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RESEARCH ARTICLE

Identification of root exudates from the Pb-accumulator Sedum alfredii under Pb
stresses and assessment of their roles
Qing Luo , Shiyu Wang, Li-na Sun, Hui Wang, Tong Bao and Muhammad Adeel

Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang,
People’s Republic of China

ABSTRACT
The Pb-accumulator Sedum alfredii is a good phytoremediation material, and widely used in the
phytoremediation research of soils contaminated with Pb. The root exudates from it may be
playing a significant role in the process of phytoremediation. In this study, the metabonomics
method which based on gas chromatography–mass spectrometry (GC–MS) and pattern recognition
analysis was used to identify the remarkable root exudates from S. alfredii under different Pb
stresses, including exposure concentrations (0, 10, 50, 200 and 1000 µmol/L) and times (4 and 8
days). And batch extraction experiments were used to verify the roles of these remarkable root
exudates. According to the results, 11 metabolites were considered as the remarkable metabolites.
Oxalic acid, galactonic acid and glyceric acid can remove Pb in soil, and the removal effect was:
oxalic acid > galactonic acid > glyceric acid. Xylose, glucose and maltose have no removal effect for
Pb in soil.
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Introduction

Since the inception of global industrialization and urbaniz-
ation, heavy metal-contaminated soils have become an emer-
ging and serious concern due to deleterious effect on human
and animal health (Rascio and Navari-Izzo 2011). In China,
recently nationwide surveys reported that 16% of the soil
samples, 19% for the agricultural soils, are polluted with
heavymetals based onChina’s soil environmental quality stan-
dards (Zhao et al. 2014).Most of the agriculture land across the
world is highly polluted with heavy metals including Lead
(Pb). Pb is considered the most harmful for human health
and accumulated at highest rates in soils (Venkatachalam
et al. 2017). Environment researchers have given high priority
to reducing the bioavailability of heavy metals in agriculture
sites in order to ensure food security and human health
(Bian et al. 2014).

Phytoremediation is novel, cost-effective, efficient,
environment friendly and solar-driven remediation technol-
ogy, which can improve the soil quality (Pilon-Smits 2005;
Ali et al. 2013). Sedum alfredii is a newly discovered Cd/Zn
co-hyperaccumulator native to China (Lu et al. 2010) which
growing in an old mining areas of southeast China (Yang
et al. 2002a, 2004), and later it demonstrated as a Pb accumu-
lator (He et al. 2002). Earlier studies has exposed the accumu-
lation and transportation mechanisms of S. alfredii (Long
et al. 2002; Yang et al. 2002a, 2002b, 2004, 2006a), but
some mechanisms still have not been clearly understood,
especially the role of root exudates.

Root exudates play crucial role in the process of phytor-
emediation as an emerging green and in situ remediation
technology. Root exudates are plant metabolites which
exuded from plant roots to improve plant nutrient uptake
and alleviate the response to environment stresses (Luo

et al. 2014, 2015). The chemical composition and quantity
of root exudates depend on plant’s inherent biology, such
as plant species and growth cycle and other is plant growth
environment (Luo et al. 2017). Root exudates can alter the
chemical form of heavy metals, and then add or subtract
their bio-available content (Kuang et al. 2003). Low mol-
ecular weight organic acids (LMWOA) which released
from plant roots were attested to enhance phytoextraction
of heavy metals by stimulating the mobility of metals and
changing the nutrient condition (Rajkumar et al. 2012).
Dissolved organic matter (DOM) which released from the
rhizosphere of S. alfredii could be markedly decrease Zn
and Cd adsorption and enhance their mobility by form
the soluble DOM–metal complexes (Jiang et al. 2013).
Citric acid and oxalic acid can maximize the translocation
of Cd, Cu and Pb from roots to shoots (Fan et al. 2001).
However, these studies are the targeted researches which
based on some specified compounds, mainly are organic
acids. The not-targeted researches which based on the
approximate global analysis of root exudates from accumu-
lator were rarely reviewed.

Metabonomics method is a high flux and unbiased com-
posite analysis method which can expose the different meta-
bolic states of the creature and identify the remarkable
metabolites among the different states of biological systems
(Wang et al. 2014). Our group has been using this technique
to evaluate the variation of root exudates and identify the
potential biomarkers among the accumulating and non-
accumulating ecotype of S. alfredii under Cd and Pb stresses
(Luo et al. 2014, 2015, 2017). The present study focus on the
identification of the remarkable root exudates from the Pb-
accumulator S. alfredii under Pb stresses and the verification
of role of these remarkable root exudates.
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Materials and methods

Chemicals

Pb(NO3)2, oxalic acid, galactonic acid, glyceric acid, xylose,
glucose and maltose (analytic grade) were purchased from
Sinopharm (Shanghai, China). Methanol (HPLC grade)
used for extracting the plant root exudates was obtained
from Fisher Ltd., USA. Pyridine (HPLC grade), methoxamine
hydrochloride and N-methyl-N-(trimethylsilyl) trifluoraceta-
mide (MSTFA) for GC–MS analysis were purchased from
Sigma Ltd., USA.

Plant culture

Pb-accumulator S. alfredii was collected from an old Pb/Zn
mined area in Quzhou, Southeast China. In order to mini-
mize the internal heavy metal contents, plants were grown
in a non-contaminated soil in Shenyang University for
some generations before used. Then, uniform plants, measur-
ing in height with shoots, were selected and cultivated in the
nutrient solution which including 3.0 mmol/L KNO3,
0.5 mmol/L NH4H2PO4, 2.0 mmol/L Ca(NO3)2 ,1.0 mmol/L
MgSO4·7H2O, 4.5 µmol/L MnCl2·4H2O, 23 µmol/L H3BO3,
0.4 µmol/L ZnSO4·7H2O, 0.15 µmol/L CuSO4·5H2O,
0.05 µmol/L H2MoO4·H2O, and 22 µmol/L EDTA-Fe. Every
day, the pH of nutrient solution was adjusted to 6.0 using
the 0.1 mol/L NaOH or HCl. The plants were grown in a
greenhouse condition which has natural light and the room
temperature (10–20°C). The nutrient solution was renewed
every 4 days to avoid nutrient depletion and restrict bacterial
growth.

Pb treatment

In order to prevent lead precipitation, the NH4H2PO4 con-
centration in nutrition solution was adjusted to 5 µmol/L.

First, the experiment of different Pb exposure concen-
trations was conducted. Intact roots of two weeks old seed-
lings of S. alfredii were treated with five treatments: 0
(control), 10, 50, 200 and 1000 µmol/L Pb(NO3)2, each pot
containing one plant and each treatment has 11 pots. After
growing for 4 days, the root exudates were collected.

Then, the experiment of different Pb exposure times was
carried out. According to the results of the experiment of
different Pb exposure concentrations, 200 µmol/L is an
important node. When the exposure concentration higher
or lower than this node, the morphology, physiology and
root exudates of plants are all changed significantly. So 0
(control) and 200 µmol/L Pb(NO3)2 were selected as the
exposure concentrations for the experiment of exposure
times. Intact roots of two weeks old seedlings of S. alfredii
were treated with two Pb treatments: 0 (control) and
200 µmol/L Pb(NO3)2, each pot containing one plant and
each treatment has 11 pots. After growing for 4 and 8 days,
the root exudates were collected.

Collection and pretreatment of root exudates

The procedure for the collection of root exudates has been
described by Hao et al. (2010). The plants were transplanted
to the sterilized pots which contain 50 mL deionized water in

every pot to collect the root exudates for 6 h (from nine in the
morning to three in the afternoon).

Sample preparation, derivatization and detection pro-
cedure were modified on the basis of previous studies (Lisec
et al. 2006; Katsumasa et al. 2009). The root exudates were
frozen by liquid nitrogen and freeze-dried for 2 days. The
dried residue was resuspended in 100 mL of deionized
water and freeze-dried again, then redissolved in 10 mL of
cold MeOH. The sample solution was gently blow dried by
N2. After that, the dried residue sample was suspended in
40 µL 20 mg/mL methoxyamine hydrochloride pyridine
solution and shaken for 2 h at 37°C. Then, 70 µL N-methyl-
N-(trimethylsilyl) trifluoroacetamide (MSTFA) was added
and shaken for 30 min at 37°C. The sample was waiting for
the GC–MS detection.

GC–MS detection of root exudates

The Thermo fisher PolarisQ mass spectrometer coupled with
Thermo Trace GC Ultra was used to detect root exudates.
Chromatographic column was the TR-5MS capillary column
(30 m × 0.25 µm × 0.25 mm). The initial GC oven tempera-
ture was set at 70°C and maintained for 1 min, then slowly
raised by 1°C/min to 76°C, followed by 5°C/min to 330°C
and maintained for 10 min. The sample was injected in the
splitless mode and the inject volume was 1 µL. The carrier
gas was helium and the flow rate was 1 mL/min. The temp-
eratures of injection port, interface and ion source were set
at 230°C, 250°C and 210°C, respectively. The mass selective
detector was run in the electron impact (EI) mode and the
electron energy was 70 eV. The mass analyzer was run in
full scan mode (m/z 50–600), and the solvent delay time
was set at 3 min.

Data processing and pattern recognition analysis

The automatic mass spectral deconvolution and identifi-
cation system (AMDIS, version 2.71) was used to extract
the GC–MS raw data, obtain the chromatographic retention
time, peak area, mass spectrometry and other useful infor-
mation. A plant metabolites database, containing mass spec-
trometric data of many plant metabolic compounds which
collected from Fiehn and Golm Metabolome Database
(GMD), was set as the AMDIS database to identify the
detected chromatographic peak. And the qualitative standard
was the similarity is greater than 70%. The output of AMDIS
was direct import to the metabolomics ion-based data extrac-
tion algorithm (MET-IDEA, version 2.08) which used to pre-
process the chromatographic data, including baseline
calibration, peak alignment, and so on. The MET-IDEA par-
ameters including: (i) chromatography was GC, average peak
width was set as 0.1, minimum peak width was set as 0.3,
maximum peak width was set as 6, peak start/stop slope
was set as 1.5, adjusted retention time accuracy was set as
0.95 and peak overload factor was set as 0.3; (ii) mass spec
was trap, mass accuracy was set as 0.1 and mass range was
set as 0.5; (iii) the AMDIS exclude ion list was 73, 147, 281,
341 and 415, lower mass limit was set as 50 and ions per com-
ponent was set as 1; (iv) the retention time calibration was set
as 9.30 min. Before pattern recognition analysis, the chroma-
tographic peak area of every identified compound must be
normalized. The normalization method was the peak area
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values were divided by the average of the compound which
first appeared.

Pattern recognition analysis was accomplished by
SIMCA-P 13.0 (Umetrics, Sweden). Principal component
analysis (PCA) was firstly used to get an overview of the
sample distribution and discover the possible outliers.
Before the analyses, the normalized GC–MS data were
unit-variance scaled. Then, the orthogonal partial least-
squares discrimination analysis (OPLS-DA) was carried
out to identify the remarkable metabolites which observa-
bly contribute to differentiation. The value of Variable
Importance in the Projection (VIP) was utilized to assess
the variable contribution and identify the potential bio-
markers. The univariate statistical analysis was conducted
by SPSS 19.0 for further recognition of the potential bio-
markers, such as box figure analysis and analysis of var-
iance (ANOVA), and the p-value was set as .05 for
statistical significance.

Batch extraction with the remarkable root exudates

Soil samples (0–20 cm) were collected from the Shenyang
Zhangshi Irrigation Area, western Shenyang, Northeast
China. The soil was air-dried and sieved to <2 mm. The
organic matter content of the soil sample was 19.8 g/kg, the
pHH2O was 6.4, the cation exchange capacity (CEC) was
16.8 cmol/kg and the soil was clay loam. The concentration
of Pb is 72.4 mg/kg.

Two grams of soil sample were extracted with 20 mL
0.01 mol/L NaNO3 aqueous solution in a 50 mL polypropy-
lene centrifuge tub in a reciprocal shaker for 3 h at room
temperature (∼20°C). The NaNO3 solution contained the
every remarkable root exudates and the content was 0, 2, 4,
8 and 16 mmol/L, respectively. The soil suspension was cen-
trifuged at 7000 rpm for 20 min and then filtered through
Whatman No. 42 paper. The concentration of Pb in the
extract was determined by AAS.

Results

Metabonomic profiling by GC–MS

Sixty-eight metabolites were detected and identified in root
exudates of Pb-accumulator S. alfredii under 0, 10, 50, 200
and 1000 µmol/L Pb treatment for 4 days. The relative con-
tents of these 68 metabolites were listed in the Supplemental
file (Supplemental Table 1). The obvious differences of the
composition or content of root exudates were discovered
from the total ions chromatogram (Figure 1).

Seventy-two metabolites were detected and identified from
Pb-accumulator S. alfredii under 0 and 200 µmol/L Pb treat-
ment for 4 and 8 days. The relative contents of these 72
metabolites and the total ions chromatogram were listed in
the Supplemental file (Supplemental Table 2 and Fig. 1).

Pattern recognition analysis of identified root
exudates

The PCAandOPLS-DAwere used to carry out the pattern rec-
ognition analysis of identified root exudates. The PCA scores
plots of the identified metabolites from S. alfredii in different
Pb treatment groups are shown in Supplemental file (Sup-
plemental Figs. 2 and 3). In Supplemental Fig. 2, when we ana-
lyze all treatments together, samples from 0, 10 and 50 µmol/L
treatments clustered together, not separated. Butwhenwe only
analyze the samples from t0, 10 and 50 µmol/L treatments, an
obviously separation was achieved. When we look at the
samples from 0, 10 and 50 µmol/L Pb treatments as a whole,
samples under low Pb concentration, a clearly separation
was obtained when analyzed together with samples from 200
and 1000 µmol/L Pb treatment. In Supplemental Fig. 3, a
clearly separation was observed between 0 and 200 µmol/L
Pb treatment for 8 days, and this separation was superior to
4 days. Besides this, the separation condition between 4 and
8 days under 200 µmol/L Pb treatments was better than
0 µmol/L. These indicated that Pb exposure concentration

Figure 1. The total ions chromatogram of root exudates from S. alfredii under different Pb exposure concentrations for 4 days. (A) 0 µmol/L Pb treatment; (B)
10 µmol/L Pb treatment; (C) 50 µmol/L Pb treatment; (D) 200 µmol/L Pb treatment and (E) 1000 µmol/L Pb treatment. Some identified compounds: (1) lactic
acid-2TMS; (2) l-alanine -2TMS; (3) diethyleneglycol-2TMS; (4) glycerol-3TMS; (5) succinic acid-1TMS; (6) nonanoic acid-1TMS; (7) decanoic acid-1TMS; (8) erythri-
tol-4TMS; (9) fructose-1MEOX-5TMS; (10) glucose-1MEOX-5TMS; (11) 9-hexadecenoic acid-1TMS; (12) octadecanol-1TMS; (13) octadecanoic acid-1TMS and (14)
beta-sitosterol-1TMS.
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and time all can change the composition and quantity of root
exudates of S. alfredii, and the influence of high Pb concen-
tration is greater than low Pb concentration, and the influence
of long time is greater than short time.

For more significant classification, a supervised learning
method, such as PLS-DA, OPLS-DA or two-way OPLS-DA
(O2PLS-DA), was employed to remove nonessential factors
and then improved the accuracy of classification. We used
OPLS-DA to discriminate amongst different Pb treatment
groups in this study (Figures 2 and 3). As shown in the scores
plot, the result is similar to the result of PCA, just the aggre-
gation and separation is more visible.

Identification of remarkable metabolites

Remarkable metabolites were selected by the VIP plots
(Figures 4 and 5) and loading plot (Supplemental Figs. 4

and 5) from the pattern recognition model. The VIP value
>1 and the points were relatively far away from the center
in the loading plot indicate variables that have an above aver-
age influence on the classification (Lu et al. 2013). Further-
more, alternation of the remarkable metabolites was
evaluated using ANOVA (p < .05). Consequently, 16 metab-
olites were considered as remarkable metabolites when
S. alfredii under different Pb exposure concentrations for 4
days, and 18 metabolites gathered when S. alfredii under
different Pb exposure times. The relative contents of these
remarkable metabolites were listed in the Supplemental file
(Supplemental Tables 3 and 4).

Under two experimental conditions, Pb exposure concen-
trations and times, 11 remarkable metabolites were the same.
They were oxalic acid, hexanoic acid, glyceric acid, xylose,
glucose, n-pentadecanoic acid, galactonic acid, n-docosane,
hexadecanoic acid, 9-hexadecenoic acid, maltose,

Figure 2. The OPLS-DA scores plot of S. alfredii under different Pb exposure concentrations for 4 days (●) 0 µmol/L Pb treatment, (▪) 10 µmol/L Pb treatment, (▴)
50 µmol/L Pb treatment, (◆) 200 µmol/L Pb treatment; (▾) 1000 µmol/L Pb treatment.

Figure 3. The OPLS-DA scores plot of S. alfredii under different Pb exposure times (●) 0 µmol/L Pb treatment for 4 days, (▴) 200 µmol/L Pb treatment for 4 days, (▪)
0 µmol/L Pb treatment for 8 days, (▾) 200 µmol/L Pb treatment for 8 days.
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respectively. So we focused on the role of these 11 remarkable
metabolites in the follow-up experiments.

Verification of the role of remarkable metabolites

For further verifying the role of remarkable metabolites, batch
extraction experiments were performed. Due to poorly solu-
bility or insolubility in water, some remarkable metabolites,
such as hexanoic acid, n-pentadecanoic acid, n-docosane,
hexadecanoic acid and 9-hexadecenoic acid were not consider
in the batch extraction experiments. Because the content of
root exudates around rhizosphere is low, series low concen-
trations of batch extraction experiments were conducted.

From Figure 6, you can see that the extraction amount of
Pb increased with the increase of the concentration of galac-
tonic acid and glyceric acid. When the concentration of oxalic
acid was 2 mmol/L, the extraction amount of Pb was less than
the control (0 mmol/L). However, when the concentration of
oxalic acid was 4 mmol/L, the extraction amount of Pb was
significantly higher, and increased with the increase of the

concentration of oxalic acid. The extract effect was: oxalic
acid > galactonic acid > glyceric acid. The extraction amount
of Pb under different concentration of xylose, glucose and
maltose was same.

Pb content is the amount of Pb in extracted solution
divided by the soil weight.

Discussions

In this study, 68 and 72 metabolites were detected and ident-
ified when the Pb-accumulator S. alfredii were treated under
0, 10, 50, 200 and 1000 µmol/L Pb treatment for 4 days and 0,
200 µmol/L Pb treatment for 4, 8 days, respectively. And
there have many chromatographic peaks or compounds
were not identified. But, only based on these identified metab-
olites, we observed the obviously differences of quantity or
composition of root exudates which released from the Pb-
accumulator S. alfredii under different Pb exposure concen-
trations and times through PCA and OPLS-DA. These find-
ings are in agreement with previous results, many factors can

Figure 4. The OPLS-DA VIP plot of root exudates of S. alfredii under different Pb exposure concentrations for 4 days.

Figure 5. The OPLS-DA VIP plot of root exudates of S. alfredii under different Pb exposure times.
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change the quantity and composition of plant root exudates,
such as plant species and their growth cycle and environ-
mental stresses, etc. (Lilia et al. 2011; Selvakumar et al. 2012).

Based on the results of the loadings plots, the VIP values of
OPLS-DA and ANOVA, 11 metabolites were consider as the
remarkable metabolites when the Pb-accumulator S. alfredii
treatment with different Pb exposure concentrations and
times. We speculated that these 11 remarkable metabolites
might play an important role in the process of S. alfredii
response to Pb stress.

Batch extraction experiments showed that oxalic acid,
galactonic acid and glyceric acid can removed the Pb in
soil. The removal effect of xylose, glucose and maltose for
Pb in soil were not obvious. Oxalic acid and glyceric acid
also were selected as potential biomarkers when two ecotypes
of S. alfredii treated with Pb and their roles were activated Pb
in soil (Luo et al. 2017).

Several prior studies have reported that the LMWOA play
an important role in the process of modification of bioavail-
ability of heavy metal (Sun et al. 2006; Yang et al. 2006b;
Montiel-Rozas et al. 2016). Organic acids can behave as
natural chelating agent to activate heavy metal in soil
(Kim et al. 2010; Agnello et al. 2014). Oxalic acid have a
potentially ability to release Pb from pyromorphite in
heavy metals contaminated soils (Debela et al. 2010). Oxalic
acid and citric acid can inhibit the formation of pyromor-
phite and zinc phosphates (sparingly soluble minerals) in
soils (Debela et al. 2013). Oxalic acid significantly increased
Pb uptake when the seeds (Zinnia elegans Jacq.) was treated
with Pb (Cui et al. 2007). Oxalic acid also can enhance As
mobilization by dissolving As host minerals and competing
for sorption sites (Sun et al. 2016). In this study, oxalic acid
was considered as the remarkable metabolites and can effi-
ciently remove Pb in soil. Under a high pH condition, oxalic
acid could chelate react with Pb to form an insoluble Pb-
oxalate complex on the soil surface, and then decrease the
bioavailability of Pb (Wasay et al. 1998). So when the con-
centration of oxalic acid was 2 mmol/L, the removal was
less than the control.

Organic acids could lead to the acidification of the rhizo-
sphere by decrease the pH (Niu et al. 2013; Seshadri et al.
2015), and then mobilized the insoluble heavy metal chelates
in soil, increased their bioavailability (Wang and Lin 1991).
Some sugar acids, such as gluconic acid and glucaric acid,
have a good effect to remove heavy metals in soil (Burckhard
et al. 1995; Wasay et al. 2001; Fischer and Bipp 2002). In this
study, galactonic acid and glyceric acid were considered as the
remarkable metabolites and they can remove Pb in soil. Due
to glyceric acid is weak acid, the remove effect is general.

The main function of carbohydrate is to provide carbon
source for microorganisms (Görke and Stülke 2008). In this
study, carbohydrate, such as xylose, glucose and maltose,
has no remove effect for Pb in soil. But carbohydrate plays
an important role in the process of phytoremediation. It
can change the number and activities of microorganisms,
and then indirectly affect the bioavailability of heavy metals
in soil.

Hexanoic acid, n-pentadecanoic acid, n-docosane, hexade-
canoic acid and 9-hexadecenoic acid also were considered as
remarkable metabolites, but they are poorly solubility or inso-
lubility in water, they cannot be excessively used as removal
product. In this study, we did not explore their roles. But
these metabolites might be useful for phytoremediation,
such as through microbes (Brace 2001).

Conclusions

In this study, we used the metabonomics method based on
GC–MS technology and pattern recognition analysis method
to identify the remarkable root exudates when the Pb-accu-
mulator S. alfredii was exposed to different Pb concentrations
and exposure times. The results indicated that Pb concen-
trations and exposure times can obviously change the quan-
tity and composition of plant root exudates, and 11
metabolites were considered as remarkable metabolites.
Batch extraction experiments showed that oxalic acid, galac-
tonic acid and glyceric acid can remove Pb in soil, and the
removal effect was: oxalic acid > galactonic acid > glyceric
acid. Xylose, glucose and maltose have no removal effect for
Pb in soil.
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