied into messenger RNA
(mRNA). Codons are three-letter words formed from a sequence of three nucleotides
to form the genetic code. Next, the RNA is decoded by a ribosome to translate the
RNA into protein [1].

In humans, barely 2% of the genome consists of protein-coding DNA; much of the
DNA in the genome is without an identified function [17]. However, scientists are
now finding out that this extra DNA, once called junk DNA [17], plays important
roles in the regulation of gene activity although no one knows to what extent. Some
scientists have found that the sequence of the syllables in this DNA is not random
at all but contains some kind of coded information [17]. But, again, the code and
its function are as of yet unknown [17]. An interesting question then is: Could this
junk DNA be used as parity check digits for the genetic code? Particularly, could you
consider the gene as a message word (thus & = 3000) and determine how many parity

checks you would need to create a [n, k, d] linear code?

2.2 Coding Theory and the Human Genome

Mathematics and biology have had a long history, but recently gained in popularity
with the sequencing of the human genome which was declared finished by the Human
Genome Project in 2007 [5]. Mathematical biology studies the mathematical repre-
sentation, treatment, and modeling of biological processes using a variety of applied
mathematics techniques and tools [1]. In particular, genomic coding theory aims at
applying concepts and techniques from the field of coding theory to problems from

the field of molecular biology. Genomic coding theory is motivated by the redundant
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structure of genetic code, the existence of large evolutionary conserved non-coding
regions, and the existence of special sequences in coding regions [5].

Formalizing principles of genetic error correction into a coherent formal theory
has been elusive for decades but several researchers have added contributions to the
field. Yockey proposed one of the first models for gene expression using encoding and
decoding concepts from communication theory in 1992 [5]. Liebovitch et al. developed
the first efficient method to scan through DNA sequences to determine whether some
linear block code was present [5]. Years later, Rosen built on Liebovitch’s results and
constructed a method for the detection of linear block codes that accounts for possible
insertions and deletions in the DNA sequences [5]. Neither Rosen nor Liebovitch was
able to support the existence of simple error correcting codes in DNA. However, as
stated in by Liebovitch [8], if digital error correcting schemes are present in DNA,
they may be more subtle than such simple linear block codes [8]. In 2006, Battail
argues that due to the size of the human genome being far larger than needed there
could exist nested error correcting codes in the DNA [5]. Other hypotheses have been
a parity check code interpretation of nucleotide composition by MacDonaill and the
use of block and convolutional codes to model the process of translation initiation by
May et al [5].

Thus, can one prove the existence of some form of error correcting code in the
structure of DNA? Many researchers are intrigued by the possibility of a connection
between coding theory and DNA, but no one has managed to find it yet. The main
challenge lies in the multilevel structure of the genetic error correction system and

interactions not only among the different levels but also among other sub-systems in
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the cell. Since evolution has had a lot of time to optimize its information transmission

system, it might be a very complex code [5].
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3 USING CODING THEORY AND IT’S REAL LIFE APPLICATIONS AS

ENRICHMENT FOR STUDENTS OF MATHEMATICS

In this work, we have studied error correcting codes and how researchers are trying
to determine if there is a connection between coding theory and the non-coding DNA
in the genome. The field of genomic coding theory has emerged from these questions.

Coding theory, whose mathematical basis can be found in undergraduate linear
algebra, is a very current field of study. Such a clear connections between abstract
math ideas and real life applications can serve as powerful motivators for the gifted
student to pursue a degree in mathematics. The author proposes using the subject
of coding theory as a teaching enrichment activity for undergraduate mathematics to
encourage these students. The author has included sample teaching modules for this
enrichment activity in the Appendix.

Linear algebra is generally taught as a sophomore level course. Coding theory
could then be offered as a mathematic elective in the junior year or as a enrichment

activity in linear algebra or for mathematics honor students.
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APPENDIX

Module 1: Exploring the ASCII Code

Introduction

This activity will show students how something they use everyday, a computer key-

board, relates to coding theory.

Long Term Objectives

To familiarize students with ASCII code, the binary alphabet and binary (base 2)

notation.

Short Term Objectives

1. Students will correlate several of the keys on the computer keyboard with its

numerical representation in ASCII code.

2. Students will learn to encode several of the keys in ASCII code.

Materials

Access to the internet to research ASCII code, paper, pencil, calculator

Activity

Instructor:

A. Introduce the following terms:
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1. ASCII code (American National Standard Code for Information Interchange)
- a binary code used for coding the 256 characters customarily found on a

computer keypad. These characters are correlated to the numbers 0 through

255.

2. Binary alphabet - B = {0, 1}.

3. Binary (base 2) notation - The use of the binary alphabet to represent values;

how computers represent numbers and perform arithmetic.

B. Give the following example:
The letter S on the keyboard is assigned the number 83 (decimal) which is 01010011

(binary). To encode S (or 83) consider the powers base 2.

20=1
21 =2
22 =4
23 =8
21 =16
25 = 32

As you can see, for each term, n, in binary notation you can determine the next
term by the equation ng 1 = 2(ny). A quick way to generate this set of powers base
2 is to use the table feature on a graphing calculator. In the equation window, type
Y1 = 2AX, then go to the table window. It will show the above list for all X € Z

Since 256 = 28, each character in the ASCII code will be represented by a sequence

of eight digits. Using the values of the powers base 2, one can determine that 83 =

35



64 + 16 + 2 + 1. So in binary notation, 83 = 0(27) + 1(2%) + 0(2%) + 1(2%) + 0(23)
+0(22) 4+ 1(21) + 1(2°) or 01010011.

Student:

A. Using the internet, find a table listing the correlation of the 256 characters of
ASCII code to the corresponding key on the computer keyboard. Determine what

decimal number represents the following characters:

2. Q

3. backspace

4.\

5. space bar
B. Now, determine the binary notation for the same characters.
Assessment

Take up and grade part B of the student activity. The answers should be as follows:

Character decimal binary

1. ~ 126 01111110
2. Q 81 01010001
3. backspace &8 00001000
4.\ 47 00101111
5. space bar 32 00100000

Bonus: (Critical Thinking)
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When you looked up the ASCII tables you may have noticed that the tables are
divided. The most common table has the characters for decimals 0 - 127 and then
the next table has the characters for decimals 128 - 255. Give a possible explanation

for this division.
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Module 2: How Computers Use Parity Check Digits in ASCII Code

Introduction

This activity will show students how a computer uses a parity check digit to determine

if there is an error in the ASCII character retrieved.

Long Term Objectives

To familiarize students with the ideas of parity check digits and error detecting codes.

Short Term Objectives

1. Students will learn how to encode a message using a parity check digit.

2. Students will learn to use a generator matrix to encode the characters in ASCII

code.

3. Students will learn to use a parity check matric to check for errors in ASCII

code.

Materials

Paper and pencil.

Activity

Instructor:

A. Introduce the lesson:

38



The main purpose of coding theory is to detect and correct errors in received messages.
ASCII code uses a parity check digit. A parity check digit is a single 1 or 0 added at
the end of the code to make the number of 1s in the code even. When a computer
receives an encoded ASCII character, if the number of 1s is not even, the computer
knows an error has occured. This is called an error detecting code. Error correcting
codes will be discussed later.

B. Give the following example:

Recall the ASCII code for the letter S was 01010011. It has 4 1s, which is even, so to
encode it you would add a 0 to the end making the encoded S = 010100110.

For a single parity digit code it is easy enough to do by hand, even if you were doing
all 256 characters. But imagine you were doing thousands of characters or adding
many parity check digits to the message. You would want to have a better way of
encoding them.

Coding theory uses a generator matrix to generate a code. For ASCII code the

generator matrix G would be:

S OO OO OO -
SO OO oo+~ Oo
SO o oo+, OO
OO OO = O OO
O OO, OO oo
OO OO O oo
O R OO O o oo
_ O O OO o oo
el e e e

—

-

To encde a word such as S = 01010011, multiply it by G using matrix multiplication.
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SxG=(0 10100 1 1)

O OO OO oo

[NeleleoBaNel =

[ elelelell =]

which is the same result we obtained before.

C. Give the following example:

SO oo+ O OO

SO O OO oo

SO R OO o oo

SO OO o o oo

_ o OO o o oo

—_ = = = = = e

=(010100110)

(18)

To check an encoded message, a parity check matrix can be used. The parity check

matrix, H, for the ASCII code is

— = = = e e e e

(19)

To check the received message s =[01 0100 1 1 0], again use matrix multiplication.

If you get zero, you know the received message is correct.
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sxH=(0 10100 110) (20)

g g g S S g gt
I
—~
(@)
N—

Now let’s see what happens when the message is not correct. Let’s change s to s’ =

1101001 10] and check again.

s*H=(110100110) (21)

e e e e e e e e
I
—~
[a—
S~—

As you can see, you did not get a zero so you know an error occured. But you cannot
determine where the error occured, so ASCII is only an error detecting code; not an
error correcting code.

Student:

A. Determine the ASCII parity check code for the characters you determined in

Module 1:
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3. backspace

4.\

5. space bar

B. Use the generator matrix, G, and the parity check matrix, H, discussed in class to

verify the work you did in A.

Assessment

Quiz:

A. Encode the following ASCII codes using the generator matrix G.

1. 00010110

2. 00110011

B. Determine if the follwing words are encoded ASCII characters using the parity

check matrix, H.

1. 01001011

2. 01110001
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