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ABSTRACT
The cytosine DNA methylation and demethylation have a role in regulating plant responses to the
environment by affecting the promoter regions of most plant defense-related genes through the
CpG islands or the CCGG motifs. Salicylic acid, a defense and signaling plant hormone, is seen
playing crucial role in the variation of the methylome. In this study, the effects of salicylic acid and
feeding of the millet headminer (Heliocheilus albipunctella de Joannis) on pearl millet DNA
methylome changes were evaluated through MSAP epigenotyping during panicle development.
The results showed that millet headminer feeding increased the level of genomic methylation
while application of salicylic acid caused DNA demethylation occurring mostly at external cytosine
and accompanied by a decrease of the number of larvae per panicle. This suggests that
hemimethylation (external cytosine methylation) has key role in regulating defense responses and
conferring tolerance to pearl millet through salicylic acid application.

ARTICLE HISTORY
Received 25 March 2018
Accepted 2 May 2018

KEYWORDS
DNA demethylation; DNA
methylation; salicylic acid;
MSAP epigenotyping;
external cytosine; millet
headminer

Introduction

Plants responds differently during pest attacks. Feeding of
insects on plants is a dynamic ecological interaction, with
characteristics of the insect and the plant affecting feeding
behavior. During attacks, larval pest release chemical cues
from oral secretions which are detected by the plants
through the pattern recognition receptors, and this
enhances the efficacy of the responses (Stahl et al.
2017). For instance, in tomatoes, Nesidiocoris tenuis feed-
ing triggers defense response induction (Naselli et al.
2016). The plant response affects feeding, growth, and
survival of herbivores and include development of struc-
tural barriers, toxic chemicals, and attraction of natural
enemies of the target pests (Howe and Jander 2008; War
et al. 2012).

However, some insects develop survival strategies that
neutralize plant defense by suppressing the plant immune
responses (Musser et al. 2005). The plant responses are con-
trolled by a series of coordinated epigenetic events, which
involve DNA methylation (Baulcombe and Dean 2014; Gij-
zen et al. 2014; Espinas et al. 2016). The DNA methylome
variation directs expression of plant defense-related genes.
A decrease and increase of methylation level is associated
with upregulation or downregulation of genes during pest
stress. Heliocheilus albipunctella, the millet headminer feed-
ing may act like methylating agents on the epigenome.
Usually, the CpG islands which 95% of CG dinucleotides
are dispersed throughout 99% of the genome and are typically
methylated and found in half of all promoters (Vinson and
Chatterjee 2012).

Epigenetic defense is also influenced by salicylic acid (SA),
a multifaceted plant hormone that have eliciting effects in
plant defense (Vicente and Plasencia 2011; Ngom et al.
2017; Razmi et al. 2017). Usually, accumulation of SA in
the nucleus as a defense signal is induced by biotic stresses
(Gao et al. 2015), but its exogenous application has been
observed to enhance the plant defense mechanism (Zehra
et al. 2017). However, SA is mostly linked with abiotic and
pathogen stresses (Zehra et al. 2017), and not directly to
pest stress.

This study focused on evaluating the effects of applied SA
on pearl millet or Pennisetum glaucum (L.) R. Br. methylome
using MSAP epigenotyping targeting the CCGG motifs
during the millet headminer (H. albipunctella de Joannis)
infestation. The millet headminer is an important pest in
pearl millet causing crop losses especially in the semi-arid
and arid areas in the Sahel (Pattanashetti et al. 2016; Amadou
et al. 2017).

Materials and methods

Plant and animal materials

Four varieties of P. glaucum (L.) R. Br used in this study
were Souna3 (PMS3), Gawane (PMG), IBV8004 (PMI8),
and Thialack2 (PMT2). These varieties reach maturity
stage between 85 and 95 days from the planting date.
The seeds were provided by the Senegalese Institute of
Agricultural Research, Bambey (Senegal). Under the tra-
ditional field growing conditions, millet headminer start
flying in millet agroecosystem one month after a first
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significant rain of 20 mm and the female starts egg laying at
the panicle initiation period. The plants were grown during
the rainy season under natural infestation. Foliar appli-
cation of SA was performed at panicle initiation and
repeated on the third and sixth day later about 56 days
after planting. Millet headminers were collected from the
panicles in each of the treatments.

Experimental design and sampling

Split plot design was used, and the field was stratified to
improve the representativeness of the sample by reducing
sampling error as the millet headminer behavior is aggrega-
tive. Each stratum corresponded to one variety. Then, the
stratum was divided into three plots where the treatments
were applied (0, 1.5, and 3 mM of salicylic acid). A selective
random sampling was carried out in each plot where 15 pani-
cles were harvested during the panicle stage to determine the
number of larvae per panicle. At the same time, five leaves
from treated SA and control strata were collected for epige-
netic analysis. For the control stratum (no salicylic acid treat-
ments), plants infested with headminer larvae (feeding) were
considered as positive control and without larvae (no feeding)
as negative control.

Msap epigenotyping

In each treatment, five leaves from each variety were har-
vested for DNA extraction using ZR plant/seed DNA mini-
prep (Zymo Research, Cat No. D6020) following the
company protocol and, an alcohol isoamyl-chloroform
purification was performed to increase DNA quality. The
methylation analysis was performed using the methyl-
ation-sensitive amplified polymorphism (MSAP) targeting
the CCGG regions on the genome (Al-Lawati et al. 2016).
The experiment was replicated four times. Two isoschizo-
mers, MspI and HpaII used have different sensitivity to
cytosine DNA methylation. Two series of experiments
were conducted i.e. one for each isoschizomers. One hun-
dred (100 ng) DNA samples were digested using 10 U
EcoRI at 37°C for two hours and deactivated by heating
at 65°C for 20 min. The digested products were subjected
to each isoschizomers (10 U) at 37°C overnight and deacti-
vated by heating at 80°C for 15 min. Ligation was per-
formed using T4 DNA ligase (10 U) with EcoRI adaptors
(10 mM) plus MspI/HpaII adaptors (10 mM) and incu-
bated at room temperature for two hours. Pre-selective
amplification was performed in a 50 µL reaction volume
using 10 mM of EcoRI and MspI/HpaII primers, diluted
restriction-ligation DNA and One Taq standard buffer.
The pre-selective amplification was carried out with the fol-
lowing temperature cycling conditions: one cycle at 94°C
for 30 s; 30 cycles at 94°C for 30 s, 51°C for 30 s, and 72°
C for 60 s, and finally one cycle at 72°C for two minutes.
Finally, a second amplification was realized by selectively
amplifying methylated DNA fragments using different
MSAP primer combinations to generate an MSAP finger-
print. The PCR conditions were as follows: 94°C for 30 s,
12 cycles at 94°C for 30 s, 65°C for 30 s, and 72°C for
60 s, 23 cycles at 94°C for 30 s, 51°C for 30 s and 72°C for
60 s, and finally one cycle at 72°C for 60 s. A 2% gel electro-
phoresis was performed to identify the different band size
(Al-Lawati et al. 2016).

Data scoring and analysis

The MSAP profile was captured into binary matrix for data
scoring, 1 as presence of band and 0 as absence of a band
(Schulz et al. 2013). The internal cytosine methylation and
the external cytosine methylation (hemimethylation) were
considered in this study. The raw data from the MSAP profile
were used for epigenetic analysis. Analysis of variance was
performed to compare the effects of larvae infestation and
SA on methylome regulations and least significance differ-
ence (LSD) was used for mean separation, as well as the larval
density (number of larvae per panicle) using R (version 3.2.5).
The raw data from the MSAP profile were analyzed using
RMSAP 1.1.8 (Perez-Figueroa 2013) to determine the level
of methylation as well as the non-target and mutations.
Methylation diversity was also evaluated to determine epige-
netic markers for each variety through the principal coordi-
nates analysis (PcoA) using R version 3.2.5.

Results and discussion

Effects of salicylic acid on headminer attacks

Foliar treatments of SA were carried out before the initiation
of the first panicle expansion stage. The ANOVA showed a
significant difference between the control (without SA appli-
cation) and the treatments (p < 0.05). Varieties PMT2, PMI8
and PMS3 remained susceptible to H. albipunctella, whereas
treatment with SA significantly reduced the larval density per
panicle. Larval density of H. albipunctella in PMG variety
increased after applications of 1.5 mM SA. Therefore, at the
control level, the tolerance of the varieties to the millet head-
miner was different, with PMS3 and PMT2 being more sen-
sitive in H. albipunctella attacks. The larvae density in SA
concentrations (1.5 and 3 mM) did not vary significantly,
except for PMG (Table 1).

Exogenous application of salicylic acid reduced the num-
ber of larvae of H. albipunctella, suggesting an eliciting effect
on pearl millet defense. This has been seen in pathogen and
abiotic stresses (Fragniere et al. 2011; Khan et al. 2015). It
seems now that SA-eliciting pathway is more complex and
has a cross-talk with the defense mechanisms involved during
herbivore attacks. These mechanisms involve gene-related
defense regulations controlled at epigenetic level, which inter-
act with oral secretion from larvae feeding. The same SA role
is seen in plants subjected to insect elicitor treatments (Engel-
berth et al. 2011).

Effects of salicylic acid and millet headminer on
methylome variation

Analysis was performed to determine the CCGG methylation
level following themillet headminer feeding (positive control),

Table 1. Effects of salicylic acid treatments on the millet headminer. SA (0, 1.5
and, 3 mm) was applied on four pearl millet varieties. Results showed SA
decreased the larval density for the varieties tested. Means with the same
letter in the same line are no significant difference at 0.05 probability level.

Varieties

Salicylic acid doses (mm)

0 1.5 3.0

PMS3 0.6 a 0.2 b 0.4 b
PMG 0.4 a 1.2 b 0.4 a
PMI8 1.8 a 0.8 b 0.6 b
PMT2 1.6 a 0.4 b 0.4 b

JOURNAL OF PLANT INTERACTIONS 289



without feeding (negative control) and salicylic acid treatment
at 1.5 mM. The methylation level varied significantly for all
varieties (p < 0.05). The methylation level was higher during
H. albipunctella feeding (positive control) and decreased
after SA application in all varieties. The average methylation
level (negative control) of varieties was 61%, while individually
the highest (75.5%) was found in PMS3. Moreover, the level of
mutated and non-targeted CCGG motifs were low in PMS3
and PMT2 varieties while it increased during salicylic acid
treatment for PMG and PMI8 (Figure 1).

The significant difference (p < 0.05) between the negative
(without larvae feeding) and positive (with feeding) controls
revealed an increase of methylation level during the

headminer feeding, suggesting downregulation of resistance
gene expression. This inhibition of plant defense through
increase of DNAmethylation level could be fromH. albipunc-
tella infestation. In the class of Lepidoptera in which belong
the headminer, some larvae have oral secretion contain sup-
pressors acting as methylating agents or effectors that inhibit
the host defense responses (van Kleeff et al. 2016; Acevedo
et al. 2017). This strategy has been reported in Helicoverpa
zea (Eichenseer et al. 1999; Musser et al. 2005), in Leptino-
tarsa decemlineata (Chung et al. 2013), and mite species (Vil-
larroel et al. 2016). Moreover, this is accompanied by an
inhibition of the salicylic acid pathway (Zarate et al. 2006;
Sarmento et al. 2011).

Figure 1. Methylation level of pearl millet following headminer feeding and salicylic acid treatments. Methylation level and mutated CCGG sites of each treatment
was determined using MSAP analysis and RMSAP respectively. Millet headminer feeding increased the level of methylation, while SA treatments decreased. The
CCGG mutation level was higher in PMG and PMI8 during salicylic acid application. Means with the same letter are no significant difference at 0.05 probability
level. (a) PMS3; (b) PMG; (c) PMI8; (d) PMT2.

Figure 2. Occurrence of types of methylation. the results showed most of the methylation occurred at the external cytosine. Results shown as percentage ± s.d. (a)
PMS3; (b) PMG; (c) PMI8 and (d) PMT2. CCGG: unmethylation; mCCGG: external cytosine methylation; CmCGG: Internal cytosine methylation.
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Occurrence of methylation types

The level of the different types of methylation occurring
during headminer feeding and salicylic acid application
was determined. The results showed that most of the
methylation occurred at the external cytosine (hemimethy-
lation, mCCGG) which is higher during insect feeding.
Additionally, the hemimethylation level decreased after sal-
icylic acid treatment. In each variety, the level of unmethy-
lated CCGG sites decreased after larvae infestation while
application of salicylic acid seemed to reestablish the
CCGG pattern (Figure 2).

The high occurrence of the hemimethylation during pest
feeding could reveal important role of the external cytosine in
plant tolerance. Additionally, the demethylation process
occurred after salicylic acid treatment which was mostly at the
external cytosine. The external cytosine may be important for
identification of de novo methylation events during pest stress.
This hemimethylation is very unstable and mainly due to pest
feeding and salicylic acid that could affect its pattern. However,
the cellular external cytosine DNAmethylation and demethyla-
tion is far from being explained. Both oral secretions and sal-
icylic acid could direct the expression of enzymes involved in
DNA methylation and demethylation, respectively (Figure 3).

Figure 3. Hypothetical model of the effects of salicylic acid and oral secretion on the external cytosine. Oral secretion and salicylic acid causes external cytosine gene
methylation and demethylation respectively through different pathways. DME: Demeter; ROS1; Repressor of Silencing 1; RdDM: RNA-directed methylation; DMR2:
Domains rearranged methyltransferase 2; Me: Methyl group.

Figure 4. Principal coordinate analysis of methylome loci. Three groups appeared: the negative and positive controls, the SA group (PMS3_SA, PMT2_SA, and
PMI8_SA) and the single PMG_SA group. SA = salicylic acid; NC = negative control; PC = positive control. C1 = 24.8% and C = 21.2%. Cluster 1 gathers the feeding
and non-feeding groups; Cluster 2 gathers the SA treatments except for PMG; Cluster 3 with the isolated SA for PMG.
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Epigenetic diversity and clustering

The principal coordinate analysis (PcoA) revealed three sep-
arated clusters. The larvae feeding (positive control) and the
healthy plants (negative control) clustered separately from
the others. The SA treatment formed a group with only
PMS3, PMT2, and PMI8, with PMG being isolated as a single
cluster (Figure 4).

The clustering analysis with three groups from which
PMG was isolated indicates a perfect correlation with the
results found during the application of salicylic acid in
pearl millet panicle stage. Indeed, larval density increased
after salicylic acid treatment (1.5 mM) only in variety PMG
while it decreased it in the other varieties. This may due to
the high level of mutated CCGG motifs after salicylic
treatment.

Conclusion

This study offers comprehensive insights into the methylome
variation during pest stress and salicylic acid signaling. The
plant-insect interactions provide interesting perspectives in
understanding its defense mechanisms, especially at epige-
netic level. H. albipunctella larvae infestation increases the
DNA methylation and this could negatively affect the pearl
millet defense mechanisms. This process is counteracted by
salicylic acid through demethylation pathway by reducing
the pest infestation. The mechanism in which the larvae inhi-
bit the plant defense and the salicylic acid act as an elicitor
could be driven by the methylation-demethylation pathways
on the external cytosine (hemimethylation, mCCGG), but
further works are needed to investigate in depth these com-
plex pathways.
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