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Nitric oxide pretreatment enhances antioxidant defense and glyoxalase systems to
confer PEG-induced oxidative stress in rapeseed
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Masayuki Fujitac
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Kagawa University, Kagawa, Japan; dDepartment of Horticulture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh

ABSTRACT
Nitric oxide (NO) is dynamic molecule implicated in diverse biological functions demonstrating its
protective effect against damages provoked by abiotic stresses. The present study investigated that
exogenous NO pretreatment (500 µM sodium nitroprusside, 24 h) prevented the adverse effect of
drought stress [induced by 10% and 20% polyethylene glycol (PEG), 48 h] on rapeseed seedlings.
Drought stress resulted in reduced relative water content with increased proline (Pro) level.
Drought stress insisted high H2O2 generation and consequently increased membrane lipid
peroxidation which are clear indications of oxidative damage. Drought stress disrupted the
glyoxalase system too. Exogenous NO successfully alleviated oxidative damage effects on rapeseed
seedlings through improving the levels of nonenzymatic antioxidant pool and upregulating
antioxidant enzymes’ activities. Improvement of glyoxalase system (glyoxalase I and glyoxalase II
activities) by exogenous NO was significant to improve plants’ tolerance. Nonetheless, regulation of
Pro level and improvement of plant–water status were vital to confer drought stress tolerance.
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Introduction

In the present world, crops are suffering from drought stress,
and its duration and severity are also increasing day by day
due to climatic changes and thus imposing a continuous threat
to food production.Drought stress hampers plant productivity
through affecting normal plant growth and physiology, differ-
ent biochemical processes, and yields (Raza et al. 2016; Hasa-
nuzzaman et al. 2016; Cao et al. 2017). Plants face oxidative
stress under water deficit conditions by producing an excess
amount of reactive oxygen species (ROS)which causes damage
to biological molecules and cellular organelles. These damages
ultimately result in cell death (Hasanuzzaman et al. 2013;
Nahar et al. 2015a, 2015b). Plants naturally have an antioxi-
dant defense system for scavenging excess ROS, and this can
protect the plant from oxidative damage (Nahar et al. 2015b;
Kim et al. 2017). In this system, both 2013; Nahar et al.
2015a; Kim et al. 2017; Wu et al. 2017). Methylglyoxal (MG)
is produced in eukaryotic cells as an intermediate product in
glycolysis pathway; its excess production is toxic and it inhibits
cell proliferation and causes protein and lipid degradation
(Yadav et al. 2005; Nahar et al. 2015b; Sankaranarayanan
et al. 2017). Based on some recent studies, MG was found to
act as signaling molecules which may act as important bio-
markers for plant stress responses (Kaur et al. 2014, 2017; Li
2016; Sankaranarayanan et al. 2017). However, excess pro-
duction of MG has been noticed in plants that are under
drought stress (Alam et al. 2013; Nahar et al. 2015b; Sankara-
narayanan et al. 2017). Plants also can detoxify this excess MG
through the activity of glyoxalase I (Gly I) and glyoxalase II
(Gly II) in glyoxalase system (Nahar et al. 2015b; Hasanuzza-
man et al. 2017a, 2017b; Sankaranarayanan et al. 2017).

Nitric oxide (NO) is an endogenous signaling molecule
in plants regulating different biological functions because
of its high diffusible property (Qiao et al. 2014). NO
plays its signaling role in stress conditions by regulating
different physiological activities such as germination, mito-
chondrial function, floral regulation, photosynthesis, pro-
line (Pro) accumulation, stomatal movement, etc. (Boogar
et al. 2014; Domingos et al. 2015; Hasanuzzaman et al.
2016; Melo et al. 2016). NO may act as an antioxidant or a
source of reactive nitrogen species having greater oxidizing
potential which also takes part in many physiological pro-
cesses (Vandelle and Delledonne 2011; Domingos et al.
2015; del Rio 2015; Hasanuzzaman et al. 2016). al. 2013;
Hasanuzzaman et al. 2016; Sahay and Gupta 2017). It is
also well documented that NO can reduce H2O2 and lipid
peroxidation under drought stress (Zhang et al. 2016). NO
mitigates oxidative damage and acts as an antioxidant (Zim-
mer-Prados et al. 2014; Hasanuzzaman et al. 2016; Zhang
et al. 2016; Sahay and Gupta 2017). Roles of NO have
been demonstrated in reducing ROS-induced cytotoxic
activities such as inhibition of cell death, ion leakage, and
DNA fragmentation (Zhang et al. 2016) which was also
noticed in Solanum tuberosum (Hayat et al. 2011). NO
improves relative water content (RWC), increases activities
of superoxide dismutase (SOD) and ascorbate peroxidase
(APX), and reduces ion leakage significantly in the plant
under drought stress (Hatamzadeh et al. 2015; Zhang et al.
2016). Moreover, NO also enhances the activities of antiox-
idant enzymes and results in a decreased lipid peroxidation
under drought stress (Astier and Lindermayr 2012; Fan et al.
2012; Zhang et al. 2012; Kovacs and Lindermayr 2013).
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Although several research works have been carried out on
the effect of NO on plant drought tolerance, the actual mech-
anisms are yet to be elucidated. Considering these facts, the
present study was undertaken to investigate the role of sup-
plemental NO in drought tolerance. We have shown how
antioxidant defense and glyoxalase system are regulated by
NO under drought stress.

Materials and methods

Test plant and applied treatments

Clean and uniform seeds of rapeseed (Brassica napus cv.
BINA Sarisha 3) were sown in Petri plates containing filter
paper. Petri plates were kept in a growth chamber with the
following conditions: μmol photon m−2 s−1, 25 ± 2°C, and
65–70% relative humidity. Hyponex solution (Hyponex,
Japan) (diluted by 10,000 times) was used as a nutrient sol-
ution. After 11 days of sowing, a set of seedlings were pre-
treated with 500 µM sodium nitroprusside (SNP) contained
h. A set of preliminary experiments were done to determine
the appropriate dose of SNP. Among 125, 250, 500, 750,
and 1000 µM, we found that 500 µM SNP could provide bet-
ter protection without any toxic effect to pants. The doses
below that concentration could not show any protection.
SNP-pretreated and non-pretreated plants were subjected to
drought stress applying 10% and 20% polyethylene glycol
(PEG-6000) for 48 h. Control plants were provided with
Hyponex solution. Maintaining the identical growing
environment, the experiment was repeated three times.

Ascorbate and GSH assay

Ethylenediaminetetraacetic acid (EDTA) (1 mM) containing
metaphosphoric acid solution (5%) was used to extract har-
vested fresh rapeseed leaves. After centrifugation
(11,500×g), the same supernatant was used for both ascorbate
(AsA) and glutathione (GSH) assays. In spectrophotometer,
the wavelength of 265 nm was selected to determine the con-
tent of AsA, where different reacting solutions were used as
mentioned by Huang et al. (2005). After neutralizing with
0.5 M potassium phosphate (K–P) buffer (pH 7.0), 0.5 units
of ascorbate oxidase (AO) in 100 mM K–P buffer (pH 7.0)
was added and read using a spectrophotometer. Using stan-
dard curve, AsA content was calculated. Neutralizing super-
natant with 0.5 M K–P buffer (pH 7.0), the contents of total
GSH and glutathione disulfide (GSSG) were determined at
412 nm (Yu et al. 2003; Paradiso et al. 2008). For measuring
total GSH, the assay buffer contained 5,5′-dithio-bis 2-nitro-
benzoic acid (DTNB), NADPH, and GR. For GSSG measure-
ment, reaction of 2-vinylpyridine was added to remove the
GSH. Standard curve with their (GSH and GSSG) known con-
centrations were made to facilitate the final calculation. GSH
content was the result of total GSH content minus the GSSG
content.

Enzyme extraction

One milliliter of extraction buffer formulated with K–P buf-
fer, KCl, AsA, β-mercaptoethanol, and glycerol was used to
homogenize 0.5 g of rapeseed leaves (fresh). For not more
than 10 min, this homogenate underwent centrifugation at
a speed of 11,500×g. The same supernatant was used for

protein estimation (Bradford 1976) as well as crude solution
for the enzyme activity assay.

Enzyme assay

Ascorbate peroxidase (APX; EC: 1.11.1.11) activity: The APX
activity was measured mixing the enzyme solution with
50 mM K–P buffer (pH 7.0), 500 µM AsA, 0.1 mM H2O2,
and 0.1 mM EDTA. This mixture was read at 290 nm to
measure the alteration of absorbance (Nakano and Asada
1981).

Monodehydroascorbate reductase (MDHAR; EC: 1.6.5.4)
activity: The MDHAR enzyme assay mixture was prepared
by adding 50 mM Tris–HCl buffer (pH 7.5), 0.2 mM
NADPH, 2.5 mM AsA, and 0.5 units of AO (Hossain et al.
2010). A decrease in absorbance at 340 nm was observed
for 60 s.

Dehydroascorbate reductase (DHAR; EC: 1.8.5.1) activity:
The mixture of 50 mM K–P buffer (pH 7.0), 2.5 mM GSH,
and 0.1 mM DHA with enzyme solution was read at
265 nm to observe the change in absorbance (Nakano and
Asada 1981).

Glutathione reductase (GR; EC: 1.6.4.2) activity: The GR
enzyme assay mixture was prepared by adding 0.1 M K–P
buffer (pH 7.0), 1 mM EDTA, 1 mM GSSG, and 0.2 mM
NADPH and then change in absorbance was recorded at
340 nm (Hasanuzzaman et al. 2011).

Glutathione peroxidase (GPX; EC: 1.11.1.9) activity: The
GPX enzyme assay mixture contained 100 mM K–P buffer
(pH 7.0), 1 mM EDTA, 1 mM NaN3, 0.12 mM NADPH,
2 mM GSH, 1 unit GR, and 0.6 mM H2O2 (Elia et al. 2003;
Hasanuzzaman and Fujita 2013). We recorded the change
in absorbance at 340 nm.

Glutathione S-transferase (GST; EC: 2.5.1.18) activity: The
GST enzyme assay mixture was prepared by adding 100 mM
Tris–HCl buffer (pH 6.5), 1.5 mM GSH, and 1 mM 1-chloro-
2,4-dinitrobenzene (CDNB) (Hasanuzzaman and Fujita
2013). At 340 nm, the change in absorbance was monitored.

Catalase (CAT; EC: 1.11.1.6) activity: The CAT enzyme
assay mixture was prepared by adding 50 mM K–P buffer
(pH 7.0) and 15 mM H2O2. The absorbance was recorded
in 240 nm (Hasanuzzaman et al. 2011).

Glyoxalase I (Gly I; EC: 4.4.1.5) activity: The Gly I enzyme
assay mixture contained 100 mM K–P buffer (pH 7.0),
15 mM magnesium sulfate, 1.7 mM GSH, and 3.5 mM MG
(Hasanuzzaman et al. 2014) which was read at 240 nm.

Glyoxalase II (Gly II; EC: 3.1.2.6) activity: The Gly II
enzyme assay mixture was prepared by adding 100 mM
Tris–HCl buffer (pH 7.2), 0.2 mM DTNB, and 1 mM S-D-
lactoylglutathione (SLG) (Hasanuzzamanlactoylglutathione
(SLG) (Hasanuzzaman et al. 2014). This mixture was read
at 240 nm.

Assaying H2O2 content

The procedure mentioned by Yu et al. (2003) was followed to
determine H2O2 levels. Potassium–phosphate (K–P) buffer of
50 mM concentration and pH 6.5 was selected to homogenize
the harvested fresh rapeseed leaves. After centrifugation (at
11,500×g), the supernatant had been added to the reaction
mixture (0.1% TiCl4 in 20% H2SO4). Before centrifuging
(11,500×g) again for 15 min, the solution was allowed to set
for 10 min at normal temperature. In the spectrophotometer,
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the wavelength of 410 nm was selected to read the absorbance
of the solution.

Estimation of MDA content

The outline explained by Heath and Packer (1968) was fol-
lowed to estimate malondialdehyde (MDA) content. Tri-
chloroacetic acid (TCA, 5%) was used to homogenize the
harvested fresh rapeseed leaves. After homogenization on
ice, the homogenate underwent centrifugation (at
11,500×g). The extract was then added to the reaction mix-
ture (0.5% thiobarbituric acid (TBA) dissolved in 20%
TCA) followed by boiling (95°C) for 30 min. The hot solution
was then kept on ice for quick cooling, and after cooling, it
was exposed to centrifugation again for 15 min at the same
speed mentioned previously. Absorbance was measured at
532 and 600 nm wavelengths. The second absorbance was
measured to have actual (nonspecific turbidity-free) absor-
bance, by deducting it from the first one. The unit used to
express the results was nmol g−1 fresh weight.

Determination of RWC

The method described by Barrs and Weatherly (1962) was
followed for estimating the leaf RWC. Immediately after
weighing (fresh weight, FW), leaves were left to float in dis-
tilled water and for 8 h. Then, again they were weighed (tur-
gid weight, TW) and kept in a drier at 80°C. After 48 h, dry
leaves were weighed to obtain the dry weight (DW). The fol-
lowing formula was used to do the calculation:

RWC (%) = (FW− DW)
(TW− DW)

[ ]
× 100.

Determination of proline content

Bates et al. (1973) described method of measuring Pro con-
tent was followed in our experiment. Harvested fresh leaves
had been extracted by 3% sulfosalicylic acid followed by cen-
trifugation (11,500×g) for 15 min. The filtrate (2 ml) was
added in the reaction mixture (2 ml acid ninhydrin + 2 ml
glacial acetic acid). This mixture was placed at water bath
at 100°C (1 h). After cooling, 4 ml toluene was added and
combined using vortex. Chromophore of toluene was read
at 520 nm.

Statistical analysis

The data were obtained using one-way analysis of variance.
We tested and then compared mean differences by Fisher’s
least significant difference (LSD) from three replications.
The software XLSTAT v. 2015 was used to perform analysis
(Addinsoft 2016). Differences at P≤ .05 were regarded as
significant.

Results

RWC and Pro content

Leaf RWC significantly declined due to drought exposure
(Figure 1(a)) which in turn enhanced the Pro content of
drought-stressed seedlings drastically (Figure 1(b)) compared
to non-stressed control plants. However, NO pretreatment

has been recorded to decrease the Pro content by 30% and
33%, and increase the leaf RWC by 12% and 26% in seedlings
facing mild and severe levels of stress, respectively compared
to the non-treated drought-stressed seedlings (Figure 1).

Hydrogen peroxide and MDA contents

Both the levels of H2O2 and MDA were significantly
increased in rapeseed leaves due to exposure to drought stress
(Figure 2) and particularly, a noteworthy higher content was
recorded at 20% PEG, compared to the control plants.
Drought-stressed seedlings which were supplemented with
NO donor resulted in 20% and 21% reduction in H2O2 con-
tent and 21% and 32% reduction in MDA content by 10% and
20% PEG, respectively, as compared to the drought-exposed
seedlings without NO donor.

AsA and GSH contents

AsA content was unaffected under severe stress, whereas it
was slightly higher (21%) under mild drought stress com-
pared to the control plants (Figure 3(a)). Supplementation
with NO increased the contents of AsA significantly com-
pared to seedlings treated with PEG only (drought-stressed).
Due to drought exposure, a remarkable enhancement of GSH
content was recorded (55% and 46% at 10% and 20% PEG,
respectively) as compared with the untreated control plants
(Figure 3(b)). However, at both cases, NO-supplemented
seedlings showed a significant increase (17% and 12% at
10% and 20% PEG, respectively) in GSH content compared
to seedlings subjected to drought stress alone. GSSG content
showed dramatic increase under drought stress, while it
became lower when the seedlings were supplemented with
NO (Figure 3(c)). The ratio of GSH/GSSG declined in the
seedlings exposed to drought. However, a higher GSH/
GSSG ratio was maintained by the addition of NO donor
even in the seedlings under stressed condition (Figure 3(d)).

AsA-GSH pool enzyme activities

Under drought stress, APX activities did not show any
change, while the activity increased significantly when the
seedlings were supplemented with NO donor (Figure 4(a)).
The activity of MDHAR enzyme was higher than that in con-
trol plants at mild stress, while it was less under severe stress
(Figure 4(b)). DHAR activity increased significantly at both
levels of drought stress (Figure 4(c)). When compared with
seedlings under drought treatment alone, the activities of
both the enzymes (MDHAR and DHAR) enhanced in NO-
supplemented seedlings (Figure 4(b,c)). The activity of GR
was higher (26% and 23% higher at 10% and 20% PEG
exposure, respectively) under drought stress treatment com-
pared to control (Figure 4(d)). Importantly, at both the
cases, NO supplementation resulted in higher activities of
GR compared to the rapeseed seedlings exposed to drought
alone (Figure 4(d)).

Other antioxidant enzyme activities

In response to drought stress, GST activity was shown to be
increased. When compared with control treatment, the
increase in GST activity was measured as 25% and 31% higher
at 10% and 20% PEG, respectively (Figure 5(a)). Exogenous
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NO resulted in higher GST activity compared to the stress
treatment without NO donor. GPX activity slightly increased
(19%) both at mild and severe drought stress (Figure 5(b)).
On the other hand, NO supplementation caused a clear
increase in the activity even under drought stress. CAT
activity markedly decreased at drought stress in a dose-
dependent manner (Figure 5(c)). However, upon NO sup-
plementation, the CAT activities returned to the control level.

Glyoxalase system enzyme activities

A slight increase (20% and 15% higher at 10% and 20% PEG,
respectively) in the activity of Gly I was observed in seedlings
exposed to drought stress (Figure 6(a)). In contrary, upon
exposure to drought stress, Gly II activity was shown to be
decreased (11% and 30% lower at 10% and 20% PEG, respect-
ively). However, for both the cases, NO application resulted
in higher Gly I and Gly II activities compared to the seedlings
exposed to drought stress alone (Figure 6).

Discussion

In recent years, NO has been documented as a signaling mol-
ecule playing a role in diverse physiological processes in
plants involving seed germination, flowering, fruit maturity,
organ senescence, and respiratory metabolism (Hasanuzza-
man et al. 2016). It is also involved in different physiological

and biochemical responses to environmental stresses because
of its antioxidant properties (Gupta et al. 2011; Hasanuzza-
man et al. 2016). Exogenous application of NO is known to
enhance tolerance against abiotic stress including heavy
metal toxicity, salinity, and drought (Hasanuzzaman et al.
2011; Hasanuzzaman and Fujita 2013; Oz et al. 2015). How-
ever, how NO enhances drought tolerance in plants needs
further clarification. In this study, we provided an overview
of antioxidant defense and glyoxalase system under drought
stress after application of NO donor. Drought stress-induced
growth reduction, decrease in water content, nutrient imbal-
ance, and oxidative stress in plants are common metabolic
and physiological changes (Hasanuzzaman et al. 2013; Raza
et al. 2013). Drought stress primarily affects the plant–
water relations and to cope with water shortage condition,
the plant synthesizes osmolytes (Pro, glycinebetaine, and
sugars) (Hasanuzzaman et al. 2013; Ahmad et al. 2014). In
this study, RWC decreased in a dose-dependent manner in
rapeseed seedlings under drought stress. Consequently, Pro
content increased in the same way to adjust the water balance
inside the cell (Figure 1(a)). Our results are in agreement with
Nahar et al. (2015b) who reported a drought-induced
reduction in RWC and increase in Pro content in mung
beans under water deficit conditions. However, application
of SNP increased RWC and thus reduced Pro content
under drought stress, implying that NO could improve
water status of plants under drought stress by maintaining

Figure 1. NO donor, SNP-induced changes in RWC (A) and Pro content (B) under drought stress. Treatments: Control, seedlings treated with nutrient solution only;
D10, seedlings treated with 10% PEG; D20, seedlings treated with 20% PEG; SNP, seedling treated with 500 µM SNP for 24 h; SNP + D10, 500 µM SNP-pretreated
seedlings exposed to 10% PEG; SNP + D20, 500 µM SNP-pretreated seedlings exposed to 20% PEG. Mean (±SD) was calculated from three replicates for each treat-
ment. Vertical bars with different letters are significantly different at P≤ .05, determined by Fisher’s LSD test.

Figure 2. NO donor, SNP-induced changes in MDA content (A) and H2O2 content (B) under drought stress. Treatments: Control, seedlings treated with nutrient
solution only; D10, seedlings treated with 10% PEG; D20, seedlings treated with 20% PEG; SNP, seedlings treated with 500 µM SNP for 24 h; SNP + D10, 500 µM
SNP-pretreated seedlings exposed to 10% PEG; SNP + D20, 500 µM SNP-pretreated seedlings exposed to 20% PEG. Mean (±SD) was calculated from three replicates
for each treatment. Vertical bars with different letters are significantly different at P≤ .05, determined by Fisher’s LSD test.
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osmolytes synthesis (Figure 1(a)). Ke et al. (2013) reported
that application of NO lowered the cell solutes and increased
the water potential, and thus improved osmoregulation in
tobacco callus under osmotic stress. Furthermore, NO was
able to enhance salt stress tolerance in Chinese cabbage by
reducing Pro content under stress condition. The reduction
of Pro content was due to increased activity of Pro dehydro-
genase induced by NO (López-Carrión et al. 2008).

Drought creates oxidative stress mainly by interrupting
electron flow during photosynthesis (Cruz de Carvalho
2008), and level of oxidative damages is often measured by
MDA (indicator of lipid peroxidation) content and ROS
level including H2O2. In this experiment, higher MDA and
H2O2 content were found compared to control in drought-
stressed seedlings, which means higher oxidative damage in
plants (Figure 2). In addition to that, with the increase in
drought level using higher PEG amount, level of oxidative
damage was also increased (Figure 2). Drought-induced oxi-
dative damage (indicated by higher MDA and H2O2 con-
tents) in plants has been reported by Jday et al. (2016) and
Nahar et al. (2017). Interestingly, NO treatment reduced
the oxidative damage which is obvious by reduction of
MDA and H2O2 content. NO-induced oxidative stress alle-
viation under drought stress was also observed in maize (Yil-
diztugay et al. 2014) and sunflower (Cechin et al. 2015).

Oxidative stress is not a sudden phenomenon because
ROS level is tightly controlled at a level required for cellular
signaling, growth, and metabolism (Cruz de Carvalho 2008;
Hasanuzzaman et al. 2017a). ROS level is mainly controlled
in the cell by antioxidant defense system (Gill and Tuteja
2010; Foyer and Noctor 2011). Therefore, we further checked

the role of NO in regulating the antioxidant defense mechan-
ism by measuring nonenzymatic antioxidant and antioxidant
enzyme activity. Three enzymes namely CAT, GPX, and APX
can detoxify H2O2 into water, whereas APX requires AsA for
catalyzing this reaction (Ahmad et al. 2014; Nahar et al.
2015a). In our experiment, CAT activity decreased, and
GPX activity increased under both levels of drought stress,
whereas APX activity decreased only at severe drought stress
created by 20% PEG (Figures 4(a) and 5(b,c)). Though GPX
activity increased, it could not be able to reduce the H2O2

content alone. For this reason, higher amount of H2O2 was
recorded in rapeseed seedlings under the 20% PEG-induced
drought stress (Figure 2(b)). Drought-induced CAT activity
reduction was observed by Nahar et al. (2015b) in mung
beans, APX activity reduction by Xu et al. (2011) in Kentucky
bluegrass, and GPX activity increase was observed in Brassica
napus by Alam et al. (2014). NO treatment increased the
CAT, APX, as well as GPX activity under drought, which con-
sequently lowered the H2O2 content in drought-stressed
plants. During H2O2 detoxification, MDHA is produced
along with water. MDHA is partly converted to DHA by dis-
proportionation reaction. Then both MDHA and DHA are
used in the regeneration of AsA by MDHAR and DHAR
enzymes (Gill and Tuteja 2010). As 2011; Akram et al.
2017). Therefore, increase in AsA content at mild drought
and decrease in Figures 3(a) and 4(b)). GSH is another strong
nonenzymatic antioxidant present in the antioxidant defense
system playing a role in diverse metabolic function (Hasanuz-
zaman, Nahar, Anee et al. 2017a). GSH is a substrate for GPX
and GST and is involved in AsA regeneration and glyoxalase
system (Hasanuzzaman, Nahar, Anee et al. 2017a). The level

Figure 3. NO donor, SNP-induced changes in AsA (reduced ascorbate) content (A), GSH (reduced glutathione) content (B), GSSG (oxidized glutathione) content (C),
and GSH/GSSG ratio (D) under drought stress. Treatments: Control, seedlings treated with nutrient solution only; D10, seedlings treated with 10% PEG; D20, seedlings
treated with 20% PEG; SNP, seedling treated with 500 µM SNP for 24 h; SNP + D10, 500 µM SNP-pretreated seedlings exposed to 10% PEG; SNP + D20, 500 µM SNP-
pretreated seedlings exposed to 20% PEG. Mean (±SD) was calculated from three replicates for each treatment. Vertical bars with different letters are significantly
different at P≤ .05, determined by Fisher’s LSD test.
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Figure 4. NO donor, SNP-induced changes in APX activity (A), MDHAR activity (B), DHAR activity (C), and GR activity (D) under drought stress. Treatments: Control,
seedlings treated with nutrient solution only; D10, seedlings treated with 10% PEG; D20, seedlings treated with 20% PEG; SNP, seedling treated with 500 µM SNP for
24 h; SNP + D10, 500 µM SNP-pretreated seedlings exposed to 10% PEG; SNP + D20, 500 µM SNP-pretreated seedlings exposed to 20% PEG. Mean (±SD) was cal-
culated from three replicates for each treatment. Vertical bars with different letters are significantly different at P≤ .05, determined by Fisher’s LSD test.

Figure 5. NO donor, SNP-induced changes in GST activity (A), GPX activity (B), and CAT activity (C) under drought stress. Treatments: Control, seedlings treated with
nutrient solution only; D10, seedlings treated with 10% PEG; D20, seedlings treated with 20% PEG; SNP, seedlings treated with 500 µM SNP for 24 h; SNP + D10,
500 µM SNP-pretreated seedlings exposed to 10% PEG; SNP + D20, 500 µM SNP-pretreated seedlings exposed to 20% PEG. Mean (±SD) was calculated from three
replicates for each treatment. Vertical bars with different letters are significantly different at P≤ 0.05, determined by Fisher’s LSD test.
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of GSH in cellular organelles is mostly determined by GR
activity. Higher activity of GR was the reason for increased
GSH content under drought stress (Figures 3(b) and 4(d)).
Similar results were observed in maize shoot and root
under drought stress by Ahmad et al. (2016a). Surprisingly,
exogenous application of NO further increased the GR
activity as well as the GSH content under both levels of
drought stress (Figures 3(b) and 4(d)). The cellular redox sig-
naling also depends on GSH and GSSG ration that regulates
the cell cycle, gene expression, and protein function under
favorable and adverse conditions (Szalai et al. 2009; Nahar
et al. 2016). Under drought, GSSG increased in a dose-depen-
dent manner, possibly due to the upregulation of DHAR,
GPX, and GST under drought. Consequently, GSH/GSSG
decreased. SNP supplementation improved the ratio by
increasing GSH content. GST is a diverse gene family that
can detoxify peroxides using GSH as a substrate (Nahar
et al. 2016). In our experiment, GST activity increased
under drought stress and further increased due to SNP,
implying a positive role of GST in ROS metabolism. Upregu-
lation of antioxidant enzymes confers abiotic stress tolerance
by maintaining ROS below a threshold level (Gill and Tuteja
2010; Ahmad et al. 2014). Therefore, in this study, drought
tolerance in rapeseed seedlings might be associated with
NO-induced upregulation of antioxidant enzymes. NO can
act as an ROS scavenger as well as a signaling molecule that
enhances the expression of antioxidant enzymes (Groß
et al. 2013). Furthermore, exogenous application of SNP
might increase the endogenous NO to a level required for
activation of antioxidant genes (Xu et al. 2010; Fan and Liu
2012; Ahmad et al. 2016b). The role of NO is not limited to
stimulate antioxidant defense genes; it can increase the
GSH content in the cell (Kovacs et al. 2015). Thus, in this
experiment, lower oxidative damage in SNP-treated rapeseed
seedlings is associated with NO-induced upregulation of anti-
oxidant enzymes and increased level of GSH.

Glyoxalase system is composed of two enzymes, Gly I and
Gly II, to detoxify MG when overproduced under abiotic
stress conditions (Hasanuzzaman, Nahar, Hossain et al.
2017b). Thus upregulation of these enzymes is expected to
enhance MG detoxification. Gly I activity slightly increased
and Gly II activity decreased under drought stress (Figure
6). Similar results were reported by Nahar et al. (2017) in
mung beans. However, both enzymes; activities increased
under drought stress after treated with SNP, indicating the

role of NO in drought stress tolerance by enhancing glyoxa-
lase system (Figure 6). NO-induced upregulation of Gly I and
Gly II was reported in rapeseed seedlings under salinity stress
(Hasanuzzaman et al. 2011) which is in agreement with our
experiment.

Conclusion

In this study, exogenous NO exhibited its protective effect
against drought-induced damages in rapeseed plants which
were attributed to regulation and improvement of water sta-
tus; enhancement of antioxidant defense mechanism and
relaxation of oxidative stress; upregulation of MG detoxifica-
tion system; and thus alleviation of the toxic effects of MG. In
spite of clear evidence of NO-induced advantageous effects
on some biochemical and physiological parameters in rape-
seed plant, this study demands advanced comprehensive
study to explicate the status of NO synthesis inside the
plant or the possible signaling pathways through which NO
was successful in osmoregulation, was able to improve antiox-
idant defense, and MG detoxification system. Did NO affect/
enhance the biosynthesis of metabolites/antioxidant mol-
ecules/enzymes or it prevented their degradation under
drought stress? Cross-talk of NO with other molecules cannot
be avoided too. Disclosing these aspects will make NO a more
promising and defending molecule against abiotic stresses.
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