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ABSTRACT 

NEW VISIBLE LIGHT ABSORBER FOR SOLAR FUELS: Ga(Sbx)N1-x ALLOYS 

Swathi Sunkara 

November 19, 2015 

 

  Solar energy conversion to fuels via photoelectrochemical water splitting is one of 

the most important technological directions toward meeting the global energy and 

environmental challenge. However, till date, there are no suitable semiconductor 

materials available that can absorb visible light, possess right kind of band edge 

energetics and are stable in aqueous environments. In this work, a new III-V alloy 

material Ga(Sbx)N1-x with dilute antimony concentration is proposed and developed for 

photoelectrochemical water splitting. Experimental studies were conducted first to 

synthesize the proposed alloy materials to understand structure-property relationships and 

compare them to those obtained using first principles computations. Finally, efforts were 

made to improve the quality of materials synthesized within the context of improving 

their photoactivity with water splitting reaction. In general, III-V nitrides have garnered 

immense interest as suitable materials for solar hydrogen generation due to their tunable 

band gaps with composition, high carrier mobilities and high absorption coefficients. 

  Computations using first principles density functional theory (DFT+U) revealed 
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that a small amount of Sb incorporation is sufficient to achieve a significant band gap 

reduction in GaN from 3.4eV to 2eV. Theoretical computations predicted that Ga(Sb)xN1-

x alloys with 2 eV band gap straddle the electrochemical redox potentials. The synthesis 

of dilute GaSbxN1-x alloys is conducted using a custom-built metalorganic chemical vapor 

deposition reactor. Extensive characterization of the resulting films suggests that there is 

a large band gap bowing even with small amounts (few percent ~ 2-3%) of antimony 

incorporation into GaN. In addition, photoelectrochemical characterization confirmed the 

band edges straddling redox potentials. All the experimental data regarding band gap 

bowing, lattice expansion and band edge straddling matched very well with the 

theoretical predictions. Moreover, the alloys with Sb incorporation >7% exhibited 

indirect band gap transition as predicted by DFT + U calculations.  

 The polycrystalline Ga(Sbx)N1-x thin films were shown to be capable of unassisted 

water splitting but with low efficiencies. So, two different approaches are investigated to 

improve the quality of resulting films: thick films with high texture and single crystal 

quality, Ga(Sbx)N1-x nanowires. The use of a pre-treatment step at 900 C, 40:1 ratio of 

antimony to gallium precursors and temperatures above 750 C allowed for good quality 

crystal growth while allowing for incorporation of antimony. Photoactivity of 1mA/cm2 

was obtained. In addition, VLS approach has been demonstrated to obtain high crystalline 

quality films using copper as catalyst.  

 Vapor-liquid-solid growth experiments using copper particles allowed for tip led 

growth of GaSbxN1-x nanowires at temperatures beyond 600 C. The antimony 

composition in the resulting nanowires increased with growth temperature up to 5 at% 
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while improving the quality. Also the photoactivity obtained from nanowires has been 

increased by two orders of magnitude when compared with polycrystalline films. In 

summary, a new class of III-V nitride alloys using dilute antimonides is demonstrated to 

have suitable properties for solar fuels applications but can find other applications. 
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CHAPTER 1 

INTRODUCTION 

1.1 Energy and Environmental Challenge 

Current energy consumption is 18TW1 and it is predicted to rise by at least 50% 

by 2050. About 85% of the current energy demand is supplied by fossil fuels. The 

expected, unprecedented growth in energy demand using fossil sources will lead to 

unprecedented growth in atmospheric levels of CO2. Currently, CO2 levels in the 

atmosphere are already at 400 ppm and will increase at a rapid pace leading to 

environmental concerns from global warming. So, the advent of carbon free energy 

sources for meeting the anticipated energy demand is one of the grand challenges facing 

humanity.   

        Of all renewables (solar, biomass, hydro, geothermal etc.), solar energy has the 

advantages of being clean and abundant but has some serious disadvantages. The 

intermittent nature of sunlight and the fact that it is influenced by atmospheric conditions 

(clouds, rain) makes it imperative to develop suitable storage technologies or use some 

auxiliary source of energy during off hours. The main challenges with using solar cells 

for energy generation are high land area and the extra costs associated with transportation 

and energy storage.2 Even though solar cells can be coupled with batteries, the slow 

charge/discharge rates of many state-of-the batteries available today creates a technical 
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barrier for implementing this approach. A prudent route would be to use an alternate high 

energy density fuel with minimal carbon footprint.  

1.2 Solar Fuels – Renewable Hydrogen 

                 Solar energy conversion to fuels represents as one of the best pathways for 

storing energy.  The energy of a visible light which ranges from 1-3eV is sufficient 

enough to drive many chemical synthesis routes.3 Chemical fuels like hydrogen, methane, 

methanol, gasoline, diesel, etc. have advantages of high energy storage densities and ease 

of transportation. Out of all these, hydrogen is the only clean fuel whereas all other 

chemical fuels require a source of carbon. As the goal is to avoid a carbon source, 

hydrogen is the ideal chemical fuel. The next challenge would be to find an efficient 

route to convert solar energy into hydrogen. In 1874 Jules Verne made a comment that 

“water will be coal of the future” intimating the production of hydrogen from water.4  

Also water is an abundant source of hydrogen  

The solar water splitting reaction can be written as follows: 

2H2O + sunlight          2H2 + O2   G= 237 kJ/mol3  

Hydrogen as a fuel contains 143 MJ/kg of energy density and has ten times more energy 

density compared to batteries and pumped hydro reservoirs etc. Moreover, hydrogen can 

drive an internal combustion engine and can also be used in fuel cells and electrolyzers. 

This offers the opportunity of having energy infrastructure based on sunlight, hydrogen, 

and electricity.3 

          Large scale production of hydrogen serves as a main solution to meet the world’s 

clean energy demand. Conversion of solar energy to hydrogen by splitting water is the 
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most economical way as it uses water and sunlight which are abundant in nature. The US 

Department of Energy (DOE) has stated the cost goal for hydrogen at $2-$3 per kg 

including production, storage, and transportation.5 A scalable technology for hydrogen 

production with minimal carbon footprint is a challenge. Many technological routes are 

being considered and they include thermolysis, biomass conversion, photobiological 

methods, photovoltaic-electrolysis, photoelectrochemical water splitting, and 

photocatalytic water splitting. Out of all the above methods mentioned, direct 

photoelectrochemical water splitting is more appealing because it allows easy separation 

of gases and can be run at room temperatures.6 Also it is a single device which is entirely 

made up of inorganic materials which offers a chemical robustness that is not possible 

with organic or biological systems. Both photoelectrochemical (PEC) water splitting and 

coupled PV-electrolysis technologies using semiconductor electrodes have advantages 

like easy separation of hydrogen, and simple construction. Coupled PV- water splitting 

needs two systems: one to harvest solar energy and second one to split water whereas 

PEC combines these two steps into a single monolithic device as shown in Figure 1.1.7 

The efficiency of coupled PV and electrolysis will depend on efficiencies of both 

photovoltaic (~15%) and electrolyzer (~70%) which can be estimated as around 0.15*0.7 

~ 0.1 (or ~10%). On the other hand, the efficiency of photoelectrochemical water 

splitting using a single semiconductor with appropriate band gap can be around 25%.8  
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Figure 1.1 A schematic illustrating coupled PV- water splitting versus direct PEC water 

splitting device for solar hydrogen production. 

1.3 Photoelectrochemical Water Splitting 

Photoelectrochemical water splitting is carried out in a PEC cell that  consists of a 

working electrode, which is a visible light absorbing semiconductor, and counter 

electrode immersed in an electrolyte solution. The main challenge with 

photoelectrochemical water splitting is the availability of a semiconductor that meets 

several necessary criteria for unassisted water splitting. The main requirements that need 

to be satisfied are (i) band gap between 1.7 to 2eV, (ii) band edges straddling the water 

oxidation and reduction potential, (iii) fast charge transfer kinetics at semiconductor-

electrolyte interface and (iv) high stability in aqueous solution.9 The underlying reasons 

for these criteria are explained as follows. 

h⌵
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Under standard condition the Gibbs free energy required to drive the water 

splitting reaction is +237KJ/mol which corresponds to electrochemical cell voltage of 

E=1.23V. The energy difference between generated electrons and holes upon illumination 

should be at least 1.23 eV in order to drive the reaction, but due to the losses at the 

interface, overpotential is required. Hence, energy difference of at least 1.7 eV is 

required. Also, the maximum energy of solar energy is concentrated around 1.7eV – 2eV 

and therefore it is important to use a semiconductor material with a band gap in the range 

1.7eV -2 eV for efficient absorption of solar energy. The next important criterion is the 

energetic level of the band edge of the material straddling the water redox potentials as 

shown in Figure 1.2 which means the conduction band minimum of the material should 

be above hydrogen evolution potential and valence band maximum should be lower than 

oxygen evolution potential. If the band edges are too far away from the HER and OER 

potentials, extra energy is required to drive the reactions which results in higher external 

voltages being applied to split water. Another important criterion for a good PEC material 

to split water efficiently is to have excellent charge transport properties which help to 

transport generated carriers to electrolyte and counter electrode. If the charge transport is 

poor in the material charge carriers tend to recombine without separating which reduces 

the performance of the photoelectrochemical cell. The last requirement for long term 

PEC device application is stability of the semiconductor material in water.  
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Figure 1.2 A schematic showing the semiconductor-solution interface and the band edge 

positions with respect to hydrogen and oxygen evolution reaction potentials.  

Stability in aqueous solutions is a major shortcoming for many semiconductor materials. 

Metal oxides with wide band gap have excellent chemical stability but poor charge 

transport and light absorption is a major issue with many oxide materials.10 This occurs 

mostly in the metal oxide materials with indirect band gap where recombination is high 

due to the generation of carriers farther away from the surface. Another challenge 

observed in most of the materials is slow catalysis at the interface which create the 

necessity for co catalysts. The problem with some of the available catalysts like platinum 

is enhancing the back reaction of hydrogen and oxygen.8 One more challenge to be 

considered is the cost of the material. To date the highest efficiency was achieved using 

multijunction devices based on highly expensive materials and device configurations.11  

 To date, very few materials or none satisfy all of the essential criteria described above. 

Hence it is very important for discovering and developing new semiconductor materials 
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that can satisfy all the criteria simultaneously or develop architectures that can improve 

the performance of the existing materials.  

1.4 Proposed Approach  

 There are two well-known semiconductors whose band edges straddle water splitting 

reaction. They are titania and gallium nitride. Titania is an indirect semiconductor while 

Gallium Nitride (GaN) is a direct band gap semiconductor. Ternary alloys based on GaN 

have composition dependent band gaps and show good aqueous stability. Specifically, 

InxGa1-xN is the most widely studied material but huge Indium incorporation is required 

to get the band gap in visible region and reports showed phase segregation with such high 

indium content. Synthesis of new ternary alloys of GaN that satisfy all the water 

splitting criteria offer a solution to selection of an appropriate material for scalable 

hydrogen production using PEC. Dilute Ga(Sbx)N1−x alloy, formed by incorporating 

small amount of Sb into GaN, shows very high promise among ternary GaN alloys. 

Density functional theory (DFT) calculations suggest that very low percentage of 

antimonide incorporation would be sufficient to bring down the GaN band gap from UV 

to visible region, where most of the solar spectrum is concentrated. Further, Ga(Sbx)N1−x 

has right band edge energetics to drive the water oxidation and hydrogen evolution 

reactions. The applicability of the Ga(Sbx)N1−x alloys for practical realization of direct 

PEC water splitting is illustrated in the band offset diagram in Figure 1.3. The band edges 

of GaN, GaSb and InN are also included for comparison.12 
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Figure 1.3 A diagram showing the comparison of band edge positions with respect to 

vacuum for GaSbxN1-x and InxGa1-xN alloys 

In the Figure 1.3, y-axis values are energy scales of SHE (standard hydrogen electrode) 

and vacuum scale. For InxGa1-xN alloys with 2.7 eV band gap, conduction band edge is 

positive of the H2 potential which means it doesn’t straddle H2/H2O potential. Hence it is 

obvious that for 2 eV band gap the band edge will be too far from the H2 potential 

making almost impossible for unassisted water splitting. X-axis is showing that alloying 

fraction in the dilute nitrogen (10%) and dilute antimony (10%) regions. For GaSbxN1-x 

alloy, the vertical lines in the dilute antimony region indicate the band gaps of different 

alloy compositions. It can be observed that there is a huge shift in the valence band edge 

upward which is due to antimony incorporation while there is also small shift in the 

conduction band edge downward. Also in the band gap range of 1.7 eV to 2 eV the band 

edge positions of GaSbxN1-x clearly straddle the water redox potentials. Antimony 

incorporation into nitrogen sites represents isovalent substitution and thus no charge 
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induced trap states are expected. Initial simulation results show that dilute antimonide 

Ga(Sbx)N1−x alloys are promising materials for PEC water splitting applications.13 Hence, 

based on the preliminary theoretical predictions, antimony incorporation into GaN alloys 

is proposed as the way to create new III-V semiconductor alloys for visible light 

absorption toward solar hydrogen. However, antimony incorporation into GaN materials 

during growth has not been achieved to-date because of the differences with synthesis 

temperatures. Antimony species exhibit high vapor pressures and typical temperatures for 

GaSb growth is around 575 C. However, GaN is typically grown at temperatures in 

excess of 950 C. In addition to studying the use of traditional metal organic chemical 

vapor deposition, the use of liquid phase epitaxy and/or vapor-liquid-solid method 

involving catalyst metals is also proposed to obtain good quality GaSbxN1-x alloy 

materials.  

1.5 Objectives of the Study 

The first step is to synthesize Ga(Sbx)N1−x thin films and study the fundamental optical 

and photoelectrochemical properties of the material. In addition to synthesizing the right 

material, it is also equally important to grow good crystal quality films or 1-D 

nanostructures such as nanowires to improve light absorption and collect charge carriers 

efficiently. In this dissertation, we also proposed growth of Ga(Sbx)N1−x nanowires and 

epitaxy films using VLS mechanism which allows for high antimony incorporation at 

high temperatures. Fundamental knowledge of the growth mechanisms of Ga(Sbx)N1−x 

single crystalline nanowires and films will be obtained for realizing the full potential of 

this material towards solar hydrogen production. The overall objectives for this 
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dissertation include the following: 

 Compare the electronic and optical properties of ternary alloys of GaN with 

dilute incorporation of antimony using density functional theory 

 Investigate the synthesis of dilute Ga(Sbx)N1−x ternary alloys using metalorganic 

chemical vapor deposition approach and establish optical and structural 

properties of Ga(Sbx)N1−x alloys. 

 Investigate vapor-liquid-solid growth method for increasing the antimony 

incorporation to produce Ga(Sbx)N1−x alloys with a range of compositions.  

 Improve the quality of synthesized materials through epi-growth and single 

crystal quality nanowire arrays for Ga(Sbx)N1−x alloys. 

 Investigate the charge transport, recombination and charge-transfer kinetics 

using n-type Ga(Sbx)N1−x alloy nanowire arrays grown on GaN substrates.  

1.6 Organization of Thesis 

      The thesis is divided into eight chapters. Chapter 1 introduces the basic PEC 

concepts, materials challenges associated with PEC water splitting. The objectives of the 

work, rationale for using Ga(Sbx)N1−x and the impact of the work are also detailed. 

Chapter 2 reviews the state-of-the art materials for PEC water splitting testing and 

introduction to the Ga(Sbx)N1−x system. Chapter 3 contains details of all experimental 

techniques used for synthesis, materials characterization and photoelectrochemical 

characterization. Chapter 4 describes theoretical and experimental studies on Ga(Sbx)N1−x 

thin films and related photoactivity measurements. Chapter 5 talks about the Vapor-

Liquid-Solid (VLS) growth of Ga(Sbx)N1−x nanowires and the structural and fundamental 
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PEC characterization of the nanowires. Chapter 6 discusses the growth of highly textured 

Ga(Sbx)N1−x films growth and photoactivity measurements with these films. Chapter 7 

summarizes the conclusions of this work and Chapter 8 lists the directions for future 

studies. 
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CHAPTER 2 

BACKGROUND 

2.1 Introduction 

      This chapter reviews the status of materials for photoelectrochemical water splitting. 

Specifically, different configurations used for photoelectrochemical cells for PEC water 

splitting and the performance of various materials systems such as metal oxides, sulfides 

and III-V alloys with water splitting reaction are summarized. In particular, the 

drawbacks of all of the materials systems studied to date are highlighted. Specific 

attention is given to III-V materials system and synthesis techniques used for making III-

V semiconductor alloys.  

2.2 Introduction to Semiconductor-Electrolyte Interface 

The grand challenge in energy research is to develop a way to generate sustainable 

energy while simultaneously reducing carbon dioxide emissions. Among several 

technologies considered, the production of hydrogen by photo-electrochemical (PEC) 

water splitting seems to be one of the most promising techniques that can offer a route 

towards hydrogen production costs of $3-$5 per Kg which is competitive with existing 

energy sources.14 Direct two electrode setup where a semiconductor absorbs sunlight to 

generate electron hole pairs that are separated and then drive the water splitting reaction 

is the ideal setup to solve the problem. When semiconductor is not in contact with 
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electrolyte, bands of the semiconductor are flat. When the semiconductor comes in 

contact with the electrolyte, fermi levels of semiconductor and electrolyte try to 

equilibriate due to the difference in electrochemical potentials by transferring charges 

between them until an equilibrium is established and this results in bending of the bands.  

The band bending results in a built in electric field at the interface which is also called 

depletion layer or space charge layer. This depletion layer is mainly responsible for the 

separation of electron hole pairs. The schematic of the structure of 

semiconductor/electrolyte interface is shown in Figure 2.1 

 

Figure 2.1 Schematics of models for semiconductor/liquid interface showing before and 

after contact of semiconductor with electrolyte. 
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upon equilibration. This causes majority carriers which are electrons in n-type, to move 

into the electrolyte and minority carriers, which are holes, to move toward counter 

electrode. A similar process occurs in p-type semiconductors where the fermi level 

moves upward and bands bend downward. The band bending behavior of n-type and p-

type materials is shown in Figure 2.2 

 

Figure 2.2 Schematics illustrating band bending behavior in n-type and p-type materials.              

For n-type semiconductor, electrons reduce water at metal counter electrode ( Equation 

1.1) whereas photogenerated holes move toward the semiconductor/electrolyte interface 

where they undergo water oxidation ( Equation 1.2 ). The two half reactions involved in 

the water splitting reaction mechanism are as follows. 
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2H2O+2e-  2OH- + H2   
1.2 

The two reactions have to be driven simultaneously on separate electrodes to evolve 

hydrogen and oxygen depending on the conductivity type of the semiconductor. In order 

for efficient photoelectrochemical water splitting, semiconductor materials need to satisfy 

several criteria and this imposes severe materials challenge. Most of the materials being 

investigated fall short in one or the other criteria. 

2.3 Review on different PEC configurations 

PEC water splitting is performed using a photoelectrochemical cell that is comprised of 

electrodes immersed in water. The ultimate goal in solar hydrogen production using 

photoelectrochemical cell is to have unassisted water splitting. In order to achieve water 

splitting using various materials available, different cell configurations were researched. 

A photoelectrochemical cell consists of different schemes like (i) Schottky type device, 

(ii) Tandem cell and (iii) Z-scheme.9 Schottky type device contains a photoanode and 

metal counter electrode in which semiconductor is the main component that converts 

incident photons to electron hole pairs. One main challenge in using a single 

semiconductor to perform water splitting is the band edge mismatch with the hydrogen 

and oxygen evolution reactions which could require high overpotentials. So, a 

combination of two or more semiconductors may offer a solution. In such a device, one 

semiconductor acts as a regular photoanode or photocathode. The other semiconductors 

function as either as a complementary photoelectrode, or as an integrated photovoltaic 

device that provides a bias voltage. Figure 2.3 shows some examples of possible 

configurations. Configurations A and B use single photoanode and photocathode vs. 

metal counter electrode. Hematite (Fe2O3) and Strontium titanate (SrTiO3) are widely 
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used photoanodes in this configuration and cuprous oxide (Cu2O) and Silicon Carbide 

(SiC) were broadly tested photocathodes in this configuration.3, 15-17 Configurations C and 

D were the ones which reported high efficiency till date. In this configuration, bias 

voltage is applied through an integrated p-n junction.  

 

Figure 2.3 Schematics of different PEC configurations under illumination.3 

Bias voltage was applied in different ways. For example, Turner et al developed a tandem 

device based on p-type GaInP2 in combination with GaAs p–n junction that resulted in 

12.4% solar to hydrogen efficiency which is the highest efficiency till date using PEC 

water splitting.7 Another approach with same configuration was developed by Gratzel et 

al where dye sensitized solar cell was used to bias a Fe2O3 photoanode which was similar 

to the above approach except that tandem junction was replaced by a dye sensitized solar 
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cell. In configurations (E) and (F), two absorbers are used where bias potential is 

generated by an additional absorber. Even though different configurations are available, 

single material device configuration is of most interest. Even with dual semiconductor 

configuration, there is a need for semiconductors with band gaps around 1.8 eV and 1.3 

eV for efficient photoelectrochemical cell.18 Nevertheless, there is a need for 

semiconductors with band gaps ranging from 1.3 – 1.8 eV with band edges straddling 

either hydrogen or oxygen evolution reactions or both. The reminder of the chapter in this 

dissertation is focused on various materials systems and their performance in a single 

material device configuration. 

2.4 State of the art on materials for PEC water splitting 

As mentioned above, the requirements for suitable semiconductors are as follows: the 

semiconductor materials should have appropriate band gaps from 1.6 – 2.2 eV; band 

edges should straddle water splitting reactions; stable in aqueous environments; and made 

of earth abundant elements. Although, there are numerous materials available for PEC 

water splitting, none of these straddle both the water oxidation and reduction potentials. 

The binary oxides that have the band gap in the 1.7 – 2.2 eV range are CuO (1.7 eV), 

HgO (1.9 eV), CdO (2.2 eV) and Fe2O3 (2.2 eV). Out of the numerous materials, only a 

very few have the right band gap.19 The binary sulfides with band gap in the desired 

range19 are Sb2S3 (1.72 eV), ZnS2 (1.82 eV), In2S3 (2 eV), SnS2 (2.1 eV) and Ce2S3 (2.1 

eV)  
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Figure 2.4 Band edge positions of several semiconductor materials w.r.t. water oxidation 

and reduction potentials. 12  

It is evident that most of the materials do not straddle the potentials, and hence require 

additional bias when used for PEC water splitting.12 

Figures 2.5 and 2.6 show the valence and conduction band edge positions of the various 

oxides and sulfide materials w.r.t. the water redox potentials and it shows that only large 

band gap materials have band edges straddling the water redox potentials. Almost, all of 

the materials with the right band gap do not straddle the redox potentials  
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Figure 2.5 Valence band (dark squares) and conduction band (open squares) positions of 

oxide semiconductors w.r.t the water redox potentials at pH = 0 showing the lack of 

straddling by lower band gap materials and straddling by the large band gap materials. 19  

 

Figure 2.6 Valence band (dark squares) and conduction band (open squares) positions of 

sulfide semiconductors w.r.t the water redox potentials at pH 0. 19  
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The lack of straddling by lower band gap materials and straddling by the large band gap 

materials is clearly evident.19 

Figure 2.4 is a compilation of some of the semiconductors with their band edges matched 

to water splitting potentials. It is evident that most of them do not straddle the potentials. 

Also, none of the oxides with the right band gap barring Fe2O3 which straddles the redox 

potentials as shown in Figure 2.4. This is the case with the sulfides as well where the 

band edge straddling is the criterion that eliminates a lot of the materials.  

 

Figure 2.7 Relative abundance of elements in earth’s crust per 106 atoms of silicon.20 

Figure 2.7 shows the relative abundance of the elements in earth’s crust.20 It is startling to 

note that most of the oxide and sulfide materials with the right band gap are not earth 

abundant Hence, the challenge is to find ways to get the right properties with the 

materials that are reasonably abundant. The alternative solution to this issue is to find 
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ternary compositions that straddle the band edges or devise new PEC cell designs to 

circumvent the problem. While the search for ternary compositions is an ongoing 

research thrust driven mostly by combinatorial methods and computational guidance.21 

Good performance has also been shown for water oxidation catalysts22 and photocatalytic 

water splitting is an interesting avenue.23 The current bottleneck of the practical 

implementation of this technology is finding a semiconductor that will satisfy the major 

criteria needed to efficiently split water using solar radiation. A wide range of materials 

ranging from metal oxides, metal sulfides, III-V compound semiconductors and metal 

nitrides have been extensively investigated for their suitability towards solar water 

splitting. Binary materials have little promise but researchers have tried interesting 

approaches to forward the process. Ternary materials are interesting due to the possibility 

of band gap tuning with composition.  

2.4.1 Metal oxides 

         The first report on the electrolysis of water into oxygen and hydrogen using a 

photoelectrochemical cell by Fujishima and Honda24 used TiO2 as the semiconductor. 

This work has prompted the research on several metal oxides for photoelectrochemical 

water splitting. The high stability of many of the metal oxide in water, especially for 

water oxidation motivated the investigation of different metal oxides. Among the several 

metal oxides that have been investigated, Hematite (Fe2O3),25, 26 Tungsten oxide (WO3),27 

Cuprous oxide (Cu2O),28-30 Bismuth vanadate (BiVO4)25, 31 have been widely investigated 

as promising materials for PEC water splitting. Despite having very good capability for 

the application of solar water splitting, metal oxides endure few challenges such as poor 

light absorption, mismatch in band edge energetics, poor charge transport, all of which 
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need to be overcome. Most of the metal oxides have poor light absorption in the visible 

region of the solar spectrum due to their wide band gap. Approaches to address the above 

challenges with metal oxides have looked at (i) doping foreign elements to improve light 

absorption as in the case of WO3
32 (ii) using multijunction devices that provide external 

bias to overcome the limitation of band edges not straddling the water redox potentials. 

For example, hematite (α-Fe2O3) has the desired 2 eV band gap and excellent chemical 

stability in broad pH range. However, the conduction band of hematite is 0.2-0.4eV 

positive to the hydrogen evolution reaction. John Turner and E. L. Miller groups 

attempted to overcome this problem by enabling a multijunction device that combines 

thin film solid state and PEC junctions which provide required voltage, current and 

stability33-35 (iii) doping to improve the diffusion lengths and photocurrent onsets as in 

case of hematite and employing graded architecture for bismuth vanadate to improve 

electron transport36 (iv) using protective coatings to improve stability as in the case of 

copper oxide.28 Strontium titanate, SrTiO3, is one of very few materials that have been 

observed to split water in this configuration.15 However, the efficiency is less than 1% 

due to its large band gap (3.2 eV).  

2.4.2 Metal chalcogenides  

         Metal chalcogenides also have been in focus for PEC water splitting for several 

years. The mostly elaborated materials in this section are molybdenum sulfide (MoS2), 

cadmium sulfide (CS2), cadmium selenide, Zinc sulfide, molybdenum sulfide. Many of 

the metal chalcogenides have a low band gap and hence cannot generate sufficient built-

in voltage to drive the water splitting reactions. The aqueous stability of these metal 
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chalcogenides is another challenge. Attempts to improve the stability of these materials 

have focused on modifying the semiconductor surface with electrocatalysts.37, 38 

2.4.3 III-V semiconductor alloys 

          III-V semiconductor materials are gaining interest mainly due to their direct 

transition optical band gaps, high thermal stability, ability to grow high quality epitaxial 

films with low defects, high carrier concentrations and mobilities. Another important 

property they possess is the ability to form alloys whose band gap can be tuned with 

composition. The above mentioned properties make these III-V alloys highly studied 

materials for solar water splitting. III-V materials have set records of 12.4% PEC 

efficiency and 43.5% PV efficiency to date. However, these materials have technical 

challenges such as stability, band edge mismatch and not being cost effective that need to 

be addressed.  The main challenges with many of III-V alloys reported in literature were 

their stability, band edge locations not straddling the water redox potentials and short 

diffusion lengths.  

Binary Compounds: Some of the popular binary III-V compounds that were tested for 

PEC water splitting were Gallium Nitride (GaN), Gallium phosphide (GaP), Gallium 

Arsenide (GaAs). The main issue with most of the binary alloys is their band gap which 

is either too small or too wide. S.H. Kim et al. tested GaN as photoanode using NiO as 

cocatalyst and reported photocurrent densities of 3mA/cm2 which were relatively higher 

when compared with GaN without catalyst but the problem with GaN is band gap is 3.4 

eV which cannot absorb enough light in visible region. Lee et al. reported high 

photocurrent densities of 34mA/cm2 using Indium Phosphide (InP) nanopillars as 
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photocathode with Ru as co-catalyst and stability has been improved by passivating 

layers with TiO. The issue with InP is high band edge mismatch which needs huge 

applied bias for efficient solar hydrogen generation. Out of available III-V binary alloys 

GaP and GaAs have band gaps required for PEC water splitting but they lack corrosion 

stability in aqueous solutions. To overcome this issue Lewis et al. deposited an 

amorphous titania layers of around 4-143 nm thick which exhibited huge improvement in 

the stability of both materials.39 However the band edges of these two materials does not 

straddle water redox potentials. Some other binary alloys that were tested for PEC water 

splitting are reported elsewhere.40 From all the reports, it was observed that even though 

some binary alloys showed decent photocurrent densities they undergo problems like 

unsuitable band gap, band edge mismatch and chemical stability. However, as we 

discussed earlier the advantage of III-V alloys is the ability to tune the properties by 

alloying with foreign elements which shows ternary alloys potential for solar water 

splitting. Some attempts have been made to address the above discussed challenges. 

Methods to improve durability: Many III-V materials undergo photocorrosion due to 

the oxidation of semiconductor and usually there is a loss of photoactivity with time. For 

example, tandem GaInP2 is the champion material which gave 12.4% PEC efficiency but 

after a few hours of operation it loses its photoactivity from 120 mA/cm2 to 105 mA/cm2 

which makes loss in efficiency from 12.4% to 10.8%. To overcome this problem, 

Turner’s group tried two approaches: (i) incorporating nitrogen into GaP and (ii) 

incorporating nitrogen into GaInP2.7 The first approach reduced the corrosion to some 

extent but reduced the photoconversion efficiency whereas the second approach 

improved the stability of GaInP2 without any loss in photocurrents. To date this is the 
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only material which has produced efficiency near to the benchmark efficiency (20%) set 

by DOE. However, this material needs to be of single crystalline quality material, utilizes 

expensive molecular beam epitaxy (MBE) technique and also the tandem cell approach. 

Recent interest has been turned to GaN alloys as GaN is a direct band gap semiconductor 

with the right band edge energetics and shows high stability under visible photolysis.41 

The main problem with it is, however, its wide band gap of 3.45 eV,42 which restricts 

most of the solar spectrum from being absorbed. One way to overcome this obstacle is 

the band gap engineering by means of producing GaN-based ternary or quaternary 

compounds which possess a composition dependent band gap. Lewis group proposed the 

use of defective titania layers grown by atomic layer deposition as a way to protect 

photoelectrodes such as silicon and other III-V materials.39 

 

Figure 2.8 (a) Experimentally obtained photocurrent density with 0.5 V applied bias vs. 

theoretical maximum current density for III-V materials and commonly investigated 

metal oxides (b) band edge positions vs. maximum theoretical photocurrent density for 
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III-V materials. The photocurrent onset potentials are indicated in open symbols. The 

data is obtained from Refs 24, 25, 32-37, 41-49 

Figure 2.8 shows the status of some of the best performing materials for PEC water 

splitting. In 2.3 a) experimental photocurrent densities vs. theoretical photocurrent 

densities of some materials were plotted. Experimental photocurrent densities values @ 

0.5 V vs NHE of some of the so far best performing materials were taken from the 

literature. From this plot it can be inferred that no material exhibited photocurrent 

densities as predicted by theory except InP and GaInP2. But GaInP2 needs a tandem cell 

with GaAs which is very expensive and also band edges of GaInP2 and InP does not 

straddle water redox potentials which is shown in plot b). Moreover, from plot a) we can 

learn that III-V materials have room for improvement in experimental as well as 

theoretical efficiencies due to their ability to tune the band gap whereas metal oxides are 

limited by their theoretical efficiencies itself. Therefore, there is huge parametric space 

for improvement for III-V alloys in terms of exhibiting high efficiencies. As discussed 

before, GaN has all the required properties for water splitting except the right band gap 

and attempts have been made to reduce the band gap of GaN to visible region and these 

are discussed in the next section. Plot b) is the compilation of values of band edges and 

onset potentials for few III-V binary and ternary alloys. In the plot, closed pointers are 

band edge values and open pointers are onset potentials and it clearly indicates except 

GaSbxN1-x no material is straddling the HER and OER reactions indicating the potential 

of GaSbxN1-x in unassisted water splitting. 

Band gap engineering with GaN alloys: Recently a solid solution of ZnO and GaN, 

(Ga1-xZnx)(N1-xOx) with 0.05 < x < 0.22, has been shown to be a promising photocatalyst 
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for direct water splitting under visible light illumination.50 However, in the case of (Ga1-

xZnx)(N1-xOx) solid solution, the band gap reduction is relatively small, mainly due to 

close similarities of lattice parameters and band gaps between GaN and ZnO and thereby 

limits PEC efficiency of this material.49 InxGa1-xN ternary alloys offer much more 

flexibility and have been widely studied.51-53 However, for the desired band gap reduction 

and efficient direct solar water splitting, high In incorporation of about 40-50 % is 

required, which  can lead to In phase segregation and the material degradation. In a prior 

work, it was shown that thick epilayers of InxGa1-xN with high indium contents can be 

synthesized using GaN as strain relaxing substrates.43 The band edges of the InxGa1-xN 

alloys do not straddle both water oxidation and reduction potential at ~2eV band gap 

required for water splitting. Deutsch and co-workers synthesized epilayers of GaAsPN 

and GaPN and found that the band edges are too negative to efficiently drive the water 

splitting reaction without applying a considerable external bias.54 Also recently there 

were reports studying band gap reduction in GaN by incorporating Arsenic (As)55 and 

bismuth (Bi)56 The problem with GaAsxN1-x is that with very small amounts of As that is 

as low as 0-0.8%, the band gap has been reduced to less than 1 eV which is too low for 

water splitting whereas in GaBixN1-x the band gap has been reduced from 3.4 eV to 2.6 

eV with very small amounts of bismuth composition (~0.01 %). However, there were no 

reports testing the material for PEC water splitting. While InxGa1-xN and other GaN based 

alloys attracted a lot of research, very little attention has been given to nitride 

antimonides, such as GaN1-xSbx. There are only a very few experimental reports on such 

materials in the low nitrogen composition range.57, 58 They indicate that for even a very 

small x value, the material shows electronic band gap bowing that has been extended to 
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negative band gaps for composition in excess of about 8% N.59 First principle 

computations confirmed a drastic band gap reduction in these materials for low nitrogen 

compositions.13 In addition, these calculations provided evidence for an anomalous 

decrease in the band gap of GaN1-xSbx alloys in the low antimony composition range, 

where even less attention has been paid. Most importantly, the band edges of the 

Ga(Sbx)N1-x alloys straddle the water oxidation and reduction potentials at the optimal 2 

eV band gap as predicted by DFT calculations. Also, Figure 2.3 b) shows the plot of band 

edge positions vs applied potential for few III-V materials. It can be clearly observed that 

out of all materials GaSbxN1-x is the only material that has right band edges that can 

straddle water redox potentials with band gap in visible region. This shows that 

Ga(Sbx)N1−x material has huge potential towards efficient unassisted water splitting. 

2.4.4 Nanowire Architectures 

        An ideal architecture for water splitting should allow for both sufficient light 

absorption and efficient transport of charge carriers. Single crystal films have higher 

absorption depths leading to thicker films to absorb incident light and hence, charge 

carriers have to move longer distances before they can drive the water splitting reactions. 

Diffusion length is the distance of the carrier to travel before recombining. If the carrier 

needs to travel a distance larger than diffusion length, it tends to recombine before 

reaching the semiconductor-electrolyte interface or counter electrode. The most 

recognized advantage of nanowires is their higher surface area which enables sufficient 

light absorption and shorter charge transport pathways resulting in faster charge transfer 

kinetics at the semiconductor/electrolyte. Nanowires have lengths ideal for light 

absorption and smaller diameters allow the carriers to reach the interface and counter 
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electrode to drive the HER and OER reactions efficiently.60 Another advantage of 

nanowires over single crystal films is the ease of synthesis. Synthesis of single crystal 

films is very difficult due to several reasons. The first reason is the lattice mismatch with 

the substrate as for most of the semiconductor materials availability of the lattice matched 

substrates is quite low. Another reason is that films needs to be made very thick due to 

the need for high absorption depth which is usually in microns. The main problem with 

growing thick films in most of the materials is phase segregation or formation of 

dislocations. Hence, nanowire based device architectures offer significant advantages 

over thin films for efficient PEC water splitting. Improvement in the photoactivity by 

employing nanowires has been reported with many materials. For example, tungsten 

oxide (WO3) films exhibited low photocurrents of 0.2 mA/cm2.61 But by employing 

nanowires of same material (WO3), Sunkara and coworkers reported photocurrent 

densities of 1.6 mA/cm2.62 PEC water oxidation with hematite (Fe2O3) was reported by 

several studies63-65 but all these reports showed low photocurrents from this material and 

the underlying reasons were reported as combination of  poor absorption depth, charge 

carrier mobility and short exciton lifetime.66 And improvement in charge transport, light 

absorption and charge separation has been observed by using nanorod arrays.67 Similar 

observations have been observed with our prior work with cuprous oxide where using 

cuprous oxide nanowires were shown to perform better compared to thin films.30 The 

work is presented in the appendix of this thesis. Also depositing tungsten oxide on 

cuprous oxide nanowires led to high phase purity thereby increasing photocurrents.29 

Similar observations have been reported on other materials which are reviewed 

elsewhere.66 However, the efficiency and the applicability of materials vary drastically 
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with the system employed. There has been a good amount of work done on the alternate 

configurations but the current work is primarily geared towards development of materials 

for direct single band gap cell.  

1-D crystal growth was first developed for Si about 50 years ago in 1964 by Wagner and 

Lewis using a mechanism called vapor-liquid-solid (VLS).68 Vapor liquid solid (VLS) 

mechanism) results in rods, wires and whiskers through crystal growth in 1-D and is the 

most common method employed for growth of nanowires. In this mechanism, a metal 

catalyst is employed that absorbs vapor components and forms liquid alloy droplets at a 

higher temperature. This mechanism involves supersaturation of the metal alloy solution, 

in which the actual concentration of the component is higher than the equilibrium 

concentration thereby precipitating as 1D crystal growth by achieving minimum free 

energy of the alloy system.69 The growth continues until the vapor species are being 

supplied. So from the mechanism it shows that it involves vapor phase to carry solid 

components, liquid phase as catalyst alloy and solid as precipitated 1-D structures which 

is why it is called Vapor Liquid Solid (VLS) mechanism. As the 1-D structure 

precipitates from the catalyst alloy, the diameter of the 1-D structures depends on the size 

of the catalyst. In 1970’s the mechanism was widely used for the growth of whiskers and 

SiC whiskers were the mostly studied ones due to their high strength, high toughness 

ceramic or metal composites. From the study, it was found that the diameter of the 

whiskers was highly dependent on size of the catalyst.70 There was a tremendous focus 

on this mechanism especially for the growth of semiconductor nanowires. Regarding this, 

Wu et al reported the growth of Ge nanowires by using an in situ high-temperature 

transmission electron microscope.71 The findings of Wu’s study showed that there are 
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three well-defined stages in the VLS mechanism: alloying, precipitation of Ge, and axial 

growth.   

      Solution-Liquid-Solid (SLS)72, 73 and Supercritical-Fluid-Liquid-Solid (SFLS)74, 75 

techniques are similar to VLS for the growth of single crystalline 1-D nanostructures. The 

only difference is those methods is they use liquid to transport the precursor materials 

whereas VLS uses vapor phase. Also, techniques using anodic aluminum oxide76 or block 

copolymers77  as template materials have also been used to produce nanowire and 

nanorod structures. In this class of techniques, high aspect ratio nanopores in the template 

material are filled with a metal or semiconductor creating nanowires.  

2.4.5 Review on MOCVD of III-V alloys 

Several routes have been studied for the thin film growth of III-V alloys. These are 

divided into three main categories that are a) Molecular beam epitaxy (MBE) b) Liquid 

phase epitaxy and c) Vapor phase epitaxy. MBE growth uses molecular atomic beams as 

a source material for controlled supply of material flux which requires ultrahigh vacuum 

during growth. Due to the very small growth rates in this method the deposited film is of 

single crystal quality. However, this technique is usually very expensive due to the MBE 

instrumentation and low growth rates. Liquid phase epitaxy (LPE) utilizes heated liquid 

metal solutions as precursors for the deposition. Growth is achieved by cooling the liquid 

solution to a supersaturation point and bringing the substrate in contact with the liquid 

melt which will result in thin film growth. The advantage of using LPE is high growth 

rates and low growth temperatures but the drawback of this method is the difficulty in 

control of liquid melt which majorly influence the epitaxial growth. The last one is the 
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vapor phase technique which utilizes vapors of metal compounds that needs to be 

deposited. Metal organic chemical vapor deposition (MOCVD) is one particular 

technique in this category. MOCVD uses metal organic precursors that are supplied in 

vapor phase. This allows for a good control on the material flux which plays a huge role 

in thin film growth. Growth rates in MOCVD are high when compared to MBE. This 

method allows for a large area growth which makes this method very scalable and the 

only problem with MOCVD is that precursors are pyrophoric which requires high safety 

measures and carbon contamination from the precursors. However out of all the available 

techniques MOCVD received the most attention due to its precise control on material 

flux, uniformity and scalability. Several binary and ternary III-V alloys have been 

synthesized by MOCVD. Metal organic chemical vapor deposition was first 

demonstrated by Robert Bunsen78 and since then MOCVD became a crucial technique for 

the applications of transistors, LED’s, laser diodes etc. The first epitaxial growth by 

MOCVD was reported in 1967 on GaAs using trimethyl gallium and AsH3 as 

precursors.79 In this study we are only interested in growth of GaN based alloys by 

MOCVD. Nakumara and coworkers reported epitaxial GaN growth by using two flow 

atmospheric pressure MOCVD reactor and until today the high quality films required for 

devices have been produced using two flow reactors.80 Trimethyl gallium and ammonia 

were the commonly used precursors for the growth of GaN. It was found that growth of 

GaN occurs by two pathways that are pyrolysis and adduct pathways. In pyrolysis 

pathway, trimethyl gallium decomposes to dimethyl gallium (DMG) which in turn 

decomposes to monomethyl gallium (MMG) and ammonia decomposes to NH2, NH and 

lastly N. These decomposed species adsorb onto the substrate and reacts on the surface 
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leading to the GaN film growth.81 In adduct pathway TMG reacts with ammonia and 

forms intermediate species which take part in the final film growth. These pathways 

strongly depend on growth temperature, reactor configuration and III/V ratio.82 In the 

device applications uniformity of the films is very important and in order to achieve 

uniformity, shower head reactors83, 84 and rotation of the substrate85 were employed. 

Some of the widely explored ternary GaN alloys grown using MOCVD are AlGaN,86-88 

InGaN89, 90 and GaAsN.91 The main concern with growing ternary alloys by MOCVD 

was the selection of the substrate with lattice matching and low cracking efficiency of 

ammonia which require high pressures of ammonia for good crystal quality growth of 

GaN alloys. Also it has been observed that III/V ratio and growth temperature plays a 

huge role in achieving a high quality growth of films. For example in the case of InGaN, 

incorporation of In was observed to be strongly dependent on growth temperature and 

growth rates.92 In the case of AlGaN, Al incorporation and film quality was strongly 

dependent on III/V ratio. From the study it was observed that at high ammonia / trimethyl 

aluminum flow rates growth rates were low due to the parasitic reactions between metal 

organic precursors and ammonia.93 Also it was observed from some studies that carrier 

gas effects the crystal quality of the film. In the case of InGaN it was shown that using 

hydrogen as a carrier gas has better In incorporation and film quality for InGaN when 

compared to using hydrogen as carrier gas.94, 95 The above reports indicate that the quality 

of the growth of GaN alloys strongly depends on growth temperature, III/V ratio and 

carrier gas. Some of the ternary and quaternary alloys synthesized by MOCVD have been 

reviewed elsewhere.96 
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2.5 Prior work on GaSbxN1-x 

2.5.1 Theoretical Predictions 

         Electronic structure analysis has been performed on both Ga(Sbx)N1−x and Ga(Nx 

)Sb1−x structures. Due to the difference in electronegativity between Sb and N, local 

distortions appear due to structural optimizations. From the theoretical observations large 

band gap bowing was seen with incorporation of antimony in GaN. With increase in the 

Sb concentration band gap has been observed to decrease in GaSbxN1-x. Figure 2.9 shows 

the electronic band gap as a function of the fraction, x, for Ga(Sbx)N1−x and Ga(Nx )Sb1−x 

alloys. In all Ga(Sbx)N1−x cases considered, the gaps are direct. The figure also lists the 

experimental band gaps of Ga(Nx)Sb1−x for x = 0.01597 and x = 0.01797  for comparison. 

In the case of the Ga(Sbx)N1−x alloy the rapid closing of the gap for x > 0.06 is worth 

noting. The band-gap value of 2 eV found for 0.05 < x < 0.06 is ideal for PEC water 

splitting. Another interesting observation from the DFT calculations was monotonic 

increase in the lattice parameters with an increase in Sb composition in GaSbxN1-x 

whereas there was a monotonic decrease in the lattice parameters with an increase in the 

N incorporation. 
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Figure 2.9 Electronic band gap as a function of x in GaSbxN1-x and GaNxSb1-x 

materials.13 

 

Figure 2.10 Band structure, density of states and optical transitions for GaSbxN1-x 

alloys.13           
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As Ga(Sbx)N1−x possess the essential 2eV band gap for PEC water splitting, and straddles 

the water redox potentials.  On the other hand, GaNxSb1-x, which does not have the right 

band, edge energetics. Hence Ga(Sbx)N1−x is more suitable for solar water splitting than 

Ga(Sbx)N1−x. 

2.5.2 Band gap bowing in GaSbxN1-x 

The large band gap bowing with very little amount of incorporation is a very important 

feature which is why is very essential to understand the reason behind the band gap 

reduction. A number of models have been proposed to explain the band-gap reduction in 

these materials. Band anticrossing model (BAC) has been the popular model until today 

to explain the band gap reduction. The BAC model takes into account an anticrossing 

interaction between localized states of the substitutional isovalent anion atoms and the 

extended states of the host III-V semiconductor matrix. Depending on whether the 

impurity level is coupled to the host conduction band or to the host valence band, the 

BAC model will be referred to as a conduction-BAC (CBAC) or a valence-BAC (VBAC) 

model, respectively. In particular, the VBAC model has been used to explain band-gap 

reduction in a number of HMA’s. This model was developed by Berkeley national lab 

where they explain the band gap reduction by alloying with foreign element.98 They 

developed this model for GaBiAs and from their observations when large metallic 

isovalent impurity is substituted into lattice of a semiconductor, it introduces a localized 

defect state and when this impurity atom has low electronegativity and ionization energy 

than host material it forms a defect state near valence band of the host semiconductor.  
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Figure 2.11 A schematic illustration for the VBAC model involving valence band 

splitting for Bi incorporation in GaAs.98, 99 

 

Figure 2.12 A schematic illustration for formation of a defect state in GaN with 

antimony incorporation.        

The strong interaction between the host valence band states and impurity atom defect 

states which in their case Bi splits the VB into E+ and E- sub bands which cause an 

upward shift in the valence band with increase in Bi concentration thereby reducing the 
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band gap of GaBiAs as shown in Figure 2.11. Similarly, in our case by applying this 

model, we can explain that as ionization energy of Sb is near or below the valence band 

maximum of GaN it forms a defect state near VB of GaN as shown in Figure 2.12 and as 

explained by the model above the anticrossing interaction results in band splitting and 

shift of VB upwards reducing the energy gap. The strong anticrosssing interaction 

between these bands and antimony defect state results in rapid upward shift of VB and 

CB shift to downward at a slower pace. The non-linear movement in energy of these band 

edges is the primary cause for band gap bowing in Ga(Sbx)N1−x. In Figure 2.9 the 

electronic band structure and density of states for the geometry for 0.05 < x < 0.06 is 

shown. From the figure, it is clearly evident that band gap reduction in Ga(Sbx)N1−x is 

occurring mainly due to valence band splitting. The band gap of 2 eV obtained for very 

small amounts of antimony incorporation opens up the exciting possibility of efficient 

visible absorption for Ga(Sbx)N1−x alloys. Further investigation by way of rigorous 

simulations supported by experimental data is needed to explore and understand this 

material system. The Ga(Sbx)N1−x system could also be an alternative to the (ZnO)1−x 

(GaN)x solution, which has shown some promise for overall water splitting since the 

latter could suffer from charge imbalance resulting from non isovalent substitutions of Ga 

with Zn and N with O.49 In particular, if the N atom is in a position far away from the Ga 

atom in the ZnO matrix, local defect centers would be created, resulting in charge 

recombination centers which could adversely affect the efficiency of PEC water splitting. 
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2.5.3 Prior experimental work on GaSbxN1-x alloy growth  

        As discussed in the earlier section, most of the reports show growth of GaNxSb1-x 

alloys in the low nitrogen composition region. Veal et al. reported the growth of 

GaNxSb1-x alloys using MBE and show a huge band gap reduction with little amount of 

nitrogen.58 They explain the band gap reduction based on the BAC model where they say 

that band gap reduction in GaSb alloys with nitrogen incorporation is higher compared to 

other III-V alloys due to the large anion mismatch between antimony and nitrogen 

compared to other elements. Belabbes et al. also reported a huge band gap bowing in 

GaNxSb1-x with less than 0.2% nitrogen incorporation.59 Also, there are several other 

reports on band gap bowing in GaN with nitrogen incorporation. However, there are very 

few or no reports on incorporation of antimony in GaN alloys. Yu et al. attempted to 

synthesize the amorphous GaSbxN1-x films using a low temperature molecular beam 

epitaxy.100 A continuous reduction of band gap in the 0 to 1% Sb composition was 

reported. This is in disagreement with both the theoretical calculations and the 

photoluminescence results shown for 1 % Sb presented in this work. In addition, the band 

gap transition is shown to be direct for Sb compositions ranging from 0 to 30 %. The 

XRD patterns did not show any peak shift with increasing antimonide (Sb) concentration 

indicating no monotonic increase in lattice expansion. Hence, it is not clear about the 

validity of the type of material created. It is absolutely sure that a GaSbxN1-x alloy had not 

been synthesized. The films reported in their work were of highly amorphous nature and 

the attempts to increase the crystallinity by annealing has resulted in phase segregation. 

This shows that their attempt in growing GaSbxN1-x alloys was not successful. Hence, the 

work presented in this dissertation is the first successful report on growth of GaN alloys 
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in the low antimonide region. Further, a huge band gap bowing in GaN with antimony 

incorporation is observed and this further corroborates the theoretical predictions. 
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CHAPTER 3 

EXPERIMENTAL 

3.1 Introduction 

              This chapter describes the details on synthesis and characterization methods used 

for GaSbxN1-x ternary alloy. Metal organic chemical vapor deposition was used as the 

synthesis method for growth of GaSbxN1-x and several materials, optical, electrical and 

photoelectrochemical characterization techniques were performed to understand the 

properties of the material. 

3.2 Synthesis 

3.2.1 Metal Organic Chemical Vapor Deposition  

                Synthesis experiments were performed using a custom-built metal organic 

chemical vapor deposition (MOCVD) reactor. There are two major parts for the MOCVD 

reactor: one is a precursor delivery system and another one is the reaction chamber that 

includes a substrate heater and showerhead.  

Precursor delivery system: The precursor delivery system is equipped to deliver four 

different precursors using nitrogen as a carrier gas.  The carrier gas which is used to 

transport these precursors to the reaction chamber is delivered independently to the inlet 

of all the precursor cylinders via mass flow controllers. Upstream of the bubbler, a bypass 

line is available on which can be used for purging the lines using nitrogen. Downstream 
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to the bubbler outlet, a control valve is configured which allows for the precise 

composition control by controlling the pressure which is measured by capacitance 

manometer attached near control valve. The metal organic precursors that are available in 

the system are Trimethyl Gallium (TMGa), Trimethyl Indium (TMIn), Trimethyl 

antimony (TMSb) and Biscyclopentadienyl Magnesium. Each precursor has a 

temperature dependent vapor pressure that can be set to the desired point using thermal 

baths. These bubblers are inserted into these chillers to maintain at a certain temperature 

in order to have the desired vapor pressures that in turn can be controlled to achieve the 

desired flux. The vapor pressure of each precursor can be calculated using following 

equations 

TMGa= LoglOP (mm Hg) = 8.07 - 1703/T (K)       3.1 
 
TMIn= LoglOP (mmHg) = 10.52 - 3014/T (K)       3.2 
 
TMSb= LoglOP (mm Hg) = 7.73 - 1709/T (K)       3.3 
 
Cp2Mg= LoglOP (mm Hg) = 10.00 - 3372/T (K)     3.4 
 
The mole fraction of the precursor in the bubbler is calculated using Xvap = (P vap/P). 

This can be converted to molar flow rate by using the flow rate of the carrier gas using  

Mvap (moVmin) = Xvap * M/22400                       3.5 

Once the precursors are at their desired values they are transported to the reaction 

chamber via carrier gas. Safety measures are very important in operating the precursors 

as they are pyrophoric in nature. Precursor cylinder valves should be always closed when 

not in use. The gas lines that are used to transport precursors are always heated by 

wrapping with heating tape in order to avoid condensation of the precursor on the lines. 

Also the chillers that are used to cool the precursors should be sealed properly to avoid 
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the moisture entering into the chillers as it leads to condensation and ice formation which 

disturbs the cooling thereby affecting the temperature control. Commercial thermal baths 

Julabo F12 and polydimethylsiloxane is the fluent used in chillers. 

Reaction Chamber: It is a vertical chamber with a water cooled stainless steel vessel and 

a shower head for the uniform distribution of the gases. It consists of a top plate that is a 

quick access door with water cooling and a perforated stainless steel plate to act as the 

showerhead. The chamber enclosure is a stainless steel cylinder 8 inch in diameter and 12 

inches length with cooling jacket around the walls. The bottom plate is a stainless steel 8 

inches conflat blank plate that is equipped with 2 inch resistive susceptor through 

centering rod. The bottom plate of the chamber is connected to rotary vane pump which 

is connected to the exhaust of the pump. Between the reaction chamber and the rotary 

vane pump, a vacuum trap was added to avoid any unreacted precursors entering the 

pump or back streaming of pump oil into the chamber. Commercial multi trap from MV 

company is used which traps the unreacted precursors in two stages. In the first stage the 

particles are dispersed by using a metal gauge which is copper that provides a large 

surface area for vapors to condense and for trapping larger particles and in the second 

stage it consists of five or six filter elements that is activated charcoal which removes 

organic vapors. Substrate heating is achieved using a resistive heater with a coating of 

aluminum nitride. The distance from the susceptor and showerhead is varied with a 

switch that moves the entire heater assembly up and down. The gas inlet connector is 

welded on the top plate which is connected to the gas manifold where all the gases 

desired for the reaction meet and enter at the inlet. Since there are four precursors and an 
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ammonia line, a manifold is necessary. The gas manifold line connects the precursor 

delivery system and the reaction chamber.  

 

Figure 3.1 A schematic of the custom-built MOCVD reactor used for the growth of 

GaNxSb1-x alloys. 

 

           Synthesis of GaSbxN1-x alloys was divided into thin polycrystalline films, highly 

textured films and nanowires. Precursors used for the growth of all three different 

structures were trimethyl gallium, trimethyl antimony and ammonia. Several substrates 

like epi-GaN on sapphire, stainless steel and quartz were used for the growth. As shown 

in Figure 3.2 b several samples were placed on the susceptor for each experiment and 

there was composition gradient across the samples caused by the vertical stagnation flow. 

Growth conditions like temperature, pressure and precursor flux has been varied in order 

to vary the properties and crystal structure of GaSbxN1-x alloys.  
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Figure 3.2 a) Picture of a reaction chamber with substrate stage covered with several 

samples b) Top view of the wafer with several samples c) Composition gradient across 

the wafer. 

Residence time plays important role in the formation of films during MOCVD growth. It 

is defined as time of the precursor species spent in the reactor before being consumed and 

can be calculated using  = v/0 where V is volume of the chamber and 0 is volumetric 

flow rate of the precursor. For each precursor residence time will change as they enter 

separately with different flow rates. So, residence times have been calculated for both 

precursors TMGa and TMSb and made sure that both precursors enter at the same time.  
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3.3 Optical Characterization 

             Thin films and nanowire samples are characterized for understanding structural, 

optical and electronic properties. This section will provide details for all of the techniques 

and the analysis methods used.  

3.3.1 UV-Vis Spectroscopy 
 
 
         The UV-Vis absorption spectroscopy is performed using PerkinElmer Lambda 

UV/Vis/NIR spectrometer. In this technique, light is incident on the sample and the 

absorption is measured as a function of wavelength of incident light. The fraction of light 

absorbed is described by the Beer-Lambert law, which states that absorbance is 

dependent on the path length of light through the sample (l), the absorption cross section 

(σ) of the transition, and the difference in the population of the initial state (N1) and final 

state (N2) of the initial (E1) and final (E2) electronic energy levels. 

                                              
       3.6

 

Which can also be written as? 

                                              3.7 

where A is the absorbance, ε is the molar absorptivity coefficient of the material, c is the 

concentration of the absorbing species, and l is the path length of light through the 

sample. The electronic transitions in the material could be direct or indirect where the 

indirect transition involves phonon interaction addition to photon and electron when 

compared with direct transition.  
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For the measurement, two different techniques were used – (i) diffuse reflectance and (ii) 

transmittance. For both configurations, the experimental procedure was the same which is 

described below. 

 

 Before starting the measurement, lamp source is turned on at least 30 minutes 

early in order to warm up the lamp.  

 All the parameters like wavelength range, scan speed, type of the scan are 

specified before taking the measurement 

 Reference sample is placed into the path of the beam and an autozero scan is 

taken which collects the baseline of the reference sample and subtracts the 

background w.r.t the reference scan. 

 After the autozero scan, sample to be measured is placed in the path of the beam 

and transmission/reflectance/absorption spectrums are collected.  

 The collected raw data is converted to Tauc plots for band gap analysis.  

 

The scan mode is determined based on the samples. Usually samples that have some 

degree of transparency is used for transmittance measurement. For opaque samples, 

diffuse reflectance spectroscopy is used. Commercial dual beam UV-Vis-NIR 

spectrometer has been used for the measurements. The spectrometer is equipped with a 

wide wavelength window to measure from UV to IR radiation. The instrumentation of the 

UV-Vis spectrometer consists of light source (tungsten halogen for UV and deuterium 

lamps for visible radiation) monochromator, filters, Integrating sphere, beam splitter and 

detector. Integrating spheres were used especially for diffuse reflectance measurements to 
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avoid any transmitted light being detected. In transmission configuration, a transparent 

sample is placed in the path of the collimated beam of light. This configuration was used 

for the thin film samples used this work. In this configuration, first the reference 

measurement was taken which corresponds to 100% transmittance and then transmitted 

light of the working sample is collected. 

 

 

Figure 3.3 A schematic of UV-Vis spectrometer setup.  

In a diffuse reflectance configuration, the spectrometer measures the diffusely reflected 

light from a sample rather than the transmitted light.  Samples used for this configuration 

were either opaque or semitransparent.  

Similar to transmittance measurement, a diffuse reflectance measurement starts by taking 

a reference scan and uses integrating sphere to capture all the photons reflected from the 

sample in all directions.  After the reference scan the working sample is place and amount 

of light reflected by the sample is collected. Depending on the scanning mode, the raw 

data collected for are reported in % reflectance or % transmittance vs wavelength (nm).  

The band gap values are estimated by converting this data into Tauc plots. Firstly, data is 

converted from wavelength (nm) to energy units eV by using equation 
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                        3.8 

Different equations are used for different configurations to convert the raw data into Tauc 

plots 

In a transmission experiment, the measured absorbance A is converted to absorption 

coefficient α. 

            3.9 

In the case of a diffuse reflectance measurement, in which the reflectance R is measured 

rather than absorbance, the Kubelka-Munk radiative transfer model must be employed to 

determine α  

       3.10 

Where the Kubelka-Munk function and s is the scattering coefficient.  If the 

scattering coefficient is assumed to be wavelength independent, then is 

proportional to α and the Tauc plots can be made using in place of α. For a direct 

band-band transition, α is proportional the square root of the difference in energy 

between the photon (Ehv) and the band gap (Eg), i.e. 

           3.11 

where  can be found from a  versus  plot.  For indirect band gap 

transitions,  is proportional to the square of the difference between the photon energy 

and the band gap. 
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             3.12 

Similarly, a plot of  versus  will determine the  in the case of an indirect 

band gap semiconductor. From the above plots as shown in Figure, the band gap value is 

extrapolated by simply drawing a tangent to the slope of the curve and the point at which 

this line intersects on x-axis is the value of the band gap 3. From the Figure 3.4 it can be 

observed that tangent is extrapolated to 2.2 eV band gap value.  

 

Figure 3.4 A sample Tauc plot for a GaSbxN1-x sample. 
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Figure 3.5 Tauc plots for direct transition and direct transition for 2% Sb (a,b) and  

8% Sb (c,d).                                                                                                                                  

Figure 3.5 is showing the comparison between direct and indirect band gap transition for 

GaSbxN1-x sample. From plots a and b it can be observed that the curve is more sharp and 

fits better for  versus  than  versus  which shows that material 

is exhibiting direct band gap transition. However, in plots c and d it is reverse it fits better 

to the indirect transition. Absorption coefficient and absorption depth of the material can 

be determined using transmittance spectroscopy. The % transmittance is converted to 

absorption coefficient using below equation 

Fraction transmitted= T = (I/Io) = exp( - α.d)      3.13 
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Fraction absorbed = 1-T                                    3.14 

From the plot of fraction absorbed vs thickness, absorption depth of the material can be 

calculated that is of around 2 microns in the case of GaSbxN1-x as shown in the Figure 

3.6. Reciprocal of the absorption depth is the absorption coefficient α = 1/d. 

 

Figure 3.6 Optical absorption profile of a GaSbxN1-x film. 

 

3.3.2 Raman and Photoluminescence Spectroscopy 

        Raman and photoluminescence spectroscopy use similar instrumentation but each 

technique gives different information. The instrumentation of both techniques include 

• Lasers (light source containing UV to IR) 

• lenses (both to focus the light onto the sample and to collect the scattered light) 

• Notch & edge filters (to purify the reflected and scattered light so that only the Raman 
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• Diffraction grating 

• CCD detector & NIR detector (for different wavelength ranges) 

• Electronics  

The measurement is performed by impinging a laser beam onto the sample. Both Raman 

and PL signals are emitted from the sample. Raman signal gives the information on 

molecular vibrational and rotational motions whereas PL gives information of optical 

properties of the material like band gap. In order for the Raman signal to be detected 

molecule should cause a change in polarizability. When photons hit the sample at a 

certain frequency the molecules excite from ground state to virtual states and fall back to 

the ground state or lower level states emitting a photon. Information is gathered 

depending upon the frequency of the emitted photon. If the frequency of the emitted 

photon is same as the incident photon, this phenomenon is called Rayleigh scattering and 

does not give any information in identifying the compound. However, when the 

frequency of the emitted photon is different, the change in the frequency is identified as 

Raman shift and is characteristic for a given compound.  

                In photoluminescence spectroscopy, when a photon is incident on a sample it is 

absorbed and excites an electron to higher state that is from valence band to the 

conduction band and upon excitation it falls back to the valence band releasing a photon 

which corresponds to band gap energy of the material. This process of photon excitation 

followed by photon emission is called photoluminescence.  
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Figure 3.7 A schematic showing photoexcitation processes in PL spectroscopy. 

 

PL can also be used in studying defects in semiconductors, when excited electrons relax 

into the defect states. For some compounds Raman and PL signal can be overlapped, 

different laser sources can be used to avoid that. For PL, analysis has been done at both 

room temperature and cold temperature using 325 nm laser excitation source. It is 

important to do analysis at both temperatures because sometimes depending upon the 

material at room temperature carriers can escape thermally to higher energy levels which 

might cause other peaks. This causes non-radiative recombination centers, which reduces 

the intensity of the PL signal whereas at low temperature carriers are effectively frozen 

which allow lowest energy states to appear more clearly. In general, it is easy to get PL 

signal at low temperature (LT) than room temperature. Also the deep impurity levels are 

revealed in LT Pl. In our case especially with polycrystalline films we did not observe 

any signal at RT whereas LT PL revealed peaks in the range of 1.7 eV to 2.1 eV 
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depending upon the antimony composition in GaSbxN1-x layers.  

       In this study, Raman analysis has been done using 632 nm laser excitation source. 

This is majorly used to check if the synthesized layers were GaSbxN1-x. There was no 

Raman data available on GaSbxN1-x in literature. So we did analysis on GaSbxN1-x and 

GaN to see the difference between them. Even though all the peaks appeared for GaN 

appeared for GaSbxN1-x, there was an additional peak in GaSbxN1-x layers and the 

intensity of the peak has been increased with increase in antimony composition. This is 

explained in detail in chapter 4. 

 

3.4. Structural characterization 

           The morphology of synthesized GaSbxN1-x samples has been studied using JEOL 

JSM-5310 scanning electron microscope (SEM) operating at 20 keV. Samples after 

deposition were cut into half to analyze the interface between GaN and GaSbxN1-x from 

SEM which gives information on the quality of the crystal. SEM-EDS analysis has been 

performed on the sample to determine the composition of antimony in GaSbxN1-x layers.  

3.4.1 X-ray Diffraction (XRD) 

         To obtain crystallographic information of the material Bruker Discovery D8 XRD 

system has been used.101 X-rays are generated using an X-ray tube comprising of heated 

tungsten filament enclosed in an evacuated ceramic vessel. The tungsten filament emits 

electrons by thermionic emission and acts as a cathode. The electrons are accelerated 

towards a water cooled metal (typically copper) which acts as the anode. The electrons 

reaching the Cu anode lose their energy by two mechanisms. Firstly, the electrons can 

decelerate as they approach the nuclear cores of the atoms in the anode due to opposing 
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electric field from the nucleus towards the valence electrons. This type of deceleration 

produces Bremsstrahlung X-rays.102 Secondly, the electrons can knock out the electrons 

in the inner shells of the Cu atoms. Electrons in the valence shells relax to the inner shells 

and the difference in energy is emitted in the form of continuous X-rays. In case of Cu, 

characteristic X-rays of two wavelengths namely Cu Kα (λ = 0.154 nm) and Cu Kβ (λ = 

0.139 nm) are produced. The continuous X-rays and the Cu Kβ radiation are absorbed by 

a Ni filter in a monochromator. X-ray radiation passes through the Soller slits and 

divergence slits to reduce the axial divergence and height divergence respectively, and 

strikes the samples causing the diffraction of X-rays. (Figure 3.8) 

 

Figure 3.8 A schematic of the experimental setup used for X-ray diffraction in the 

Bragg-Bentano configuration. Image Source 

http://chemwiki.ucdavis.edu/Analytical_Chemistry/Instrumental_Analysis/Diffraction/Po

wder_X-ray_Diffraction) 
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The diffracted X-rays then pass through the anti-scatter slit, soller slit, followed by the 

receiving slit and an X-ray detector. The detector is usually a scintillation counter, which 

measures the intensity of the diffracted X-rays in counts. The scintillator comprises of a 

fluorescent material that emits photons when hit with X-rays, the photons are then 

converted to electrons using a photomultiplier tube. The processing electronics measures 

the number of electrons and calculate the intensity of the diffracted X-ray beam. The 

peaks observed in a diffraction pattern correspond to the particular angles at which the 

diffracted X-rays from the sample interfere constructively. This is described the Bragg’s 

law of diffraction as follows 

                            3.15 

where n is an integer, d is the interplanar spacing, 2ϴ"" is the angle between the incident X-

ray beam and the diffracted X-ray beam.  

                  X-ray diffraction was also used to estimate the crystallite size of GaSbxN1-x 

films. The crystallite size was calculated using Scherrer equation  

                                                                 3.16 

where B is full width half maxima (FWHM) of XRD peak, l is the crystallite size,  is 

wavelength copper k- alpha radiation (1.45 A), k is Scherrer constant and is the Bragg 

angle. XRD analysis is also useful to determine lattice parameters. From the peak shift 

and using the equations shown below lattice spacing and lattice expansion at different 

antimony compositions has been determined. 
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      3.17 

  3.18 

Moreover, important parameters need to be considered in XRD are peak width, peak 

position and peak intensity. A full width half maximum of the peak determines the grain 

size and lattice strain. Strain caused in the crystal effects the position ad shape of the 

XRD peak. For example, if there is a uniform strain in the material, peak moves to the 

lower angles and if the strain is caused by small grains peak broadening occurs. The 

smaller the grains and more non uniform the strain in the lattice is, the more the peak 

broadening will be. Figure 3.9 is showing the difference in FWHM of polycrystalline vs 

single crystalline film of the sample GaSbxN1-x and GaN films and the peak shift in the 

figure is due to the large strain caused in the lattice due to incorporation of antimony. 

 

Figure 3.9 Comparison of XRD patterns for GaSbxN1-x and GaN. 
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3.4.2 Transmission Electron Microscopy (TEM) 

TEM is similar to SEM but gives detailed information on crystal orientation. The 

components in the electron gun column of TEM are similar to that of SEM. However, 

unlike the SEM where secondary electrons and back scattered electrons are detected, 

TEM detects the elastically scattered electrons that are transmitted through the specimen. 

For a crystalline sample, the electrons diffract through the crystal planes of the sample 

and can interfere to form a diffraction pattern. Electrons scattered from the sample 

located in the object plane are focused by an object lens. Images in the TEM can be 

obtained either in the bright field (BF) mode or dark field mode.103 In the bright field 

mode, an aperture is placed in the back focal plane and only the direct beam of electrons 

that have interacted with the sample are used for image formation and the diffracted 

electron beam are blocked. As a result of this, the electrons interacting with atoms of 

higher atomic mass and thicker regions produced a darker contrast which means the BF 

images give information of the thickness of the sample. In dark field (DF) image the 

direct beam is blocked by an aperture in the back focal plane and the diffracted beam of 

electrons that have strongly interacted with the sample are used for image formation. 

Hence, the DF images give information about the defects in the sample. High Resolution 

TEM (HRTEM) mode in the TEM is used for high resolution imaging of crystalline 

material and can provide resolution up to 0.8 A°.104 In this technique several diffracted 

beams are used to form the image. Indeed, in general, the most common way to analyze 

NWs is to take advantage of the easy detachment of the NWs from the substrate for their 

observation by TEM. In that case, the NWs are removed from the native substrate after 

sonication in an isopropanol bath or directly after scratching from the sample surface and 
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then dispersed on a TEM carbon grid. This preparation method has the advantage that the 

NWs are free of the artifacts introduced during the conventional TEM preparation 

process, where the final Ar-ion milling sometimes results in an undesired amorphous 

coating on the sample surface. Selected area diffraction (SAED) analysis has been 

performed on nanowire sample to understand the crystallinity of the nanowires. This can 

selectively perform analysis on very small parts of the sample independently under the 

electron beam by using an aperture which sends only small part of the beam. Crystal 

quality can be determined from the obtained diffraction pattern. For example if the 

sample is polycrystalline it gives rise to a series of spot patterns forming like rings 

whereas for single crystalline it will give straight lines.  

3.5 Electrical Characterization 

         An important parameter that determines the photoelectrochemical performance of 

the semiconductors is the minority carrier diffusion length.105 The minority carrier 

diffusion lengths have been measured using electron beam induced spectroscopy.106-108 

The electron beam from a scanning electron microscope (FEI-NOVA SEM) was used to 

irradiate the samples. Samples were prepared into metal-semiconductor-schottky 

configuration and scanning was carried out by moving the electron beam starting at the 

edge of the schottky contact. When elctrons are injected from the electron beam into the 

semiconductor near a schottky contact, electon-hole pairs are generated. Due to the large 

concentration of electrons in n-type sample than the generated electron-hole pair 

concentration, only holes are effectively generated assuming low electron beam currents. 

When the circuit is closed with ohmic contact on the other end of the semiconductor 
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surface holes which diffuse close to the Schottky contact will generate an induced current 

which follows the law                                      3.19 

where L is minority carrier diffusion length, I is collected total current and x is electron 

beam scanning distance between the schottky diode and the injected spot.The irradiation 

volume is calculated based on the beam penetration depth and the distance covered 

during the line scan. The total charge is determined as the product of multiple line scan 

and absorbed electron beam current that is measured by ammeter. The minority carrier 

diffusion length will then estimated by fitting the theoretical equation 3.19 to the profile 

of current vs. distance.  

 

Figure 3.10 A schematic showing the configuration used for EBIC measurements 

3.6 Electrochemical and Photoelectrochemical characterization 

3.6.1 Electrode Fabrication 

For the photoelectrochemical measurements, samples are made into electrodes to form an 

electrical contact. Copper wire has been used for the electrical connection; first copper 

wire is twisted into a spiral form with the head being approximately same size as sample 

which is shown in the Figure 3.11 
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 a)   

b)  

Figure 3.11 Schematics showing electrical contacts with samples for testing with 

photoelectrochemical water splitting activity. 

Indium-Gallium eutectic alloy was used for ohmic contact  

And silver paste was used to glue the copper wire to the sample. Once the silver epoxy is 

cured it is inserted into the glass tube. Loctite 9464 Hysol Epoxy was used to cover the 

silver epoxy and the metal surface to avoid contact with electrolyte. The epoxy is allowed 

to dry overnight, once the epoxy is completely dry the electrodes are ready for testing as 

shown in the Figure 3.12 

 

Figure 3.12 Photograph showing GaSbxN1-x electrodes made for photoelectrochemical 

studies. 

HEAD 

       

SAMPLE 
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3.6.2 Photoelectrochemical Cell Setup 

           The PEC cell setup consists of PEC cell, light source, power meter and 

potentiostat. Three electrode PEC cell has been used for all the photoelectrochemical 

measurements performed on GaSbxN1-x samples. Cell consists of three separate windows 

to insert working electrode (WE), counter electrode (CE) and reference electrode (RE) 

immersed in an electrolyte. Cell is also equipped with a quartz window as shown in the 

Figure 3.13. Solar simulator has been used for the light source which is shown left of the 

figure. The light source contains Xenon lamp adjusted to AM 1.5 spectrum. Light coming 

out from the solar simulator is measured using power meter which is simply a silicon 

photodiode that measures that light intensity upon light hitting on it. Once the light 

intensity was measured, light is allowed to shine onto the sample through quartz window.  

Working electrode is the sample to be tested, platinum mesh was used as counter 

electrode and Ag/AgCl in saturated KCl was used as reference electrode. All the three 

electrodes were connected into a circuit to a potentiostat where all the measurements 

were recorded. 

 

Figure 3.13 Photoelectrochemical setup used for water splitting studies. 
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3.6.3 Open Circuit Potential 

To determine the conductivity type of the material illuminated open circuit potential 

technique has been used. A three electrode setup as explained in the previous was used 

for the experiment. Firstly, OCP was measured under dark by covering the whole setup 

with a black box. Open circuit potential is the difference between Fermi level in the 

semiconductor and the electrolyte redox potential. OCP of semiconductor is measured 

under chopped illumination.  Conductivity type is determined by observing the direction 

of potential shift under illumination. The material is n-type if OCP moves towards more 

cathodic potentials (negative) and it is p-type if OCP moves towards more anodic 

potentials (positive).  

3.6.4 Photocurrent measurements 

Photocurrent measurement is an important measurement in order to check if material can 

split water efficiently. Measurement was performed in the same setup as explained above. 

The photocurrent onset can be used to estimate the Efb, and can be determined by 

measuring the photocurrent density (jph) as a function of the potential versus a reference 

electrode (Eref) and then comparing the dark and illuminated scans. As the potential 

moves towards greater reverse bias, the electric field generated across the space charge 

layer increases and drives charge separation and charge transfer to the electrolyte, thereby 

enhancing the photocurrent. Under ideal circumstances, the potential at which the 

semiconductor changes from accumulation to depletion coincides with the onset of 

photocurrent and this potential is taken as the Efb, although this is often offset by the 

required kinetic overpotential to drive the reaction. The sample J-V curve of GaSbxN1-x 
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sample is shown in the Figure 3.14 

 

Figure 3.14 A typical J-V curve for a GaSbxN1-x sample. 

3.6.5 Mott-Schottky Analysis  

    To determine the band edges and flat band potential of GaSbxN1-x samples Mott-

Schottky technique has been used. This technique measures the capacitance of the space 

charge layer of semiconductor material as a function of applied potential (E) according to 

the relation8 

            3.18 

where er is the relative permittivity of the semiconductor), e0 is permittivity in vacuum, 

A is the surface area, e is the charge of an electron, N is the free carrier density, k is 

Boltzmann constant, T is the temperature, and E is the applied potential. The Mott-
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Schottky technique also provides information on charge carrier density, conductivity type 

of the material which is estimated from the slope of the Mott-Schottky plot. A negative 

slope means material is p-type and positive slope means material is n-type. The direction 

of the potential scan depends on the conductivity of the material.  For n-type materials, 

the scan should be performed at potentials positive of OCP and vice versa for p-type 

materials. The Mott-Schottky measurements described in this dissertation were made 

using 3-electrode cell equipped with a quartz window. A three electrode configuration 

comprising of GaSbxN1-x working electrode, Ag/AgCl (with a 3M KCl filling solution) 

was used as the reference electrode and Pt was used as the counter electrode. The 

electrolyte used for the Mott-Schottky characterization comprised of an aqueous solution 

of 200 mM K4Fe(CN)6, 20 mM K3Fe(CN)6, 200mM KCl. The AC signal amplitude was 

10 mv rms and a frequency of 10 kHz was used. A simple R-C circuit was used to extract 

the value of capacitance (C). A linear extrapolation of the linear region in the Mott-

Schottky plot (1/C2 vs. E) was used to determine the intercept which gives the value of 

flat band potential.  
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CHAPTER 4 

METAL ORGANIC CHEMICAL VAPOR DEPOSITION OF GaSbxN1-x 

4.1 Introduction 

         In this chapter, theoretical calculations on Ga(Sbx)N1-x, and experimental results on 

the synthesis of Ga(Sbx)N1-x ternary layers in the low antimonide composition regime, 

will be discussed. Specifically, anomalous band gap reduction and unit cell expansion 

predicted theoretically for small antimonide composition are confirmed by experimental 

data. In addition, quantitative comparisons are made with experimentally observed values 

for band gap and optical properties. Phoelectrochemical measurements to determine band 

edge positions and photoactivity will also be discussed. 

4.2 Computational Calculations 

           Computations that were performed using DFT to understand the properties of 

antimony incorporation into GaN will be discussed in this section 

For this, the structural optimizations and electronic structure analysis for all Sb doped 

GaN structures were performed using first principles density functional theory (DFT). 

The DFT calculations were performed in the generalized gradient approximation (GGA) 

of Perdew-Burke-Ernzerhof (PBE)109 for exchange and correlation as implemented in the 

Vienna Ab-initio Simulation Package (VASP)110-112 The projected augmented wave 

(PAW) potential113, 114 was used to describe the core electrons. To circumvent the well-
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known ``gap problem'' in the LDA/GGA formalism, we incorporate the Hubbard 

parameter, U, in the formalism (LDA/GGA+U method).114, 115 The U parameter is an on-

site Coulomb repulsion parameter that incorporates part of the electron correlation absent 

in LDA/GGA. The U values used in the GGA+U formalism are: Ud,Ga = 6.5 eV and  Up,N 

= Up,Sb= -4.2 eV. All other U values are set to zero. These values of U for Ga and N 

reproduce the experimental band gaps of bulk GaN (3.43 eV)116 and GaSb (0.73 eV).117 

The bulk GaN in the wurtzite structure was simulated using a 192 atom supercell with 

periodic boundary conditions. Ga(Sbx)N1-x structures are obtained by substituting up to 8 

N atoms with Sb. In Fig. 1c we show the optimized atomic configuration for GaN 

supercell with 5 substitutional Sb. After testing for convergence we settled for a 3x6x2 Г-

centered pack for k-vectors sampling. A kinetic energy cutoff of 550 eV was found to be 

sufficient to achieve a total energy convergence of the energies of the systems to within 1 

meV. Gaussian smearing of 0.05 eV was chosen to accelerate the electronic convergence. 

The optimization of atomic positions (including full cell optimization) was allowed to 

proceed without any symmetry constraints until the force on each atom is less than 5 

meV/Å. In each case considered, both the cell volume as well as individual atomic 

positions have been fully optimized without any symmetry constraints. In Figure 4.2, 

previously published theoretical results13 are presented for a smaller supercell (72 atoms) 

using the GGA+U formalism within the Perdew-Wang (PW91)118 scheme for exchange-

correlation as implemented in the Cambridge Serial Total Energy Package (CASTEP) 

and compare with our present results using a 192 atom supercell . The U values used in 

these calculations were: Ud,Ga =0 eV, Us,N=19.25 eV and Us,Sb=0.40 eV. These values of 

U also reproduced the experimental bandgaps of bulk GaN (3.43 eV)116 and GaSb (0.73 
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eV).117  The experimental values are in better agreement with the present computations 

using the PBE scheme implemented in VASP for the larger (192 atom) cell. It should be 

noted that the PBE functional has been designed to give essentially the same results as 

the PW91 functional but it is more robust in systems with rapidly varying electron 

density.  

 

Figure 4.1 Predicted band gap values for different Sb composition using 192 and 172 

atom supercells. 

4.3 MOCVD of GaSbxN1-x 

4.3.1 Synthesis 

The experimental procedure of GaSbxN1-x thin films by MOCVD is as follows: 

1. Firstly, substrates were cleaned properly to remove any native oxide before placed 

in the chamber and the chamber was pumped to its base pressure. 
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2. Once the chamber reached its base pressure, it was purged with nitrogen for at 

least two cycles using a bypass valve and isolating bubbler valves.  

3. The metal organic precursors were maintained at desired vapor pressures which 

were controlled by maintaining the precursors at certain temperatures with 

thermal baths. 

4. After the purging cycles and making sure chamber was leak tight by rate of rise 

method, which involved closing all the valves connected to the chamber and 

monitoring rise in pressure.  

5. The chamber was pressurized with ammonia to the desired value and stabilized 

for at least 15 minutes before heating the chamber to the desired temperature.  

6. Heating was done with resistive heater that was controlled by a temperature 

controller which was used to set the desired temperature value. Heating rate, 

duration of heating and cooling rate was controlled using the temperature 

controller. 

7. Precursors were then allowed to flow into the chamber with a known flow rate of 

carrier gas. 

8. Reaction was performed for 30-60 minutes depending upon the required sample 

thickness.  After the desired reaction time, precursor flow was shut down 

followed by ammonia flow and chamber was pumped down to its base pressure 

and then lastly heater was turned off. 

9. The reaction chamber was vented to atmosphere under nitrogen environment and 

the samples were retrieved 
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4.3.2 Morphology 

             Morphology of as synthesized GaSbxN1-x thin films was analyzed using SEM. 

The samples turned out to be polycrystalline as shown in the figure. The interface 

between GaSbxN1-x and GaN has been shown in the Figure 4.2 with small grains all over 

the surface.  

  

Figure 4.2 SEM images showing cross-sectional view for GaSbxN1-x films. 

4.3.3 Crystallinity 

To confirm alloys made were GaSbxN1-x crystallinity and lattice expansion has been 

measured using X-ray diffraction. Figure 4.3 (a) shows the X-ray diffraction (XRD) 

patterns for several MOCVD-grown samples. The peaks observed in GaN sample appear 

for Ga(Sbx)N1-x samples, the (0002) peak at around 35o is present in all samples and is the 

most dominant peak. Interestingly, the 35o peak position shifts monotonically to lower 

angles with the increase of Sb concentration. Substitution of a nitrogen with an anion of 

larger covalent radius causes large initial strain and the lattice expands to relax this strain 

that corresponds to the monotonic increase of the unit cell and confirms the prediction of 

our first principle calculations Ga(Sbx)N1-x films with different amounts of Sb. Although, 
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not all of the typical wurtzite XRD for Ga(Sbx)N1-x structures which reveal a monotonic 

increase in the lattice parameters with an increase in x on relaxation as shown in Figure 

4.3 (b).  The lattice parameters were calculated using equations 

𝟏

𝒅𝟐 = 𝟒/𝟑((𝒉𝟐 + 𝒉𝒌 +  𝒌𝟐)/𝒂𝟐) + 𝒍𝟐/𝒄𝟐 

  

Figure 4.3 (c) shows the ball and stick model of the 192 atom super cell used in our 

density functional theory (DFT) studies. The structural optimizations result in 

considerable local distortions in Ga(Sbx)N1-x structures due to the size and 

electronegativity mismatch between N and Sb. 

a) 
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b) 

 

c) 

 

 

 

 

 

   

 

Figure 4.3 a) XRD pattern of GaSbxN1-x layers showing peak shift of (002) plane with 

various Sb concentrations b) Lattice expansion with Sb concentration of (002) plane c) 

GaSbxN1-x supercell with x= 5/96 optimized using DFT simulations. The Sb atoms are 

shown in red, Ga in green and N in blue. 
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Also GaN nanowire substrates were used for the growth of GaSbxN1-x films. High level 

of crystallinity of the Ga(Sbx)N1-x layers indicated by the XRD measurements was also 

confirmed by high-resolution transmission electron microscopy (HRTEM). Figure 4.4 

shows HRTEM image of a typical Ga(Sbx)N1-x layer grown on a-plane GaN nanowire 

substrate. The Ga(Sbx)N1-x layer grows epitaxially on the GaN nanowire and maintains 

the orientation relationship with the nanowire substrate as its basal c-planes are parallel to 

those of the GaN nanowire substrate. High density of basal stacking faults observed in 

these Ga(Sbx)N1-x layers is most likely due to lower growth temperature used compared 

to typical growth temperatures of 850°C or above for GaN. The most striking result is 

that epitaxial growth on nanowire along the entire length is observed at the low growth 

temperatures used. At these temperatures, the growth on planar substrates yielded 

nucleation of islands. These observations suggest that the epitaxial growth over entire 

nanowire length (over several microns) is possible due to faster surface diffusion of 

adatoms on nanowire substrates. High level of crystallinity and the epitaxial growth on 

nanowire substrates is necessary for fast transport of charge carriers and reduced 

recombination losses in the material, which is an important factor for water splitting.  
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Figure 4.4 a) A schematic illustrating GaSbxN1-x growth on an array of GaN nanowires 

b) Low magnification TEM image c) HRTEM image of typical MOCVD GaSbxN1-x layer 

grown on a-plane GaN nanowire. 

Also Raman studies were performed on the GaSbxN1-x alloys. Figure 4.5 shows 

the Raman spectra for GaSbxN1-x samples with different antimonide (Sb) concentrations. 

The spectrum of a GaN substrate, shown for comparison, contains a strong peak at 

around 575 cm-1 consisting of the E1(TO) mode at 572 cm-1 and the E2H mode at 581 

cm-1 as well as the A1(LO) line at 751 cm-1. In addition, there is also a weak peak at 

around 420 cm-1 which corresponds to overtones of transverse accoustic.119 In samples 

with Sb incorporation, the GaN peaks are still observed, but the relative intensity of the 

forbidden A1(LO) increases and an additional peak at around 650 cm-1 is observed. No 

prior data using Raman spectroscopy for Ga(Sbx)N1-x alloys exist in the literature.  
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Figure 4.5 Raman spectra of Ga(Sbx)N1-x samples containing different antimony 

concentrations. 

4.3.4 Band gap Reduction in GaSbxN1-x alloys 

            Band gap measurement is an important observation to confirm alloys were 

Ga(Sbx)N1-x which has been measured for different antimony concentrations. The optical 

spectra for several Ga(Sbx)N1-x layers with different Sb concentration are shown in 

Figure 4.6 (a) in the form of Tauc plots. The data suggests a direct band gap transition 

based on the UV-Vis reflectance data and Tauc plots for samples with Sb compositions 

up to 5%. Figure 3b shows the band gap data as a function of Sb concentration 

determined from the energy dispersive x-ray spectroscopy (EDS) analysis conducted 

using a scanning electron microscope (SEM). The x-axis error bars indicate the standard 

deviation of the Sb composition at different points on a sample. The transmission and the 

diffuse reflectance spectroscopy give the average band gap values over samples with 1 

cm2 area for the samples. Hence the y-axis error bars are not shown. Both experimental 
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and computational results suggest a rapid initial decrease in the band gap with an increase 

in the antimonide concentration for the Ga(Sbx)N1-x system. These results indicate that an 

antimonide (Sb) concentration as low as 2% is sufficient to bring down the band gap of 

GaN from 3.45 eV to the visible range (~2 eV). After the initial decrease, the band gap 

seems to decrease at a slower pace with Sb concentration to about 1.5 eV with antimony  

 

a) 

 

b) 

 

Figure 4.6 (a) UV-Vis absorption spectra of GaSbxN1-x samples (b) Experimental and 

theoretical energy band gap of Ga(Sbx)N1-x  alloys as a function of Sb concentration.  
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concentrations as high as 8%. Introduction of the first substitutional Sb produces a 

localized state just above the valence band maximum (VBM) of GaN. Addition of more 

substitutional Sb atoms broadens and delocalizes this state.  This explains the rapid initial 

decrease and subsequent slow variation of the band gap seen in Figure 4.6 b. Both UV-

Vis data and photoluminescence analysis as shown in suggest that the optical band gap 

values reported for alloys with Sb compositions up to 6% or below are due to direct 

electronic transitions.  

 

Figure 4.7 a) Low temperature Photoluminescence spectra for GaSbxN1-x alloys with 

varying Sb composition. 

Figure 4.7 a) shows the photoluminescence spectra of GaSbxN1-x samples for different 

antimony (Sb) concentrations. A broad peak around visible range is seen. Even though, 

the peaks are broad their actual peaks range from 1.7 – 2.8 eV. Tauc plot analysis for 

these samples confirms the bandgaps of the same samples are shown in Figure 4. The 
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variation of the peak position with Sb concentration and the absence of 3.4 eV peak 

(corresponding to band edge emission of GaN) showed that the PL signal was from the 

band edge emission of GaSbxN1-x. The broadening of the peak could be related to the 

formation of deep level point defects such as native defects, impurities and complexes 

during the synthesis which could cause electron-phonon coupling.120 No PL signal is 

observed at room temperature. This could be attributed to the thermal quenching of PL at 

elevated temperatures, where carriers return from the excited state to the ground states via 

non-radiative recombination pathways.  

                               

Figure 4.7 b) Photoluminescence spectra for sample containing 1.5 + 0.8 % Sb at 241 K. 

Prior reports on growth of ternary alloys of GaN have also reported a loss in the PL 

intensity with increased temperature due to thermal quenching.121 DFT calculations 
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composition range. Low temperature PL measurements on samples with close to 1% Sb 

also show some evidence that a discrete energy level is formed in this range of 

composition. Photoluminescence spectra on different regions of a sample with about 1% 

Sb is shown in Figure 4.7 (b). The peaks in the 2.6 to 3.2 eV energy range in addition to 

the dominant peak seen at around 2.2 eV, these peaks could be due to the transitions from 

states close to the conduction band of GaN. These peaks are absent in the PL spectra of 

samples with high Sb content (> 2%) as shown in Figure 4.7 (a). The peak at 2.2 eV 

could be attributed to transition from the conduction band edge of GaN to the Sb discrete 

energy level. The variations in the PL spectra are to due a gradient in the Sb composition 

in the sample. These variations coupled with error associated with measuring Sb 

composition using energy dispersive spectroscopy in a SEM make it challenging to 

obtain samples precisely in the 0 to 1% Sb composition.  

        Tauc plot analysis on Ga(Sbx)N1-x samples with different Sb composition shows that 

the nature of the band gap was found to change from direct to indirect for Sb composition 

higher than 7% as shown in Figure 4.8 (a) which was also confirmed by photocurrent 

spectroscopy for high Sb concentrations. DFT calculations also predict direct to indirect 

band electronic transition for optical band gaps for alloys with Sb compositions greater 

than 7%. However, for alloys with Sb compositions near 1% or below, the data is 

insufficient to prove a continuous band gap reduction from 3.45 eV to ~2 eV. Instead, 

both DFT band structure and experimental data using photoluminescence (Figure 4.7 b) 

suggest localized density of states near a discrete energy state.  
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Figure 4.8 a) Tauc analysis for direct transition and indirect transition for 2% Sb (a,b) 

and 8% Sb (c,d). 

The nature of the band gap was found to change from direct to indirect as the Sb 

composition increased above 7 %.  Tauc plots in the Figure 4.8 (a) show that at low Sb 

compositions (< 7%) the Tauc plots for direct band transition provide a better linear fit 

and that for high Sb compositions (> 7%) Tauc plots for the indirect band transition 

exhibit a better linear fit. 

         Photocurrent spectroscopy was also used to verify the nature of the band gap 

(direct/indirect) for samples with high Sb composition. The chopping frequency was 71 

Hz and a bias of 1.4 V vs. Ag/AgCl was used. The electrolyte was a 0.5 M Na2SO4 

solution adjusted to pH=9 using a 1 M sodium hydroxide. The experimental setup used to 

characterization is described elsewhere.54 Figure 4.8 (b) shows the plots for two different 
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samples with high Sb composition (> 6%) and it is seen that band gap becomes indirect at 

higher Sb compositions.  

 

 

 

 

 

 

 

 

Figure 4.8 b) Photocurrent spectroscopy plots: a) and c) for indirect transition; and b) 

and d) for direct transition. The data is for GaSbxN1-x samples with Sb composition 

greater than 7%. 

4.4 Photoelectrochemical Characterization 

4.4.1 Band edge determination 

               Band edges have been determined using Mott- Schottky analysis at different 

antimony concentrations. The band edge positions of Ga(Sbx)N1-x alloys were determined 

using Mott-Schottky analysis as shown in Figure 4.10 for location of Fermi-energy level 

(very close to the conduction band edge position for these n-type semiconductors) and the 

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(N
o

rm
a

liz
e

d
 p

h
o

to
c
u

rr
e

n
t)

0
.5

 , 
A

.U

Energy, eV

1.4 1.6 1.8 2.0 2.2 2.4

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

(N
o
rm

a
liz

e
d
 p

h
o
to

c
u
rr

e
n
t)

2
, 

A
.U

Energy, eV

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

(N
o
rm

a
liz

e
d
 p

h
o
to

c
u
rr

e
n
t)

2
, 

A
.U

Energy, eV

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(N
o

rm
a

li
z
e

d
 p

h
o

to
c
u

rr
e

n
t)

0
.5

, 
A

.U

Energy, eV

a 
b 

c d 



 83 

band gap values. The positive slope in the Mott-Schottky plots (Figure 4.9) shows that 

the Ga(Sbx)N1-x alloys have an n-type conductivity. The band edge diagram (Figure 4.10) 

shows that the band gap reduction occurs mainly due to valence band shifting upwards. 

The band edge diagram also illustrates that the band edges of the Ga(Sbx)N1-x alloys 

straddle the water oxidation and reduction potentials even at Sb concentrations around 8 

at%.  If the band edges of semiconductor straddle the water oxidation and reduction 

potentials, the inbuilt voltage generated in the semiconductor under illumination is 

sufficient to observe photocurrents at zero bias. To further validate that the Ga(Sbx)N1-x 

band edges straddle the water redox potentials, linear sweep voltammogram was obtained 

under intense chopped light illumination using a two electrode configuration with a 

Ga(Sbx)N1-x working electrode and Pt mesh counter electrode Mott-Schottky analysis was 

used to determine the flat band potential of the GaSbxN1-x alloys. The flat band potential 

becomes less negative with increasing Sb concentration as shown in Figure 4.9. The 

small change in the flat band potential indicates that the band gap reduction occurs 

mainly due to the valence band edge moving upwards. The flat band potential along with 

band gaps are used for determining the band edge positions shows in Figure 4.10. Band 

edge positions of GaSbxN1-x alloys calculated from the Mott-Schottky plots and the band 

gap straddle the water oxidation and reduction potential. A semiconductor straddling the 

oxidation and reduction potentials should split water without any external bias. To verify 

this, a chopped J-V curve is obtained with a two electrode setup comprising of a 

GaSbxN1-x working electrode and Pt counter electrode. The GaSbxN1-x sample used for 

this test was synthesized on FTO substrate and a back contact was made to FTO during 

the preparation of the working electrode. The electrolyte was nitrogen purged 0.5 M 
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sodium sulfate, adjusted to pH=9. A light intensity of 500 mW/cm2 was used.  The 

photocurrent at zero applied bias (Figure 4.11) also validate that the band edges straddle 

the water oxidation and reduction potentials. 

 

Figure 4.9 Mott- Schottky plots for various GaSbxN1-x samples with different Sb 

compositions. 
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Figure 4.10 Energy diagram showing the band edge positions for various GaSbxN1-x 

alloy samples. The band edge positions of GaSb and GaN are added for reference. 

 

 

Figure 4.11 Two electrode chopped light linear sweep voltammogram for a GaSbxN1-x 

sample in a 0.5 M Na2SO4 at pH = 9. 
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4.4.2 Illuminated Open Circuit Potential 

              Open circuit potential measurements were performed on GaSbxN1-x layers to 

determine the conductivity type of the samples using a three electrode setup as explained 

in chapter 3. Light was chopped manually onto the working electrode which is GaSbxN1-x 

samples and voltage was measured between working electrode and reference electrode 

using potentiostat. Ag/AgCl was used as reference electrode. Open circuit potential 

measured w.r.t time is shown in Figure 4.12 which was done for 25 minutes. From the 

plot, it is observed that the direction of the potential shift is positive which shows that 

material is n-type.  

 

Figure 4.12 Chopped open circuit potential vs time for a GaSbxN1-x sample. 
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4.4.3 Photocurrent Measurements 

         Photo-electrochemical measurements of polycrystalline Ga(Sbx)N1-x   films (200-

300 nm) with small grain sizes (11nm) showed that they are photoactive as shown in 

Figure 4.13 b). The photo-electrochemical characterization was performed on 

polycrystalline GaSbxN1-x thin films. Figure 4.13 a) shows a linear sweep voltammogram 

of a polycrystalline film (x = 6%) under prepared on a fluorinated tin oxide coated (FTO) 

glass substrate. An ohmic contact was established with the FTO substrate using a silver 

epoxy. A chopped light of 1 Sun intensity (100 mW/cm2) from a Xenon lamp equipped 

with an AM 1.5 filter was used.  

 

Figure 4.13 (a) Linear sweep voltammogram for a polycrystalline GaSbxN1-x thin film 

sample (x= 6%) under chopped AM 1.5 illumination at 1 Sun (b) Cross-section scanning 

electron microscopy image of thin film sample. 

A 0.5 M Na2SO4 solution adjusted to pH=9 (using a 1 M NaOH solution) was used as the 

electrolyte. The characterization was performed using a 3-electrode setup comprising of 
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term stability test performed for 10 min. A bias of 0.9 V vs. Ag/AgCl was applied and the 

sample was exposed to chopped AM 1.5 light at 1Sun intensity. The photocurrent 

magnitude is limited by the shorter carrier diffusion lengths due to the small grain sizes, 

limited film thickness for the light absorption and the accumulation of charge carriers at 

the semiconductor-water interface. The grain size was calculated from full width half 

maxima of the XRD peak of GaSbxN1-x thin film shown in Figure 4.14 using the Scherrer 

equation  which came about 11nm which is very low. This clearly 

states that thin film samples have very small grain sizes which act as grain boundaries 

where recombination occurs. Even though the material is efficiently generating carriers 

upon light absorption due to this recombination the photocurrents turning out to be very 

low. 

 

Figure 4.14 XRD patterns for a GaSbxN1-x sample and GaN showing peak at 34.5 . 
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Figure 4.15 Chopped photocurrent density versus time for a GaSbxN1-x sample at an 

applied bias of 0.9 V vs Ag/AgCl using AM 1.5 illumination at 1 sun. 

The current density at high light intensity (~700 µA/cm2 at 5 Sun and 0.9 V vs. Ag/AgCl) 

shows that material hold great promise for solar water splitting. Increase in current 

density with light intensity and transient decay associated with current density (Figure 

4.17) indicate the low light absorption in thin films (< 1 micron) and interfacial charge 

accumulation as important factors limiting the photocurrents for the polycrystalline 

samples. These phenomena also contribute to the more positive photocurrent onset 

potential seen than that would be expected from the Mott-Schottky determined flatband 

potential. Further, the high overpotential associated with oxygen evolution due to no 

surface catalyst, recombination at low bending could lead to more positive flat band 

potential values observed from photocurrent onsets.122 All the above preliminary PEC 

characterization results suggest an excellent suitability and high promise for using 

Ga(Sbx)N1-x   towards solar water splitting. There is a large parametric space available 
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with the MOCVD technique necessary to obtain highly textured films and epitaxial 

growth on nanowire array substrates for improved photoactivity.          

 

Figure 4.16 Photocurrent density vs light intensity for a GaSbxN1-x sample at 0.9 V vs 

Ag/AgCl.  

In summary, the synthesis of crystalline Ga(Sbx)N1-x alloys is reported for first time and 

the optical properties demonstrate significant reduction of the band gap for GaN from 

3.45 eV to 2 eV when alloyed with small amounts of antimonide (about 2%). Most 

importantly, the band edges for Ga(Sbx)N1-x alloys (with x from 1.5% to 8%) straddle 

water splitting reactions for a range of band gap values from ~2 eV to 1.54 eV. The 

alloys with Sb levels beyond 7% showed indirect band gap values. The corresponding 

photo-electrochemical data on activity and stability suggest that these alloys are highly 

suitable for solar water splitting. Even though, the MOCVD is conducted at much lower 

temperatures of around 575 ℃ for Ga(Sbx)N1-x alloys, the growth on GaN nanowire 

substrates allowed for epitaxial growth over entire lengths suggesting faster adatom 

diffusion.
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CHAPTER 5 

VAPOR-LIQUID-SOLID (VLS) GROWTH OF GaSbxN1-x NANOWIRES 

5.1 Introduction 

In this chapter, the experimental investigation of GaSbxN1-x nanowire growth via 

MOCVD using copper as a catalyst has been studied in detail. The resulting nanowires 

were characterized for antimony incorporation and also for their optical and 

photoelectrochemical properties.  

5.2 Rationale/Motivation 

The rationale for using vapor-liquid-solid growth is to see the possibility of increasing 

antimony incorporation and improve quality through VLS growth for GaSbxN1-x 

Nanowires. Single crystalline films and/or single crystal nanowire arrays are ideal for 

efficient photocurrent generation as they have high mobility and ideal optical absorption 

and diffusion length scales. It is typically difficult to synthesize single crystalline films 

and requires special lattice matching substrates. In the case of GaSbxN1-x alloys, it is even 

more difficult because of the synthesis temperature that is too high for allowing antimony 

incorporation. Polycrystalline thin films possess several grain boundaries where 

annihilation of generated carriers occurs in the recombination process, thus acting as trap 

sites. The carrier recombination process destroys the current resulting in near zero 

response despite efficient generation of carriers upon light absorption. Therefore, 
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polycrystalline films are not reliable to show efficient photoresponse. Instead, it is easier 

to obtain single crystal quality 1-D materials using vapor-liquid-solid method. In addition 

to quality, nanowire arrays also offer another advantage, i.e., provide the necessary length 

scales for absorption depth while reducing the length scale for minority carrier diffusion 

to semiconductor-electrolyte interface.123  This in turn drives the electrochemical 

reactions in nanowires resulting in efficient light absorption and charge transport, hence 

making them reliable materials for solar water splitting. 

 
 

Figure 5.1 Schematics illustrating differences with carrier diffusion and absorption 

length scales involved with polycrystalline film vs single crystalline films vs nanowire 

array samples when used for photoelectrochemical water splitting.60  

 There is a significant interest in growing nanowire arrays of III-V materials for 

improving the charge transport and light absorption toward solar energy conversion to 

fuels. Understanding the growth mechanism of III-V ternary alloy nanowires is crucial 
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for minimizing the defects. Unlike elemental and binary compounds, the growth of 

ternary alloy nanowires is not straight forward and fewer studies have reported ternary 

alloy nanowires particularly for III-V alloys. Despite the advantages of ternary alloy 

nanowires, they often undergo the complications like lattice mismatch, composition 

inhomogeneity, defects due to their complex thermodynamics and growth kinetics. In 

addition, understanding the growth mechanism of ternary alloys is not straight forward as 

it is for binary compound nanowires as binary and ternary alloys have different 

competing mechanisms for incorporation and diffusion of different species during 

growth. In addition, the differences with solubility in to catalyst metal and precipitation 

kinetics can also impact non-homogeneity of the composition along the nanowire.  

Recently, a few attempts have been made to grow ternary alloy nanowires. For 

example in the case of AlxGa1-xAs nanowires by Lim et al,124 and InxG1-xAs nanowires by 

Guo et al,125 composition inhomogeneity was observed, having high Al content in the 

AlGaAs whereas indium rich content near the InGaAs nanowire tip. Low diffusion 

lengths of Al and In that of compared to Ga were the reasons for this inhomogeneity. 

Tambe et al attempted to address this problem by growing AlGaAs nanowires at higher 

temperatures in capped morphology with GaAs nanowires.124 Several other studies that 

were reported on ternary alloy nanowires showed the role of growth temperature in 

achieving uniform and defect free nanowires.126-129 Most of the III-V ternary alloy 

nanowires were synthesized on single crystalline substrates like GaAs which are very 

expensive. The synthesis was done using gold as a catalyst, which can introduce defects 

and is also very expensive.124 
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Hence, there is a need to investigate the growth of ternary alloys nanowires on 

different substrates and using non-precious metals such as copper as catalysts. Especially, 

dilute ternary alloy nanowires could be very interesting as they have the potential to 

overcome phase segregation and composition inhomogeneity seen in the prior attempts. 

In a catalyst assisted VLS growth, the vapor phase species react on the catalyst surface 

supported on the substrate. Advantage of the catalyst is that it enhances the selectivity of 

vapor phase reactions on the surface. In VLS growth single nanowire is produced by 

single catalyst cluster so the diameter of the nanowire greatly depends on catalyst droplet.  

Hence, the selection of the catalyst in VLS growth is of utmost importance. In this study, 

among several metal catalysts like gallium, gold, tin and copper, copper was selected as a 

catalyst for the growth of GaSbxN1-x nanowires. One reason for selecting copper was it is 

an inexpensive catalyst compared to all other metal catalysts available. Another reason 

was that it can be easily removed after deposition. Also our prior work showed that 

copper can form eutectic alloy with gallium at low temperatures around 550 C and allow 

for vertical nanowire arrays.123 Moreover from the phase diagram of Cu-Ga and Cu-Sb it 

was observed that formation of Cu-Sb eutectic alloy leads to bulk nucleation and growth 

due to low solubility eutectic of gallium species in the droplet. In the case of Cu-Sb, the 

composition of antimony in copper is very high which form micron size droplet favoring 

tip led growth. Moreover, the solubility of antimony in copper increases with increase in 

temperature that allows for more antimony incorporation at high temperatures which was 

very difficult while growing thin films. Therefore, our approach of using VLS growth 

will lead a path for antimony incorporation at high temperatures thereby achieving good 

crystalline quality nanowires. 
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5.3 Experimental Details 

5.3.1 Catalyst deposition 

Thermal evaporation method was used for the deposition of copper onto the substrates. 

The thermal evaporator used was a typical vertical bell jar with supply for heating, gas 

flow, pressure measurement and pumping. Inside the bell jar contains tungsten crucible 

where desired source material is placed. Prior to the evaporation, substrates were cleaned 

in 1M hydrochloric acid followed by rinsing with ethanol and DI water. Firstly copper 

pieces were placed in the crucible. Once the chamber reaches desired vacuum the 

crucible was heated to a desired temperature based on the melting point of the material 

that was evaporated. After the melting point was reached, material evaporated onto the 

substrates that were placed above the crucible. The time of the reaction was based on the 

desired thickness of the material. Reaction was done at 10-8 torr for two minutes.  

5.3.2 MOCVD growth 

 In our MOCVD system, group III element Ga and group V element Sb were 

supplied as vapor phase organometallic precursor species: trimethylgallium (Ga(CH3)3, 

TMGa, trimethylantimony (Sb(CH3)3, TMSb) respectively. Also group V element N was 

supplied as vapor phase hydride ammonia. These reactants were carried into the reactor 

by carrier gas N2. Precursors pyrolyse to release group III and group V elements during 

the growth. A number of reports describe precursor pyrolysis in detail.81, 130 

             For the experiments, several substrates were used for nanowire growth like GaN, 

highly doped n-type silicon, quartz where GaN was the mostly used substrate. Typically, 
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nanowires were grown on substrates of the same material, for instance GaAs nanowires 

were grown on GaAs substrates. Before growth, copper (Cu) nanoparticles were 

deposited on the substrate surface, as described in Section 5.3.1. The prepared substrate 

with deposited Cu nanoparticles was placed into the reactor on an AlN susceptor. The 

substrate was heated to 950 °C and annealed for 10 min to desorb surface contaminants, 

including the surface oxide. Annealing was performed under group V overpressure to 

prevent decomposition of the substrate. After annealing, the substrate was cooled to 

growth temperature, typically between 700-900 °C. The group V flow rate was adjusted 

for the growth. Then group III precursors were fed to the reaction chamber to initiate 

growth. The precursor flow rates used for the experiment were 0.2µmol/min of trimethyl 

gallium and trimethyl antimonide was varied to achieve different compositions and 

ammonia with flow rate of 1 lpm. Growth times were generally between 30 minutes to 

120 minutes, chosen according to the growth rate and the desired nanowire length. Upon 

completion of the growth, the samples were cooled under group V overpressure. All 

samples were grown with a reactor pressure of 70-80 torr range  

5.3.3 Characterization 

The synthesized nanowires were characterized by X-ray diffraction (XRD) in a Bruker 

Discovery D8 system utilizing Cu Kα radiation (0.154 nm), Energy Dispersive X-ray 

Spectroscopy (EDS) in JEOL JSM-5310 scanning electron microscope (SEM) operating 

at 20 keV for elemental composition analysis, FEI Tecnai F20 field emission 

transmission electron microscope (TEM). TEM-based EDS measurements were 

conducted on these samples to further confirm the Sb concentration in the samples. High-

resolution TEM (HRTEM) imaging of selected samples was used to characterize the 
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crystalline quality of the nanowires. All samples were optically characterized using a 

Perkin Elmer Lambda 950 UV-Vis spectrometer, with a 60 mm integrating sphere. The 

Kubelka-Mulk absorbance, estimated from the reflectance was used in the Tauc plot 

analysis. The thickness of the samples was measured using scanning electron microscopy 

and was used for the calculation of the absorption coefficient.   

5.4 Results & Discussion 

Firstly, the growth of GaSbxN1-x nanowires was attempted in MOCVD using different 

catalysts Gallium (Ga), Copper (Cu), Tin (Sn) and antimony (Sb). Figure 5.2 shows SEM 

images of GaSbxN1-x nanowires growth using different catalysts.   

 

 

Figure 5.2 SEM images of GaSbxN1-x nanowires grown using a) copper b) Gallium c) 

500nm

a)

500nm

b)

500nm 500nm
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Tin d) Antimony. 

In Figure 6.2, image a) shows the growth of nanowires using copper as a catalyst. Images 

b, c & d show the growth using Ga, Sn and Sb droplets as catalysts. And from the images 

it was observed that the nanowire growth was occurred with copper whereas with other 

catalysts there was no nanowire formation. In order to understand this, phase diagrams of 

these catalysts with gallium and antimony were analyzed. From the phase diagrams of 

Ga-Sb, Cu-Ga, Cu-Sb, Sn-Ga and Sn-Sb, it was observed that at the growth temperatures 

used, copper and antimony form eutectic alloy. Figure 5.3 shows the phase diagram of 

the Cu-Sb system, which can be referred to the growth of 1D GaSbxN1-x structures with 

copper. The phase diagram also indicates that the composition of the Cu-Sb alloy above 

the eutectic point will follow the liquidus line (solid lie) that denotes equilibrium between 

the solid and liquid phase. Therefore, the composition of the liquid alloy can be found at 

the liquidus line at a given temperature. The phase diagram of copper and antimony 

indicates that, with increase in the temperature, solubility of antimony in copper increases  

 

Figure 5.3 Phase diagrams of Copper- Antimony(ref: 
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http://factsage.cn/fact/documentation/FScopp/Cu-Sb.jpg) and Copper- Gallium 

(http://www.himikatus.ru/art/phase-diagr1/Cu-Ga.php) 

. Experiments were conducted using evaporated and sprayed copper particles on various 

substrates such as stainless steel, quartz and GaN on sapphire. In the Figure 5.4 a) SEM 

images show that nanowire growth was not uniform, this was because the copper catalyst 

was deposited using spray coating. In the subsequent experiments, Copper was deposited 

using thermal evaporation technique. Figure 5.4 shows SEM images of GaSbxN1-x 

nanowires with copper as a catalyst which was deposited using thermal evaporation. The 

samples showed vertically inclined growth of nanowires with respect to the substrate 

which were uniform all over the sample. They were observed to be 2 microns long and 

50-100nm diameters and densities of 0.4−0.5 μm-2. Nanowires were shown to have 

tapered morphology with reduced diameters from base of the NW to its tip. From 

literature, three main reasons were reported for tapering which were, increase in the 

contact angle of the tip of NW,131, 132 surface diffusion of excess adatoms to base of 

NW133, instability of a catalyst tip.134 All of the mentioned reasons show that they 

occurred due to change in the catalyst tip.  

 

http://factsage.cn/fact/documentation/FScopp/Cu-Sb.jpg
http://www.himikatus.ru/art/phase-diagr1/Cu-Ga.php
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Figure 5.4 SEM image of GaSbxN1-x nanowire array sample synthesized at 700 °C using 

copper as catalyst. 

From the SEM images, spherical particles were observed at the nanowire top ends. In 

order to analyze and understand the tips of the nanowire, TEM analysis was performed. 

TEM investigations were performed on over a dozen nanowires from each sample to 

understand their structural and chemical characteristics. Firstly, TEM-EDS analysis was 

performed on the nanowires from base to the tip. Figure 5.5 shows TEM-EDS spectra 

obtained at different locations along the nanowires. From the EDS results on GaSbxN1-x 

nanowire samples, the nanowire ends consist of antimony and copper, without Ga or N. 

Additionally, for each nanowire the EDS spectra comparison indicates that the Sb 

concentration in the nanowire tip was higher than that in the nanowire base. Figure 5.5 

shows the composition analysis especially on the tip of the nanowire. The first profile in 

the figure shows the overall composition of the tip and rest of the profiles are showing for 

10	µm
1	µm
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individual elemental analysis. From these profiles, it was observed that the composition 

of antimony increased from neck of the nanowire to the tip.  

 

Figure 5.5 TEM-EDS line-scan compositional profile across a GaSbxN1-x nanowire. 

All the samples that were analyzed by TEM-EDS showed copper and antimony alloy on 

the nanowire tips thereby confirming our analysis from the phase diagram. The nanowire 

diameters were controlled using different thicknesses for the evaporated copper film.  For 

example, evaporated copped films at 2nm and 5 nm thicknesses resulted in GaSbxN1-x 

nanowires with diameters of 50-70 nm and 80-100 nm respectively as shown in Figure 

5.6 a) and b) respectively.  As the size of the particle size increased from 5nm film to 1 

nm film, diameter of the nanowires was increased. Typically, III–V nanowire growth is 

limited by the nucleation rate at the three-phase boundary, which is related to the 

supersaturation of antimony in the seed particle and the surface energies of the vapor–
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seed, vapor–solid, and seed–solid interfaces. Also, the EDS analysis on different samples 

revealed different antimony compositions, which corresponded with the optical data 

obtained from UV-Vis. The change in the antimony composition in the nanowires was 

due to the change in the antimony precursor flow rate.  

 

Figure 5.6 SEM images of GaSbxN1-x nanowire growth using different catalyst 

thicknesses a) 2nm film b) 4nm film.    

The optical properties of the nanowires grown at 700 C were analyzed by UV-Vis 

spectroscopy and the Tauc plot showed a band gap value of 2eV with Sb composition of 

2% that was calculated from SEM-EDS as shown in the Tauc plot in the Figure 5.7. Also 

X-ray diffraction pattern analysis of as synthesized GaSbxN1-x alloy nanowires showed 

that peaks were similar to those we got from the previous work of GaSbxN1-x thin films 

indicating the peak shift to lower angles with antimonide concentration. The d-spacing 

values were calculated using equations 

Hexagonal: 1

𝑑2 =
4

3
∗ (

(ℎ2+ℎ𝑘+𝑘2)

𝑎2 ) + 𝑙2/𝑐2                                       5.1 

500nm 500nm
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                                                                      5.2 

         5.3 

The d-spacing value calculated for GaSbxN1-x nanowires grown at 700 C with 2 % Sb 

incorporation was found to be 2.6 A which was also matched with the value determined 

from HRTEM analysis. This clearly confirmed that the antimony was incorporated into 

the nanowire. Figure 5.8 shows the TEM image of GaSbxN1-x nanowire where it shows 

the periodic narrowing and broadening along the nanowire. This could be due to the 

change in the geometry of the facets and shape of the droplet at liquid-vapor-solid 

interface where nucleation occurs. The geometry changes as the surface energy of the 

crystal changes while surface reconstructs for different precursor flow rates. This affects 

the geometry. Also HRTEM imaging was done on the samples which can be used to 

analyze crystal quality and d-spacing of the nanowires. From HRTEM analysis it was 

found that GaSbxN1-x nanowires have c-plane orientation and these wires were shown to 

be single crystalline with the presence of stacking faults. The defects usually form when 

there is a phase change from HCP to FCC, resulting in stacking faults. In the VLS 

growth, phase change is caused mainly due to change in chemical potential of liquid-solid 

interface (controlling the crystal precipitation) which is affected by the change in the 

molten alloy catalyst composition with changes occurring at vapor-liquid interface.123 

The stable phase for GaN is wurtzite phase but when the nucleation rate is fast, a nucleus 
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in the HCP orientation can grow into more energetically favorable FCC orientation. Also 

from the studies it was found that stacking faults will be prevalent at lower temperatures 

as FCC & HCP orientations were strongly favorable for smallest nucleus whereas at 

higher temperatures with larger nucleus only HCP orientation was favorable.127  

 

Figure 5.7 A Tauc plot obtained for a GaSbxN1-x nanowire array sample grown on GaN 

substrate at 700 C. 

 

  

 

 

Figure 5.8 HRTEM images of GaSbxN1-x nanowires on GaN substrate. 
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Figure 5.9 HRTEM image and SAED pattern of GaSbxN1-x nanowire. 

In order to improve the crystallinity, high temperature growth is of utmost importance. 

Literature studies have shown that the stacking fault density has been reduced with 

increase in the temperature.127 Also, the thin films showed the improvement in 

crystallinity and increase in the grain size when grown at higher temperatures but 

antimony incorporation into the nanowires was not an easy task. This is further explained 

in detail in chapter 6. Figure 5.10 shows the SEM images and Tauc plots for GaSbxN1-x 

nanowires at different temperatures. TEM-EDS analysis on the nanowires at different 

temperatures was performed and showed Sb incorporation into nanowires with slight 

increase in antimony with increase in temperature. Antimony composition was plotted at 

different temperatures as shown in Figure 5.11 and clearly showed the trend where 

antimony incorporation increased with increase in temperature. Also antimony 

composition in nanowires was corroborated with the band gap values measured using 

UV-Vis spectroscopy at different temperatures which also revealed tiny reduction in band 

gap with increase in temperature. This showed that the incorporation of antimony into 
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nanowires was easier when compared to thin films, which was explained by Cu-Sb phase 

diagram. From HRTEM analysis, it was clearly observed that GaSbxN1-x nanowires have 

a Cu-Sb tip which led to the nanowire growth.  

 

 

 

Figure 5.10 SEM images and Tauc plots of GaSbxN1-x nanowires at different 

temperatures. The experimental conditions for the SEM images were a)650 C, Sb%- 2%, 

b) 700 C Sb%- 2%, c) 800 C Sb%-3%, d) 900 C Sb%- 4 %. Antimony composition 

was determined from TEM-EDS 

700 ° C,&TEM*EDS*Sb&2%650° C,&TEM*EDS*Sb&2% 800 °C,&TEM*EDS*Sb&3% 900&° C,&TEM*EDS*Sb&4%

a) b) c) d)
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Figure 5.11 Plot of antimony composition as a function of synthesis temperature used for 

growing GaSbxN1-x nanowires. 

Figure 5.12 shows SEM images of GaSbxN1-x nanowires at different temperatures. It was 

observed that morphology of the nanowires has been changed with temperature. At 

higher temperatures, nanowires were short and more perpendicular to the substrate. This 

typically occurs because of the increase in the rate of precursor decomposition and the 

adatom diffusion length, with the increase in the temperature. Also the diameters of the 

nanowires at high temperatures were slightly increased compared to that of low 

temperatures. This could be due to more adatoms diffusing from the substrate and along 

nanowire sidewalls. Tapering of the nanowires was also reduced at high temperatures 

which shows that growing nanowires has not only the advantage of high antimony 

incorporation and less defects but also less tapering which is very essential for many 
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device applications.  

The growth of GaSbxN1-x nanowires and all of the observations could be explained with 

principles involved with simple VLS mechanism as shown in Figure 6.11. The first step 

involves copper deposition followed by MOCVD growth. During MOCVD growth, as 

explained from the phase diagram, copper and antimony formed a eutectic alloy at around 

650 C and dissolution of Ga, Sb and N led to supersaturation which precipitates as 

GaSbxN1-x nanowire. The catalyst was used to enhance the selectivity of the dissolution 

kinetics and diameter and growth direction of these nanowires were affected by the 

nucleation from the supersaturated metal droplet. Another interesting and important 

observation found from the phase diagram was that the solubility of antimony in copper 

increased with increase in temperature. Contrary to thin film growth, antimony 

dissolution into molten metals increased with temperature. This led to the higher 

antimony incorporation and better crystal quality of nanowires at higher temperatures. 

Taking advantage of this observation, a mechanism is proposed in this study to explain 

the growth of GaSbxN1-x nanowires in the low antimonide region using VLS mechanism. 
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Figure 5.12 A schematic illustrating various stages of proposed growth mechanism for 

GaSbxN1-x nanowires. 

Several GaSbxN1-x alloy nanowire array samples were characterized using 

photoelectrochemical and electrochemical techniques for their photoactivity. Linear 

sweep voltammetry was performed under chopped AM 1.5 illumination for the 

measurement of photoactivity of the GaSbxN1-x nanowires. The photocurrent gradually 

increased with potential and attained a steady state value, indicating diffusion limited 

photocurrent at high potentials. A photocurrent of 0.35 mA/cm2 was observed at potential 

of 1.5 V vs. RHE and was significantly higher than reported for polycrystalline GaSbxN1-

x thin films (~ few tens of microamps/cm2). Figure 5.13 shows the chopped I-V 

measurement for GaSbxN1-x nanowires grown at 700 C with 2% Sb incorporation. The 

observed onset potential of -0.2 V vs. RHE and the 2 eV band gap of the samples indicate 

that the material straddles the water redox potentials and hence does not require an 

external bias to split water unlike other III-V semiconductors that typically require a huge 

external bias to drive the water redox reactions because of their unfavorable band edge 

locations for water splitting. Although two orders of magnitude increase in photoactivity 
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has been observed in nanowires when compared to thin films, the photoactivity was still 

smaller than the theoretically expected value for a semiconductor with a 2eV bandgap. 

The reason behind the limitation could be due to several reasons like recombination of 

majority and minority carriers, slow catalysis at the semiconductor-liquid interface. The 

recombination in the nanowires occur mainly due to the presence of stacking faults which 

act as recombination centers.  

 

Figure 5.13 Chopped photocurrent density – voltage plot of GaSbxN1-x NW array sample 

under AM 1.5 illumination. 

The photoactivity in the negative potential region indicates that GaSbxN1-x electrodes 

exhibited p-type behavior in addition to the observed n-type region. However, the 

photocurrents in the p-type regions were observed to be smaller when compared to the 

photocurrents in the n-type region. The copper catalyst on the tips of the nanowires could 
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be oxidized and the resultant oxide could explain the observed p-type behavior. The p-

type behavior was not observed after the oxide was etched using HCl. Further, there was 

a significant reduction in the dark currents after acid etching. 

 

Figure 5.14 Chopped open circuit potential of GaSbxN1-x nanowire array sample under 

AM 1.5 illumination. 

              Open circuit potential measurements were performed on GaSbxN1-x nanowires to 

determine the conductivity type of the samples with a three electrode setup as explained 

in chapter 3. Open circuit potential measured w.r.t time is shown in Figure 5.14 which 

was done for 5 minutes. From the plot, it is observed that the direction of the potential 

shift was positive which showed that material is n-type similar to the observed result 

from GaSbxN1-x films. 
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Figure 5.15 Chopped photocurrent vs time plot of GaSbxN1-x electrodes under AM 1.5 

illumination at a potential of – 0.6 V. 

Figure 5.15 shows the time evolution of photocurrents of GaSbxN1-x nanowires, when a 

potential of -0.6 V vs. Ag/AgCl was applied to the electrode under 5 Sun illumination. 

The GaSbxN1-x nanowires showed no loss in photocurrents for 30 minutes indicating 

promising aqueous stability. Photoactivity measurements were performed on samples 

grown at different temperatures. Figure 5.16 shows I-V measurement for GaSbxN1-x 

nanowires at 700 °C and 850 °C. From the plot it clearly showed that the photocurrents 

have been increased for the nanowires at 850 °C when compared to 700 °C. This could be 

due to the improvement in the crystallinity of nanowires at high temperatures. 
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Figure 5.16 Photocurrent densities of GaSbxN1-x nanowires comparing at 700 C and 

800 C. 

5.5 Summary 

In summary GaSbxN1-x nanowires have been synthesized by MOCVD through VLS 

approach using copper as a catalyst. Copper-antimony alloy has been observed at the tip 

of the nanowire which led to the formation of GaSbxN1-x nanowire. Antimony 

incorporation in GaSbxN1-x nanowire has been observed to increase with increase in 

temperature due to the increase in solubility of Sb in copper at higher temperatures. This 

showed that incorporation of antimony was easier for nanowires compared to thin films 

at high temperatures. The photoactivity of GaSbxN1-x nanowires has been improved when 

compared with GaSbxN1-x thin films. 
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CHAPTER 6 

HIGHLY TEXTURED Ga(Sb)xN1-x FILMS 

6.1 Introduction 

In this chapter, experiments were conducted to improve the quality of GaSbxN1-x growth 

via metalorganic chemical vapor deposition (MOCVD) is studied in detail. Effect of 

process parameters like growth temperature, precursor flow rate on the nucleation layers 

of GaSbxN1-x and their structural properties are investigated. The resulting films were 

also tested for their optical and photoelectrochemical properties. 

6.2 Rationale 

            The photoelectrochemical properties of highly polycrystalline GaSbxN1-x films are 

limited due to short distances for carrier diffusion before recombination at trap states. 

Polycrystalline thin films contain grain boundaries which act as recombination centers for 

charge carriers. The quality of the thin film growth can be tuned by process parameters 

such as pressure, precursor composition and substrate temperature. However, there are 

many challenges with synthesis of GaSbxN1-x alloys at high temperatures. Antimony does 

not incorporate into GaN phase at 900 C or higher. So, it is important to understand on 

how to improve the quality of the resulting films within the context of improving the 

photoelectrochemical properties. In the absence of complete epitaxial growth using the 

necessary temperatures of 900°C or higher, two concepts are investigated: One concept is
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to obtain highly textured films with grains being larger than few microns and film 

thicknesses around 2 microns and the second concept is to grow highly oriented and 

textured films using liquid-phase epitaxy through a catalyst layer.  

In order to understand the growth of highly textured films, it is important to understand 

the factors that control the nucleation of new crystals and individual crystal growth. As 

shown in Figure 6.1, high density of nucleation in the initial stages followed by crystal 

growth will lead to thickening of individual crystals and alignment of facets at certain 

thickness. The texture of the resulting film only depends upon the process conditions and 

the fastest growth direction associated with the process conditions used. Therefore, a set 

of experiments are conducted to understand the relationship between the morphology of 

resulting films as a function of the growth conditions. 

 

 

Figure 6.1 A schematic illustrating cross-sectional view for textured thin film growth. 

In the second approach, it is important to understand the growth of highly oriented films 

through a concept called imperfect epitaxy where the thin film is partially oriented to the 
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substrate  

 

Figure 6.2 A schematic illustrating cross-sectional view for highly oriented film growth. 

 In an ideal scenario, at high enough temperatures, it is possible to obtain perfect epitaxy 

film which is completely oriented to the substrate parallel and perpendicularly. It occurs 

as layer by layer in which new layer is nucleated only after completion of the layer below 

and this growth is the ideal case for achieving single crystal. 

 

Figure 6.3 A schematic illustrating cross-sectional view for epitaxial growth. 

The growth mode and the resulting film morphology are mainly influenced by the growth 

temperature and precursor flow rates. Therefore, these parameters were used to tune the 

growth modes. 
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6.3 Experimental Section 

     GaSbxN1-x layers investigated in this study were grown on epi GaN-sapphire and 

highly doped n-type silicon substrates using MOCVD.  Prior to the deposition, substrates 

were cleaned in HF:HCl:CH3CH2OH:DIwater (equal proportions) by sonicating for 20 

minutes and after drying the samples in nitrogen, samples were loaded into the MOCVD 

chamber for deposition. Firstly, all the substrates were annealed under ammonia at 950 

C for 30 minutes to remove any native oxide layers from the substrates. After annealing 

step, temperature was cooled down to the desired growth temperature window and then 

precursors were supplied to the chamber using nitrogen as a carrier gas. Hydrogen was 

replaced in place of Nitrogen as carrier gas to study the effect of compensation in the 

material. Ammonia flow rate used for all the experiments was 1000 sccm. The samples 

were grown at different TMG: TMSb ratios and substrate temperatures ranging from 

450 to 600 °C. 

     Their morphology was examined by JEOL-NOVA SEM where the thickness of the 

films and quality of the crystal growth was examined. UV-Vis spectroscopy was used to 

measure the band gap of all the samples. PL was performed on GaSbxN1-x layers at room 

temperature and cold temperature using 325 nm laser excitation source. Crystallinity and 

lattice parameters were determined using X-ray diffraction analysis. 

6.4 Results & Discussion 

      Growth of GaSbxN1-x films at low temperatures resulted in polycrystalline films with 

small grains all over the surface which created lot of grain boundaries. The grain 

boundaries act as recombination centers limiting the photoactivity. Therefore, increasing 
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the grain size and reducing the defects will overcome this issue. To achieve that, growth 

of the films has been done at high temperatures and huge improvement in the crystal 

quality has been observed at high temperatures but there was no antimony incorporation 

as shown in the Figure 6.4 

 

Figure 6.4 Comparison of crystal quality and antimony incorporation at low and high 

temperatures 

The grain size was calculated from FWHM of the XRD peak and it turned out to be 11nm 

which clearly showed that grains were very small with lot of grain boundaries. Ga: Sb 

ratio was 1:5 with an antimony incorporation of 2-4 %. 
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Figure 6.5 Comparison of XRD peak for GaSbxN1-x polycrystalline film vs GaN 

substrate. 

The reason for no antimony incorporation at high temperatures was due to the high rate 

of desorption at high temperatures due to the high vapor pressures of ammonia. Figure 

6.6 showing the schematic of desorption of antimony and gallium intermediate species at 

high temperatures.  
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Figure 6.6 Adsorption processes of MOCVD precursors on substrate at elevated 

temperatures 

Possible growth mechanism of antimony incorporation into GaN or GaSbxN1-x ternary 

alloy formation in MOCVD synthesis is discussed in this section. Several studies on GaN 

growth chemistry in MOCVD have shown that there are two pathways for GaN 

formation: (i) formation via adduct pathway and (ii) pyrolysis of precursor (Trimethyl 

Gallium). Formation of GaN through an adduct pathway occurs when trimethyl gallium 

reacts with ammonia on entering into the chamber, upon reaction they form several 

intermediate species called adducts which plays major role in the formation of GaN. 

Another route is pyrolysis of precursor where trimethylgallium decompose into dimethyl 

gallium and then monomethyl gallium. Also mass spectroscopy studies on decomposition 

of trimethyl antimony (TMSb) show that it yields monomethyl antimony (MMSb) and 

methyl radicals. Further kinetic studies on decomposition of TMSb under different 

kads -kads 

MMSb MMGa: NH2 
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reactor conditions show no evidence of Sb formation in gas phase. The dominant 

homogeneous reactions for GaN formation based on the existing kinetic studies are as 

shown in the Figure 6.7 a. For GaN, it has been observed that intermediate species or 

MMG and dissociated ammonia species and for GaSb, MMSb and MMG adsorb onto the 

substrate and reaction between these species leads to the formation of final product.  

Given the complexity of GaN and GaSb 

 

Figure 6.7 a) Reaction pathway showing adduct and decomposition routes for formation 

of GaN during metalorganic chemical vapor deposition.  

formation, it is very laborious and experimentally intensive to determine the exact growth 

mechanism for GaSbxN1-x. However, from the literature studies a viable growth 

mechanism for GaSbxN1-x can be proposed. From the available data reaction between 

adsorbed MMG or DMG:NH or DMG:NH2 and MMSb is a probable rate-limiting 

reaction Therefore, this reaction could be solely responsible for change in the Sb 
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incorporation when we change parameters like flux and temperature as it affects the rate 

of adsorption or desorption.  

 

Figure 6.7 (b) Chemical reaction pathway for formation of GaSb during metal organic 

chemical vapor deposition. 

The heteroepitaxial growth of especially group III nitrides is a strenuous task as several 

factors play a major role in hindering the epitaxial growth. The first one is the selection 

of the substrate that does not have any lattice mismatch. In our case GaN substrate is the 

ideal substrate for epitaxial growth as the lattice mismatch between GaSbxN1-x and GaN 

is very small. Other disadvantages are poor cracking efficiency of ammonia and large 

dissociation pressure of N2 from the nitrides at commonly used growth temperatures. To 

achieve the high quality epitaxial films a combination of buffer layers, high growth 

temperatures (∼700-1400 °C), activated N2 species, large nitrogen source overpressures 

and separated gas inlet technology have been used to overcome these difficulties and 

obtain device quality films.135 Growth of group III nitrides by MOCVD requires a 
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minimum deposition temperature to provide sufficient mobility of surface species during 

growth to obtain epitaxial, single-crystalline growth of the group III nitrides. For 

example, in the case of GaN growth, the commonly used precursor that is TMG starts 

pyrolyzing at 475 °C and polycrystalline GaN films can be deposited at 475 °C using 

TMG and ammonia. However, in order to form a single crystalline high quality GaN 

films on sapphire the temperatures should be above 800 C. It was reported that the GaN 

films with the best electrical and optical properties were grown at 1050 ◦C. At substrate 

temperatures exceeding 1100 ◦C the dissociation of GaN and desorption of species over 

the substrate dominate in the growth layer.136 But in the case of GaSb, epitaxial growth 

can occur below 600 C with a V/III ratio close to 1.137-139 It was reported that the 

optimized V/III ratio for the high-quality GaSb growth depends largely on the reactor 

design, growth conditions, and sources used.137 The most commonly used precursors for 

GaSb growth are TMG and TMSb. Taking the growth conditions of GaN and GaSb into 

consideration, the parameters were optimized for obtaining high quality GaSbxN1-x layers. 

6.4.1 Process Optimization for Textured and Oriented Film Growth 

         Growth of GaSb was found to be strongly dependent on precursor flow rates.  

 

In Nakamura’s papers of 1992 the growth of single crystalline InGaN was achieved at 

800 ºC by flowing a 24:1 molar ratio of TMI: TMG.140 Even in case of InGaN growth it 

is very difficult to incorporate Indium into GaN at high temperatures as desorption rate of 

R =
kGaSbKGaKMMSbPTMGaPTMSb

(1+KGaPTMGa )(1+KMMSbPTMSb )
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In-adducts is also very rapid at high temperatures, but they increased the Indium 

concentration in the gas phase by a whole lot to achieve the desired incorporation level. 

Considering this fact, different experimental conditions of temperature and flow rates 

were investigated in our study until the high quality crystal with antimony incorporation 

was achieved. Figure 6.8 shows the evolution of highly textured GaSbxN1-x films by 

increasing the flow rates and temperature.  

 

 

Figure 6.8 Evolution of epitaxial GaSbxN1-x films by changing the growth temperature 

and TMSb: TMG flux ratio. 
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In the figure, red curve is showing the increase in grain size as temperature goes high. 

Blue curve showing the change in the incorporation of antimony at different TMSb: 

TMGa ratios. The improvement in the crystal quality of GaSbxN1-x layers at different 

temperatures was analyzed by examining the morphology of these layers using SEM. 

Figure 6.9 shows SEM images of GaSbxN1-x films at different temperatures. The 

improvement in the crystal quality with increase in the temperature was clearly observed. 

SEM images in Figure 6.9 are showing the interface between GaN and GaSbxN1-x. At low 

temperatures, the resulting films were completely polycrystalline with random 

orientation. The grain size increased with temperature. Several experiments were 

performed in the temperature range 700- 900 °C to investigate the evolution of epitaxial 

GaSbxN1-x films. The orientation of crystals also improved when the temperature 

increased beyond 900 °C or more. 

 

   Figure 6.9 SEM images of GaSbxN1-x layers grown at different temperatures on GaN 
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substrates. 

From the Figure 6.8 it can be observed that by using TMSb: TMGa = 40: 1, antimony 

incorporation was achieved at high temperature 800 C with a huge improvement in the 

crystal quality. As the temperature increased, antimony incorporation has been reduced 

and growth rates were observed to be increased resulting in thicker films at high 

temperatures.  

In order to understand the crystallinity, XRD analysis has been performed on these 

samples at different temperatures. Figure 6.10 comparing the XRD of GaSbxN1-x layers 

for low temperatures and high temperature and GaN substrate is shown for comparison. 

The difference in Full Width Half Maxima (FWHM) of the peak has been clearly 

observed. The narrow and intense GaN�0002 and 0004 peaks were observed at 

approximately 34.6° and 72.8° respectively for GaN substrate indicating that the GaN 

film was a single phase with a wurzite crystal structure. For GaSbxN1-x films, peaks were 

observed around same angles with a shift to lower angles for different samples. Samples 

that were grown at different temperatures were compared for full width at half-maximum 

FWHM values of the XRD to determine the epitaxial quality of the layers. For sample 

that was grown at low temperature the FWHM was very broad with a value of 1440 

arcsecs whereas for the sample grown at high temperature (800 C) the FWHM was 540 

arcsecs which indicates that GaSbxN1-x film was of highly quality and the shift of the 

peak to lower angles from GaN substrate clearly imply increase in lattice spacing thereby 

antimony incorporation.  
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Figure 6.10 Comparison of XRD peaks for GaSbxN1-x layers grown at different 

temperatures. 

The Optical properties of these GaSbxN1-x layers were measured using UV-Vis 

spectroscopy and PL. From diffuse reflectance measurement by UV-Vis spectroscopy the 

Tauc plots were obtained for the samples at different temperatures as shown in the Figure 

6.11. The band gaps of 1.7 eV and 2.1 eV were obtained for GaSbxN1-x layers at 

temperatures 775 C to 800 C. These values were corroborated  
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Figure 6.11 Tauc plots obtained for GaSbxN1-x layers grown at different temperatures. 

with the peak shift obtained from the XRD and antimony composition from SEM-EDS 

analysis. Nitrogen was replaced with hydrogen as a carrier gas to passivate the defects in 

the crystal. Figure 6.12 shows the XRD of GaSbxN1-x layers comparing between 

hydrogen and nitrogen as a carrier gas. From the plot, it was clearly observed that for the 

layers grown using hydrogen as carrier gas, the XRD peaks were very sharp with small 

FWHM. This indicated that hydrogen improved the crystal quality. Also PL analysis has 

been performed on GaSbxN1-x layers at different temperatures at room temperature. 

Interesting observation was that there was no PL signal for GaSbxN1-x polycrystalline 

films at room temperature. But for the films synthesized at high temperatures and using 

hydrogen as a carrier gas, a sharp PL signal was obtained at 1.8 eV and 2.1 eV for 775° C 

and 800 °C respectively. This is another way to tell that defects have been reduced and 

crystal quality has been improved. 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0

10

20

30

[F
(R

).
 h

]2

, 
e

V
2

heV

   1.57% Sb @ 825 C

   1.80% Sb @ 800 C

   2.01% Sb @ 775 C

   2.60% Sb @ 700 C

   3.60% Sb @ 650 C

   4.80% Sb @ 600 C

   5.70% Sb @ 575 C  

 

 



 129 

 

Figure 6.12 Comparison of XRD peaks for GaSbxN1-x layers grown using H2 and N2 as 

carrier gas for metal organic precursors. 

 

Figure 6.13 Photoluminescence of GaSbxN1-x layers at 775 C and 800 C using H2 as 
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carrier gas.  

Even though the high textured growth has been achieved, the single crystal growth would 

be ideal for efficient photoresponse. Also high TMSb: TMG flux ratios are required to 

incorporate antimony at higher temperatures.  

A VLS approach in making single crystal quality films has been demonstrated using 

copper as a catalyst layer. The growth mechanism of this approach is similar to the VLS 

growth of GaSbxN1-x nanowires explained in chapter 5. However, in this growth, copper 

catalyst has been deposited by sonication of copper nanoparticles in ethanol and drop 

casting them on the substrates. After that, they have been reduced in hydrogen using 

microwave plasma reactor for 30 minutes at 900 W and 40 torr. After the reduction in 

hydrogen, substrates have been transferred to MOCVD chamber and pretreatment step 

has been performed at 900 C for 30 minutes under ammonia. The deposition was carried 

out at 700 C with a ratio of TMG: TMSb = 1:5 for 40 minutes at 80 torr. The growth 

started with the formation of GaSbxN1-x nanowires via VLS and coalesced into a compact 

epitaxy films with antimony incorporation. Figure 6.14 shows the schematic of formation 

of GaSbxN1-x epitaxy films via VLS approach. In the figure, the first step is the copper 

nanoparticle deposition on the substrate. The second step is the MOCVD growth where 

copper forms eutectic with antimony and the dissolution of precursor species into the 

molten alloy precipitates as nanowire. These nanowires coalesce into epitaxy film leaving 

a copper-antimony melt on the top layer. 
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Figure 6.14 A schematic of formation of GaSbxN1-x film using copper as catalyst. 

Figure 6.15 shows the SEM images of epitaxial films synthesized using a catalyst layer.  

Figures 6.15 a) and b) shows the top view of the films before and after etching in KOH. It 

can be observed from the images that morphology has changed after etching in KOH 

leading to ordered facets on the top layer. By etching in KOH, the metallic layer copper-

antimony or copper has been removed and sharp pyramids have been revealed. 

 

 

Figure 6.15 a) SEM images showing top view of GaSbxN1-x epitaxial films grown at 700 

C using catalyst layer (before etching) 
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Figure 6.15 b) Top view of GaSbxN1-x epitaxial film via VLS growth using copper as 

catalyst (after etching in KOH) 

 

 

Figure 6.15 c) Cross view showing GaSbxN1-x coalesced into a epitaxial film (after 

etching in KOH) 
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6.3.2 Photoelectrochemical Characterization 

         GaSbxN1-x layers synthesized at different temperatures were tested for photoactivity 

measurements. Firstly, chopped I-V measurement has been done using 450 nm filter 

which blocked all of the UV absorption and part of violet light. This fundamental 

analysis is important to understand if the resulting photocurrent densities were coming 

from the deposited GaSbxN1-x due to band gap reduction or from the GaN substrate. The 

underlying substrate was GaN with a band gap of 3.4 eV which cannot absorb any light 

with 450 nm filter. Figure 6.16 is showing the chopped I-V of GaSbxN1-x film with and 

without filter comparing for GaSbxN1-x and GaN substrate. From the figure it can be 

inferred that GaN substrate with filter did not show any photoresponse whereas with filter 

there was little photoactivity. This indicates that GaN only showed UV response. 

Therefore, the photocurrents that were observed for GaSbxN1-x sample exhibited only 

from GaSbxN1-x visible response suggesting photocurrents were from actual band gap 

reduction from 3.4 eV to visible region in GaSbxN1-x. However, the interesting 

observation was photoactivity from GaSbxN1-x was higher without filter than with filter. 

This could be due to UV + Visible absorption. Even though GaN does not contribute to 

photocurrents in heterojunction, it might be helping in charge separation. 
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Figure 6.16 Chopped I-V measurement of GaSbxN1-x film comparing photoactivity with 

and without using 450 nm filter for AM1.5 illumination. 

Figure 6.17 shows the chopped I-V measurement comparing for GaSbxN1-x 

polycrystalline thin film vs textured thick film. From the I-V measurement, it clearly 

suggests that photoactivity has been increased for thick and good quality film when 

compared to polycrystalline film. This could be due to two reasons one is because of 

increase in the thickness which allows for more absorption of photons. The optical 

absorption depth calculated for GaSbxN1-x layers from transmission spectroscopy was 

around 2 microns which suggests that the thickness of the film needs to be 2 microns. 

Another one is due to the increase in quality of the crystal which has tremendously fewer 

defects when compared to polycrystalline films which reduce the recombination of 

charge carriers. 
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Figure 6.17 Comparison of chopped I-V curves obtained for GaSbxN1-x polycrystalline 

thin film and textured thick film using AM 1.5 illumination. 

In order to have a better understanding of what is limiting the photocurrent densities 

fundamental photoelectrochemical characterization has been performed on GaSbxN1-x 

layers. One main reason would be electron-hole recombination and accumulation of 

photogenerated holes at the interface which slower the process of water oxidation. This 

was also evident from the magnitude of slow transient decay phase from the I-V 

measurement under illumination. Therefore, a hole scavenger was used as an electrolyte 

that was sodium sulfite to promote the photocatalytic activity and enhance the visible 

light response. The experiment was conducted using similar conditions except that 

sodium sulfite was replaced in place of sodium sulfate. Figure 6.18 showing the chopped 

I-V measurement of GaSbxN1-x layers under illumination with sulfate and sulfite. The 
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interesting observations found from the measurement were more cathodic onset potential 

with hole scavenger, better fill factor and magnitude of the transient decay reduced 

indicating less hole accumulation at liquid junction and less capacitive behavior. Also the 

important one to be observed from the plot was increase in the photocurrent densities. 

Hole scavenger acts as electron donor which react irreversibly with the photogenerated 

holes and enhance the charge separation resulting in better photoresponse. The reaction 

of hole scavenger at the interface is given below 

SO3 -2 + 2(OH)- + 2h+     SO4 -2 + H2O 

 

Figure 6.18 Chopped I-V curves obtained for GaSbxN1-x films under illumination using 

sodium sulfite and sodium sulfate in electrolyte solution. 
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Moreover, by adding a hole scavenger, the kinetic barrier for the hole transfer that is 

overpotential required to drive the oxygen evolution reaction will be reduced. Therefore, 

this analysis suggested that GaSbxN1-x alloys were undergoing kinetic limitation and hole 

accumulation at the interface which created rapid recombination.  

 

Figure 6.19 Band edge diagram showing the energetic requirements associated with the 

minimum thermodynamic energy to drive HER and OER reactions, catalytic 

overpotentials and photovoltage. 
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observed for GaSbxN1-x nanowires grown using copper as a catalyst. This indicates that p-

type behavior was coming from copper-antimony alloy on top of the films.  

6.5 Summary 

In summary two concepts were proposed to improve the quality of GaSbxN1-x films, one 

to increase the grain size by growing at high temperatures and another one to grow single 

crystal layers through liquid phase epitaxy with a catalyst layer. The growth of highly 

textured GaSbxN1-x films was achieved at high temperatures including antimony 

incorporation by increasing the TMG:TMSb ratio from 1:5 to 1:40. The quality of the 

films and grain size has tremendously improved when compared to the films synthesized 

at low temperatures. The FWHM of XRD peak reduced with increase in temperature 

indicating the increase in grain size. Moreover FWHM of XRD and PL peaks has been 

reduced when nitrogen was replaced with hydrogen as a carrier gas. Fundamental 

photoelectrochemical characterization using 450 nm filter revealed that photoresponse 

exhibited from the GaSbxN1-x films were only from visible photoresponse due to the band 

gap reduction from GaN to GaSbxN1-x. Additionally using hole scavenger improved the 

photocurrents and fill factor indicating the hole accumulation at the interface. In addition, 

single crystal layers have been synthesized by VLS approach with copper as a catalyst 

layer in the temperatures range between 700 °C to 850 °C. Although the quality of the 

films improved, the photoresponse dropped down which could be due to the doped 

impurities. 
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CHAPTER 7 

CONCLUSIONS 

This project revealed a new visible light absorbing material suitable for 

photoelectrochemical (PEC) water splitting using sunlight. In this dissertation, large band 

gap bowing of GaN alloys in the low antimonide region has been investigated. This was 

the first successful attempt on the experimental synthesis of crystalline GaN based alloy 

in the low antimonide regime and PEC data on activity, band edge energetics and 

stability that showed high suitability for direct solar water splitting. Fundamental PEC 

characterization on these alloys that will be helpful to understand the important 

photoelectrochemical properties has been performed. Deep insight into improving the 

crystal quality of the films has been investigated in order to improve the photoactivity. 

Also, new approach of making ternary alloy single crystal films using VLS mechanism 

has been demonstrated. Fundamental growth mechanisms and structural properties of the 

ternary alloy nanowires have been studied which can be extended to other ternary alloy 

materials of interest. A remarkable feature of this work is the striking qualitative and 

quantitave agreement between experiment and theory with main aspects about the 

material. The above material with a combination of properties suitable for PEC water 

splitting can play a significant role in other applications such as photocatalysts, tandem 

solar cells. 

Novel alloy GaSbxN1-x has been synthesized on various semiconductor (GaN and highly
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doped n-type silicon), metal (stainless steel) and amorphous insulator (fused silica). The 

band gap of the GaSbxN1-x ternary alloys exhibited around 2eV to 1.5 eV direct 

transitions with Sb levels ranging from about 2 at% to 8 at%. This dilute amount of 

antimony incorporation into GaN can lead to efficient visible light absorption. Also the 

alloys with more than 7% antimony incorporation exhibited indirect band gap transition. 

The band edges of GaSbxN1-x straddle the water oxidation and reduction reactions for all 

of the above band gap values. The agreements have been consistent in terms of lattice 

expansion, band gap transition from direct to indirect with Sb levels >7 at% and large 

band gap reduction just with 2 at% Sb inclusion. Specifically, all the experimental 

observation matched with theoretical DFT + U predictions. Moreover, crystal quality of 

these alloys was polycrystalline with small grains all over the surface with a grain size of 

around 11nm. As synthesized GaSbxN1-x alloys were able to drive the water splitting 

reaction without any external bias but exhibited low photocurrent densities of 10-20 

micro amperes. In order to improve the performance single crystalline nanowires, highly 

textured film growth and epitaxial growth via VLS have been demonstrated.  

Single crystalline GaSbxN1-x nanowires were synthesized by MOCVD using VLS growth 

with copper as a catalyst. The antimony incorporation into GaN has shown to increase 

with increase in temperature. This was due to the high solubility of antimony in copper at 

high temperatures. Incorporation of antimony in GaN at high temperatures was done with 

TMGa : TMSb ratio of 1: 5 whereas for films high TMSb:TMGa ratio was used. The 

photoactivity of GaSbxN1-x nanowires has been increased at two orders of magnitude 

when compared with thin polycrystalline films. 

At low growth temperatures, GaSbxN1-x layers resulted in polycrystalline films with lot of 
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grain boundaries which limited the photoactivity. To improve the crystal quality, alloys 

were synthesized at high temperatures but found no antimony incorporation with 

TMGa:TMSb = 1:5. For TMGa:TMSb = 1:40, the antimony was incorporated into GaN 

even at high temperatures. By employing pretreatment step, crystal quality has been 

improved tremendously starting at temperature 750 C. The FWHM of the highly 

textured films was observed to be 500 arcsecs which reduced drastically when compared 

with films grown at low temperatures without pretreatment step. This indicates that 

crystal quality has been improved. PL analysis at room temperature exhibited band gap 

values of 1.8 eV and 2.1 eV at 775 and 800 C respectively. The band gap values 

corroborated with the values determined from UV-Vis and antimony composition. The 

antimony composition obtained from SEM-EDS for the films at high temperatures 

matched with XRD peak shift and lattice expansion. The samples with good crystal 

quality have shown improvement in photoactivity of around 1mA/cm2 when compared to 

polycrystalline films but still low when compared with the theoretical photocurrent 

densities the material can exhibit. The photoactivity observed from the samples was 

proven to be exhibited from GaSbxN1-x due to band gap reduction from 3.4 eV to 1.8 – 2 

eV. This was done with the use of 450nm filter which blocked the UV absorption from 

GaN substrate. GaN substrate showed no photoactivity with filter and indicated that the 

extra currents exhibited from GaSbxN1-x films were actually coming from the visible 

response due to the bandgap reduction. By using hole scavenger as an electrolyte the 

photoactivity has been increased tremendously and also the magnitude of the transient 

decay has been reduced. This clearly indicated that there was a huge accumulation of 

photogenerated holes at the semiconductor- electrolyte interface thereby slowing the 
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oxygen evolution process. In addition, new approach of growing epitaxy GaSbxN1-x films 

using catalyst layer has been demonstrated. GaSbxN1-x growth started as nanowires and 

coalesced into a compact epitaxy film through VLS mechanism by using copper as a 

catalyst. Single crystal quality has been observed even at low temperatures of 700 C 

which is usually difficult to achieve through vapor phase deposition. Moreover, the band 

gap of the samples was observed to be 1.7-1.8 eV.  
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CHAPTER 8 

FUTURE RECOMMENDATIONS 

8.1 Growing quality GaSbxN1-x films 

   The synthesized GaSbxN1-x layers helped in understanding fundamental properties of 

the material. But the photoactivity of the material still needs to be improved. Growing a 

complete single crystal GaSbxN1-x film with band gap of 1.8 eV to 2 eV would be ideal 

for achieving high solar to hydrogen efficiencies. Also defect free single crystalline 

nanowires would be useful in improving light absorption and thereby better PEC 

performance. In order to achieve uniform epitaxial growth of GaSbxN1-x films, employing 

a rotation of the substrate is recommended. Growing epitaxy films without catalyst layers 

using plasma excitation allowing for antimony incorporation is recommended and 

growing them on inexpensive substrates like stainless steel needs to be studied. Studying 

the role of different catalysts that allows for VLS growth would be useful in 

understanding the doping in the films. Moreover, studying the properties of films with  

>7% Sb incorporation is recommended. 

8.2 Photoelectrochemical Properties: 

Although the material has all the requirements to efficiently split water, the photoactivity 

was limited due to several factors like surface defects, poor kinetics at semiconductor-
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liquid interface, accumulation of photogenerated charge carriers at the interface. To 

overcome these issues, it is recommended to investigate the surface passivation of these 

layers to passivate the surface defects. Gallium oxide is one material that can be studied 

for surface passivation. To address the problem with slow kinetics, study of different 

electrocatalysts on these layers would be helpful. The high quality films obtained using 

catalyst layer exhibited p-type behavior with very low photoactivity due to the 

compensation effect developing p and n-type impurities. The reason for this 

contamination in the films needs to be studied. Clean epitaxy films without any 

compensation needs to be synthesized for high PEC efficiencies. Also the role of 

hydrogen in passivating the defects in the material needs to be studied. Synthesis of 

graded band gap nanowire architectures, comprising of ternary alloy layers with a gradual 

decrease in band gap from core-shell is recommended. By creating a graded 

semiconductor, all the carriers are swept in the steep internal electric field and charge 

separation is boosted. Most importantly, the composition gradient also results in layers of 

different band gaps, which results in improved light harvesting of the solar spectrum. 

Figure 13 shows the charge carrier in graded band gap semiconductor and a conventional 

n-type electrode. The gradient in the composition allows light of several different 

wavelenghts to be absorbed. In contrast, in the conventional n-type electrode, only a 

single wavelength is absorbed. 
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Figure 8 A schematic illustrating the charge carrier transport in compositionally graded 

GaSbxN1-x and conventional n-type electrode. 

Developing a two absorber based PEC cell using n-type GaSbxN1-x with a band gap of 1.8 

-2.0 eV as the photoanode and p-type GaSbP with a band gap of 1.0 – 1.3 eV as the 

photocathode would be ideal for high efficiencies.  

8.3 Electrical Properties: 

Studying the minority carrier diffusion lengths and lifetimes, mobilities would give better 

understanding on why the photoactivity is limiting even though the quality has been 

improved. These properties will give an idea on charge accumulation and subsequent 

recombination at the semiconductor-electrolyte interface. GaSbxN1-x has huge potential 

towards efficient solar water splitting so by growing high quality and performing the 

above recommended studies would definitely pave the way for high solar to hydrogen 

efficiencies.
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Abstract 

Here, we present a scalable method based on both atmospheric plasma and wet 

chemical oxidation methods to synthesize thin films and nanowire arrays of both cupric 

and cuprous oxides. In terms of nanowire arrays, the wet chemical oxidation is shown to 

produce copper hydroxide nanowire arrays on copper foils using hydrogen peroxide as 

the oxidant similar to ammonium persulfate. Experiments using different concentrations 

of hydrogen peroxide at constant pH resulted in higher nucleation density and smaller 

diameter of copper hydroxide nanowires. A scheme involving short period wet chemical 
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oxidation followed by plasma annealing resulted in high density of Cu2O nanowire 

arrays. The overall process is rapid on the order of 1 minute reaction time scale. 

Photoelectrochemical characterization of titania coated copper oxide nanowire and thin 

film electrodes showed that the nanowire array electrodes showed significantly higher 

photoactivity than the thin film electrodes. The performance of resulting Cu2O NW array 

electrodes can be optimized further with other protective coatings. 

Keywords:  copper oxide nanowires, atmospheric plasma, solar water splitting, atomic 

layer deposition, photoelectrochemical characterization 

Introduction 

Photoelectrochemical water splitting for solar hydrogen production represents one 

of the grand challenges towards carbon free energy generation. However, there are no 

known semiconductor materials with the appropriate band gap, band edge positions and 

aqueous stability required for solar water splitting.1,2 Cuprous oxide (Cu2O) is an 

attractive material because of the non-toxicity, earth abundance of its constituent 

elements and has a band gap of approximately 2.2 eV, with its band edges straddling the 

water reduction and oxidation potential.3-5 As-synthesized, Cu2O is a p-type 

semiconductor due to the acceptor states resulting from copper vacancies located at 0.4 

eV above the valence band.6 Cuprous oxide can act as efficient photocathode for 

hydrogen evolution. However, the valence band position is just below the oxygen 

evolution potential and this would imply less driving force for oxygen evolution.            

 One of the main challenges with cuprous oxide is its inherent instability in 

aqueous solutions.7 The photostability challenge posed by the Cu2O electrodes has been 
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addressed by depositing thin films of titania on cuprous oxide by atomic layer 

deposition.8 The resulting hetero-junction is not only expected to improve stability but 

also reduces recombination by enhancing the electron transport due to the inbuilt electric-

field at the hetero-junction. Gratzel and co-workers modified the cuprous oxide 

photocathode by coating it with a layer of titania followed by aluminum doped zinc oxide 

and then electrodepositing platinum nanoparticles to improve the stability and 

performance of the Cu2O electrodes.9 It was found that the titania coated cuprous oxide 

photocathodes had poor stability in aqueous solutions and exhibited no photoactivity after 

20 min. Pin holes formed during the ALD of titania have been found to result in 

instability in aqueous solutions. Additional layers of zinc oxide and alumina improved 

the photostability (78 % of the short-circuit current density retained after 20 min) and 

also play an important role in enhancing the charge separation and mitigating the 

electron-hole recombination in Cu2O. 

The poor electrical conductivity of Cu2O has been a limiting factor in achieving 

high efficiency for Cu2O based solar cells and is also a major concern for solar water 

splitting cells.10 The absorption depth corresponding to the band gap of Cu2O has been 

reported to be 10 µm.11   However, the diffusion length of carriers in electrodeposited 

copper oxide (Cu2O) has been found to be on the order of 20-100 nm.12 In view of this, 1-

D single crystal architectures in the form of nanowire arrays could offer the thickness 

necessary for optical absorption and short length scales for diffusion of minority carriers 

to semiconductor-electrolyte interface to drive the water splitting reaction. The single 

crystal nature of one-dimensional structures should allow direct conduction pathways for 

faster charge transport.13,14 However, the performance and stability of single crystal 
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copper oxide nanowires coated with titania for solar hydrogen production has not been 

investigated.  

The synthesis of polycrystalline cuprous oxide films has been accomplished with 

a number of techniques such as electrodeposition, photochemical deposition, RF 

magnetron sputtering, chemical bath deposition, anodic oxidation and thermal oxidation 

methods.9,15-19 However, the synthesis of cuprous oxide nanowire arrays has been 

achieved using a limited number of techniques. Synthesis using template and surfactant 

assisted methods has mostly yielded polycrystalline cuprous oxide nanowires with the 

exception of a few reports describing the growth of single crystal cuprous oxide 

nanowires.20-23 Wu and co-workers reported the synthesis of linearly aligned complex 

chains of metal cations which could be reduced by glucose to form single crystal cuprous 

oxide nanowires with a  diameter of 20 nm and lengths of several microns.24 Li et al. 

demonstrated the liquid phase synthesis of Cu2O NW (diameter ~ 20 nm) by the 

reduction of cupric acetate using reducing agents with methoxy group.25  Ajayan and co-

workers reported a simple electrochemical method utilizing only Cu foil and DI water to 

synthesize cuprous oxide nanowires.26 To the best of our knowledge there have not been 

any reports describing the growth of single crystalline cuprous oxide nanowires arrays 

directly on conducting substrates by thermal or plasma oxidation. Several reports suggest 

thermal oxidation of copper foils at temperatures between 400-700 °C over several hours 

resulted in bicrystalline CuO nanowire arrays.27-31 To synthesize Cu2O nanowire arrays, a 

two-step process has been primarily developed: In the first step, copper is subjected to 

wet chemical oxidation using ammonium persulfate in sodium hydroxide solutions to 

produce copper hydroxide nanowire arrays; and in the second step, the copper hydroxide 
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nanowire arrays are thermally annealed at temperatures around 450 °C to convert them to 

Cu2O nanowire arrays.32  

All the synthesis techniques discussed above require several hours of oxidation or 

annealing time scales to produce few microns long Cu2O nanowire arrays on copper foils. 

In addition, the resulting nanowires had diameters in excess of 100 nm and it is not clear 

as to what factors control the diameters and the number density of the resulting nanowire 

arrays. Here, we present a scalable approach for producing Cu2O nanowire arrays on 

copper foils and on other substrates such as quartz, fluorinated tin oxide (FTO) substrates 

and other metallic foils. Specifically, we investigated the use of atmospheric plasma 

combined with wet chemical oxidation to produce cuprous oxide nanowire arrays. Also, 

we performed a series of experiments to understand nucleation and growth of copper 

hydroxide and copper oxide nanowires using both wet chemical oxidation and plasma 

oxidation processes. Most importantly, the photoelectrochemical performance of films 

and nanowire arrays coated with thin layers of titania are investigated and compared.  

Experimental 

Atmospheric plasma exposure experiments are conducted using a microwave 

plasma discharge whose details are described elsewhere. 33 Various experiments were 

conducted using atmospheric plasma discharge at powers ranging from 500-900W and air 

flow rates ranging from 5-10 lpm. Wet chemical oxidation experiments were conducted 

by immersing copper foils in sodium hydroxide solutions at pH values ranging from 7-14 

containing different amounts of oxidizers such as ammonium persulfate ((NH4)2S2O8) 

and hydrogen peroxide. Atomic layer deposition of titania films on the copper oxide thin 

films and nanowire arrays was carried out using a Savannah 100 ALD system 
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(Cambridge Nanotech).  The deposition was carried out at a pressure of 600 mTorr and a 

temperature of 250 °C using water and titanium isopropoxide as the precursors. The 

deposition process was carried out for 650 cycles to form a 20 nm titania coating on the 

electrodes. The synthesized samples were analyzed using X-ray diffraction (Bruker 

Instruments) and Scanning electron microscopy (Nova FEI SEM). The optical band gap 

of the films was determined using diffuse reflectance obtained with a UV-VIS 

spectrophotometer (Perkin Elmer, Lambda 900).  

For photoelectrochemical characterization, the resulting copper oxide film and 

nanowire arrays samples are made into electrodes using the following procedure. The 

copper foils are connected to an electrical wire at the back using conductive silver epoxy 

and then the entire non-active area was covered with Hysol epoxy (Loctite 9464).  The 

electrodes were cured for 110 °C for 1h. A Hysol E120HP, which has excellent chemical 

resistance, was applied over the previously cured epoxy coating and was allowed to dry 

at room temperature for 12 h. 

All the photoelectrochemical measurements were performed in 

photoelectrochemical cell equipped with a quartz window. A three electrode 

configuration comprising of copper oxide working electrode, Ag/AgCl reference 

electrode and a platinum mesh counter electrode was used for the characterization. A 

solution sodium sulfate (1 M), buffered to pH 4.9 using a sodium phosphate solution (0.1 

M) was used as the electrolyte. For analyzing current-potential (J-E) curves, the 

potentials measured w.r.t. Ag/AgCl electrode was converted to potential w.r.t reference 

hydrogen electrode (RHE). The data were not corrected for any other extrinsic losses 

such as the iR losses. The photoresponse of electrodes was measured under chopped AM 



 160 

1.5 radiation from a 200 W Xe lamp (Newport Instruments). The light intensity was 

adjusted to 100 mW/cm2 (1 Sun illumination) using a calibrated Si photodiode. The 

typical active area of the electrodes was 0.68 cm2. For the linear sweep voltammetry 

experiments (J-E curves), a scan rate of 5 mV/s was used. All the electrochemical 

measurements were recorded using an EG&G Princeton Applied Research 273 A 

potentiostat. The Mott-Schottky analysis was done under 1 sun illumination and a 

frequency of 10 Hz was used. Platinum loading onto the nanowire arrays was performed 

using a three electrode setup using copper oxide as the working electrode, Ag/AgCl as 

the reference and a Pt mesh as the counter electrode. An aqueous solution of 1mM 

chloroplatinic acid was used as the electrolyte and a potential of -0.1 V vs. Ag/AgCl was 

applied for 10 minutes. Copper electroplating on the gold sputtered fluorinated tin oxide 

(FTO) glass slides was performed using a two electrode configuration where FTO glass 

was used as the counter electrode, a copper foil was used as the working electrode. An 

aqueous solution of 1 M copper sulfate and 0.5 M sulfuric acid was used the electrolyte 

and a current density of -10 mA/cm2 was applied for 10 minutes. 

Results and discussion 

Several researchers have shown that wet chemical oxidation using ammonium 

persulfate in sodium hydroxide solutions. The experiments performed at pH values >10 

resulted in copper hydroxide (Cu(OH)2) nanowire arrays on copper foil.34 Similarly, such 

wet chemical oxidation method has been shown to work with several other metals in 

producing their respective hydroxide nanowire arrays.35,36,37 However, it is not clear 

about the underlying reasons for producing one-dimensional structures and the role of 

ammonium or sodium persulfate. Here, a set of experiments are conducted to gain insight 
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in to wet chemical oxidation procedure. Firstly, experiments are performed at different 

pH values using sodium hydroxide and potassium hydroxide. The results showed that 

copper hydroxide nanowire arrays resulted at pH >10 and no differences were seen 

between experiments involving sodium hydroxide and potassium hydroxide. In order to 

understand the role of oxidizer, experiments are performed using hydrogen peroxide 

instead of ammonium persulfate. The experiments resulted in copper hydroxide nanowire 

arrays similar to those obtained using ammonium persulfate. In the case of ammonium 

persulfate as oxidizer, the growth of copper hydroxide nanowires proceeds by an 

oxidation process according to the reaction. 

Cu + 4NaOH + (NH4)2S2O8           Cu (OH)2 + 2 Na2SO4 + 2 NH3 + H2O 

The above overall reaction can be understood better with the use of hydrogen peroxide as 

the oxidizer. The oxidation of copper foils with hydrogen peroxide is expected to follow 

two steps: 

Cu + H2O2             CuO + H2O   (Step 1) 

CuO + 2OH-            Cu(OH)2 +1/2 O2  (Step 2) 

Cu + H2O2 + 2OH-               Cu(OH)2 + ½ O2 + H2O (Overall Reaction) 

  

The above proposed two-step reaction suggests that the oxidation proceeds in forming 

copper oxide first and then hydrolyzing to form hydroxide. The copper hydroxide, copper 

oxide phases are not stable when the pH of the solution is less than 10 as indicated by the 

Pourbaix diagram (Figure 1) and this explains why no nanowire formation was observed 

in the experiments carried with pH < 10.  
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Figure 1 Pourbaix diagram of copper-water system at 25 °C generated using Medusa 

software. [Cu2+] concentration of 1 µM was used. The green dotted lines show the 

hydrogen and oxygen evolution potential.  

Experiments using different concentrations of hydrogen peroxide at constant pH of 12 

showed that the number density of nanowire arrays increased and diameter of resulting 

nanowires decreased with increasing concentration of hydrogen peroxide as depicted in 

Figure 2. It is important to note that pH of the solution would change with time as sodium 

hydroxide is being consumed in the reaction and hence it is essential to maintain constant 

pH to ensure proper growth of the nanowires. As the reactions proceeds it was observed 

color of the solution changed to dark blue suggesting the presence of a copper ions in the 

solution phase. These copper ions in the solution could cause deviations in nanowire 

growth when pH is not maintained.  
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Figure 2 Scanning electron microscopy images showing increase in nanowire density 

with increase in H2O2 concentration: (a) 0.5 M (b) 1 M (c) 1.5 M 
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Figure 3  (a) SEM image showing the nucleation of NW by wet chemical oxidation and 

their growth by (b) thermal oxidation for 10 min and (c) plasma oxidation for 20 s. (d) 

Schematic illustrating growth of wires through plasma oxidation 

The length of the copper hydroxide nanowires increased with increased oxidation times. 

As wet oxidation time increased, the length of the nanowires was found to increase from 

500 nm (30s immersion time) to 3 microns (1-2 minutes immersion time) as shown in 

Figure S2 (refer Supplementary Information). There was no significant change in the 

nanowire length at longer immersion times of 30 minutes. These observations support the 

argument that nanowire formation mechanism is through basal growth at 

nanowire/substrate interface. To further validate the growth mechanism, short copper 

hydroxide nanowires (~500 nm in length) were grown by wet chemical oxidation and 

Plasma annealing 

~ 20 s 

Cu foil in NaOH + H2O2 

+ water ~ 8min 

 

 

Cu(OH)2  

Cu2O NW 
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then exposed to plasma oxidation for 20 s or thermal oxidation for 10 minutes. The 

increase in length of the nanowires after the oxidation step shows that nanowires 

nucleated by the wet oxidation method grow longer by preferential oxidation at the 

nanowire/oxide film interface. Hence, the nucleation and growth mechanism of copper 

hydroxide nanowires can be thought to proceed in similar to the plasma oxidation of 

metal foils to form metal oxide nanowires. See schematic in Figure 4. The only difference 

is that high pH conditions result in the formation of metal hydroxide nanowires, where as 

in plasma oxidation metal oxide nanowires are formed. 

 Direct plasma oxidation of copper foils resulted in thin films of Cu2O and CuO 

with different exposure conditions. Cu2O thin films resulted when exposed to  

 

Figure 4 Schematic explaining the mechanism for the formation of copper hydroxide 

nanowires: (a) Cu foil reacts with the oxidizer to form copper oxide and subsequent 

nucleation (b) copper oxide is converted to copper hydroxide and nucleation of copper 

hydroxide (d) basal growth of nanowires 
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atmospheric plasma flame that resulted in higher temperatures < 500 °C for the copper 

foils. CuO films resulted with exposures that resulted in temperatures > 500 °C for the 

copper foils. The resulting films were about 2-3 µm thickness with only about exposure 

over 2-3 minutes unlike thermal oxidation or other methods that require processing over 

several tens of minutes. Figure S3 shows the SEM images of the copper oxide thin films 

produced by plasma oxidation. A few of the thin film samples prepared by the plasma 

oxidation technique also showed a low density of nanowires as shown in Figure S2 in 

supplementary information document. Prior work on the growth of hematite nanowire 

arrays on iron foil showed that the plasma overheating or the initial temperature rise 

before the substrate reaches an equilibrium temperature is a critical factor controlling the 

nucleation density.38,39 Also, earlier reports have shown that the thermal oxidation of 

copper foils over 4 hours at atmospheric pressure results in cupric oxide (CuO) nanowire 

arrays in temperature window of 400-700 °C for 4 h.27  These findings suggest that 

temperature control of the copper will play a key role in determining the number density 

of the nanowires on copper foil. 

The synthesis of copper oxide nanowires was carried out using a two-step 

approach: In the first step, copper hydroxide nanowires were formed by a wet oxidation 

using hydrogen peroxide and in the second step, the copper hydroxide nanowires were 

annealed in the atmospheric air plasma for few seconds to convert the copper hydroxide 

nanowires to copper oxide nanowires. Figure 3 illustrates the synthesis scheme for 

making copper oxide nanowires. The XRD spectrum of the copper oxide thin films and 

nanowires are shown in Figure 5. Analysis of the peak positions showed that a small 

fraction of CuO phase was present in the Cu2O nanowire samples.  In addition, the 
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synthesis of nanowire arrays was also carried out on glass slides coated with fluorinated 

tin oxide (FTO). Copper was electrodeposited on gold sputtered FTO slides which were 

then immersed into a solution of hydrogen peroxide and sodium hydroxide for a very 

short period of time ~ 2 minutes. Unlike Cu foils, the electrodeposited Cu formed a film 

of copper hydroxide nanoparticles. Interestingly, copper oxide nanowires were observed  

 

Figure 5 (a)  XRD spectrum of the Cu2O and CuO thin films and (b) NW arrays 

synthesized on copper foils  

a 

b 
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when these copper hydroxide nanoparticles were annealed using plasma oxidation. Even 

though copper hydroxide nanowires are not formed in the wet oxidation procedure, the 

copper hydroxide nanoparticles could act as nucleation sites for the growth of copper 

oxide nanowires during the plasma oxidation step.  
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Figure 6 Tauc plots for CuO (black) and Cu2O NW (red) for determining the band gap. 

The inset shows the Tauc plots for CuO (black) and Cu2O thin films. Both Cu2O thin 

films and nanowire arrays samples show the presence of CuO, which is most likely to be 

present as an oxide layer beneath the nanowires 

 The optical band gap of the resulting samples is determined using diffuse 

reflectance data as shown in Figure 6. The band gap values are found to be about 1.5 eV 

for CuO and 2.1 for Cu2O, NW respectively. The band gap for the CuO thin films was 
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found to be 1.5 eV and 2.4 eV for Cu2O. The difference in the band of Cu2O thin films 

and nanowire arrays might originate due to difference in the crystalline grain sizes. 

Analysis of the Tauc plot for Cu2O NW samples evidence for some CuO present in the 

Cu2O NW samples and this is also in agreement with the XRD results.. The phase purity 

of Cu2O NW arrays has also been shown to be challenge with the nanowire annealed by 

thermal oxidation.31,32 The CuO in the Cu2O nanowire array sample is most likely to be 

present as a polycrystalline layer beneath the Cu2O NW arrays.  
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Figure 7 Mott-Schottky plot for Cu2O NW and thin films obtained at 1 sun illumination 

(100 mW/cm2) and 10 Hz frequency.  

The Mott-Schottky of the Cu2O NW and thin film electrodes are represented in Figure 7.  

The intercept of the Mott-Schottky plot gives the value Vfb + kT/q, where Vfb is the flat 

band potential, k is Boltzmann constant, q is the electron charge. The flat band potential 
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for the Cu2O NW arrays and the thin films was estimated to be 0.012 V vs. Ag/AgCl or -

4.05 eV vs. vacuum. The CuO NW had a flat band potential of 0.01 V vs. Ag/AgCl while 

CuO thin films had a flat band potential of 0.06 V vs. Ag/AgCl. The negative slope in the 

Mott-Schottky curves indicates that Cu2O and CuO electrodes show p-type behavior.  

The hole concentration can be estimated using the equation. 

𝑁 =  
2

𝑞Ɛ𝑜Ɛ𝑟  
𝑑

𝑑𝑉
(

1
𝐶2)

 

where N is the carrier density, Ɛ𝑜 = (8.854 x 10-12 F/m) is permittivity of free space, Ɛ𝑟  

is the dielectric constant, and  
𝑑

𝑑𝑉
(

//1

𝐶2 )  is the slope of the Mott-Schottky curve. A 

dielectric constant of 6.3 for cuprous oxide and 10.26 for cupric oxide was used for the 

calculations.40,41 Basing on the slopes obtained from the Mott-Schottky plots the carrier 

densities are calculated as 5.6 x 1022 cm-3 for the Cu2O thin films and 1.9 x 1023 cm-3 for 

the Cu2O nanowires. The carrier density is estimated to be 5 x 1021 cm-3 for CuO thin 

films and 1.37 x 1022 cm-3 for CuO NW respectively.  The open-circuit potential data as 

shown in Figure 8 indicate slightly negative values for nanowire arrays compared to 

films. This difference is similar to that observed with flat band potential values using 

Mott-Schottky technique. 
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Figure 8 Photovoltage transients for the Cu2O and CuO thin films and nanowires under 

open circuit condition. The electrodes were illuminated with a chopped AM 1.5 light 

(100 mW/cm2).   

The J-E curves measured under chopped AM 1.5 illumination for Cu2O thin films and 

nanowires are shown in Figure 9. The chopped illumination method has the advantage of 

monitoring the light and dark current simultaneously. Cu2O NW array electrodes showed 

significantly higher photocurrent than the thin film electrodes. At a potential of 0V w.r.t. 

reference hydrogen electrode the photocurrent density (Jlight-Jdark) was found to be 0.06 

mA/cm2 and 0.26 mA/cm2 for the thin film and Cu2O NW array electrodes respectively.  

Thin films of CuO and nanowire arrays of CuO showed very low photocurrents.  
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Figure 9 Current density vs. Potential characteristics for the Cu2O, CuO thin films and 

nanowire arrays measured under chopped AM 1.5 illumination (100 mW/cm2).  

The work function of copper (4.65 eV)42  is less than that of copper oxide (4.8-5.2 eV)43 , 

causing the bends bending downwards at the copper oxide-copper interface after the 

Fermi levels equilibrate. This results in the formation of a Schottky barrier for the holes 

at the copper oxide-copper interface.44 The experimentally measured barrier heights 

range from 0.74-0.84 eV.45 For a p-type semiconductor the holes have to move through 

the bulk of the semiconductor to counter electrode to participate in water oxidation 

reaction, while the electrons are transferred from the surface of the semiconductor to 

electrolyte for the hydrogen evolution reaction. The Schottky-barrier for the holes at the 

copper-oxide/copper interface would result in slower transport of holes across the 

interface. This would increase the recombination of the holes with electrons thereby 

lowering the current density. To eliminate this Schottky barrier, the synthesis was carried 
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out with FTO slides, sputtered with gold and subsequently coated with copper by 

electrodeposition. The SEM images of cuprous oxide nanowires grown on FTO are 

shown in Figure 10. Interestingly, the nanowires grown on FTO also showed similar 

performance as that of nanowires grown on Cu foil, suggesting the minimal role of the 

Schottky barrier affecting the performance (Figure S6, Supplementary information). The 

low photocurrents seen with nanowire electrodes could be due to recombination arising at 

the polycrystalline copper oxide film present beneath the nanowire arrays (Figure S7, 

Supplementary information). Also the presence of Ti+3 trap states in titania could hinder 

the transport of electrons at the semiconductor-electrolyte interface and lower the 

observed photocurrents.46 Another possibility is the sluggish kinetics of H2 reduction at 

the titania interface and a suitable catalyst like platinum could help overcome this 

problem. Preliminary experiments involving loading platinum particles onto the titania 

coated nanowire arrays showed no significant improvement in photoactivity. Also, it was 

found that the photocurrent density saturates when the light intensity is increased beyond 

1 Sun (Figure S8, Supplementary Information). These results clearly point out the 

detrimental role of the interfacial oxide which limits the performance of the copper oxide 

nanowire arrays. The interfacial oxide layer not acts as transport barrier for the charge 

carrier but also increases the recombination losses and has to be eliminated to achieve 

higher photocurrents from the nanowire arrays. 
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Figure 10 Scanning electron microscopy images of (a) copper hydroxide film formed on 

the FTO slides after the wet chemical oxidation and (b) growth of Cu2O NW arrays after 

plasma annealing for 2 minutes. 

The stability of the electrodes was tested by monitoring the open circuit voltage 

under 1 chopped AM 1.5 conditions. The open circuit voltage vs. time plots is shown in 

Figure 8 and it can be seen that both the nanowire and thin film electrodes are stable for 

atleast 1000 seconds. A significant loss of photoactivity was seen after long exposure 

times (>2000 seconds). The loss in photoactivity was found to be more rapid when a 

potential was applied. The loss in photoactivity could be due to the pin holes in the titania 

coated Cu2O electrodes and after 300s no photoactivity was observed with cuprous oxide 

nanowire electrodes when a potential of -0.55V vs. Ag/AgCl was applied. Similar 

observations on the stability of titania coated Cu2O electrodes, were made by Gratzel and 

co-workers who found that a black layer, corresponding to formation of copper, was 

found on the illuminated region of the Cu2O photocathodes. The CuO thin film and NW 

electrodes were only stable for few minutes and showed no photocatalytic activity after 5 

mins.  
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The fabrication of a thick mesoporous cuprous oxide nanowire electrode without 

any interfacial oxide layer would be the ideal architecture. This would provide the 

necessary thickness for light absorption, provide more intimate contact between the 

nanowires and electrolyte for better charge transport at the semiconductor-electrolyte 

interface, solve the issue of phase purity and would eliminate recombination losses due to 

the polycrystalline oxide layer. Our ongoing research efforts include the fabrication of 

these mesoporous electrodes and investigation of alternative protective layers for 

improving the stability and performance of the cuprous oxide nanowires. 

Conclusions 

A generic and scalable synthesis technique for growing cuprous oxide nanowire arrays on 

different substrates is presented. The synthesis of nanowire arrays was carried out on 

copper foils, glass slides coated with fluorinated tin oxide, other metallic foils and could 

be extended to other substrates. Experiments using hydrogen peroxide for wet chemical 

oxidation suggest that the nucleation and growth of copper hydroxide nanowires proceed 

in similar fashion to that of plasma oxidation. Also, the combination of wet chemical and 

plasma oxidation can be interesting for reducing the time scales for a variety of other 

materials systems. Photoelectrochemical characterization of the copper oxide film and 

nanowire arrays showed that the nanowires show a significant enhancement in 

photocurrents. Cuprous oxide nanowires grown on gold sputtered FTO slides showed 

similar performance as that of the nanowires grown on copper foils suggesting that the 

presence of Schottky barrier is not limiting the performance. The presence of an oxide 

layer beneath the nanowire arrays limits the high photocurrents that can be achieved with 
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nanowire arrays. The performance of the thick, mesoporous copper oxide nanowire 

electrodes without any interfacial oxide layers is currently under investigation. 

 

Supporting information 

Figure S1 shows the effect of wet chemical oxidation times on the nanowire length. The 

nanowires are about 500 nm in length for 30 s oxidation time and increase in length to 

about 3-4 µm at 30 minutes.  The increase in length with time suggests that nanowire 

formation occurs nucleation followed by basal growth.     
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Figure S1 SEM images of copper hydroxide nanowires with different immersion times 

(a) 30 s (b) 1 min (c) 10 min (d) 30 min 

Figure S2 shows the scanning electron microscopy images for copper oxide thin films 

produced by direct plasma oxidation. A few of the thin film samples showed a low 

density of nanowires.  Temperature control of the copper foil is critical for achieving 

nucleation density and is tough achieve in direct plasma oxidation techniques. A wet 

chemical oxidation followed by plasma annealing is more attractive synthesis route for 

achieving high density of nanowires. 

 

 

 

Figure S2 Scanning electron microscopy images of copper oxide nanowires formed by 

direct oxidation of copper foils in atmospheric air plasma. (a) top view (b) cross-section 

view. 

Figure S3 shows the copper oxide thin films produced by direct plasma oxidation. Films 

of 2-3 µm thickness could be produced in a very short time scales on the order of a 

100 nm 500 nm

d 
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minute. Figure S4 shows the Cu2O and CuO nanowires that were synthesized by plasma 

annealing the Cu (OH)2 nanowires.     

 

 

 

 

 

Figure S3. SEM images of Cu2O and CuO thin films synthesized through plasma 

oxidation.  

 

Figure S4 SEM images of Cu2O and CuO nanowires formed after the plasma annealing 

the copper hydroxide nanowires.  

Figure S4 shows the photocurrent transients for copper oxide thin films and nanowires 

obtained at 0 V vs. Ag/AgCl. The nanowires and thin films showed no loss in 

photocurrent for at least 200s when no bias (w.r.t. Ag/AgCl) was applied. The spikes seen 
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in the photocurrent transients and also in the J-E curves could be arising from the 

accumulation of charge carriers at the semiconductor-electrolyte interface . The decay in 

current density to a steady state value might be due to recombination of these 

accumulated carriers. 
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Figure S4 Photocurrent transients for the copper oxide thin films and nanowires under 

short circuit condition. The electrodes were illuminated with a chopped AM 1.5 light 

(100 mW/cm2). 

Figure S5 shows the energy diagram depicting with the band edge positions of Cu2O and 

TiO2.  The fermi level of copper, Cu2O and Au are also shown.  The work function of Cu 

is less than that of Cu2O resulting in a Schottky barrier at the Cu2O/Cu interface. 

 

 

Figure S5 Energy band diagram showing the locations of the band edges of Cu2O, TiO2, 

hydrogen and oxygen evolution potential at pH = 4.9.  The Fermi level of Cu, Cu2O and 

Au are also indicated. 
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In order to remove the Schottky barrier present at the Cu2O/Cu interface, a layer 

of gold was sputtered on an FTO glass slide followed by the electrodeposition of copper. 

Cuprous oxide nanowires were synthesized on these FTO glass slides and the 

electrochemical performance was evaluated. Figure S6 shows the J-E curves for the Cu2O 

wires grown on gold sputtered FTO slides.  At 0 V vs. RHE a photocurrent density of 

0.15 mA/cm2 was obtained. The unexpected lower value of the photocurrent density 

could due the presence of an oxide layer beneath the wires that could result in the 

recombination of charge carriers.  
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Figure S6 J-E plots of Cu2O NW synthesized on gold sputtered FTO glass slides under 

chopped AM 1.5 illumination. 

Figure S7 shows the cross-sectional SEM image of copper oxide nanowire array sample 

synthesized on a copper foil. Recombination of charge of carriers this polycrystalline 
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oxide layer leads to a significant loss in the observed photocurrent densities for nanowire 

arrays samples.  

 

 

Figure S7 Scanning electron microscopy sample showing the presence of an oxide layer 

beneath the copper oxide nanowire arrays. 
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