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ABSTRACT 

 
 

A novel catalyst with hydro-desulfurization and hydrogenation capabilities was 

tested with the aim of producing ultra-low sulfur and aromatics diesel oil. The 

catalytically active phase is nickel in a reduced valence state on a carrier made of zinc 

oxide nanowires and alumina. Based on the reactive adsorption principle, it was 

speculated that enhanced metal-support interactions and short diffusion paths between 

nickel and zinc oxide could lead to improved activity and sulfur uptake capacity. Zinc 

oxide nanowires, proposed here as a novel catalyst support, were produced in 

appreciable quantities in a microwave-induced plasma jet reactor. After purification and 

decoration with an active nickel phase, the nanowires underwent extensive 

characterization, which revealed promising properties. On-stream hydrogenation 

activity and sulfur uptake was tested on a model diesel oil spiked with difficult-to-

remove organic sulfur species. It was observed that the proposed catalyst system, as it 

was assembled in this project, is inferior to existing hydro-desulfurization products. 

Nevertheless, this undertaking was a first crude attempt and the concept of reactive 

adsorption was sufficiently demonstrated, which can hopefully be improved upon with 

succeeding trials. 
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I. INTRODUCTION 
 
 

 Considering increasingly stringent environmental legislation to reduce sulfur 

concentrations in transport fuels, it is apparent that the world is on a sulfur-free fuels 

trajectory. The reduction of gasoline and diesel sulfur is an important means for 

improving air quality because of the negative impact sulfur has on the performance of 

automotive engine exhaust inhibitors as it irreversibly poisons noble metal catalysts in 

the converter. Aside from the legislative pressure, the demand for ultra-low sulfur fuels 

has also naturally been driven by the growing application of fuel cells. Due to their high 

energy density, ease of storage, and well-established distribution-infrastructure, 

transportation fuels such as gasoline, jet fuel, and diesel are perfect candidates for high 

efficiency fuel cells. Nevertheless, to protect the reforming catalyst and the electrodes 

of the fuel cell system from deactivation, the sulfur concentration of the fuel needs to 

be ultra-low (<0.1 ppm).  In light of the legislative developments to prevent emissions of 

sulfur oxides as well as the general emergence of ultra-low sulfur applications, ultra-

deep desulfurization of gasoline and diesel oil has become an increased focus of 

research with many diverse approaches. The subject matter of this paper is to present a 
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novel reactive adsorption route utilizing nickel decorated zinc oxide nanowires for ultra-

deep desulfurization of light and middle refinery distillates. 

 

Definition Of The Problem 

 Refinery streams like naphtha, kerosene, diesel oil and heavier oils contain a 

wide range of organic sulfur compounds, among others mercaptanes, thiophenes, 

organic sulfides and disulfides. These organic sulfur compounds are products of the 

degradation of sulfur-containing biological components, present during the natural 

formation of the fossil fuel, petroleum crude oil. Part of the environmental and 

legislative motivation behind lowering sulfur concentrations in transportation fuels is 

that combustion of such sulfur-bearing species results in sulfur oxides which when 

released into the atmosphere cause acid rain. As of 2006, the total sulfur limit for 

highway diesel is in the range of 15 to 30 ppm by weight. Notwithstanding legislative 

efforts, low sulfur concentrations are desirable from an operational standpoint for 

refineries. The catalytic conversion of hydrocarbon streams into hydrogen-rich gas (e.g. 

steam reforming, auto-thermal-reforming, and partial oxidation) is extremely sulfur 

sensitive. Even in minute concentrations, sulfur poisons (deactivates) the noble metal 

catalysts which therefore require frequent regeneration or replacement. The 

conventional hydrodesulfurization (HDS) process utilizes alumina- and silica-supported 

cobalt or nickel molybdenum catalyst. However, sulfur levels after conventional HDS 

treatment are still too high for these downstream sulfur-sensitive applications. Most of 



3 
 

the “benign” non-cyclic sulfur compounds present in the aforementioned refinery 

streams can be dealt with in conventional HDS. The challenging compounds are 

heterocyclic compounds like thiophenes; benzo-thiophenes; substituted, condensed 

ring, and sterically hindered dibenzo-thiophenes; which are difficult to remove due to 

their aromaticity and consequent low reactivity. A list of “difficult” sulfur compounds 

and their HDS reaction constants can be found in TABLE I in the appendix.  

Typical catalysts for hydrogenation and hydrodesulfurization are transition 

metals of the Group-9 and Group-10 elements, displaying vacant d-orbitals such as 

cobalt (3d7), nickel (3d8), rhodium (4d8), palladium (4d10), and platinum (5d9). Nickel and 

cobalt on various promoters and supports are almost exclusively encountered in 

industrial refinery columns rather than noble platinum group metals for obvious 

economic reasons. Carbon-heteroatom cleavage under hydrogen pressure is achieved 

via a classical hydrogenolysis reaction scheme. In a hydrogen atmosphere, the metal 

active phase, i.e. nickel, is able to cleave the sulfur off the “difficult” cyclic compounds; 

thereby converting the sulfur into hydrogen sulfide (H2S). Nonetheless, the active nickel 

phase is slowly poisoned by the resulting H2S forming nickel sulfide according to the 

following reaction: 

Ni + H2S           NiS + H2  ΔG (500K) = -42.3 kJ/mol (1). 

As nickel converts to nickel sulfide, catalytic activity decreases and eventually 

extinguishes completely. In industry, the catalyst will either have to be regenerated or 
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replaced once a certain threshold breakthrough of sulfur is detected in the product 

stream. 

 There are several actively researched alternative methods which aim at 

removing sulfur levels to below ten parts per million. Song (2003), Ito (2006) and 

Stanislaus (2010) summarized the most prominent research areas, which include 

oxidative routes for diesel, chemical conversion methods, non-destructive adsorption, 

extraction, biodesulfurization, and reactive adsorption. The concept behind reactive 

adsorption is that once a conventional metal active phase of a catalyst converts all 

“difficult” organic sulfur species under hydrogen to H2S, an adsorptive phase, usually the 

base oxide support material, accepts and permanently stores the sulfur portion of the 

H2S. The permanent storage capacity is important, as H2S, when present downstream of 

the catalyst adsorbent, tends to recombine with olefins in the product steam to 

mercaptanes. In order to find a suitable adsorbent carrier, several materials have been 

inspected based on simple thermodynamic favorability considerations (Gibbs free 

energies). Copper, zinc, and their respective oxides appear to be the only candidates to 

hold practical feasibility. Copper oxide shows great acceptor potential; however, it 

cannot exist in oxide form in a hydrogen atmosphere at operating temperatures as it 

readily reduces back to metallic copper. Zinc oxide, which is the focus of this paper, 

exhibits great stability in hydrogen and is thermodynamically favored to accept sulfur. 

Provided that H2S has a short diffusion path, the following reaction describes the driving 

force behind the regeneration mechanism proposed in this paper: 
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NiS + ZnO + H2           Ni + ZnS + H2O  ΔG (500K) = -32.2 kJ/mol (2). 

Of the several groups that have published work on the Ni/ZnO system, Tawara 

(2000, 2001), Bezverkhyy (2007), Lee (2007), Matthias (2007), Ryzhikov (2008), Da 

Costa-Serra (2010), Fan (2010), Zhang (2010), and Huang (2010, 2011) are relevant to 

the proposed approach. The key concept in reactive adsorption with nickel on a zinc 

oxide carrier is that it combines catalytic HDS and adsorption desulfurization where the 

sulfur poisoned nickel active sites are regenerated by the zinc oxide. The challenge is to 

create a catalyst with high desulfurization activity, high selectivity towards sulfur-

containing compounds, and high sulfur capacity. 

There are several factors that drastically influence the performance of the 

reactive adsorbent. A high surface area is required to utilize as much of the active metal 

phase as possible. Further, a small crystallite size is desirable as particle size and 

catalytic activity are generally inversely related. The general goal is to achieve a high 

dispersion of the metal active phase and to keep it dispersed throughout the life time of 

the catalyst. Lastly, a weak inclination of the catalyst towards sintering during the 

calcination step, reduction step, and operating conditions at high temperatures is very 

advantageous to maintain both the surface area and small crystallite size. Sintering is 

the loss of active surface area due to crystal growth of either the bulk material or the 

active phase which is strongly temperature dependent but also affected by the 

surrounding gas atmosphere. Other factors that influence the mobility of the solid phase 

are texture, size and morphology, time on stream, metal loading, and carrier 
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composition. In the case of supported transition metal catalysts, agglomeration and 

coalescence of small metal crystallites into larger ones cause severe reduction of surface 

area and activity. Two major modes of sintering have generally been proposed; the 

atomic migration model and the crystallite migration model. The latter occurs via 

migration of the crystallites along the surface, followed by collision and coalescence of 

two crystallites. However, given the relevant temperature range for the proposed 

reactive adsorbent, the atomic migration model is probably a more appropriate 

description for the investigated sintering phenomena. As such, migration of metal atoms 

occurs via the surface or gas phase by diminishing small crystallites in size and increasing 

the larger ones. The so-called Hüttig and Tammann temperatures indicate the 

temperature at which sintering starts. The following semi-empirical relations for Hüttig 

and Tamman temperatures are commonly used: 

 THüttig = 0.3 Tmelting Atomic Migration (3) 

TTammann = 0.5 Tmelting Crystallite Migration (4). 

The Ni/ZnO system considered here has a Hüttig temperature of 0.3 x 1728K = 245°C 

and a Tammann temperature of 0.5 x 1728K = 591°C. Both temperatures become 

relevant for the calcination and reduction procedure in the experimental section. 
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Motivation To Utilize Nanowires 

 The class of catalysts/adsorbents currently used or tested for ultra-deep HDS is 

typically prepared by co-precipitation or (incipient wetness) impregnation of the 

support from an aqueous solution containing a suitable precursor compound. Both 

particles ZnO and Ni(O) are initially very small. However, after calcination and during 

reduction and operation, sintering severely deteriorates the desired particle properties. 

For an overview of reported particle dimensions, refer to TABLE II in the appendix. 

As suggested by Da Costa-Serra (2010), the morphology and particle size of the 

ZnO support can influence the catalytic behavior of the supported nickel. He showed 

how the morphology, shape, and size of ZnO support particles can control the 

impregnation process of the metal active centers, which manages the properties of 

active metallic particles. It has been found that nanorod particles of ZnO, obtained by 

calcination of zinc acetate, favor metal-support interactions, decreasing the metallic 

particle sizes and avoiding metal sintering during the calcination of metal precursors. 

Small metallic particle sizes lead to high values of active metal exposure surface, thereby 

increasing the catalytic activity. Da Costa-Serra’s group impregnated nickel onto several 

ZnO supports with varying morphologies and then calcined, reduced, and tested the 

products for activity. It appears that small spherical ZnO particles tend to readily sinter 

upon calcination and reduction; which, consequently, produces larger and less 

catalytically active nickel particles. All samples with initial small spherical morphologies 

seem to favor the mobility of the metal cat-ions over the support surface. The ZnO 
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support sample comprised of nanorods (600 x 80 nm), however, appears to be very 

resistant to sintering as its dimensions remain unaffected after calcination. A 

consequent temperature programmed reduction (TPR) study confirmed that the metal-

support interaction between nickel and the ZnO nanorod support is considerably 

greater than with ZnO nanoparticle (NP) supports. 

Inspired by the high sintering resistance caused by the morphology of the rod-

like ZnO support, it was compelling to go a step further and attempt to exploit the 

properties of ZnO nanowires (NWs). Through the work of Kim (2008), Kumar (2008), and 

Clark (2011), the prospect of large scale production of transition metal oxide NWs 

became cautiously feasible. Given the outlook of bulk production of ZnO NWs, they 

could lend themselves to be employed as superior catalyst supports. 

 This paper is broken down into three sections, as follows: it first briefly explains 

the production and purification process of ZnO NWs; it then describes the Ni/ZnO NW 

catalyst preparation and characterization; and, finally, it evaluates activity and sulfur 

uptake testing. As this approach is without published precedence, all rationales for steps 

taken will be stated accordingly. 
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II. ZINC OXIDE NANOWIRE PRODUCTION AND PURIFICATION 

 

Equipment And Procedures 

 A microwave plasma jet reactor as described by Kim (2008) was employed to 

produce sufficiently large quantities of ZnO NWs within the order of magnitude of grams 

per day. The essential components of the reactor arrangement are schematically 

depicted in FIGURE 1. 
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FIGURE 1 – Illustration of Microwave Plasma Jet Reactor 

The existing reactor arrangement was improved with a smart-match that 

automatically reflects all reversely scattered microwaves back toward the waveguide. 

Furthermore, a water-cooled feed entrance system and a two-stage vibrating metal 

powder feeder were installed, which secures a steady and well-dispersed stream of zinc 

NP powder. The conditions for optimal production runs were found by trial and error. 
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Zinc Oxide Nanowire Growth Mechanism 

The Zn NPs with diameters ranging from 10 to 15 nm are converted to ZnO NWs 

as they fall through a microwave-induced atmospheric plasma plume. The growth 

mechanism can briefly be described as nucleation and bottom up growth of 

supersaturated ZnO out of liquid zinc droplets. Upon entering the dense plasma plume, 

radical recombination causes the Zn NP to melt into droplets almost immediately, as it 

releases a lot of heat (ΔH = -505.3 kJ/mol). Oxygen radicals diffuse into the Zn droplets 

where they readily oxidize Zn into ZnO. At the point at which the ZnO supersaturates 

within the Zn droplet, ZnO nuclei simultaneously spear through the Zn droplet surface. 

As the radical flux into the Zn droplet continues to produce more ZnO, the surface ZnO 

nuclei start growing outwards as single crystal nanowires are being fed more ZnO from 

the bottom. ZnO on Zn has low wettability and, therefore, grows nearly perpendicularly 

out of the Zn droplet. The ZnO NWs are of hexagonal wurtzite phase with a growth 

direction exclusively along the c-axis, which exposes the {0110} and {2110} planes. 

 

FIGURE 2 – Illustration of ZnO NW Growth out of Molten Zinc Droplet 
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ZnO NW growth ceases when all Zn within the Zn droplet is consumed or the 

plasma is not dense enough to produce more ZnO (i.e. the Zn droplet with protruded 

ZnO NWs exits the plasma plume). Two representative images can be seen in FIGURE 3. 

The micrographs were taken with a FEI NOVA NanoSEM 600 scanning electron 

microscope (SEM); the samples were affixed onto a carbon substrate. 

 

FIGURE 3 – SEM micrographs of ZnO NWs Protruding out of Droplets 

 The optimized steady state conditions at which the production runs were 

executed are as follows: one kW power to the magnetron and 15.5 L/min overall gas 

feed, of which 15% is oxygen and the remainder is nitrogen. The highest quality NWs 

were collected from the 40 mesh filter at the vacuum pump entrance and from the 

bottom 65% of the quartz tube which has an inner diameter of two inches and a length 

of 36 inches. 
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ZnO NW Purification 

 Unfortunately, the product is only about 75% ZnO NWs, and the remainder is 

comprised of un-reacted and partially-reacted Zn NPs and ZnO platelets, ZnO NPs, tetra-

pods, and various other shapes. Representative images of fresh product ZnO NWs can 

be seen in FIGURE 4. The wires are up to five microns long, with a diameter ranging from 

5 nm to 110 nm (with an apparent mean of about 40 nm). 

  
  

 

 

 

 

FIGURE 4 – SEM Images of Fresh ZnO NW 
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To be able to recognize catalyst properties based on the morphology of the ZnO 

carrier, it is necessary to isolate the NWs from the “junk” particles. Having uniform 

dimensions would be perfect to study morphology effects; however, given the size 

heterogeneity of the ZnO NWs and NPs, a separation scheme had to be devised to 

screen the NWs from the NPs to assure a basic level of shape regularity. 

Centrifugation schemes proved to be inefficient and un-scalable. Other schemes, 

like separation still in flow (based on mass or excitation/charge), were contemplated; 

but proved difficult to execute. Finally, the elongated shape and single crystalline 

character of the ZnO NWs proved to be the critical property which allows for separation 

of ZnO NWs from NPs. 

 

Electro-Kinetic Potential 

 Zhou (2010) reported that ZnO particle aggregation in suspensions particles with 

complex morphology or size behave dramatically different from simple (spherical) 

particles. Electrostatic repulsion of irregular particles can be distinctively manipulated 

via alteration of pH and particle concentration. To generally test the zeta-potential of 

ZnO NWs and ZnO NPs, three aqueous solutions with different pH values (6.1, 8.1, and 

10.1) were prepared with de-ionized water and either hydrochloric acid or ammonium 

hydroxide solution. A set of fresh ZnO NW powder and a commercial ZnO NP powder 

with a particle diameter of 16 nm were put in suspension in the prepared solutions (ZnO 

ratio = 1:50). Those six suspensions were ultra-sonicated for five minutes in a Fisher 
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Scientific FS60 ultrasonic bath to assure high initial dispersion of all particles. The zeta-

potential of each freshly sonicated suspension was then measured using time-resolved 

dynamic light scattering via a Zeta Plus Analyzer with a 30 mW solid state 660 nm laser 

source from Brookhaven Instruments. The six data points are displayed in FIGURE 5. 

 

FIGURE 5 – Zeta Potential of ZnO NWs and NPs at Different pH Values 

Zeta-potential is a measure of suspension stability. An absolute value greater 

than 40 mV is considered good stability, an absolute value below 30 mV is considered 

instable, and an absolute value of 10 mV or below causes rapid coagulation and 

sedimentation. Based on the results displayed in FIGURE 5, it is obvious that when 

sufficiently far away from the iso-electric point (IEP), ZnO NWs are significantly more 
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stable in aqueous suspensions than ZnO NPs. The IEP for both ZnO NWs and NPs 

remains the same at a pH of 9.2, which is consistent with other publications on ZnO 

(Degen, 1999), (Andeen, 2005). 

A tentative explanation for such a drastic difference in electro-kinetic behavior is 

the close to perfect single crystalline lattice of the ZnO NWs. Single crystallinity of the 

NWs with no apparent stacking faults was confirmed by high resolution transmission 

electron microscopy (HRTEM) on a FEI Technai F20 HRTE-microscope (see FIGURE 6d). 

The ZnO NW sample was prepared by dispersing the NWs via ultra-sonication in 

ethanol; dispensing one drop of the suspension onto a carbon-coated copper grid, and 

letting the ethanol evaporate leaving behind the ZnO NWs. To verify the tagged ZnO NP 

size, an X-ray diffraction (XRD) pattern was obtained on a Bruker AXS D8 Discover x-ray 

diffractometer with Ni-filtered Cu-Kα radiation (λ = 1.54 nm), employing a scanning rate 

of 0.05 s-1 in the 2θ range from 20° to 89°. The average crystallite size for the 

commercial ZnO NPs was estimated to be 16 nm, as tagged, by the Debye-Scherrer 

equation: 

DXRD =   (5), 

where DXRD is the average crystalline size, λ is the wavelength of Cu-Kα x-rays, β is the full 

width at half maximum (FWHM) of the most prominent diffraction peak, and θ is the 

Bragg’s angle. At such a small size, the NPs could not be dispersed down to single 

crystallites without the help of some strong surfactant. SEM images show that a fresh 
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sample of the NPs consists of sphere-like agglomerations with 300 nm and up to 10 µm 

in diameter (see FIGURE 6). Large amounts of randomly oriented small crystallites are 

stacked into bulk particles. Consequently, the bulk particles’ net surface charge is 

smaller due to cancelations between different crystallites attached to each other. The 

ZnO NWs, however, express undisturbed surface charges due to perfect alignment of 

the crystal lattice in a single crystal bulk particle (i.e. NW). This makes it more difficult 

for the particles (i.e. NWs) to overcome the electrostatic repulsion between each other; 

thereby evading agglomeration which stabilizes the suspension. 
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FIGURE 6 –Representative SEM Images of Commercial ZnO NPs (a, b, c) and HRTEM 
Image of a ZnO NW (d) with Incident Electron Beam along {2110} Direction 
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Separation Procedure 

 Two simple formats to separate the NWs from the NPs and junk particles come 

to mind which utilize the substantial difference in suspension stability. One is to suspend 

the mixed ZnO NW/NP in de-ionized water (pH = 7) in an ultra-sonic bath. After some 

time, for which an optimum can be found by trial and error, the supernatant is 

separated from the precipitate via simple extraction. With the help of a base, the pH 

value of the solution is then increased to around the IEP, which causes the NWs to drop 

out of suspension. The clear (basic) solution is then extracted and the bottom cake is 

collected. Alternatively, one could filter the NWs with a micro-pore filter instead of 

applying a base. 

 

Examination of Suspension Behavior 

 Two suspensions (one with ZnO NPs and one with freshly-produced, mixed ZnO 

NWs) were prepared with de-ionized water in an ultra-sonic bath. Once the NPs and 

mixed NWs were well dispersed, the suspensions were taken out of the sonicator. The 

vial with the ZnO NPs cleared up completely after ten minutes and the white NPs amass 

at the bottom. The second vial with the mixed ZnO NWs also developed a small bottom 

deposit but stayed otherwise murky for days. A sample was taken from the supernatant 

of the second suspension, which was aged for 20 minutes. Another sample was also 

taken from the corresponding sediment. The bottom deposit seemed to consist of NPs, 

various other irregularly shaped particles, and a few NWs (see FIGURE 7 a, b). The 
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suspension, on the other hand, appeared to be almost entirely made up of ZnO NWs, 

with a few elongated platelets in-between the bulk congregation of ZnO NWs (see 

FIGURE 7 c, d). Overall, the NW fraction of the fresh ZnO NW mix was increased from 

about 75% to about 95%, which denotes an enormous boost in shape uniformity. 

 

 

 

 

 

FIGURE 7 – ZnO Junk-NPs from Bottom Cake (a, b) and ZnO NWs from Suspension (c, d) 

A sample of purified ZnO NWs was checked for its surface area via the Brunauer-

Emmett-Teller (BET) method using nitrogen at 77K on a vacuum volumetric gas-sorption 
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Micromeritics TriStar 3000. The result of 20 m2/g is in agreement with other 

publications and simple geometric estimations (see TABLE III in the Appendix). 



22 
 

 

 

 

III. CATALYST PREPARATION AND CHARACTERIZATION 

 

 With a reasonable supply of ZnO NWs at hand, preliminary trials were conducted 

to develop an understanding of and select practical methods by which to deliver the 

active nickel phase onto the ZnO NWs. Unfortunately, the thermodynamics for ion-

exchange are not favorable for the Ni/ZnO system. Consequently, efforts to achieve a 

thin or partial nickel coating onto the ZnO NWs were eventually abandoned. An attempt 

to disperse Ni NPs onto ZnO NWs during the production step in the plasma plume was 

made, but only delivered bare ZnO NWs with cubic NiO crystals loosely scattered around 

the NW congregation. Using an organic nickel salt instead of Ni NPs during the NW 

production step could possibly disperse small Ni NPs onto the ZnO NWs. This approach, 

however, appears risky and could damage the feeding system or cause undesirable NW 

quality due to the introduction of new gas species. Nevertheless, one such attempt will 

be conducted in the future and thoroughly characterized. Other relevant approaches 

like galvanic and also electro-less plating with a variety of reducing agents were 

contemplated; however, deterred by further equipment and materials costs, the 

approach was discarded for immediate exploration. The idea holds enough promise, 

though, as one could potentially have full control over the extent of nickel loading by 
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simply manipulating timing and concentrations. Given the budget and time constraints, 

impregnation with nickel solutions was chosen as the method suitable to deliver and 

test a first product. 

 

Choice Of Nickel Salt 

 There are several nickel salts which lend themselves to being used as the 

impregnation precursor. The opening selection criteria were hazardousness, solubility, 

cost, decomposition temperature, and hazardousness of decomposition product gases. 

Nickel nitrate hexahydrate and nickel acetate tatrahydrate (NiAc) were the final 

candidates, of which the acetate was chosen due to its relatively benign decomposition 

product gases (De Jesus, 2004). 

 

TGA/DSC Decomposition Temperature And Nickel Wetting 

 A ZnO NW sample was impregnated with an aqueous NiAc solution. The Ni to 

ZnO ratio was 20 wt% and the pH of the solution was kept at nine with the help of 

ammonium hydroxide. The solution water of the sample was slowly evaporated in a 

furnace at 110°C and the dry sample was collected. To expose the decomposition 

temperature of the acetate portion, a thermal gravimetric analysis (TGA) with 

differential scanning calorimetry (DSC) was conducted in ambient atmosphere on a 

Netzsch STA 409C. The TGA curve (see FIGURE 8) shows that water is released 
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continually to about 300°C with a small evaporation spike around 210°C, as indicated by 

an endothermic event at that temperature. The acetate begins to slowly pyrolyze at 

around 300°C and is dramatically and completely consumed by 340°C, as indicated by 

the intense exothermic event, with a peak at 338°C. A second sample with the same Ni 

to ZnO ratio was prepared by simply mixing the dry powders together adding no water 

or base at all. The TGA curve for the dry sample shows complete water loss by around 

125°C. There is no activity from 125°C to around 300°C, at which point the acetate starts 

decomposing again in the same manner as the first wet sample. The gradual loss of 

water for the first sample as compared to the second dry powder sample indicates 

increased interaction between the ZnO NW carrier and the nickel solution. This shows 

promise of nickel being intimately contacted to the ZnO NWs. 
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FIGURE 8 – TGA/DSC Curves for NiAc Decomposition on ZnO NWs 

NiAc Wet 

NiAc Dry 
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Phase Identification Of Calcined Product Via XRD Signatures 

 In order to identify the desired phases of the calcined product, a ZnO NW sample 

was impregnated with 30 wt% NiAc (as described previously) and caclined in air for two 

hours at 400°C. The calcined powder was loosely crushed in a mortar for XRD analysis. 

The XRD pattern shown below in FIGURE 9 precisely displays the characteristic signature 

peaks of hexagonal wurtzite ZnO and face-centered cubic bunsenite or NiO. The NiO 

peaks appear fairly broadened, which indicates a small crystallite size. As expected, the 

mean particle size calculated from the Debye-Scherrer equation came to about 11 nm. 

Aside from identification of the two desired phases, the nickel loading was also 

confirmed to be 30.1% NiO. 

 

FIGURE 9 – XRD Patterns of Hexagonal Wurtzite ZnO (blue) and Face-Centered Cubic 
Bunsenite (red) Phases with Plane Indices  
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Morphology Assessment Via SEM 

 Considering the dimensions of the ZnO NWs, the NiO particles were expected to 

be a bit smaller to fit tightly onto and in-between the NWs. The nickel loading of 30% 

simply appeared to be too high for the NiO particles to be well-dispersed. As confirmed 

by SEM and TEM runs, the NiO particles nucleated on ZnO NW surfaces but also on 

other already existing NiO sites into larger clusters (see FIGURE 10). There was simply 

not enough interfacial legroom for a thin coating of NiO NPs. To avoid nickel overloading 

and to keep ZnO sites accessible, a favorable loading ratio of 15% nickel was estimated 

based on a 50% ZnO NW coverage (see TABLE III in Appendix). 

  

FIGURE 10 –SEM Images of Calcined ZnO NWs with 30% Nickel Over-Loading on a Gold-
Coated Quartz Substrate 
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TEM And EDS Mapping Of Individual ZnO NW 

 In order to see how the nickel distribution improves with 15% loading, a sample 

was prepared and inspected via TEM (see FIGURE 11). It can be speculated that the Ni 

NPs, which are not firmly affixed to ZnO NWs; but rather loosely scattered around, were 

detached from the wires when the sample was ultra-sonicated for about ten minutes. 

Close-up images of NiO NPs that were affixed to ZnO NWs appeared to hold well. 

Complementary confirmation of the ZnO and NiO phases is provided by selected area 

electron diffraction which, not surprisingly, also reveals hexagonal wurtzite and 

bunsenite. 

  

FIGURE 11 – TEM of NiO NPs Affixed to and Detached from ZnO NWs (a), HRTEM Close-
Up and Selected Area Electron Diffraction (b) 
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 To identify elemental composition and confirm yet another way that the NPs 

decorated onto the ZnO NWs are indeed NiO, an energy-dispersive x-ray spectroscopy 

(EDS) map was generated for an area of and surrounding a single NW. The individual 

elemental maps, which are displayed in FIGURE 12, unmistakably show how nickel is 

distributed in a manner resembling particles and particle clusters over the NW. 

 

FIGURE 12 – HRTEM Image and EDS Maps of a Single NW for Individual Elements 

 

TEM In-Situ Decomposition Of NiAc On ZnO NWs 

 Another TEM run was carried out to expose whether the loosely scattered NiO 

NPs nucleated on the spot, independently of the wires, or were disconnected from the 

ZnO NWs during sample preparation (i.e. sonication). A ZnO NW sample was prepared 

without calcination; a drop of the ZnO NW/NiAc suspension/solution was dripped onto a 

carbon grid, dried, and loaded into the TEM. A prior SEM run on the same sample 

revealed a reasonably even distribution of the NiAc salt alongside the ZnO NWs (FIGURE 
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13). The sample in the TEM chamber was slowly heated to 330°C as a result of which 

nickel nuclei started to emerge from the amorphous NiAc. All images in FIGURE 14 were 

recorded at a final temperature of 430°C. The chamber was under high vacuum which 

prevented formation of NiO. Upon comparison of several different sample regions 

before and after in-situ calcination, it appears that nickel nucleates indiscriminately on 

any interface present; this also includes the carbon grid. Overall, nickel dispersion is very 

high with very few and small agglomerations. The nickel particle size averages around 30 

Å, which is an excellent result and a good indicator for high catalytic activity. 
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FIGURE 13 – Representative SEM Images of ZnO NWs Coated with NiAc 
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FIGURE 14 – TEM Images of In-Situ Calcined NiAc on ZnO NWs (a, b, c), Images (d) and 
(e) are Close-Ups of (a) and (b), (f) is a Close-Up of (c), (g) is a Close-Up of (f) 
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Analysis Of NiO NP – ZnO NW Interaction Via TPR And Hot Stage XRD 

 To test the sintering susceptibility of the NiO/ZnO NW system during reduction, 

two time programmed reduction (TPR) runs were conducted on NiO decorated ZnO 

NWs and on commercial ZnO NPs. The two samples were loaded with 20% nickel and 

reduced in a nitrogen stream with five percent hydrogen on a Micromeritics Autochem 

II 2920. The ramp rate of the reduction was ten degrees per minute and the hydrogen 

consumption signal was recorded from 30°C to 500°C. Both TPR profiles (see FIGURE 15) 

display one major peak which points to a relatively uniform nickel particle size 

distribution in the sample. The ZnO NP sample has a reduction maximum of around 

345°C and the ZnO NW sample at 358°C. The considerable difference between the 

reduction maxima implies that the NP sample with the lower reduction temperature 

shows relative ease of NiO reduction compared to the NW sample. Reducibility can 

serve as a measure of nickel-support interaction. The stronger the NiO interacts with the 

ZnO support the more difficult it is to reduce it to nickel. The stronger metal-support 

interaction is also related to smaller NiO and nickel particle sizes. 
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FIGURE 15 – TPR Curves for NiO on ZnO NPs and ZnO NWs 

To gain insight into the nickel particle size evolution during reduction, a hot stage 

XRD reduction was conducted. Unfortunately, a ZnO NW sample with low (25%) NW 

ratio was used for this experiment; therefore, the experiment will have to be repeated 

in the future. For the current data, an XRD profile was recorded for every 25°C increase 

in temperature with the same reduction conditions as the TPR runs. When the ZnO NP 

sample (which was reduced in the same manner) is taken as a reference, the ZnO NWs 

appear to reduce the extent of nickel sintering. FIGURE 16 displays the mean crystallite 

size evolution during reduction of both nickel decorated ZnO NPs and ZnO NWs. 
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FIGURE 16 – Mean Crystallite Sizes of Nickel on ZnO Carriers from Hot Stage XRD Data 
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Sulfur Uptake Confirmation Via XRD 

 To practically investigate if the proposed catalyst carrier chemisorbs and stores 

hydrogen sulfide (H2S), a ZnO NW sample of 0.2 g was mixed into a slurry with ethanol, 

spread onto a quartz plate, and placed in a vacuum reactor chamber. The reactor was 

slowly pumped down to a moderate 0.05 torr and heated to 200°C. A 25 sccm stream of 

H2S was then flown over the sample for 14 hours. As shown in FIGURE 17 below, XRD 

analysis identified a cubic zinc sulfide (ZnS) phase. Quantification revealed that 38.2% of 

the sample is ZnS, and the 61.8% remainder is comprised of ZnO. 

 

FIGURE 17 – XRD Patterns of Hexagonal ZnO (red) and Cubic ZnS (blue) 
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 Now that the ability of ZnO NWs to store sulfur was demonstrated it was 

necessary to assess how this affects the morphology of the NWs given the lattice 

mismatch between both phases. As shown in FIGURE 18, SEM images of the sulfided 

sample appear to show “swelling” of the NWs; however, the general morphology is well 

maintained. 

 

FIGURE 18 – Representative SEM Images of ZnO NWs after Exposure to H2S 

 

Crush Strength Test Of Catalyst Extrusions 

 The general vehicles with which to deliver catalytically active phases in industrial 

arrangements are either extrusions or tablets. Extrusions are made by pressing product 

dough through commonly circular templates. There are several lubricants and binders 

mixed in with the carrier dough. The exact binder compositions depend on the materials 

used and are highly protected trade secrets as they can significantly improve crush 
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strength and surface area. Most commonly, binders are comprised of alumina or silica 

phases with small amounts of various clays. 

 To be able to test the proposed catalyst in standardized reactor units, it needs to 

be expressed in extrusions. Unfortunately, small industrial and even funnel extruders 

waste a lot of material per run. Therefore, a syringe was used to hand-extrude the 

catalyst for all extrusion trials. Actual photographs of the extrusion process are attached 

in the Appendix. A few sample extrusions with varying ratios of Ni, ZnO, and α-alumina 

were produced (extruded, dried, calcined) and tested for crush strength with a 

Mecmesin compression strength tester. In comparison to industrial requirements, there 

is a lot of room for improvement as the results only ranged from 0.3 to 0.85 lb/mm. A 

rule of thumb is that crush strength should be at least one lb/mm to be suitable for 

standard testing procedures. Given the time constraints, it was necessary to proceed 

and test the final extrusions anyway, rather than finding better binding materials and/or 

composition ratios. 

 

Final Catalyst Preparation 

 The proceeds of several ZnO NW production runs were collected (10.28g) and 

suspended in a one liter beaker filled with de-ionized water. After a 15 minute 

treatment in an ultra-sonic bath, the suspension was allowed to settle for 20 minutes 

before the supernatant was vacuum-filtered through a paper filter with a 2.5 micron 

pore size. The filter with the attached wet filter cake was dried for one hour at 110°C, 
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after which the dry ZnO NWs were collected from the filter. The final yield of high purity 

ZnO NW was 70% or 7.2 grams. 

For an intended final weight composition of 64:20:16 (ZnO: Al2O3: Ni), 5.84 

grams of the high quality product was mixed with 1.82 grams of γ-alumina and 6.35 

grams of NiAc. The product mixture was suspended in 250 ml of de-ionized water and 

was ultra-sonicated for about eight minutes to re-disperse the ZnO NW filter cake flakes. 

The beaker with the pale green suspension was put in a furnace at 80°C over night. Once 

150 ml of water were evaporated, the resulting creamy substance was further heated to 

150°C with occasional stirring. The final 30 to 40 ml were thick enough to extrude the 

dough into extrusions, which were then dried over night at 70°C. The final drying 

temperature was ramped up to 250°C at one degree per minute. The product extrusions 

became darker but stayed greenish until they were calcined at 400°C for two hours, at 

which point they almost immediately turned into a dark grey. After a cool-down period, 

the extrusions were sized to five by two millimeter pieces of which 10 ml were 

measured out for testing. 
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IV. ACTIVITY AND HYDRODESULFURIZATION TEST 

    To examine the final catalyst extrusions for desulfurization activity and capacity, 

they must be exposed to a model hydrocarbon stream spiked with an assortment of 

aforementioned “difficult” aromatic sulfur species in a setting that closely resembles 

industry conditions. It seemed appropriate to employ a diesel feed that contained 

aromatics to see if the catalyst also conveyed an appropriate level of regular 

hydrogenation activity. 

 

Feed Composition 

 A standard diesel feed was acquired from Exxon containing 25% of various 

aromatic and poly-aromatic compounds. The sulfur content of 20 ppm consisted mostly 

of thiophene (10 ppm), benzo-thiophene (3 ppm), di-benzo-thiophene (3 ppm), and a 

few moderately and severely sterically hindered di-benzo-thiophenes. 
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Reactor Loading 

 The 2.21 X 80 cm packed bed reactor-tube employed for the activity test was 

loaded according to the specifications in TABLE IV. A schematic of the reactor tube is 

displayed in FIGURE 19. A unit diagram (FIGURE 24) and an actual photograph of the 

reactor can be seen in the Appendix. 

     TABLE IV 

      REACTOR LOADING SPECIFICATIONS 

Material Quantity 

Glass Wool 2 g 

Glass Beads 15 cm3 

Silicon Carbide 108 g 

Cat. Extr. + SiC 3 aliquots 

Glass Wool 2 g 

Cat. Extr. + SiC 4 aliquots 

Glass Wool 2 g 

Cat. Extr. + SiC 3 aliquots 

Silicon Carbide 72 g 

Al2O3 Extrusions 15 cm3 

Glass Wool 2 g 

Aliquot = 7.2g SiC + 1.06g of catalyst extr. 

     FIGURE 19 – Reactor Schematic 
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Activity Test 

 Once the reactor tube was fully loaded and connected, it was purged in a 

nitrogen flow for 30 minutes. To reduce the NiO particles to metallic Ni, one liter per 

minute hydrogen was flown over the bed at 430°C for 16 hours. In retrospect, 

considering the Hüttig temperature, the reduction temperature chosen was probably 

too high for optimal results and the reduction stage too long. Before the pump for the 

diesel feed was started, the five reactor heater zones were programmed to fire at 

190°C. The mass flow meter for the hydrogen was reduced to 0.098 liters per minute at 

435 psig. The diesel pump rate was set to 0.5 ml/min, which, relative to the superficial 

volume of the catalyst extrusions (10 ml), translates into a liquid hourly space velocity 

(LHSV) of 3 h-1. Product samples were collected every four hours. 

 

Aromatics Breakthrough 

 The first two days worth of product samples were tested for aromatics content 

with a Lambda2 UV/VIS spectrophotometer from Perkin-Elmer. All freshly collected 

samples were twice diluted with iso-octane (2,2,4-Trimethylpentane) before they were 

analyzed. The background points were assessed at 246 and 310 nm, and the peak point 

was measured at 270 nm. All values are listed in TABLE V in the Raw Data section. 

 To provide a standard against which one can assess the performance of the 

Ni/ZnO NW/Al2O3 catalyst, the aromatics data curve was displayed with two other 

commercially researched catalyst samples (see FIGURE 20). The two catalysts chosen for 
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display were previously run in the same test unit at the same operating conditions. The 

first choice is the best available nickel-alumina catalyst (>55% Ni), hereafter referred to 

as catalyst “best”, which is not commercially sold, as it is not price-competitive and is 

also too weak (low crush strength). The second choice is also a nickel-alumina 

hydrogenation catalyst, hereafter referred to as catalyst “weak”, which is commercially 

available but represents the end of the performance spectrum. 

 As is plainly evident, the first trial with Ni/ZnO NW/Al2O3 loses aromatics 

hydrogenation activity very rapidly. The feed aromatics content practically breaks 

through after one day on stream. 

 

FIGURE 20 – Aromatics Breakthrough of Two Commercial Catalysts and Ni/ZnO NW/Al 
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Sulfur Breakthrough 

 The sulfur content in the product samples was analyzed with an Antek 9000 

elemental sulfur analyzer and was also compared to sulfur data of older runs. The sulfur 

uptake capacity of the Ni/ZnO NW/Al2O3 catalyst looks at least encouraging (see FIGURE 

21). Sulfur in organic sulfur species needs to be catalytically converted to H2S in order 

for it to be stored in sulfide form in the catalyst/adsorbent. The fact that there is very 

little sulfur in the product initially reveals that the Ni/ZnO NW catalytically breaks down 

the sulfur into H2S which is then adsorbed by the ZnO NWs. Even though the 

performance is inferior to conventional catalysts, the concept of reactive adsorption 

was likely demonstrated. 

 

FIGURE 21 – Sulfur Uptake Curves of Two Commercial Catalysts and Ni/ZnO NW/Al2O3  

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

0 10 20 30 40 50

Su
lfu

r B
re

ak
th

ro
ug

h 
(p

pm
)

Time On Stream (h)

Ni/ZnO NW/Alumina

Best

Weak



45 
 

 

 

 

V. CONCLUSIONS AND RECOMMENDATIONS 

 

Appreciable quantities of ZnO NWs were prepared and purified for the production of 

an HDS reactive adsorbent. An active nickel phase was delivered onto the nanowires via 

simple impregnation and calcination of an aqueous nickel solution. Extensive 

characterization indicated that nickel – support interaction is stronger when the support 

is comprised of ZnO NWs rather than ZnO NPs. Stronger interaction favors two key 

catalyst properties: small nickel crystallite size and lower susceptibility toward sintering. 

Hydrogenation and HDS activity tests of the prepared catalyst extrusions confirmed 

activity according to the expected reactive adsorption scheme. However, the 

performance proved to be inadequate, when compared to existing nickel catalysts. It 

can reasonably be suspected that the extrusion preparation, calcination, and reduction 

steps were not at all optimal. The extrusion preparation alone presents ample 

opportunities for failure. Considering the immaturity of the approach, the prospect for 

an ultra-deep HDS catalyst still holds true, and as valuable experience was gained, 

further trials are likely to show improvement. 
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 The routes taken and described in this paper leave a plethora of opportunities 

for improvement. There are several aspects that emerged during the nanowire 

production, catalyst preparation, and testing which could easily be improved upon. 

For future efforts it is recommended to implement a filter with higher bulk 

surface area into the NW collection setting of the plasma reactor. Up until now, 

production runs were limited to about 15 minutes as the current filter system, which 

has already been improved upon during this work, rapidly clogs up with NWs. There are 

commercial filter solutions available, which after installment would allow for long steady 

state production runs. 

The most room for improvement lies with the catalyst itself. The criteria for the 

nickel precursor might not be favorably prioritized or even complete. Literature claims 

for nano-sized nickel particles are plentiful. It could prove beneficial to extend the nickel 

precursor search to find a better candidate. Nickel formate, for example, is said to 

produce particle sizes of 1.2 nm. Therefore, inspecting several more precursors could 

potentially be rewarding. 

The experience gained handling binder materials throughout the research is still 

limited. As the binder has critical influence over crush strength and surface area it is 

recommended to explore different materials and extrusion production schemes. 

Certainly, it would also be interesting to see how the Ni/ZnO NW system performs 

without any additives at all. 
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The hydrogenation test runs according to a standardized format. The reduction 

procedure of 845°F for 16 hours is simply too harsh for the proposed catalyst. Reducing 

the temperature to 800°F was probably not enough to prevent major sintering and 

deactivation. The available literature provides conflicting information if reduction is 

necessary at all. In view of the apparent delicateness of the tested catalyst it is 

recommended to investigate if in-situ pre-reduction at high temperature is 

indispensable, or if operating temperatures and regular hydrogen supply is sufficient to 

activate the catalyst. 

Most importantly, it is recommended to characterize the spent catalyst 

extrusions. Unfortunately, time constraints to conclude this paper, prohibited the 

execution of several planed test, that would most certainly have contributed valuable 

information to this venture. 
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APPENDIX 

 

Supplementary Tables and Figures 

 

TABLE I 

ORGANO-SULFUR COMPOUNDS WITH HDS REACTION CONSTANTS 

Reactant Structure 
Pseudo-first-
order rate k 

(L/g cat) 
Rate constant (min−1) 

Thiophene 
 

1.38 × 10−3* 
 

Benzothiophene 
 

8.11 × 10−4* >0.20 (CoMo) >0.20 (NiMo) 

Dibenzothiophene 
 

6.11 × 10−5* 
 

Benzo[b]naphtho-[2,3-d] thiophene 
 

1.61 × 10−4* 
 

Dibenzothiophene 
 

7.38 × 10−5** 0.058 (CoMo) 0.057 (NiMo) 

4-Methyldibenzothiophene 
 

6.64 × 10−6** 0.018 (CoMo) 0.020 (NiMo) 

4,6-Dimethyldibenzothiophene 
 

4.92 × 10−6** 0.006 (CoMo) 0.008 (NiMo) 

2,8-Dimethyldibenzothiophene 
 

6.72 × 10−5** 
 

3,7-Dimehyldibenzothiophene 
 

3.53 × 10−5** 
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TABLE II 

OVERVIEW OF CATALYST PARTICLE DIMENSIONS, SELECTED REPORTS 

ZnO initial (nm) ZnO final (nm) NiO (nm) Ni (nm) SA (m2/g) Group 

10 22 11 15   Huang 
14   5   32 Bezverkhyy 

>200     22 5 Da Costa-Serra 
12 15 5 7 34 Ryzhikov 
19 28 6 10 29.7 Zhang 
20 30     40.7 Lee 

        16 Tawara 
20       7.4 - 37.8 Zhou 

pure nickel or nickel oxide particle diameter, various synthesis methods 

    7.7 - 24.1   123.0 - 16 Wu, Ying 
      <10 33 Alonso 
      15.1 - 40.1 39 Lif 
    5.9 - 7.1 11.7 - 15.9   Kobayashi 
    40 - 50     Dharmaraj 
    14 22   Fatemeh 
    10, 15     Xiang 
      30   Cheng 
      9   Wang 
      57   Du 
    19, 30     Mahata 
      10   Wang 
    24     Salavati-Niasari 
    12, 15     Farhadi 
      7.8   Pina 
    25, 30     Anandan 
    40     Wu, Zhijie 
    6, 7     Rasmussen 
      3, 5, 11   Hou 
    12, 14     Li 

 

  



55 
 

TABLE III 

NANOWIRE SURFACE AREA AND NICKEL LOADING 

ρ of ZnO 5606000 g/m3 (5.606 g/cm3) dia NiO NP 7.00E-09 
ρ of NiO 6670000 g/m3 (6.67 g/cm3) V NiO drop 8.98E-26 
Length NW 0.000001 m (1000 nm) Coverage 0.5 
  

    
  

Dia NW (nm) V NW (m3) Mass of NW (g) SA (m2/g) Coverage Mass Ratio 

70.0 3.848E-21 2.15744E-14 10.19316039 1.100E-13 0.079 
60.0 2.827E-21 1.58506E-14 11.89202045 9.425E-14 0.093 
55.0 2.376E-21 1.33189E-14 12.97311322 8.639E-14 0.101 
52.5 2.165E-21 1.21356E-14 13.59088052 8.247E-14 0.106 
50.0 1.963E-21 1.10074E-14 14.27042455 7.854E-14 0.111 
47.5 1.772E-21 9.93414E-15 15.02149952 7.461E-14 0.117 
45.0 1.590E-21 8.91596E-15 15.85602727 7.069E-14 0.123 
42.5 1.419E-21 7.95281E-15 16.78873476 6.676E-14 0.131 
40.0 1.257E-21 7.04471E-15 17.83803068 6.283E-14 0.139 
37.5 1.104E-21 6.19164E-15 19.02723273 5.890E-14 0.148 
35.0 9.621E-22 5.3936E-15 20.38632078 5.498E-14 0.159 
32.5 8.296E-22 4.65061E-15 21.9544993 5.105E-14 0.171 
30.0 7.069E-22 3.96265E-15 23.78404091 4.712E-14 0.185 
27.5 5.940E-22 3.32972E-15 25.94622645 4.320E-14 0.202 
25.0 4.909E-22 2.75184E-15 28.54084909 3.927E-14 0.222 
22.5 3.976E-22 2.22899E-15 31.71205454 3.534E-14 0.247 
20.0 3.142E-22 1.76118E-15 35.67606136 3.142E-14 0.278 
17.5 2.405E-22 1.3484E-15 40.77264156 2.749E-14 0.317 
15.0 1.767E-22 9.90662E-16 47.56808182 2.356E-14 0.370 
12.5 1.227E-22 6.8796E-16 57.08169818 1.963E-14 0.444 
10.0 7.854E-23 4.40294E-16 71.35212273 1.571E-14 0.555 
7.5 4.418E-23 2.47665E-16 95.13616363 1.178E-14 0.740 
7.0 3.848E-23 2.15744E-16 101.9316039 1.100E-14 0.793 
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FIGURE 24 –Unit Diagram for Hydrogenation Test Reactor 
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Raw Data 

TABLE V 

PRODUCT SAMPLE DILUTION AND UV/VIS RECORD 

Test #11-05-03 Ni/ZnO NW Extrusions 

  First 
Dilution   Second 

Dilution   Background 
Points 

Peak 
Point 

Net 
Peak In Product 

HOS Sample 
Weight 

Total 
Weight 

Sample 
Weight 

Total 
Weight 246 310 270 270 Percent 

Aromatics 
Feed 0.3968 19.5009 0.4801 20.6929 0.4630 0.0550 0.5260 0.2160 24.800 

4 0.1122 2.1045 0.1067 8.2086 0.0040 0.0020 0.0050 0.0018 0.137 
8 0.1205 2.1508 0.1059 8.1812 0.0740 0.0090 0.1220 0.0724 5.409 

12 0.1141 2.1410 0.1071 8.1315 0.3310 0.0360 0.4540 0.2336 18.041 
16 0.1154 2.1192 0.1044 8.1312 0.3390 0.0340 0.4730 0.2484 19.255 
20 0.1291 2.1427 0.1069 8.1456 0.4900 0.0580 0.6250 0.2970 20.359 
24 0.1246 2.1544 0.1024 8.1513 0.5260 0.0650 0.6430 0.2899 21.626 
28 0.1308 2.1743 0.1064 8.1770 0.6210 0.0760 0.7360 0.3194 22.115 
32 0.1261 2.1454 0.1060 8.1187 0.6530 0.0800 0.7590 0.3209 22.664 
36 0.1246 2.1590 0.1064 8.1209 0.6640 0.0820 0.7630 0.3173 22.742 
40 0.1306 2.1548 0.1071 8.1531 0.7130 0.0880 0.8100 0.3314 22.560 
44 0.1261 2.1397 0.1077 8.0842 0.7100 0.0880 0.8000 0.3233 22.316 
48 0.1254 2.1674 0.1071 7.8257 0.7370 0.0920 0.8240 0.3289 22.513 

 

 

 



58 
 

 

FIGURE 22 – NiO/ZnO NW Reduction Signal under 5% Hydrogen Hot Stage XRD 

 

FIGURE 23 – NiO/ZnO NP Reduction Signal under 5% Hydrogen Hot Stage XRD 
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Photographs 

 

 

 

FIGURE 25 – Photographs of Hydrogenation Test Unit 
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FIGURE 26 – Photographs of the Extrusion Production Process 
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